Robert Maillart (1872 – 1940). https://commons.wikimedia.org/w/index.php?curid=15901325
Robert Maillart (Berna, 6 de febrero de 1872 – Ginebra, 5 de abril de 1940) fue un ingeniero civil suizo que innovó en el uso del hormigón armado, creando el arco triarticulado, el arco con tablero armado para puentes y losas sin vigas con columnas en forma de seta para naves industriales. Sus puentes de Salginatobel (1929-1930) y Schwandbach (1933) transformaron la estética y la ingeniería de los puentes, y ejercieron una gran influencia en generaciones de arquitectos e ingenieros. En 1991, la Sociedad Estadounidense de Ingenieros Civiles declaró el puente de Salginatobel «Hito Histórico Internacional de la Ingeniería Civil».
Maillart creció en el seno de una familia calvinista de Berna y destacó desde joven en matemáticas y dibujo durante su educación secundaria. Entre 1890 y 1894 estudió ingeniería estructural en la Escuela Politécnica Federal de Zúrich (ETH), donde asistió a las conferencias de Wilhelm Ritter sobre estática gráfica, una disciplina clave en su formación. Tras obtener su título, regresó a Berna para trabajar con Pümpin & Herzog (1894-1896), y luego pasó dos años en la administración de la ciudad de Zúrich y en la firma Froté & Westermann. Fue en esta última donde concibió una de sus primeras innovaciones: el diseño del puente de arco de hormigón armado en Zuoz, finalizado en 1901, en el que integró la calzada con el arco estructural, generando una sección en forma de cajón de doble celda. En 1902 fundó su propia empresa, Maillart & Cie. En 1903 diseñó un foso para gasómetro en la ciudad de Sankt Gallen, donde por primera vez incorporó el análisis de los momentos flectores en los cálculos gráficos de las fuerzas internas de una cáscara cilíndrica de hormigón armado empotrada en la losa de cimentación. A finales de ese mismo año, Maillart detectó la aparición de grietas verticales próximas a los estribos en el alma de la estructura del puente de Zuoz. Esta observación derivó en la incorporación de recortes triangulares en los elementos de apoyo y, posteriormente, en 1905, en el desarrollo del puente de arco articulado en tres puntos sobre el Rin en Tavanasa, con una luz de 51 m.
En 1912 se mudó con su familia a Rusia, donde dirigió la construcción de fábricas y almacenes en Járkov, Riga y San Petersburgo, mientras el país se industrializaba con inversiones suizas. Sin embargo, con el estallido de la Primera Guerra Mundial, se vio obligado a evacuar Riga y trasladarse a Járkov. Durante su estancia en Kiev, diseñó grandes estructuras industriales para AEG y otras compañías. La muerte de su esposa en 1916 y la irrupción de la Revolución de Octubre marcaron un punto de inflexión en su vida, obligándolo a regresar a Suiza con sus tres hijos en una situación económica precaria. Al regresar a Suiza, Maillart no tenía dinero y estaba endeudado. Tras su regreso, trabajó para otras firmas, pero lo mejor de sus diseños aún estaba por llegar. En 1920 se incorporó a una oficina de ingeniería en Ginebra, que luego abrió sucursales en Berna y Zúrich. A pesar de estas dificultades, su segunda etapa creativa (1920-1940) se caracterizó por una intensa actividad que culminó con la construcción de 160 estructuras que reflejan el rigor lógico y la sensibilidad artística de su obra. Su mayor contribución a la teoría de estructuras fue la introducción del concepto de centro de cortante y la formulación clara de su teoría en la década de 1920.
Puente de Salginatobel en Schiers. De Rama – Trabajo propio, CC BY-SA 2.0 fr, https://commons.wikimedia.org/w/index.php?curid=4794735
Robert Maillart tuvo un ingenio intuitivo con el que supo aprovechar la estética del hormigón. Gracias a sus contribuciones al diseño estructural, el lenguaje arquitectónico del hormigón armado se consolidó durante la primera mitad del siglo XX. Diseñó arcos triarticulados que combinaban el tablero y las nervaduras del arco, creando estructuras integradas que evolucionaron hacia arcos rígidos de hormigón armado delgados y losas del mismo material. El puente de Salginatobel (1930) y el puente de Schwandbach (1933) son ejemplos clásicos de estos diseños, reconocidos por su elegancia y su influencia en la ingeniería de puentes posteriores. Estos conceptos superaron los límites del diseño de la época. Ambos puentes demuestran su habilidad para simplificar proyectos, maximizar el uso de materiales e integrar la belleza del entorno. Maillart fue seleccionado entre 19 participantes por el bajo coste de su propuesta y comenzó la construcción del puente de Salginatobel en Schiers en 1929, que fue inaugurado el 13 de agosto de 1930.
Maillart es conocido por su innovador diseño de columnas con forma de seta en varios edificios. Su primer techo de este tipo lo construyó para un almacén en Zúrich, para el que trató el tablero de hormigón como una losa, sin vigas. Una de sus obras más famosas es el diseño de las columnas de la planta de filtración de agua de Rorschach. Al abandonar los métodos tradicionales, Maillart creó «el método de construcción europeo más racional y bello». En su diseño de columnas, ensanchaba las partes superiores para reducir el momento flector y formar ligeros arcos que transferían las cargas al suelo. También abocinó la base de las columnas para distribuir mejor la carga y reducir la presión sobre el suelo. Aunque muchos usaron este método con madera y acero, Maillart fue pionero al emplear hormigón, que soportaba eficazmente el aislamiento contra la congelación. Su técnica se utilizó para construir el puente de Ciolo, en Apulia.
Todas las partes del puente se integraron según su función constructiva, de modo que la carretera ya no era un peso que el arco debía soportar, sino un elemento que colaboraba como parte resistente de la estructura. Los puentes de Maillart superan la tradicional separación entre peso propio y cargas útiles, y se convierten en obras de arte por su economía de medios, equilibrio armónico y fuerza constructiva. Su principal innovación fue la viga cajón de tres articulaciones que utilizó en el puente de Tavanasa sobre el río Rin, construido en 1905 y destruido en 1927. Entre sus estructuras destacadas se encuentran la nave del Almacén de Aduanas de Chiasso, en 1924, y la gran nave de hormigón para la Exposición Nacional de Suiza de 1939 en Zúrich. La invención más importante para edificios fue la construcción de techos sin vigas apoyadas en capiteles en 1908, técnica que se popularizó a partir de 1910. Este sistema elimina la transición columna-viga-losa, dejando solo la columna-losa, lo que ahorra material, reduce el tiempo de ejecución y otorga flexibilidad, ligereza y elegancia al diseño.
Aunque no destacó en teorías académicas, comprendió la importancia de hacer suposiciones y visualizar las estructuras al analizarlas. A Maillart le molestaba el uso excesivo de las matemáticas, ya que prefería emplear el sentido común para prever el rendimiento a gran escala. Como rara vez probaba sus puentes antes de la construcción, los verificaba una vez terminados y los cruzaba él mismo. Esta actitud fue clave para sus diseños innovadores. En palabras de Mirko Gottfried Roš: «Maillart fue un ingeniero en el sentido más estricto del término. Puso la teoría y los avances científicos al servicio de la arquitectura: la primera era su herramienta y la segunda su propósito. Consideraba la experiencia y el conocimiento científico como socios equivalentes».
Cuando Robert Maillart falleció el 5 de abril de 1940, el mundo de la construcción en hormigón armado perdió a un auténtico «virtuoso del hormigón» y a un genio de la ingeniería estructural. Mirko Gottfried Roš lo describió en su obituario con estas palabras: «Fuiste tanto ingeniero como artista, porque tu credo fue la armonía entre magnitud, belleza y verdad».
Principales contribuciones a la teoría de estructuras:
Zur Frage der Biegung [1921/1]
Bemerkungen zur Frage der Biegung [1921/2]
Ueber Drehung und Biegung [1922]
Der Schubmittelpunkt [1924/1]
Zur Frage des Schubmittelpunktes [1924/1, 1924/3]
Zur Entwicklung der unterzugslosen Decke in der Schweiz und in Amerika [1926]
De izquierda a derecha: Ignacio Navarro, Rasmus Rampling, Mehrdad Hadizadeh, Salvador Ivorra, Tatiana García y Víctor Yepes
Hoy, 12 de febrero de 2025, ha tenido lugar la defensa de la tesis doctoral de D. Mehrdad Hadizadeh Bazaz, titulada “Inclusion of damage detection methods for the sustainable life cycle design of bridges in aggressive environments”, dirigida por los profesores Víctor Yepes Piqueras e Ignacio J. Navarro Martínez. La tesis recibió la calificación de sobresaliente «cum laude». A continuación, presentamos un pequeño resumen de la misma.
Resumen:
Para prevenir colapsos inesperados que pueden generar pérdidas económicas y humanas significativas, es esencial controlar la salud de cada estructura e infraestructura a lo largo de su ciclo de vida, que abarca desde su construcción y mantenimiento hasta su eventual retiro.
Sin embargo, las actividades de construcción, reparación y mantenimiento también pueden afectar al medio ambiente y a la sociedad. Por ello, el uso de técnicas modernas de detección de daños, que integren la evaluación sostenible del ciclo de vida y el análisis de los costes totales de mantenimiento, resulta fundamental para realizar reparaciones oportunas y minimizar el impacto negativo.
El concepto de sostenibilidad ha evolucionado desde su definición por primera vez por la Comisión Brundtland en 1987. Desde entonces, la comunidad científica ha desarrollado principios, métodos y criterios para el diseño sostenible, pero muchos de estos enfoques no son viables a largo plazo. En respuesta, las Naciones Unidas han establecido los Objetivos de Desarrollo Sostenible (ODS) para 2030.
En este contexto, es crucial adoptar una estrategia de ciclo de vida sostenible para las estructuras de hormigón que optimice costes y minimice el impacto ambiental y social en todas sus etapas, desde la construcción hasta el final de su vida útil. Los avances en tecnología informática y el desarrollo de sensores sofisticados han permitido implantar métodos de prueba no destructiva (NDT) para controlar y mantener de manera eficiente infraestructuras críticas, como puentes, y reducir así el riesgo de pérdidas económicas y humanas.
Esta tesis analiza la aplicación de diversas técnicas no destructivas para identificar daños estructurales y evalúa su impacto en la sostenibilidad. En este trabajo de investigación se evaluó el rendimiento de métodos no destructivos, como la función de respuesta en frecuencia (FRF) y la densidad espectral de potencia (PSD), para la detección y localización de daños estructurales. En particular, se analizó la capacidad de la PSD para predecir distintos tipos de daños en estructuras expuestas a la corrosión por iones de cloruro, como puentes de hormigón ubicados en entornos agresivos.
Posteriormente, se examinó la eficacia de este método de predicción en la evaluación del ciclo de vida sostenible, teniendo en cuenta su impacto ambiental, social y económico. Además, se analizaron los costes asociados a su aplicación en distintas fases de la vida útil de un puente de hormigón tipo cajón en Arosa, al noroeste de España.
Los resultados de esta tesis demuestran que la integración del método PSD en el mantenimiento preventivo durante el ciclo de vida de puentes de hormigón mejora significativamente su sostenibilidad. Los hallazgos confirman que la PSD permite detectar, localizar y predecir daños de manera eficiente, lo que optimiza la gestión a largo plazo de infraestructuras propensas a la corrosión. El análisis integral, que incorpora la evaluación del ciclo de vida y la toma de decisiones multicriterio, demuestra que la aplicación de la PSD reduce el impacto ambiental, minimiza los costes y mejora la sostenibilidad global de los puentes de hormigón. Además, este enfoque proporciona un marco adaptable a diversas infraestructuras y facilita el cumplimiento de objetivos de sostenibilidad a gran escala.
El puente Pumarejo, inaugurado en 1974 y fuera de servicio en 2019, cruza el río Magdalena, a 20 km de su desembocadura en el mar Caribe, entre Barranquilla y Sitionuevo, Magdalena. Conecta Barranquilla con la isla de Salamanca y la ruta hacia Ciénaga. Aunque oficialmente recibió el nombre de «Laureano Gómez», siempre fue conocido como el puente de Alberto Pumarejo, su principal impulsor.
De Jdvillalobos – File:Puente Pumarejo 001.JPG, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=27668196
Inicialmente, se pensó en ubicar el puente frente a la Zona Franca de Barranquilla, con una altura de 40 m, pero este diseño aumentaba el coste en 40 millones de pesos. Por ello, la administración de Lleras Restrepo (1966-1970) optó por un puente con un gálibo de 15 m. El proyecto fue obra del ingeniero Riccardo Morandi. La construcción empleó técnicas avanzadas de la época, como losas prefabricadas, pilotes de hasta 30 m de profundidad y grandes vigas pretensadas de hasta 120 t.
Este puente fue el más largo de Colombia hasta la inauguración del puente Roncador en 2020. Mide 1489 m de largo, divididos en tres secciones: 319 m en el acceso a Barranquilla, 282 m en el tramo atirantado y 887 m hacia Palermo. Con las vías de acceso, la longitud total fue de 3383 m. Los pilotes de hormigón armado tienen una profundidad de 30 m y un diámetro promedio de 1,80 m. El puente se apoya en 56 columnas y 29 tramos de vigas prefabricadas, con luces de hasta 140 m. Las pilas varían entre 2,5 y 5 m de diámetro y el ancho de la calzada es de 12,5 m, con una altura máxima de 16 m sobre el canal de navegación.
El ingeniero civil italiano Riccardo Morandi diseñó varias estructuras icónicas, como los puentes Américo Vespucio en Florencia (1957), General Rafael Urdaneta en Maracaibo (1962) y Wadi el Kif en Libia (1971). Lamentablemente, el 14 de agosto se derrumbó el puente Morandi en Génova, también diseñado por él, y dejó 39 muertos y al menos 11 edificios evacuados.
Puente de Akashi Kaikyo (Japón), 1998.
El Gran Puente del Estrecho de Akashi Kaikyō conecta Kōbe con la isla de Awaji y cruza uno de los estrechos más transitados del mundo, con más de 1000 embarcaciones al día. También conocido como Pearl Bridge, tiene una longitud total de 3911 m y está compuesto por tres vanos, siendo el central de 1991 m. Inaugurado el 5 de abril de 1998, se convirtió en el puente más largo del mundo de su tipo, superando al puente Humber del Reino Unido, con un tramo central de 1410 m. Fue diseñado por el ingeniero Satoshi Kashima y construido por Matsuo Bridge Co. El puente está sostenido por dos cables, considerados los más resistentes y pesados del mundo.
De Tysto – Self-published work by Tysto, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=477955
Durante la instalación de las torres y cables principales, ocurrió el Gran Terremoto de Hanshin (1995), que separó las torres casi un metro. Los cables del puente están hechos de 37,000 alambres de acero ultrarresistente, cuya longitud total daría siete vueltas y media a la Tierra si se colocaran en línea recta.
Se encuentra en una zona donde los tifones pueden alcanzar velocidades de hasta 290 km/h. Además, está ubicado en una región con gran actividad sísmica y, bajo su estructura, transitan diariamente cientos de embarcaciones.
Para la cimentación de las torres, se emplearon dos cajones circulares prefabricados de acero de 70 m de altura. El mayor tiene un diámetro de 80 m y el otro 78 m. Se utilizó el método de cajón descendente debido a la gran profundidad y las corrientes marinas. Se rellenaron con hormigón especial para endurecer con agua de mar. Cada anclaje requiere aproximadamente 350.000 toneladas de hormigón.
Los cimientos profundos de los anclajes se construyeron sobre tierras recuperadas mediante nuevas tecnologías. Estaban diseñados para resistir fuertes terremotos y se utilizó un método sísmico innovador y un hormigón especial, una mezcla de cementos resistentes al agua y la erosión. La capacidad de estos cimientos permitió que resistieran el fuerte terremoto del 17 de enero de 1995, con solo un desplazamiento de 1 m en las torres, lo cual es mínimo si se considera la magnitud del movimiento.
Viaducto de Millau (Francia), 2004.
El viaducto de Millau es un puente que cruza el valle del Tarn, en Aveyron (Francia), y soporta un tramo de la autopista A75, que conecta las causses Rouge y du Larzac. El viaducto es una estructura metálica atirantada de 2460 m de longitud, ligeramente curva, con un radio de 2000 m y una pendiente del 3,025 %. Está compuesto por ocho vanos atirantados: dos laterales de 204 m y seis centrales de 342 m, por lo que el viento puede superar los 200 km/h.
De Stefan Krause, Germany – Fotografía propia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8990774
Esta importante conexión nacional e internacional conecta Clermont-Ferrand con Béziers. Su construcción requirió trece años de estudios técnicos y financieros, iniciados en 1987, y se inauguró el 16 de diciembre de 2004, tres años después de colocar la primera piedra. Con un coste de 320 millones de euros, fue financiado por Eiffage mediante una concesión de 78 años, incluidos tres de construcción. A finales de la década de 2010, el viaducto registraba más de 4,5 millones de vehículos al año.
El viaducto de Millau fue diseñado por el ingeniero francés Michel Virlogeux, con la asesoría estética del arquitecto británico Norman Foster. Al proyectarse respetando la orografía, el viaducto necesitó siete grandes pilas huecas de hormigón de entre 50 y 60 cm de espesor. Sus alturas varían entre 78 y 245 m y están separadas entre sí por una distancia de 342 m. El hormigón B60, innovador en ese momento y con criterios de calidad excepcionales, fue el material principal utilizado para construir este viaducto.
Esta estructura cuenta con algunas de las pilas más altas del mundo. Bajo cada una de ellas hay pozos de cimentación con diámetros de entre 4 y 5 m y profundidades de entre 9 y 18 m, cubiertos por una losa de reparto de entre 3 y 5 m de espesor. El hormigonado de los encepados (hasta 2100 m³) se realizó en una sola fase con bomba.
De Desconocido – https://efreyssinet-association.com/apropos/lhomme/, Dominio público, https://commons.wikimedia.org/w/index.php?curid=81910629
Eugène Freyssinet nació el 13 de julio de 1879 en Objat, Corrèze (Francia), y falleció el 8 de junio de 1962 en Saint-Martin-Vésubie, Alpes-Maritimes (Francia). Fue un ingeniero de gran renombre, proyectista, constructor, inventor, empresario y artista, reconocido como el inventor del pretensado.
Pasó sus primeros años en un ambiente rural, hasta que en 1885 se trasladó con su familia a París, donde asistió a una escuela local y descubrió el Museo de Artes y Oficios. Pronto se familiarizó con todos los modelos expuestos y, entre los 10 y los 12 años, participó en cursos de electricidad aplicada, química y física. Durante las vacaciones escolares, pasaba el tiempo en Objat, donde se interesó por las tareas realizadas por los agricultores locales. Este grupo de personas, orgulloso y trabajador, extraía todo lo posible de la tierra árida, apenas suficiente para sobrevivir. Por ello, los agricultores también desempeñaban otros oficios, como ebanistas, carpinteros, albañiles, herreros y tejedores. A lo largo de su vida, Freyssinet siempre se sintió parte de este grupo. De estas personas, que trabajaban mucho y hablaban poco, aprendió a utilizar habilidades manuales y astucia para crear los mejores artefactos con pocos recursos materiales. Fue aquí, siendo aún un niño, donde Freyssinet adquirió las habilidades que más tarde le permitirían llevar a cabo innovaciones fundamentales en la construcción con hormigón.
Con una admiración casi religiosa por las habilidades manuales y una beca, Freyssinet asistió a la escuela Chaptal y logró ingresar en la École Polytechnique en su segundo intento en 1899. Posteriormente, estudió en la École des Ponts et Chaussées, de la que se graduó en 1905. Allí recibió una fuerte influencia de los profesores Charles Rabut, Jean Résal y Paul Séjourné. En 1903, todavía estudiante (se licenció en 1905), obtuvo su primer cargo: ingeniero de servicios ordinarios y vecinales, con la función de asesorar técnicamente a varios alcaldes del distrito este, concretamente de Vichy y Lapalisse. Comenzó a trabajar como ingeniero júnior en la oficina local de Ponts et Chaussées en Moulins, donde asesoraba a alcaldes rurales sobre temas relacionados con la ingeniería. En este trabajo, tenía libertad para diseñar y construir estructuras, utilizando siempre el hormigón reforzado. Entre sus obras de este período destacan los tres puentes de arco de hormigón pretensado sobre el río Allier.
En 1904 se interesó por las propiedades elásticas y de deformación del hormigón armado, una combinación de acero y hormigón. La búsqueda de la perfección de este material se convirtió en su principal objetivo. Sirvió en el Ejército de Tierra francés entre 1904 y 1907, y nuevamente durante la Primera Guerra Mundial como ingeniero de carreteras. Entre 1914 y 1928 fue director técnico y socio de la empresa Mercier-Limousin, donde obtuvo su primera patente de hormigón pretensado en 1920. En 1928, patentó un sistema de pretensado y comenzó a industrializar elementos prefabricados de hormigón armado, aunque su negocio de fabricación de postes eléctricos fracasó entre 1928 y 1933.
Entre 1907 y 1911, supervisó la construcción del puente de Veurdre, donde se enfrentó a problemas relacionados con los desplazamientos verticales de los arcos de hormigón armado. Con la ayuda de trabajadores de confianza, utilizó gatos hidráulicos para elevar los arcos y salvar el puente, que funcionó bien hasta ser destruido en la Segunda Guerra Mundial.
Freyssinet descubrió que el comportamiento del hormigón no es lineal y que, con una tensión compresiva constante, la contracción aumentaba con el tiempo. Este fenómeno, que observó en el Pont du Veurdre, se conocería más tarde como fluencia. Su comprensión del comportamiento del hormigón contrastaba con la de las autoridades científicas de la teoría de estructuras, que defendían la predominancia de lo lineal. Sin embargo, se estaba gestando un cambio de paradigma.
Eugène Freyssinet (1879-1962)
El gran avance en la construcción con hormigón pretensado se produjo en 1928, cuando Freyssinet y Jean Seailles patentaron su sistema de pretensado. A pesar de algunos fracasos iniciales, Freyssinet revolucionó el sector de la construcción con hormigón, consolidando su nombre como un referente en el campo. Entre sus obras más destacadas se encuentran el hangar de dirigibles de Orly (1921-1923), el Pont de Plougastel (1926-1930) y los audaces puentes de Marne construidos en la década de 1940. A partir de 1943, la tecnología del pretensado se expandió por todo el mundo. Freyssinet fundó la empresa STUP, que en 1970 se transformó en Freyssinet International.
Entre 1929 y 1933, Freyssinet experimentó con nuevas formas de fabricación de vigas y presentó el de hormigón pretensado en un artículo de 1933. Este tipo de hormigón, sometido a presiones antes de su uso, mejoraba la resistencia y permitía la construcción de estructuras más delgadas y esbeltas.
Ese mismo año se presentó a la cátedra de hormigón de la Academia de Ciencias, pero fue rechazado. Luego, se centró en probar la viabilidad del hormigón pretensado para mejorar el puerto de Le Havre en 1934. Gracias a este éxito, Edme Campenon, presidente de Enterprises Campenon-Bernard, le contrató para realizar varios proyectos en Argelia.
Sin embargo, con el inicio de la Segunda Guerra Mundial y la derrota francesa de 1940, Freyssinet tuvo que ocultar sus conocimientos para evitar que los alemanes se aprovecharan de ellos. Además, varias de sus obras fueron destruidas. A pesar de ello, no interrumpió por completo su actividad constructiva. En 1943, Edme Campenon fundó la STUP (Sociedad Técnica para la Utilización del Pretensado) para aplicar las investigaciones de Freyssinet sobre esta técnica. En la posguerra, Freyssinet perfeccionó el uso del hormigón pretensado, que implementó en nuevos puentes y en diversos edificios, como el faro de Berck y la basílica subterránea del santuario de Lourdes.
Su origen rural tuvo una gran influencia en su carrera como ingeniero, que comenzó a una edad temprana. Tendía a simplificar sus construcciones y a hacerlas económicas. A pesar de su sólida formación matemática, que utilizaba cuando era necesario, su espíritu artesano e intuitivo lo llevaba a confiar más en la experiencia. Apasionado y tenaz, Eugène Freyssinet fue muy apreciado por sus colegas.
• Principales contribuciones a la teoría de estructuras:L’Amélioration des constructions en béton armé par l’introduction de déformations élastiques systématiques [1928]; Procédé de fabrication de pièces en béton armé [1928]; Note sur: Bétons plastiques et bétons fluides [1933]; Progrès pratiques des méthodes de traitement mécanique des bétons [1936/1]; Une révolution dans les techniques du béton [1936/2]; Une révolution dans l’art de bâtir: les constructions précontraintes [1941]; Ouvrages en béton précontraint destinés à contenir ou à retenir des liquides [1948/1]; Ponts en béton précontraint [1948/2]; Überblick über die Entwicklung des Gedankens der Vorspannung [1949]; Un amour sans limite [1993].
Os dejo algunos vídeos, que espero, os interesen.
Referencia:
FERNÁNDEZ-ORDÓÑEZ, J.A. (1978). Eugène Freyssinet. 2c Ediciones, Barcelona.
Acaban de publicar nuestro artículo en la revista del primer decil del JCR Mathematics. El artículo presenta un método innovador para optimizar el diseño de puentes mixtos de acero y hormigón mediante un enfoque basado en la teoría de juegos. Este enfoque integra criterios de sostenibilidad económica, ambiental y social con la simplicidad constructiva, abordando de manera simultánea múltiples objetivos que suelen ser conflictivos en proyectos de infraestructura. La principal contribución radica en la aplicación de un método de optimización multiobjetivo (MOO) que permite equilibrar los tres pilares de la sostenibilidad, empleando el Análisis del Ciclo de Vida (LCA) para evaluar el impacto durante todo el ciclo de vida del puente, desde su fabricación hasta su desmantelamiento.
Destaca la implementación de una versión discreta del algoritmo Seno-Coseno (SCA), adaptada específicamente para resolver problemas de diseño estructural. Esta metodología no solo garantiza un diseño eficiente en términos de coste y sostenibilidad, sino que también proporciona una solución práctica que facilita la construcción al reducir los refuerzos en las losas superiores y realizar ajustes geométricos estratégicos. Este enfoque supone un avance en el campo de la ingeniería civil, ya que combina técnicas matemáticas avanzadas con consideraciones prácticas del sector. Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València.
La metodología descrita combina la teoría de juegos con un enfoque cooperativo, en el que los diferentes objetivos (coste, impacto ambiental, impacto social y facilidad constructiva) se representan como «jugadores». Estos jugadores colaboran para encontrar soluciones óptimas dentro del conjunto de soluciones Pareto-óptimas, utilizando el concepto de equilibrio de Nash y reglas de negociación.
El algoritmo Seno-Coseno (SCA) modificado desempeña un papel fundamental en este proceso, ya que permite gestionar variables discretas y restricciones estructurales mediante funciones de transferencia en forma de tangente hiperbólica. Además, se emplea la teoría de la entropía para asignar pesos objetivos, lo que asegura un equilibrio justo entre los criterios y minimiza la subjetividad en la toma de decisiones.
Los resultados muestran que la metodología basada en la teoría de juegos permite reducir el refuerzo de las losas superiores del puente y optimizar el uso de materiales sin comprometer la resistencia estructural. En comparación con un enfoque de optimización monoobjetivo centrado exclusivamente en costes, el método propuesto aumenta los costes en un 8,2 %, pero mejora sustancialmente los impactos ambientales y sociales asociados al diseño.
El estudio revela que, mediante la redistribución del material estructural, es posible mantener la rigidez necesaria en las secciones transversales del puente. En concreto, se observa un aumento en el uso de acero estructural en lugar de acero de refuerzo, lo que simplifica la construcción al reducir la cantidad de barras necesarias y, por ende, el tiempo de instalación y vibrado del hormigón. Este cambio también contribuye a mejorar la calidad del producto final, ya que reduce los errores constructivos y optimiza el tiempo de ejecución.
El análisis demuestra que las soluciones obtenidas mediante métricas de distancia Minkowski (L1, L2 y L∞) proporcionan diseños equilibrados que logran compromisos efectivos entre coste, sostenibilidad y facilidad constructiva. Estas soluciones son comparables a estudios previos en términos de costes, pero ofrecen beneficios adicionales al incluir una evaluación más integral de los impactos sociales y ambientales.
El enfoque presentado abre la puerta a diversas áreas de investigación. Una línea de investigación prometedora es la aplicación de algoritmos híbridos que combinen la teoría de juegos con otras metaheurísticas, como redes neuronales o algoritmos genéticos, para mejorar la exploración y explotación del espacio de soluciones. Esto podría reducir el tiempo de computación y permitir su aplicación a problemas más complejos.
Otra posible dirección de investigación sería ampliar el modelo para incluir criterios como la resiliencia ante desastres naturales o la evaluación de riesgos a largo plazo. También se podría explorar la incorporación de nuevos indicadores sociales, como el impacto en las comunidades locales durante la construcción y operación del puente, lo que ampliaría la evaluación de sostenibilidad. Asimismo, sería interesante aplicar esta metodología a otros tipos de estructuras, como edificios o infraestructuras de transporte masivo, para evaluar su viabilidad y adaptar el enfoque a diferentes contextos.
En definitiva, el artículo proporciona una herramienta muy valiosa para abordar los desafíos de sostenibilidad y eficiencia en el diseño de infraestructuras civiles. La combinación de la teoría de juegos y la optimización multiobjetivo es efectiva para equilibrar criterios complejos y conflictivos, y ofrece soluciones prácticas, sostenibles y viables desde el punto de vista económico y constructivo. Aunque computacionalmente intensivo, este enfoque establece una base sólida para futuras investigaciones y aplicaciones en el campo de la ingeniería civil, lo que permite avanzar en la evaluación integral de la sostenibilidad y en la mejora de los procesos de diseño estructural.
La presa de Aldeadávila es un bien patrimonial público, destacando por su impresionante belleza y majestuosidad, tanto por sí misma como por el paisaje que la rodea. En este lugar se filmaron el inicio y el final de la película Doctor Zhivago. https://commons.m.wikimedia.org/
El concepto de patrimonio cultural abarca un conjunto de bienes con valores diferentes pero relacionados en cierta medida en cuanto a su importancia histórica, artística, social o científica que se hereda de generaciones anteriores, e incluye también los valores, creencias, prácticas y modos de expresión artística que caracterizan a una comunidad o sociedad. Este concepto destaca por su papel fundamental en la preservación de las identidades y el fomento del sentimiento de pertenencia, lo que lo convierte en un aspecto esencial de la experiencia humana y de la diversidad cultural en todo el mundo.
Este patrimonio se divide en dos categorías principales: el patrimonio material, que incluye bienes tangibles como edificios, monumentos y obras de arte, y el patrimonio inmaterial, que comprende tradiciones, costumbres y expresiones culturales que identifican a una comunidad. La distinción entre estas dos categorías es esencial para comprender cómo se preserva y valora el patrimonio en diferentes contextos (UNESCO, 2003).
El patrimonio cultural material se refiere a las obras y productos de la creatividad humana a lo largo de la historia que constituyen un testimonio de la cultura intelectual, espiritual y material de las sociedades pasadas. Esto incluye no solo monumentos y obras arquitectónicas, sino también infraestructuras como puentes, caminos y presas, que evidencian la evolución técnica de una civilización, así como su carácter social. La conservación de estos bienes es esencial, ya que representan la memoria colectiva de una comunidad y constituyen un recurso invaluable para la educación y la investigación (Mason, 2008).
Por otro lado, el patrimonio cultural inmaterial se refiere a las prácticas, representaciones, expresiones, conocimientos y técnicas que las comunidades reconocen como parte de su patrimonio cultural. Este tipo de patrimonio incluye tradiciones orales, danzas, rituales y festividades que se transmiten de generación en generación. La protección de este patrimonio es igualmente importante, ya que contribuye a la cohesión social y a la identidad cultural de las comunidades, y permite que las nuevas generaciones se conecten con sus raíces (Hernández, 2015).
La clasificación del patrimonio cultural también puede realizarse en función de si es público o privado. Los bienes patrimoniales públicos son aquellos que pertenecen a la colectividad y son administrados por entidades gubernamentales, mientras que los bienes privados son de propiedad individual y pueden ser expropiados por el bien común, siempre que se compense adecuadamente a sus propietarios. Esta distinción es relevante en el ámbito de la conservación, ya que los bienes públicos suelen recibir más atención y recursos para su preservación (González, 2017).
El Viaducto de Requejo sobre el río Duero, diseñado por José Eugenio Ribera en 1914, es un puente de impresionante belleza ubicado en un entorno espectacular. Es una obra histórica que debe ser protegida y conservada para las generaciones futuras. https://es.wikipedia.org/wiki/Puente_de_Requejo#/
La conservación del patrimonio cultural se enfrenta a numerosos desafíos, como la urbanización, el cambio climático y la falta de recursos. La presión del desarrollo urbano a menudo provoca la destrucción de bienes patrimoniales, mientras que el cambio climático puede poner en riesgo la integridad de estructuras históricas. Por lo tanto, es esencial implementar políticas de conservación sostenibles que tengan en cuenta la protección del patrimonio y las necesidades de las comunidades contemporáneas (Smith, 2012).
Para garantizar el éxito de la conservación del patrimonio cultural, es crucial la participación de la comunidad. Involucrar a los ciudadanos en la identificación, protección y promoción de su patrimonio puede generar un mayor compromiso y aprecio por estos bienes. La educación y la sensibilización sobre la relevancia del patrimonio cultural son esenciales para fomentar una cultura de conservación que perdure en el tiempo (Bennett, 2014).
El patrimonio cultural también desempeña un papel importante en la investigación y el estudio de la historia. Los bienes patrimoniales son fuentes de información que permiten a los investigadores comprender mejor las sociedades pasadas y sus interacciones. Gracias al análisis de estos bienes, es posible obtener conocimientos sobre las técnicas de construcción, los estilos artísticos y las prácticas sociales de diferentes épocas, lo que enriquece nuestra comprensión de la historia humana (Lowenthal, 1998).
Para garantizar su conservación, son necesarias la legislación y las políticas de protección del patrimonio cultural. Existen convenios internacionales, como la Convención de la UNESCO sobre la Protección del Patrimonio Mundial, que establecen directrices y principios globales para su conservación. Estas normativas ayudan a sensibilizar a los gobiernos y a las comunidades sobre la importancia de proteger su patrimonio y fomentan la cooperación internacional para su conservación (UNESCO, 1972).
En conclusión, el concepto de patrimonio cultural es amplio y multifacético, y abarca tanto bienes materiales como inmateriales que son esenciales para la identidad y la memoria de las comunidades. La conservación del patrimonio cultural no solo implica la protección de objetos y edificios, sino también la promoción de prácticas y tradiciones que enriquecen la vida social y cultural. Para desarrollar estrategias efectivas que garanticen la preservación de estos bienes para las generaciones futuras, es necesaria la colaboración entre diferentes disciplinas y la participación activa de la comunidad. Al reconocer el valor del patrimonio cultural, se fomenta una responsabilidad compartida que puede dar lugar a un compromiso colectivo en su conservación. Este enfoque integral no solo protege el legado del pasado, sino que también contribuye al desarrollo sostenible y a la cohesión social en el presente, garantizando que el patrimonio cultural siga siendo una fuente de identidad y orgullo para las comunidades en el futuro.
Dejo a continuación un mapa mental sobre el concepto de patrimonio cultural.
Referencias:
Bennett, T. (2014). The Birth of the Museum: History, Theory, Politics. Routledge.
González, A. (2017). Cultural Heritage and the Challenge of Sustainability. Journal of Cultural Heritage Management and Sustainable Development, 7(1), 1-15.
Hernández, M. (2015). Intangible Cultural Heritage: A New Approach to Cultural Heritage Management. International Journal of Heritage Studies, 21(3), 245-261.
Lowenthal, D. (1998). The Heritage Crusade and the Spoils of History. The Historical Journal, 41(3), 877-897.
Mason, R. (2008). The Value of Heritage. In Cultural Heritage and the Challenge of Sustainability (pp. 1-15). Routledge.
La durabilidad de los puentes está relacionada con una impermeabilización adecuada, ya que el hormigón vibrado no es totalmente estanco. Las segregaciones locales permiten la entrada de agua hasta las armaduras, lo que provoca la carbonatación, disgregación y corrosión de estas. Este efecto se intensifica en regiones donde se usan sales de deshielo para evitar la formación de hielo. Muchos problemas de durabilidad se deben a una impermeabilización y drenaje inadecuados.
La eficacia de la impermeabilización depende de factores como las condiciones climáticas, que pueden afectar a la integridad de los materiales. También es crucial el diseño estructural, que debe facilitar el drenaje y evitar la acumulación de agua. Para prevenir defectos en la impermeabilización, es esencial seleccionar materiales duraderos y compatibles con el entorno, y aplicarlos correctamente.
La selección del sistema de impermeabilización para un puente debe tener en cuenta factores como las características específicas de la estructura, incluidos los materiales, la geometría, el uso y las condiciones de carga; las condiciones climáticas y ambientales locales, como temperaturas extremas, humedad y exposición a agentes corrosivos; y los requisitos de mantenimiento y la vida útil esperada, ya que algunos sistemas requieren menos mantenimiento y ofrecen una mayor durabilidad. Es esencial consultar las normativas vigentes y, en caso de duda, recurrir a expertos en la materia para determinar la solución más adecuada.
Los sistemas de impermeabilización se clasifican en tratamientos in situ y el uso de láminas prefabricadas. Dentro de los tratamientos in situ, destacan varias técnicas según el tipo de material y el método de aplicación.
Tratamientos in situ:
Másticos bituminosos aplicados en caliente: Se colocan en una o dos capas con espesores de 5 a 20 mm. Para evitar la formación de ampollas por la mezcla caliente sobre un tablero húmedo, se aplica una capa de imprimación y otra de descompresión, generalmente un filtro de fibra de vidrio que comunica con la atmósfera.
Másticos bituminosos aplicados en frío: Formados por un agregado mineral fino, fibras minerales y una emulsión bituminosa aniónica de rotura lenta, y se aplican sobre un tablero limpio tras un riego de adherencia. La cantidad aplicada varía entre 3 y 6 kg/m² en función de la rugosidad de la superficie. Son fáciles de instalar, resistentes al tráfico de obra y poseen una excelente adherencia al firme.
Capas finas con materiales no bituminosos (resinas): Incluyen resinas epoxi, poliuretanos y poliésteres, que se aplican en espesores de 1,5 a 3 mm. Ofrecen alta resistencia química y gran adherencia al hormigón, aunque requieren una textura fina y ausencia de humedad en el tablero. Normalmente, se aplican dos capas de resina: la segunda se extiende una vez polimerizada la primera y, antes de que se seque por completo, se esparce arena para mejorar la adherencia con el pavimento. La imprimación del tablero no es indispensable, pero, si se realiza, se utiliza la misma resina diluida.
Capas finas con brea-epoxi: Este material mixto combina la flexibilidad de la brea y la adherencia del epoxi, y ofrece resistencia a bajas temperaturas y un coste moderado. Su espesor promedio es de 2 mm y se usa principalmente en estructuras flexibles como puentes metálicos. La técnica de aplicación es similar a la de las resinas sintéticas, con la diferencia de que en este caso es imprescindible utilizar la imprimación correspondiente, que es la misma mezcla fluidificada.
Láminas prefabricadas:
Dentro de las láminas prefabricadas de pequeño espesor (entre 1 y 2 mm) se incluyen:
Láminas bituminosas autoprotegidas: La cara superior está formada por una hoja de aluminio y la cara inferior está recubierta de una masilla bituminosa reforzada con fibras de vidrio. El espesor total varía entre 3 y 4 mm.
Láminas elastoméricas: Las más comunes están fabricadas con caucho butilo, caucho de cloropreno y etileno-propileno. Estas láminas destacan por su gran flexibilidad, aunque presentan el inconveniente de una adherencia deficiente con los materiales bituminosos. Por ello, en la instalación de pavimentos de este tipo es habitual aplicar una imprimación bituminosa sobre la lámina una vez colocada.
Láminas plásticas: Son de PVC reforzado con fibras sintéticas a lo largo de todo su espesor. Estas láminas no presentan adherencia.
Láminas de betún altamente modificado con polímeros: Estas láminas ofrecen una excelente flexibilidad, baja susceptibilidad térmica y elevada tenacidad y ductilidad.
Las láminas prefabricadas más delgadas suelen deteriorarse con facilidad por punzonamiento. Anteriormente, solía colocarse una capa de protección, generalmente una mezcla de arena y betún, entre la lámina y el pavimento. Hoy en día, salvo en el caso de las láminas con hoja superior de aluminio, es común que las láminas incorporen gravillas incrustadas en su cara superior, lo que no solo las protege frente al punzonamiento, sino que también mejora la adherencia con el pavimento. El objetivo principal de estas membranas es garantizar la estanqueidad en todas las zonas del tablero y evitar especialmente el paso de agua en las uniones con elementos como bordillos, sumideros, barreras y juntas de dilatación.
En los últimos años, se han desarrollado y aplicado técnicas y productos innovadores en este campo. A continuación, se presentan algunas de las novedades más destacadas:
Membranas líquidas de poliuretano: La aplicación de membranas líquidas de poliuretano ha surgido como una solución eficaz para impermeabilizar tableros de puentes. Estas membranas destacan por su alta elasticidad, resistencia química y larga vida útil. Además, su capacidad para adaptarse a geometrías diversas facilita su aplicación en estructuras complejas. La certificación ETE (Documento de Evaluación Técnica Europeo) garantiza la calidad y eficacia de estos productos.
Membranas asfálticas prefabricadas: Los sistemas de impermeabilización asfáltica, especialmente los que utilizan membranas prefabricadas SBS, han demostrado su eficacia en puentes y estacionamientos. Estos sistemas se aplican mediante termofusión, lo que garantiza una adherencia sólida y una protección duradera contra filtraciones.
Resinas de poliuretano bicomponente: La utilización de resinas de poliuretano bicomponente, libres de brea y alquitrán, ha ganado popularidad en la impermeabilización de tableros de puentes. Estas resinas se aplican sobre el hormigón del soporte, formando una capa impermeable que protege la estructura de las inclemencias meteorológicas y de la acción de agentes corrosivos.
Membranas de poliurea: La aplicación de poliurea ha demostrado su eficacia en la protección contra filtraciones en la impermeabilización de puentes ferroviarios. Para lograr una impermeabilización completa y duradera, es fundamental realizar un tratamiento previo de la superficie y aplicar imprimaciones adecuadas.
En las impermeabilizaciones no completamente adheridas al tablero del puente, el agua que pueda filtrarse a través de la capa impermeabilizante o condensarse debajo de ella se evacúa mediante respiraderos o tubos de ventilación. Estos dispositivos evitan la acumulación de presión de vapor que podría provocar ampollas en la impermeabilización. Los tubos se colocan en los puntos más bajos o se distribuyen a lo largo de toda la superficie, partiendo de la cara inferior de la impermeabilización y atravesando el tablero del puente.
La impermeabilización de puentes requiere un mantenimiento periódico para garantizar su eficacia a largo plazo. Es fundamental realizar inspecciones regulares para detectar posibles daños o deterioros y llevar a cabo las reparaciones pertinentes. Si hay fallos en la impermeabilización, es posible que sea necesario rehabilitar la membrana, lo que puede implicar eliminar la capa existente y aplicar un nuevo sistema de impermeabilización.
La impermeabilización de puentes requiere cumplir diversas normativas y estándares internacionales para garantizar la eficacia y durabilidad de las soluciones implementadas. A continuación, se presenta una relación exhaustiva de las normativas y estándares más importantes en este campo:
Normativas Europeas:
UNE-EN 13375:2020: Establece los requisitos para las láminas flexibles utilizadas en la impermeabilización de tableros de puentes de hormigón y otras superficies de hormigón expuestas al tráfico vehicular.
UNE-EN 14692:2017: Define las características de las láminas flexibles para la impermeabilización de tableros de puentes de hormigón y otras superficies de hormigón para tráfico de vehículos, incluyendo la determinación de la resistencia a la compactación de una capa asfáltica.
UNE-EN 14694:2017: Especifica los requisitos para las láminas flexibles en la impermeabilización de tableros de puentes de hormigón y otras superficies de hormigón para tráfico de vehículos, enfocándose en la resistencia a la presión dinámica de agua tras degradación por pretratamiento.
UNE-EN 14223:2017: Detalla las propiedades de las láminas flexibles para la impermeabilización de tableros de puentes de hormigón y otras zonas de hormigón para tráfico de vehículos, incluyendo la determinación de la absorción de agua.
UNE-EN 14691:2017: Establece los criterios para las láminas flexibles en la impermeabilización de tableros de puentes de hormigón y otras zonas de hormigón para tráfico de vehículos, enfocándose en la compatibilidad por acondicionamiento térmico.
UNE-EN 13653:2017: Define los requisitos para las láminas flexibles en la impermeabilización de tableros de puentes de hormigón y otras zonas de hormigón para tráfico de vehículos, incluyendo la determinación de la resistencia al pelado.
UNE-EN 12039:2017: Especifica las características de las láminas bituminosas para la impermeabilización de cubiertas, incluyendo la determinación de la adherencia de gránulos.
UNE-EN 12691:2018: Establece los requisitos para las láminas bituminosas, plásticas y de caucho en la impermeabilización de cubiertas, incluyendo la determinación de la resistencia al impacto.
UNE-EN 13583:2013: Define las características de las láminas bituminosas, plásticas y de caucho para la impermeabilización de cubiertas, incluyendo la determinación de la resistencia al granizo.
UNE-EN 17686:2023: Establece los requisitos para las láminas flexibles en la impermeabilización de cubiertas, incluyendo la determinación de la resistencia a la carga de viento del sistema constructivo de cubiertas con sistemas de impermeabilización adheridos.
Normativas Internacionales:
ASTM D6083: Estándar de la ASTM que especifica los requisitos para las membranas líquidas de poliuretano utilizadas en la impermeabilización de puentes.
ASTM D1970: Estándar de la ASTM que define los requisitos para las membranas autoadhesivas de asfalto utilizadas en la impermeabilización de puentes.
AASHTO M 323: Especificación de la American Association of State Highway and Transportation Officials que establece los requisitos para las membranas de impermeabilización de puentes.
Es fundamental consultar las normativas vigentes y, en caso de duda, recurrir a expertos en la materia para determinar la solución más adecuada. Además, es recomendable revisar las especificaciones técnicas de los fabricantes y las guías de buenas prácticas para asegurar una correcta aplicación de los sistemas de impermeabilización.
Os dejo un par de vídeos sobre impermeabilización de tableros de puentes. Espero que os sean de interés.
También os dejo este catálogo de Sika sobre la impermeabilización de puentes.
Figura 1. Vista aérea de paso superior. Google Maps.
El artículo de investigación presentado en el 28th International Congress on Project Management and Engineering por los autores Yepes-Bellver, Martínez-Pagán, Alcalá, y Yepes es un análisis integral del predimensionamiento de los tableros de puentes losa pretensados aligerados.
Este informe detalla su importancia y sugiere mejoras en el diseño estructural mediante la optimización con métodos avanzados como el modelo Kriging y algoritmos de optimización heurística.
El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.
1. Contexto del empleo de los puentes losa pretensados aligerados
Los puentes de losa pretensada son fundamentales en las infraestructuras de carreteras y vías ferroviarias debido a su capacidad para cubrir luces de entre 10 y 45 metros, lo que los hace más resistentes, duraderos y adaptables a distintos diseños geométricos. El coste de estos puentes suele representar entre un 5 % y un 15 % de los gastos totales de una infraestructura de transporte. Además, los puentes losa ofrecen una mayor flexibilidad y una apariencia estética superior, ya que eliminan las juntas de calzada, lo que mejora la comodidad y reduce el desgaste del tablero al tráfico.
Principales ventajas de los puentes losa pretensados:
Resistencia y durabilidad: estos puentes ofrecen una alta resistencia a la torsión y la flexión, por lo que son ideales para soportar cargas variables y condiciones climáticas adversas.
Versatilidad en el diseño: gracias a su construcción in situ, es posible adaptarlos a terrenos irregulares o a condiciones complejas, como curvas pronunciadas y anchos variados, lo que permite construirlos con rasantes bajas.
Ahorro de materiales y costes: Al diseñarse sin juntas y con posibilidades de aligeramiento, su mantenimiento resulta menos costoso en comparación con otras tipologías.
2. Predimensionamiento y limitaciones en los métodos actuales
El predimensionamiento es esencial en la fase preliminar del diseño de puentes con losas pretensadas. Tradicionalmente, los ingenieros utilizan reglas empíricas basadas en la experiencia para definir parámetros geométricos iniciales, como el espesor de la losa, la relación entre el canto y la luz y la cantidad de armadura activa y pasiva. Sin embargo, estos métodos tradicionales tienen limitaciones en cuanto a eficiencia y sostenibilidad, ya que no optimizan el uso de materiales ni reducen el impacto ambiental.
Desventajas de los métodos convencionales de predimensionamiento:
Rigidez en el diseño: los métodos empíricos pueden ser inflexibles, lo que limita las opciones de diseño y hace que la estructura no se adapte eficientemente a los criterios de optimización moderna.
Ineficiencia económica y ambiental: al no tener en cuenta factores de sostenibilidad y costes, estos métodos pueden provocar un uso excesivo de materiales, lo que aumenta la huella de carbono y el consumo energético.
3. Propuesta de optimización con modelos Kriging y metaheurísticas
La propuesta de los investigadores consiste en aplicar una optimización bifase mediante modelos Kriging combinados con el recocido simulado, un algoritmo heurístico. Esta técnica permite reducir el tiempo de cómputo en comparación con los métodos de optimización tradicionales sin perder precisión. La optimización se centra en tres objetivos clave:
Minimización del coste
Reducción de emisiones de CO₂
Disminución del consumo energético
El Kriging, un tipo de metamodelo, facilita la interpolación de datos en una muestra determinada, lo que permite que los valores estimados sean predictivos y evite el alto coste computacional que conllevan las simulaciones estructurales completas. Para implementar esta técnica, se usa un muestreo de hipercubo latino (LHS), que permite generar variaciones en el diseño inicial de los puentes y proporciona una base sobre la que se aplica el modelo Kriging para ajustar las alternativas optimizadas de diseño.
4. Resultados y comparación con diseños convencionales
A continuación, se exponen los principales hallazgos del estudio, basados en la optimización de puentes reales y en la comparación con métodos empíricos:
Esbeltez y espesor de la losa: la investigación recomienda que aumentar la relación entre el canto y la luz mejora la sostenibilidad del diseño. Los puentes optimizados presentan relaciones de hasta 1/30, en comparación con el rango usual de 1/22 a 1/25.
Volumen de hormigón y armaduras: los resultados muestran una disminución del volumen de hormigón y del número de armaduras activas necesarias, mientras que aumenta el número de armaduras pasivas. Este ajuste permite reducir tanto el coste como las emisiones.
Uso de materiales de construcción: se recomienda el uso de hormigón de resistencia entre 35 y 40 MPa para obtener una combinación óptima entre coste y sostenibilidad. La cantidad de aligeramientos interiores y exteriores también contribuye significativamente a la reducción del peso total sin comprometer la resistencia.
Comparativa de materiales:
Cuantía de hormigón: entre 0,55 y 0,70 m³ por m² de losa. La optimización reduce el consumo a 0,60 m³ para puentes económicos y a 0,55 m³ para priorizar la reducción de emisiones.
Armadura activa: la cantidad recomendada es inferior a 17 kg/m² de tablero. Esto representa una reducción significativa en comparación con los diseños tradicionales, que promedian alrededor de 22,64 kg/m².
Armadura pasiva: se debe aumentar la cuantía hasta 125 kg/m³ para proyectos de alta sostenibilidad, en contraste con los valores convencionales.
5. Herramientas prácticas para los proyectistas: nomogramas para el predimensionamiento
Uno de los aportes más valiosos del estudio es la creación de nomogramas que permiten a los ingenieros realizar predimensionamientos precisos con un mínimo de datos. Los nomogramas se desarrollaron mediante modelos de regresión múltiple y ofrecen una forma rápida de estimar:
La cantidad de hormigón necesaria.
El espesor de la losa.
La armadura activa en función de la luz del puente y los aligeramientos aplicados.
Estos nomogramas son útiles en las primeras fases de diseño, ya que permiten obtener valores cercanos a los óptimos de manera rápida y eficiente. Los gráficos incluyen secuencias de cálculo específicas con ejemplos de puentes con luces de 34 m y aligeramientos medios (interior de 0,20 m³/m² y exterior de 0,40 m³/m²), lo que facilita un proceso de diseño preliminar que cumple con criterios de sostenibilidad.
Figura 2. Nomograma para estimar el canto del tablero (m). Fuente: Yepes-Bellver et al. (2024)
6. Recomendaciones para el diseño sostenible de puentes losa pretensados aligerados
Basándose en los resultados de optimización, el estudio recomienda ajustar ciertos parámetros de diseño para mejorar la sostenibilidad y reducir los costes:
Aumento de la relación canto/luz: se debe aumentar la relación a 1/26 o incluso 1/30 para conseguir diseños sostenibles.
Reducción del hormigón utilizado: limitar el uso de hormigón a 0,60 m³/m², o menos si la prioridad es reducir las emisiones. Cuantía de armaduras: para la armadura pasiva, se recomienda un mínimo de 125 kg/m³, mientras que la armadura activa debe reducirse a 15 kg/m² de losa. Aligeramientos amplios: utilizar aligeramientos significativos (interior de 0,20 m³/m² y exterior de 0,50 m³/m²) para reducir el peso estructural y minimizar el material empleado.
7. Conclusión: innovación en el diseño de infraestructuras sostenibles
El uso de modelos predictivos, como el Kriging, y de técnicas de optimización avanzada en el diseño de puentes supone un gran avance hacia la construcción de infraestructuras sostenibles y eficientes. Estos métodos permiten reducir costes y minimizar el impacto ambiental, dos factores críticos en la ingeniería moderna. Al promover estos enfoques, la investigación allana el camino hacia políticas de infraestructura más responsables y sostenibles, un objetivo alineado con los Objetivos de Desarrollo Sostenible (ODS).
8. Perspectivas futuras: expansión de la metodología de optimización
Los autores proponen continuar esta línea de investigación aplicando el modelo Kriging y otros metamodelos a diversas estructuras de ingeniería civil, como marcos de carretera, muros de contención y otros tipos de puentes. Esta expansión podría sentar las bases para nuevos estándares en el diseño de infraestructuras sostenibles.
Este estudio se presenta como una herramienta esencial para ingenieros y proyectistas interesados en mejorar el diseño estructural mediante métodos modernos de optimización, ya que ofrece un enfoque práctico y avanzado para lograr una ingeniería civil más sostenible.
Os dejo la presentación que se hizo en el congreso:
Como está publicado en abierto, os dejo la comunicación completa a continuación:
Un artículo reciente en Sustainable Cities and Society revista del primer decil del JCR, explora un innovador modelo de evaluación de la sostenibilidad en la industria de la construcción, con aplicaciones de gran impacto a nivel global.
Esta investigación, llevada a cabo por un equipo de expertos de la Universidad de Ciencia e Ingeniería de Hunan (China) y de la Universitat Politècnica de València (España), introduce el «modelo de acoplamiento multidisciplinar», una metodología que integra conocimientos avanzados de matemáticas, ingeniería, ciencias ambientales y sociología económica para analizar, de manera más precisa, los efectos de la construcción sobre la sostenibilidad a largo plazo. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
Objetivos y contexto de la investigación
El trabajo parte de un desafío global urgente: reducir las emisiones de carbono en la industria de la construcción, que representa un porcentaje significativo del consumo energético y de las emisiones contaminantes a nivel mundial. Según estimaciones previas, esta industria generará más del 50 % de las emisiones de carbono para 2050 si no se implementan políticas de mitigación eficaces. En este contexto, el equipo de investigación plantea un enfoque innovador para analizar el ciclo de vida completo de las construcciones, desde la selección de materiales y el diseño, hasta la construcción, el mantenimiento y el desmantelamiento, conocido como evaluación del ciclo de vida (LCA, por sus siglas en inglés).
Además, para obtener una visión integrada que abarque el impacto ambiental, social y económico de cada proyecto, se emplea la evaluación social del ciclo de vida (SIA), que permite analizar los efectos en la sociedad y en la economía. El objetivo principal de la investigación es ofrecer un marco más robusto que ayude a los gobiernos y a las empresas del sector a tomar decisiones informadas que favorezcan el desarrollo urbano sostenible.
Metodología y desarrollo del modelo
Para desarrollar este modelo, los investigadores implementaron una técnica de «acoplamiento multidisciplinar» novedosa que incorpora algoritmos avanzados y teorías de optimización de estructuras en tres dimensiones. Este enfoque se basa en el uso de algoritmos de interpolación y ajuste de datos, capaces de proyectar los impactos de la construcción de manera más precisa. Además, el modelo emplea herramientas de software de análisis ambiental, como OpenLCA, que permite integrar datos económicos y medioambientales para evaluar la sostenibilidad.
El equipo realizó pruebas del modelo en cuatro regiones económicas clave de China: las provincias de Hubei, Jiangsu, Henan y Guangdong, seleccionando puentes de gran escala en cada una como ejemplos de estudio. A través de análisis finitos y optimización de topología de estas estructuras, lograron proyectar cómo variará el impacto ambiental y social a lo largo de los próximos cien años.
Resultados más destacados y proyecciones futuras
Los resultados obtenidos indican que la industria de la construcción en China alcanzará su máximo de emisiones en el año 2030, con un estimado de 2,73 giga toneladas (GT) de CO₂. Tras este pico, se proyecta una significativa reducción de las emisiones, con niveles de -2,78 GT anuales entre 2061 y 2098, debido a la implementación de técnicas de construcción más eficientes y al uso de materiales más sostenibles. A nivel social, la evaluación SIA prevé un pico de impacto en 2048, con 4,26 GT de CO₂ equivalente en afectaciones sociales, seguido también de una reducción en las décadas posteriores.
Para obtener estas cifras, el estudio utilizó un algoritmo de optimización de la estructura en las distintas fases del ciclo de vida, con el que identificó puntos de mejora y áreas críticas de impacto. Así, el modelo no solo ofrece una herramienta para la proyección de emisiones, sino que también permite evaluar el desempeño de cada estructura en términos de durabilidad, coste y adaptabilidad a cambios estructurales, lo cual podría ser crucial en regiones urbanas que experimentan un crecimiento acelerado.
Conclusiones y aplicación global
Este trabajo es una contribución pionera en la investigación sobre sostenibilidad en construcción, ya que ofrece un marco metodológico con potencial para ser replicado en otros países y sectores de la construcción. Su aplicación no solo está dirigida a la reducción de emisiones, sino también a la mejora de la resiliencia estructural y a la reducción de costes a largo plazo mediante un diseño optimizado. Los investigadores destacan que este modelo podría adaptarse a otros países que, como China, se enfrentan a grandes desafíos en la gestión de la sostenibilidad urbana y que buscan avanzar hacia economías bajas en carbono.
En conclusión, el modelo de acoplamiento multidisciplinar de esta investigación establece un estándar robusto para el análisis de sostenibilidad en construcciones complejas. Con este enfoque, gobiernos y empresas de construcción podrían optimizar sus prácticas para reducir los impactos negativos, no solo ambientales, sino también sociales y económicos, en sintonía con las metas de desarrollo sostenible. Este estudio ofrece, además, una guía para que la industria de la construcción pueda abordar sus desafíos actuales y proyectar una trayectoria sostenible para las próximas décadas.
La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso en línea sobre “Fabricación y puesta en obra del hormigón”.
El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Hay plazas limitadas.
Este curso ofrece una visión completa sobre la fabricación y la puesta en obra del hormigón. No se requieren conocimientos previos específicos, ya que está diseñado para beneficiar a un amplio espectro de profesionales, tanto con experiencia como sin ella, así como a estudiantes de disciplinas relacionadas con la construcción, tanto en el ámbito universitario como en la formación profesional. El proceso de aprendizaje está estructurado de manera gradual, lo que permite a los participantes profundizar en los aspectos que más les interesen, apoyándose en material complementario y enlaces a recursos en línea, como vídeos y catálogos.
En este curso, adquirirás conocimientos fundamentales sobre la fabricación de hormigones y el uso de maquinaria relacionada, incluyendo centrales de hormigonado, transporte y bombeo de hormigón, cintas transportadoras, gunitado, colocación de hormigón bajo el agua y en condiciones de frío o calor, así como grandes vertidos, compactación por vibrado, hormigón al vacío, curado, juntas de construcción, hormigón precolocado y tipos de hormigón como el de fibra de vidrio, autocompactantes, compactados con rodillo y ligeros.
El enfoque principal del programa es comprender los principios que rigen la fabricación y la puesta en obra del hormigón, tanto prefabricado como ejecutado en obra, prestando atención a sus características más importantes y a los aspectos constructivos relevantes en ingeniería civil y edificación. El curso abarca un amplio espectro y profundiza en los fundamentos de la ingeniería de la construcción, además de destacar la importancia de fomentar el pensamiento crítico de los estudiantes, especialmente en relación con la selección de métodos, técnicas y maquinaria que se deben aplicar en situaciones concretas. Además, este curso trata de llenar el vacío que a menudo deja la bibliografía habitual y está diseñado para que los estudiantes puedan profundizar en los conocimientos adquiridos y adaptarlos a su experiencia previa o a sus objetivos personales y empresariales.
El contenido del curso se organiza en 50 lecciones, cada una de las cuales constituye una secuencia de aprendizaje completa. Además, se ofrece un amplio conjunto de problemas resueltos que complementan la teoría presentada en cada lección. Se estima que se necesitan entre dos y tres horas para completar cada lección, en función del interés del estudiante por profundizar en los temas mediante el material adicional proporcionado.
Al finalizar cada unidad didáctica, el estudiante se enfrenta a una serie de preguntas diseñadas para consolidar los conceptos fundamentales y fomentar la curiosidad sobre aspectos relacionados con el tema tratado. También se han diseñado tres unidades adicionales para reforzar los conocimientos adquiridos a través del desarrollo de casos prácticos, en los que se fomenta el pensamiento crítico y la capacidad para resolver problemas reales. Finalmente, al concluir el curso, se llevará a cabo un conjunto de preguntas tipo test con el objetivo de evaluar el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.
El curso está diseñado para una dedicación total de 75 horas por parte del estudiante. Se busca mantener un ritmo moderado, con una dedicación semanal de aproximadamente 10 a 15 horas, en función del nivel de profundidad que cada estudiante desee alcanzar. La duración total del curso es de seis semanas de aprendizaje.
Lo que aprenderás
Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:
Comprender la utilidad y las limitaciones de la maquinaria empleada en la fabricación del hormigón, tanto prefabricado como elaborado en obra
Evaluar y seleccionar los procedimientos constructivos para la colocación del hormigón, atendiendo a criterios económicos y técnicos
Conocer las buenas prácticas y los aspectos de seguridad implicados en el transporte, vertido, compactación y curado del hormigón
Analizar las características específicas en la fabricación y colocación de hormigones especiales como los autocompactantes, ligeros, con fibras, precolocados, compactados con rodillo y otros.
Programa del curso
Lección 1. Fabricación de hormigones
Lección 2. Homogeneidad en la fabricación del hormigón
Lección 3. Amasado del hormigón
Lección 4. Amasadoras de hormigón
Lección 5. Centrales de fabricación de hormigón
Lección 6. Hormigoneras
Lección 7. Cálculo de la temperatura de fabricación del hormigón
Lección 8. Almacenamiento de áridos
Lección 9. Corrección de humedad de los áridos
Lección 10. Transporte del cemento
Lección 11. Silos fijos de cemento
Lección 12. Cemento para hormigones resistentes a sulfatos en cimentaciones
Lección 13. Carretillas manuales o a motor para el transporte del hormigón
Lección 14. Hormigonado con cubilote
Lección 15. Transporte del hormigón mediante cintas transportadoras
Lección 16. Colocación del hormigón mediante bombeo
Lección 17. Torres distribuidoras de hormigón
Lección 18. Problemas de bombeo de hormigón
Lección 19. Hormigón proyectado: gunitado
Lección 20. Recomendaciones para el vertido de hormigón
Lección 21. Trompas de elefante para la colocación del hormigón
Lección 22. Hormigonado con tubería Tremie
Lección 23. Técnicas de colocación del hormigón bajo el agua
Lección 24. Fabricación y colocación del hormigón en tiempo caluroso
Lección 25. Fabricación y colocación del hormigón en tiempo frío
Lección 26. Hormigonado en condiciones de viento
Lección 27. Vertido y compactación de hormigón en soportes de sección reducida
Lección 28. Grandes vertidos de hormigón
Lección 29. Razones para compactar el hormigón
Lección 30. Compactación manual del hormigón: picado y apisonado
Lección 31. Compactación del hormigón por vibrado
Lección 32. Vibradores de aguja para compactar el hormigón
Lección 33. Vibradores externos para encofrados de hormigón
Lección 34. Mesa vibrante de hormigón
Lección 35. Compactación del hormigón con regla vibrante
Lección 36. Compactación del hormigón por centrifugación
Lección 37. Hormigón al vacío
Lección 38. Alisadoras rotativas o fratasadoras
Lección 39. Revibrado del hormigón
Lección 40. Agrietamiento plástico durante el fraguado del hormigón: Nomograma de Menzel
Lección 41. Necesidad y fases del curado del hormigón
Lección 42. Curado de pavimentos y otras losas de hormigón sobre tierra
Lección 43. Curado al vapor del hormigón e índice de madurez
Lección 44. Hormigón de limpieza en fondos de excavación
Lección 45. Las juntas de construcción en el hormigón
Lección 46. Hormigón precolocado: Prepakt y Colcrete
Lección 47. Hormigón reforzado con fibra de vidrio
Lección 48. Hormigón autocompactante
Lección 49. Hormigones compactados con rodillo
Lección 50. Hormigones ligeros
Supuesto práctico 1.
Supuesto práctico 2.
Supuesto práctico 3.
Batería de preguntas final
Conozca a los profesores
Víctor Yepes Piqueras
Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 6 proyectos de investigación competitivos. Ha publicado más de 175 artículos en revistas indexadas en el JCR. Autor de 10 libros, 22 apuntes docentes y más de 350 comunicaciones a congresos. Ha dirigido 17 tesis doctorales, con 10 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social, así como el Premio a la Trayectoria Excelente en Investigación y el Premio al Impacto Excelente en Investigación, ambos otorgados por la Universitat Politècnica de València.
Lorena Yepes Bellver
Lorena Yepes Bellver es Profesora Asociada en el Departamento de Mecánica de los Medios Continuos y Teoría de las Estructuras de la Universitat Politècnica de València. Es ingeniera civil, máster en ingeniería de caminos, canales y puertos y máster en ingeniería del hormigón. Ha trabajado en los últimos años en empresas constructoras y consultoras de ámbito internacional. Aparte de su dedicación docente e investigadora, actualmente se dedica a la consultoría en materia de ingeniería y formación.