Durante los días 16 y 17 de julio de 2025 tiene lugar en Ferrol (Spain) el 29th International Congress on Project Management and Engineering AEIPRO 2025. Es una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación RESILIFE, presenta varias comunicaciones. A continuación os paso los resúmenes.
YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Optimización multiobjetivo de puentes de losa pretensada mediante el enfoque CRITIC-MCDM.29th International Congress on Project Management and Engineering, AEIPRO, 16-17 de julio, Ferrol (Spain).
El trabajo establece una metodología para seleccionar el mejor diseño de un puente de losa pretensada, aplicando el método CRITIC de toma de decisiones multicriterio a un conjunto de soluciones establecidas mediante un muestreo por hipercubo latino que incluye los óptimos de cada función objetivo. Las funciones objetivo son el coste, las emisiones de CO₂ y la energía necesaria para construir una losa aligerada como paso superior. Esta metodología permite establecer una métrica sobre la que representar una superficie de respuesta que identifique las zonas donde las variables de diseño permiten reducir las tres funciones objetivo. Además, se analiza el método CRITIC aplicado a la frontera de Pareto de las soluciones y se estudia la robustez de la mejor opción en función de su distancia al punto ideal mediante tres métricas de Minkowski. Los resultados obtenidos indican la consistencia en la selección de la mejor solución.
YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P.; YEPES, V. (2025). Nomogramas para el predimensionamiento económico de muros de retención de tierras.29th International Congress on Project Management and Engineering, AEIPRO, 16-17 de julio, Ferrol (Spain).
Este trabajo presenta el desarrollo de una serie de nomogramas para el predimensionamiento económico de muros de retención de tierra con hormigón armado, empleados en la construcción de carreteras. Se propone un enfoque innovador para simplificar el proceso de diseño de estas estructuras, considerando una optimización económica que integra variables de geometría, materiales y refuerzo. Se incluyen alturas variables (de 4 a 10 m), teniendo en cuenta distintas condiciones de relleno y capacidad de soporte del terreno. Los resultados obtenidos proporcionan expresiones promedio que permiten calcular de manera práctica el coste total, el volumen de hormigón y acero, y las dimensiones geométricas de los muros. De este modo, se proporciona un marco de referencia útil para el diseño económico y eficiente de estos elementos estructurales en proyectos viales.
Durante los días 25-27 de junio de 2025 tendrá lugar el IX Congreso Internacional de Estructuras (ACHE), que servirá una vez más para fortalecer los lazos nacionales e internacionales de profesionales y especialistas en el campo de las estructuras. Como en ocasiones anteriores, los objetivos fundamentales de este congreso son, por un lado, dar a conocer los avances, estudios y realizaciones recientemente alcanzados en el ámbito estructural (en edificación y en ingeniería civil e industrial) y, por otro, exponer a sus miembros, amigos y a toda la sociedad las actividades de nuestra asociación, que realiza una labor de difusión técnica sin ánimo de lucro. La situación actual, marcada por la internacionalización y la competitividad, hace imprescindible la innovación tecnológica y el intercambio de experiencias y puntos de vista entre profesionales e investigadores de la edificación y la ingeniería civil, que el Congreso facilitará mediante coloquios y debates paralelos a las sesiones de ponencias.
La ciudad elegida en esta ocasión es Granada, que cuenta con una de las universidades más antiguas de Europa y una rica historia que ha dejado numerosos hitos en su paisaje urbano y cultural. Se trata de una ciudad cosmopolita, donde a lo largo de su historia se han dado cita varias culturas, y es un ejemplo de los valores e intereses compartidos de la Unión Europea. Cuenta, además, con lugares como la Alhambra, el Generalife o el Albaycín, declarados Patrimonio de la Humanidad por la Unesco. La ciudad ofrece, además, interesantes ofertas culturales. La ciudad ofrece, además, interesantes ofertas culturales en las fechas de celebración del Congreso, como el Festival Internacional de Música y Danza. El Congreso tendrá su sede en la Escuela de Ingeniería de Caminos, Canales y Puertos, que fue fundada como quinta escuela española en 1988. Una escuela situada en pleno centro de la ciudad, moderna, magníficamente comunicada a través de transporte público (metro y autobús) y con numerosos hoteles cercanos.
La Asociación Española de Ingeniería Estructural (ACHE), entidad de carácter no lucrativo y declarada de utilidad pública, tiene como fines fomentar el progreso en los ámbitos del hormigón estructural y de las estructuras de obra civil y edificación en general, y canalizar la participación española en asociaciones análogas de carácter internacional. Para ello, desarrolla líneas de investigación, docencia, divulgación, formación continua y prenormalización. Entre otras actividades, ACHE publica monografías técnicas, edita la revista cuatrimestral Hormigón y Acero y administra una página web con amplio contenido técnico. Entre los eventos que organiza, destacan el Congreso Trienal de Estructuras y numerosas jornadas técnicas. ACHE cuenta con centenares de miembros (ingenieros, arquitectos, químicos y otros profesionales vinculados al sector), muchos de los cuales participan generosamente en comisiones técnicas y en los más de 25 grupos de trabajo activos que elaboran documentos científicos sobre aspectos relevantes de las estructuras y que se difunden entre todos los asociados.
Nuestro grupo de investigación, dentro del proyecto de investigación RESILIFE, presenta varias comunicaciones. Además, tengo el honor de participar en Comité Científico del Congreso. A continuación os paso los resúmenes.
SÁNCHEZ-GARRIDO, A.; NAVARRO, I.J.; YEPES, V. (2025). Resiliencia para la sostenibilidad de las estructuras de edificación mediante forjados con losas aligeradas biaxiales.IX Congreso Internacional de Estructuras, 25-27 de junio, Granada (Spain).
Los Métodos Modernos de Construcción (MMC) están revolucionando la industria al ofrecer soluciones sostenibles que reducen el impacto ambiental en el ciclo de vida de los edificios. Un ejemplo son las losas aligeradas biaxiales de hormigón, que optimizan el uso de materiales. Sin embargo, la corrosión en entornos agresivos supone un desafío importante para la resiliencia de estas estructuras. Este estudio propone una metodología para evaluar estrategias de mantenimiento reactivo en MMC expuestas a cloruros, analizando seis alternativas de diseño y utilizando un modelo FUCOM-TOPSIS para integrar criterios de sostenibilidad económica y medioambiental.
YEPES, V.; ALCALÁ, J.; GARCÍA, J.A.; KRIPKA, J. (2025). Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas.IX Congreso Internacional de Estructuras, 25-27 de junio, Granada (Spain).
Los desastres naturales y humanos causan grandes pérdidas humanas y económicas. RESILIFE optimiza el diseño y construcción de estructuras híbridas modulares, sostenibles y resilientes a eventos extremos, equiparables en seguridad a las tradicionales. Utiliza inteligencia artificial, metaheurísticas híbridas, aprendizaje profundo y teoría de juegos para evaluar y mejorar la resiliencia. Con técnicas multicriterio como lógica neutrosófica y redes bayesianas, optimiza diseño, mantenimiento y reparación, reduciendo costes y mejorando la recuperación social y ambiental.
YEPES-BELLVER, L.; NAVARRO, I.J.; ALCALÁ, J.; YEPES, V. (2025). Redes neuronales y Kriging para la optimización de la huella de carbono de puentes losa pretensados.IX Congreso Internacional de Estructuras, 25-27 de junio, Granada (Spain).
El artículo compara el rendimiento de los modelos Kriging y de redes neuronales para optimizar las emisiones de CO₂ en puentes de losa pretensada. Las redes neuronales presentan un menor error medio, pero ambos modelos destacan por conducir hacia áreas prometedoras en el espacio de soluciones. Las recomendaciones incluyen maximizar la esbeltez y reducir el uso de hormigón y armaduras, compensando con un incremento controlado de estas. Aunque los modelos proporcionan superficies de respuesta precisas, es esencial realizar una optimización heurística para obtener mínimos locales más exactos, lo que contribuye a diseños más sostenibles y eficientes.
Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València. Además, es uno de los resultados de la tesis doctoral de Lorena Yepes.
En cuanto la comunicación esté publicada en el libro de ponencias, os pasaré el enlace para su descarga gratuita. A continuación os paso el resumen de la comunicación presentada.
El artículo «Multi-Attribute Decision-Making in Prestressed Concrete Road Flyover Design», propone una innovadora metodología para optimizar el diseño de puentes de hormigón pretensado teniendo en cuenta simultáneamente tres criterios clave: el coste económico, las emisiones de CO₂ y la energía incorporada en los materiales. Su objetivo es encontrar soluciones de compromiso que equilibren sostenibilidad y eficiencia estructural.
Aportaciones principales del estudio
Este trabajo aporta un enfoque sistemático y práctico para integrar criterios medioambientales y económicos en el diseño de pasos elevados. Frente a las metodologías tradicionales que suelen priorizar únicamente el coste, los autores aplican técnicas de toma de decisiones multicriterio para considerar también el impacto ambiental desde el inicio del proceso proyectual. Además, ofrecen pautas concretas para diseños preliminares que buscan un equilibrio entre coste, emisiones y consumo energético.
Metodología empleada
La investigación se basa en técnicas avanzadas de optimización y modelado. En primer lugar, se utilizaron 50 soluciones iniciales de diseño generadas mediante un muestreo estadístico conocido como Latin Hypercube Sampling, que explora diferentes combinaciones de parámetros como la resistencia del hormigón, la anchura de la base y la profundidad del tablero.
A continuación, se aplicó un modelo de sustitución de tipo Kriging, capaz de estimar con gran precisión los resultados estructurales sin necesidad de cálculos exhaustivos para cada diseño. Esto permitió ampliar el análisis a 1.000 soluciones adicionales simuladas.
Con todas las alternativas sobre la mesa, se extrajo la “frontera de Pareto”, un conjunto de soluciones no dominadas que representan los mejores compromisos posibles entre los tres objetivos. Finalmente, se aplicaron distintos escenarios de toma de decisiones multiatributo, asignando diferentes pesos a cada criterio, para seleccionar los diseños más equilibrados.
Resultados más relevantes
El análisis reveló que los diseños más sostenibles tienen características comunes: una relación entre canto del tablero y luz principal cercana a 1/30 y una resistencia del hormigón de 40 MPa. Estas configuraciones permiten reducir tanto el consumo de materiales como las emisiones sin comprometer la viabilidad estructural.
Dependiendo del peso asignado a cada criterio (coste, emisiones, energía), se identificaron varias soluciones óptimas, destacando especialmente dos (denominadas #6 y #13) por su buen rendimiento integral. Curiosamente, priorizar solo el coste lleva a soluciones con mayor canto, mientras que priorizar el medio ambiente genera estructuras más esbeltas y materialmente eficientes.
Conclusiones y recomendaciones
El estudio concluye que aplicar técnicas de decisión multicriterio en la ingeniería civil permite diseñar infraestructuras más sostenibles y racionales, sin sacrificar funcionalidad ni economía. Se recomienda considerar desde fases tempranas del diseño variables ambientales clave como las emisiones o la energía embebida, además de los costes.
Asimismo, los autores sugieren incorporar la participación de los diferentes agentes implicados (ingenieros, administraciones, ciudadanía) para lograr soluciones más equilibradas y duraderas.
Este trabajo representa un avance hacia una práctica de la ingeniería más alineada con los Objetivos de Desarrollo Sostenible, y especialmente con el ODS 9, que promueve infraestructuras resilientes, sostenibles e innovadoras.
Referencia:
YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Multi-attribute decision-making in prestressed concrete road flyover design. International Conference on High Performance and Optimum Design of Structures and Materials, HPSM/OPTI 2025, 10-12 June 2025, Edinburgh, UK.
Thomas Telford (1757-1834). https://es.wikipedia.org/wiki/Thomas_Telford
Thomas Telford (9 de agosto de 1757 – 2 de septiembre de 1834) fue un destacado ingeniero civil, arquitecto y cantero escocés, reconocido por sus contribuciones a la infraestructura británica mediante la construcción de caminos, puentes y canales. Nació cerca de Westerkirk, en Dumfries, en el seno de una familia humilde. Su padre, un pastor, murió poco después de su nacimiento, por lo que Thomas fue criado en condiciones de pobreza por su madre, Janet Jackson.
Comenzó su vida laboral como aprendiz de cantero a los 14 años y, de forma autodidacta, se formó en arquitectura y construcción. Todavía se conservan algunas de sus primeras obras, como un puente sobre el río Esk en Langholm. Tras pasar por Edimburgo, se trasladó a Londres en 1782, donde participó en la ampliación de Somerset House, uno de los grandes proyectos de la época, bajo la influencia de arquitectos como Robert Adam y William Chambers. En 1784 trabajó en el astillero naval de Portsmouth, donde consolidó su experiencia en grandes obras.
En 1786 fue nombrado inspector de obras públicas para el condado de Shropshire, cargo que implicaba la construcción de edificios y puentes. Durante este periodo, diseñó y construyó tres puentes sobre el río Severn: en Montford, Buildwas (de hierro fundido) y Bewdley. En esta misma época, restauró el castillo de Shrewsbury, trabajó en iglesias y prisiones y advirtió del inminente colapso de la iglesia de St Chad’s, lo que le ganó el respeto de la población local.
En 1787 se afilió a la logia masónica Salopian Lodge y, gracias al apoyo de William Pulteney, su carrera despegó. En 1788, la Sociedad Pesquera Británica lo envió a Escocia, donde diseñó el puerto de Ullapool. En 1790 fue nombrado inspector de puentes en Shropshire y, en 1793, se convirtió en agente e ingeniero de la compañía del canal Ellesmere. Su fama nacional le llegó con la construcción de los acueductos de Chirk y Pontcysyllte, en Gales, que cruzan los valles del Ceiriog y del Dee. En estas estructuras empleó por primera vez canales de planchas de hierro fundido ensambladas sobre mampostería, una innovación que revolucionó la ingeniería civil de su tiempo.
Ese mismo año, tras la muerte de Josiah Clowes, asumió el proyecto del canal de Shrewsbury, en el que destacó el acueducto de Longdon-on-Tern, uno de los primeros acueductos de hierro fundido del mundo. En 1795, reconstruyó el puente de Bewdley tras las inundaciones y reparó el de Tenbury. También participó en la mejora del abastecimiento de agua y en la reforma de los muelles de Londres.
En 1801, el Gobierno británico lo contrató para dirigir una gigantesca operación de mejora de las infraestructuras de las Tierras Altas de Escocia. Bajo su dirección se construyeron más de 1450 km de caminos, más de 1200 puentes, numerosos puertos, iglesias y servicios públicos. En este contexto, llevó a cabo el canal de Caledonia, inaugurado en 1822, y realizó importantes obras portuarias en Aberdeen, Dundee y otras localidades. Entre las obras viales más destacadas se encuentran el puente de Tongueland (34 m) y el de Cartland Crags (39 m), así como 296 km de nuevas carreteras en las Tierras Bajas.
En 1803, también inició obras de mejora en las rutas desde Chester y Shrewsbury hacia Holyhead, con el objetivo de agilizar las comunicaciones con Irlanda. Como parte de este proyecto, diseñó e inauguró dos puentes colgantes emblemáticos en Gales: el puente colgante sobre el río Conwy y su obra maestra, el puente de Menai (1819–1826), que con sus 176 m de longitud fue el más largo de su tipo en su tiempo y es considerado su logro más sobresaliente.
Puente de Menai. https://es.wikipedia.org/wiki/Puente_colgante_de_Menai
Durante este periodo también actuó como comisionado de préstamos del gobierno para obras públicas bajo la Public Works Loans Act de 1817, financiando proyectos de infraestructura y promoviendo el empleo. En paralelo, trabajó como consultor internacional y, en 1806, fue invitado por el rey de Suecia a colaborar en el canal Göta, al que viajó en 1810 para supervisar las primeras excavaciones.
Desde 1809, lideró obras en Irlanda, como la carretera de Howth a Dublín, el canal del Úlster y la formación de ingenieros como William Dargan. En las décadas siguientes, su enfoque se dirigió también a modernizar los canales para hacerles frente a los ferrocarriles, cada vez más competitivos. Entre estos proyectos destacan la construcción de un nuevo canal entre Wolverhampton y Nantwich y la construcción de un nuevo túnel en Harecastle, Staffordshire, sobre el canal Trent y Mersey.
A partir de 1815, diseñó y ejecutó mejoras en la ruta entre Glasgow y Carlisle (conocida posteriormente como A74), considerada un modelo de ingeniería vial. Entre sus trabajos más importantes en Londres se encuentra el desarrollo de los muelles de St Katharine, un proyecto fundamental para la expansión portuaria de la ciudad. También construyó puentes sobre el río Severn en Tewkesbury y Gloucester, y ejecutó diversas carreteras en las Tierras Bajas de Escocia.
En 1820 fue nombrado primer presidente de la Institución de Ingenieros Civiles, fundada en 1818, cargo que ocupó hasta su muerte. Ese mismo año fue elegido también miembro extranjero de la Real Academia de Ciencias de Suecia.
En 1823, a petición del Parlamento británico, diseñó un conjunto de iglesias y casas parroquiales para zonas rurales de Escocia. Se construyeron 32 de las 43 proyectadas, muchas de las cuales aún existen. En la década de 1830 finalizó proyectos como el puente Galton, el segundo túnel Harecastle, el canal de Gloucester y Berkeley y el canal Birmingham y Liverpool Junction, este último completado tras su fallecimiento.
Thomas Telford murió el 2 de septiembre de 1834 en su casa de Abingdon Street, Londres. Fue enterrado con honores en la abadía de Westminster, donde también hay una estatua en su memoria en la capilla de San Andrés. Nunca se casó, pero dejó una profunda huella en sus colegas y contemporáneos. Su amigo, el poeta Robert Southey, lo llamó «el coloso de las carreteras», y además de su carrera como ingeniero, también publicó poesía entre 1779 y 1784.
En su testamento dejó donaciones para bibliotecas de su región natal y para escritores como Southey y Thomas Campbell. Su legado perdura no solo en obras materiales, sino también en la educación: el Telford College de Edimburgo y la ciudad de Telford, en Shropshire, creada en el siglo XX, llevan su nombre. En 2009, su acueducto de Pontcysyllte fue declarado Patrimonio de la Humanidad por la Unesco, en reconocimiento a su ingenio técnico e innovación.
Os dejo algunos vídeos de este gran ingeniero escocés.
James Buchanan Eads (1820-1887). https://es.wikipedia.org/wiki/James_Buchanan_Eads
James Buchanan Eads (23 de mayo de 1820 – 8 de marzo de 1887) fue un ingeniero e inventor estadounidense de renombre mundial, cuya vida estuvo marcada por la autodisciplina, la innovación técnica y una profunda comprensión del río Misisipi. Obtuvo más de 50 patentes y fue reconocido a nivel internacional. Diseñó y construyó el Puente Eads sobre el río Misisipi en San Luis, el cual fue declarado Monumento Histórico Nacional.
Primeros años y formación autodidacta
Eads nació en Lawrenceburg, Indiana, en 1820. Su segundo nombre, Buchanan, se lo pusieron en honor a James Buchanan, primo de su madre y congresista por Pensilvania y futuro presidente de Estados Unidos. La infancia de Eads fue nómada y difícil. La inestabilidad económica de su padre, involucrado en negocios poco exitosos, obligó a la familia a trasladarse repetidamente: primero a Cincinnati (Ohio), luego a Louisville (Kentucky) y, por último, a St. Louis (Misuri).
A los 13 años, Eads tuvo que dejar la escuela para ayudar a la familia. Uno de sus primeros empleos fue en Williams & Dühring, una tienda de comestibles en St. Louis. Su jefe, Barrett Williams, notó su inquietud intelectual y le permitió acceder libremente a su biblioteca personal, ubicada sobre la tienda. En su tiempo libre, el joven James devoraba libros de física, mecánica, maquinaria e ingeniería, convirtiéndose así en un ingeniero autodidacta.
Inicios en el río y éxito empresarial
A los 18 años, Eads se embarcó como sobrecargo en un barco de vapor que recorría el Misisipi, donde se familiarizó con los riesgos y desafíos de la navegación fluvial. Al observar la gran cantidad de naufragios y la pérdida de mercancías valiosas, comenzó a imaginar métodos para recuperar cargamentos hundidos.
A los 22 años, inventó un barco de salvamento revolucionario al que denominó «submarino». Aunque no era una nave sumergible en sí, permitía que Eads descendiera al fondo del río mediante una campana de buceo construida con un barril de whisky de cuarenta galones, adaptado con una manguera para el suministro de aire desde la superficie. Gracias a este invento, podía caminar por el fondo del río y recuperar objetos de valor, como lingotes de plomo y hierro. En una ocasión, incluso extrajo un tarro de mantequilla en buen estado de conservación.
Durante los doce años que estuvo al frente de su empresa de salvamento en el río Misisipi, esta prosperó tanto que, en 1857, Eads se retiró temporalmente con una considerable fortuna. Incursionó brevemente en la industria del vidrio, fundando la primera fábrica de vidrio en el oeste de EE. UU., pero este proyecto se vio interrumpido por la Guerra con México, por lo que volvió al negocio de salvamento en 1848. Con el tiempo, su flota alcanzó las diez embarcaciones y uno de sus barcos más avanzados logró bombear el agua y reflotar cascos hundidos desde el lecho del río.
Guerra Civil: la revolución de los ironclads
Con el estallido de la Guerra Civil en 1861, Eads fue convocado a Washington por el fiscal general Edward Bates, quien le había recomendado a causa de su amistad, para ofrecer su experiencia en la defensa fluvial del Misisipi. El gobierno federal aceptó finalmente su propuesta de construir una flotilla de buques acorazados con poco calado, propulsados por vapor y adecuados para los ríos del interior.
Eads fue contratado para construir una serie de ironclads y, en tan solo cinco meses, entregó siete embarcaciones. Además, transformó el vapor fluvial New Era en el acorazado Essex, que se convirtió en una pieza clave de la flota de la Unión. Atendió a las observaciones de los oficiales de la Flotilla Occidental e incorporó mejoras en cada iteración. A lo largo de la guerra, construyó más de 30 acorazados fluviales que participaron en batallas clave como las de Forts Henry y Donelson, Memphis, Vicksburg, Isla n.º 10 y Mobile Bay. Estas embarcaciones fueron los primeros acorazados en combatir en América y, junto con el famoso duelo del Monitor y el Merrimack, marcaron un hito en la historia naval.
El Puente Eads: obra maestra de la ingeniería
Tras la guerra, Eads fue seleccionado para liderar uno de los proyectos de ingeniería más ambiciosos de su tiempo: el primer puente ferroviario y de carretera que cruzaría el río Misisipi en San Luis. Las obras comenzaron el 20 de agosto de 1867 y se enfrentaron a numerosos desafíos técnicos y políticos.
El Puente Eads, concluido en 1874, fue el primero de gran tamaño construido con acero estructural y el más largo del mundo en su momento. Eads fue también pionero en emplear el sistema de vigas en voladizo (cantilever), lo que permitió mantener la navegación fluvial durante su construcción. Para cimentar sus tres arcos de acero de más de 500 pies cada uno, se excavó hasta el lecho rocoso a más de 30 metros bajo el río. Esto obligó a trabajar con cámaras de aire comprimido, lo que provocó casos de enfermedad por descompresión. Eads respondió instalando una clínica flotante, mejorando la alimentación del personal, aplicando una descompresión gradual y construyendo un elevador de acceso.
La calidad del acero también fue objeto de una supervisión estricta. Su proveedor, Andrew Carnegie, tuvo que volver a laminar algunas partidas hasta en tres ocasiones por no cumplir con la resistencia mínima exigida de 60 000 psi (414 MPa). Durante la construcción del arco central, una ola de calor deformó temporalmente la estructura, por lo que Eads tuvo que implementar su solución alternativa: un tapón roscado de hierro forjado que permitió ajustar y cerrar con precisión el último tramo del arco, tarea que se completó el 17 de septiembre de 1873. El puente se inauguró oficialmente el 4 de julio de 1874 y sigue en funcionamiento hasta hoy.
El Puente Eads fue designado Monumento Histórico Nacional por el Departamento del Interior en 1964 y el 21 de octubre de 1974 fue inscrito como Monumento Histórico Nacional de Ingeniería Civil por la Sociedad Americana de Ingenieros Civiles. También recibió un Premio Especial de Reconocimiento del Instituto Americano de Construcción en Acero en 1974, en el centenario de su puesta en servicio. Eads también diseñó los diques del paso sur del río Misisipi, que fueron declarados Monumentos Históricos Nacionales de Ingeniería Civil en 1982.
Espigones en Nueva Orleans y nuevos proyectos
Posteriormente, el Gobierno le solicitó ayuda para resolver otro problema crítico: garantizar un canal navegable permanente en Nueva Orleans. Eads propuso construir una serie de espigones para alterar el comportamiento sedimentario del río. El proyecto fue financiado inicialmente por Eads, bajo la condición de recibir el pago solo si tenía éxito. En menos de cinco años, en 1879, había creado un canal estable y profundo que facilitaba el comercio marítimo durante todo el año.
Inspirado por este logro, Eads presentó una alternativa al canal de Panamá: un ferrocarril interoceánico en Tehuantepec (México) que transportaría barcos sobre plataformas móviles. Sin embargo, pese a sus esfuerzos, el Congreso de EE. UU. rechazó dos proyectos de ley para financiar la obra.
Reconocimientos y últimos años
James B. Eads fue el primer ingeniero estadounidense en recibir la Medalla Albert de la Royal Society of Arts de Londres. También trabajó como consultor en obras de infraestructura en Liverpool (Inglaterra), Toronto (Canadá), Veracruz y Tampico (México). Se casó en dos ocasiones y tuvo dos hijas biológicas y tres hijastras.
Eads falleció el 8 de marzo de 1887 en Nassau (Bahamas), dejando tras de sí un legado que combinaba genialidad técnica, profundo conocimiento práctico e incansable espíritu innovador. Su vida y su obra continúan siendo referentes en la historia de la ingeniería civil y naval.
En 1920, Eads fue incluido en el Pabellón de la Fama de los Grandes Americanos, ubicado en los terrenos del Bronx Community College en Nueva York. Cada año, la Academia de Ciencias de St. Louis otorga el Premio James B. Eads para reconocer a una persona distinguida por sus logros sobresalientes en ciencia y tecnología. En 1927, los decanos de las facultades de ingeniería de Estados Unidos votaron a Eads como uno de los cinco mejores ingenieros de todos los tiempos, un honor que compartió con Leonardo da Vinci, James Watt, Ferdinand de Lesseps y Thomas A. Edison.
En las últimas décadas del siglo XIX, el desarrollo de los puentes ferroviarios de acero se convirtió en uno de los pilares fundamentales de la ingeniería civil moderna. Esta evolución estuvo estrechamente relacionada con la necesidad de estructuras capaces de soportar trenes más pesados y mayores luces, y a la vez fue catalizadora de avances decisivos en la producción y uso estructural del acero. Desde los primeros arcos hasta las grandes estructuras continuas en voladizo, los puentes de acero no solo respondieron a una necesidad funcional, sino que impulsaron la transformación de la tecnología de construcción a escala global.
El puente Eads: origen del acero en la ingeniería ferroviaria
El primer uso del acero en un puente se produjo en 1828, durante la construcción de un puente colgante en Viena (Austria), en el que se incorporaron cadenas de suspensión de acero fabricadas mediante el proceso de horno de solera abierta. El primer empleo del acero en un puente ferroviario se produjo en la construcción del puente de St. Louis, posteriormente conocido como puente Eads, entre 1869 y 1874. Este puente, que cruza el río Misisipi en Misuri, constaba de dos vanos laterales de 152 m y un vano central de 158,5 m, y supuso un hito técnico sin precedentes. Diseñado por James B. Eads, incorporó por primera vez miembros tubulares huecos en los cordones de las armaduras y empleó el método de cajones neumáticos para cimentaciones profundas, algo revolucionario para la época. Este método de construcción de pilas también fue utilizado por Brunel en la construcción del puente Royal Albert en Saltash (Reino Unido) en 1859. Thomas Telford había propuesto este método en 1800 para un puente de hierro fundido que cruzaría el río Támesis en Londres, y Robert Stephenson lo utilizó en 1846 para construir un puente ferroviario de arco de hierro para evitar el uso de cimbra en el concurrido canal del estrecho de Menai. Eads utilizó principios desarrollados por Galileo en el siglo XVII para explicar a los escépticos los fundamentos de la construcción en voladizo de arcos. Eads no tenía una formación académica en ingeniería, pero contó con la ayuda de Charles Pfeiffer para el diseño y de Theodore Cooper para la construcción.
Eads rechazó el uso del puente colgante —considerado demasiado flexible para cargas ferroviarias— y propuso en su lugar un puente de arcos de hierro fundido, sobre los cuales se dispuso una armadura adicional que aumentaba la rigidez del tablero ferroviario. En 1864, John Roebling propuso un puente colgante para este emplazamiento. La estructura generó tanto escepticismo público y mediático que, antes de su apertura, Eads realizó pruebas de carga con catorce de las locomotoras más pesadas disponibles en el país. La magnitud del proyecto fue tan grande que prácticamente agotó los recursos de la incipiente industria siderúrgica estadounidense.
Expansión de la industria del acero y el papel del ferrocarril
La demanda de puentes con mayores luces por parte de los ferrocarriles norteamericanos, junto con el aumento constante del peso de locomotoras y vagones, impulsó el crecimiento de la industria del acero. Figuras como Andrew Carnegie invirtieron decididamente en mejorar los procesos de producción del acero para conseguir materiales con mayor resistencia y ductilidad. Este impulso dio lugar, en 1879, a la construcción del primer puente ferroviario íntegramente de acero, con celosías tipo Whipple, por parte de la Chicago and Alton Railway en Glasgow, Misuri.
La transición del puente colgante al sistema en voladizos
Aunque algunos ingenieros estadounidenses siguieron diseñando puentes ferroviarios colgantes, la preocupación por su flexibilidad frente a cargas dinámicas y viento persistía. Aun así, el famoso puente de Brooklyn, finalizado en 1883, incluía dos líneas ferroviarias. Sin embargo, el aumento de la masa de las locomotoras y la necesidad de una mayor rigidez estructural provocaron el declive de los puentes colgantes como solución ferroviaria.
La solución técnica más eficaz se encontró en el diseño cantilever, o de avance en voladizo, que permitía construir grandes luces sin cimbra y con suficiente rigidez para cargas dinámicas. El primer puente ferroviario cantilever (también llamado tipo Gerber) construido en Estados Unidos fue el de la Cincinnati Southern Railway sobre el río Kentucky en 1877. En 1883, la Michigan Central and Canada South Railway completó un puente cantiléver de viga de tablero superior sobre el desfiladero del Niágara, paralelo al puente colgante ferroviario de Roebling de 1854. Poco después, en 1884, la Canadian Pacific Railway cruzó el río Fraser, en Columbia Británica, con el primer puente cantilever de acero completamente equilibrado de tablero superior.
Estas estructuras, con brazos en voladizo y tramos suspendidos, se convirtieron en la solución habitual para grandes luces, ya que permitían un diseño estáticamente determinado, rigidez adecuada frente a cargas móviles y la eliminación de la cimbra en el vano principal.
El impulso de Theodore Cooper y la estandarización del acero
En 1880, el ingeniero Theodore Cooper publicó un influyente artículo titulado The Use of Steel for Railway Bridges ante la Sociedad Americana de Ingenieros Civiles (ASCE), en el que promovía el uso exclusivo del acero para puentes ferroviarios. A raíz de ello, casi todos los puentes ferroviarios estadounidenses posteriores se construyeron con acero, y hacia 1895 este material también se utilizaba en otras tipologías de puentes. Para entonces, la producción de perfiles estructurales de acero para puentes ya estaba plenamente desarrollada en el país. Para 1895, las formas estructurales ya no se fabricaban en hierro, sino que se utilizaba acero de manera exclusiva.
El puente de Forth: el cantiléver monumental europeo
Puente de Forth. https://es.wikipedia.org/wiki/Puente_de_Forth
En el Reino Unido, el gobierno levantó la prohibición del uso del acero en puentes ferroviarios en 1877. Una década más tarde, el ingeniero Benjamin Baker, tras estudiar numerosos puentes cantiléver estadounidenses —especialmente los de la Canadian Pacific Railway—, propuso un diseño para el puente sobre el estuario del Forth, en Escocia. Antes de esto, Baker quizá no conocía el trabajo de los ingenieros C. Shaler Smith o C. C. Schneider, quienes ya habían diseñado y construido puentes ferroviarios en voladizo en Estados Unidos. El puente de Forth, completado en 1890, se convirtió en un hito de la ingeniería europea: un gigantesco puente cantiléver de acero con brazos de 207 m y un vano suspendido de 107 m.
Pese a las dudas de algunos ingenieros respecto a la fiabilidad del acero Bessemer por su posible fragilidad, Baker lo empleó en el proyecto. La estructura demostró una rigidez excepcional: la deflexión máxima medida con locomotoras pesadas fue de solo 90 mm, muy cerca del valor teórico previsto de 100 mm. También se sometió a pruebas con dos trenes de carbón largos y pesados en condiciones de viento extremas, con una deflexión inferior a 180 mm.
El puente de Quebec: tragedia, rediseño y récord mundial
Puente de Quebec. https://es.wikipedia.org/wiki/Puente_de_Quebec
La siguiente gran estructura cantiléver fue el puente de Quebec, sobre el río San Lorenzo. Con un vano central de 549 m, aún es en la actualidad el puente cantiléver de mayor luz del mundo. Sin embargo, su construcción estuvo marcada por dos catastróficos fallos: en 1907, un error en el cálculo de las tensiones de compresión durante la fase de voladizo provocó el colapso de la estructura. En la reconstrucción se utilizó acero con níquel como nuevo material. No obstante, en 1916, el vano suspendido cayó al ser izado. Finalmente, el puente se terminó y se abrió al tráfico ferroviario en 1917. Los proyectistas originales fueron Theodore Cooper y Peter Szlapka, de la empresa Phoenixville Bridge Company. Tras el colapso, H. E. Vautelet presentó un nuevo diseño, pero la remodelación del puente se licitó entre varias empresas constructoras y fue ejecutada por G. H. Duggan (St. Lawrence Bridge Company) bajo la dirección de C. C. Schneider, R. Modjeski y C. N. Monsarrat. El acero aleado con níquel se utilizó por primera vez en 1909 en el puente de Blackwell’s Island (hoy Queensboro), en Nueva York. El acero con níquel también fue empleado extensamente por J. A. L. Waddell en diseños de puentes ferroviarios de grandes luces. A. N. Talbot realizó ensayos de conexiones de acero con níquel para la reconstrucción del puente de Quebec.
Puentes de tramo continuo: una opción limitada en América
Mientras que en Europa los puentes de tramo continuo se hicieron más frecuentes, en América del Norte se evitaban por su carácter estáticamente indeterminado. Una excepción fue el puente ferroviario de la Canadian Pacific Railway en Montreal, construido en 1886 con tramos principales de 124,5 m. Se utilizó un método cantiléver para su construcción, controlando cuidadosamente las deformaciones en los cordones inferiores mediante tensores y tornillos ajustables. Estos vanos fueron reemplazados en 1912 debido a las preocupaciones sobre su comportamiento bajo cargas ferroviarias más pesadas. El extremo principal de las cerchas de reemplazo del vano simple se apoyó mediante cimbras sobre una barcaza móvil durante su instalación en un trazado adyacente.
El primer gran puente ferroviario de acero de Francia fue el Viaducto del Viaur, que se construyó en 1898. Este puente de arco en celosía tipo cantilever es inusual, ya que no tiene un vano suspendido, por lo que la estructura es estáticamente indeterminada. Muchos ingenieros consideran que el diseño no era apropiado para cargas ferroviarias.
Viaducto del Viaur. https://es.wikipedia.org/wiki/Viaducto_del_Viaur
La consolidación de nuevas técnicas: roblonado y acero de alto carbono
A principios del siglo XX, muchas estructuras de hierro y acero fueron sustituidas debido al aumento de peso de las locomotoras. El peso típico de las locomotoras era de aproximadamente 40 t en 1860, 70 t en 1880, 100 t en 1890, 125 t en 1900 y 150 t en 1910. Aunque el roblonado era común en Europa, en Estados Unidos no se estandarizó en puentes de gran luz hasta alrededor de 1915. El roblonado se utilizaba en vanos de menor luz a principios del siglo XX.
Uno de los primeros ejemplos destacados fue el Hell Gate Bridge en Nueva York, una estructura de arco de acero de 298 m completada en 1916 para soportar cuatro vías ferroviarias. Fue erigido sin cimbra y empleó por primera vez acero con alto contenido en carbono, principalmente, debido al alto coste del acero aleado.
Ese mismo año, la Chesapeake & Ohio Railroad terminó el puente de Sciotoville, en Ohio, con dos tramos continuos de 236,5 m, el más largo de su tipo hasta hoy.
Puente de Sciotoville. https://en.wikipedia.org/wiki/Sciotoville_Bridge
Un legado de 80.000 puentes
En 1910 se estimaba que había unos 80 000 puentes de hierro y acero en Estados Unidos, que sumaban un total de 2250 kilómetros sobre una red de 300 000 km de vías. La mayoría de los puentes eran de construcción de acero a principios del siglo XX. El ferrocarril, en su rápida expansión tras la Guerra Civil, se convirtió en el principal motor de innovación estructural, propiciando el paso de la madera y la mampostería al hierro y, finalmente, al acero.
El desarrollo de procesos como el Bessemer (1856) y el horno Siemens-Martin (1867) permitió la producción económica del acero. Así, los puentes ferroviarios de acero se convirtieron en una respuesta ingenieril al desafío logístico de la era industrial, marcando el inicio de la ingeniería estructural moderna.
De izquierda a derecha: Julián Alcalá, Salvador Ivorra, Lorena Yepes, Tatiana García y Antonio Tomás.
Hoy, 6 de junio de 2025, ha tenido lugar la defensa de la tesis doctoral de Dª. Lorena Yepes Bellver, titulada “Multi-criteria optimization for sustainable design of post-tensioned concrete slab bridges using metamodels”, dirigida por el profesor Julián Alcalá González. La tesis ha obtenido la máxima calificación de sobresaliente «cum laude». A continuación, presentamos un pequeño resumen de la misma.
Esta tesis utiliza técnicas de modelización sustitutiva para optimizar los costes económicos y medioambientales en puentes losa de hormigón postesado hormigonado in situ. El objetivo principal de esta investigación es desarrollar una metodología sistemática que permita optimizar el diseño de puentes, reduciendo los costes, las emisiones de CO₂ y la energía necesaria para construir este tipo de puentes sin comprometer la viabilidad estructural o económica. El marco de optimización propuesto consta de dos fases secuenciales: la primera se centra en ampliar el espacio de búsqueda y la segunda intensifica la búsqueda de soluciones óptimas. El metamodelo basado en Kriging realiza una optimización heurística que da como resultado un diseño con emisiones de CO₂ significativamente menores que los diseños convencionales. El estudio revela que una relación de esbeltez de aproximadamente 1/30 arroja resultados óptimos, ya que se reduce el consumo de material y se mantiene la integridad estructural. Además, el aumento de la armadura pasiva compensa la reducción de hormigón y armadura activa, lo que da como resultado un diseño más sostenible. Por otra parte, se identifica una compensación entre costes y emisiones que muestra que un modesto aumento de los costes de construcción (menos del 1 %) puede reducir sustancialmente las emisiones de CO₂ (más del 2 %), lo que demuestra que el diseño de puentes sostenibles puede ser económicamente viable.
La investigación explora más a fondo la optimización de la energía incorporada en la construcción de pasos elevados de carreteras anuladas mediante el uso de muestreo por hipercubo latino y optimización basada en Kriging. La metodología permite identificar los parámetros críticos de diseño, como los altos coeficientes de esbeltez (en torno a 1/28), el uso mínimo de hormigón y armadura activa, y el aumento de la armadura pasiva para mejorar la eficiencia energética. Aunque en el estudio se emplearon Kriging y redes neuronales artificiales (RNA), Kriging demostró ser más eficaz a la hora de identificar óptimos locales, a pesar de que las redes neuronales ofrecen predicciones absolutas más precisas. Esto pone de manifiesto la eficacia de los modelos sustitutos a la hora de orientar las decisiones de diseño sostenible, incluso cuando los modelos no ofrecen predicciones absolutas perfectamente exactas.
En el contexto de la optimización de costes para puentes de losa postesada, el estudio demuestra el potencial del modelado sustitutivo combinado con la simulación del recocido. Los resultados muestran que el método de optimización basado en Kriging conduce a una reducción de costes del 6,54 %, principalmente mediante la minimización del uso de materiales, concretamente de hormigón en un 14,8 % y de acero activo en un 11,25 %. Estas reducciones en el consumo de material se consiguen manteniendo la integridad estructural y la capacidad de servicio del puente, lo que convierte al modelado sustitutivo en una herramienta práctica y eficaz para la optimización económica en el diseño de puentes.
El estudio también evalúa la forma de optimizar las emisiones de CO₂ en pasos elevados de carreteras pretensadas. Se identifican los parámetros óptimos de diseño, como grados de hormigón entre C-35 y C-40 MPa, profundidades del tablero entre 1,10 y 1,30 m, y anchuras de base entre 3,20 y 3,80 m. La red neuronal mostró las predicciones más precisas entre los modelos predictivos analizados, con los errores medios absolutos (MAE) y cuadrados medios (RMSE) más bajos. Estos resultados subrayan la importancia de seleccionar el modelo predictivo adecuado para optimizar las emisiones de CO₂ en el diseño de puentes y destacan el valor de utilizar modelos sustitutivos para mejorar la sostenibilidad en los proyectos de ingeniería civil.
Por último, la investigación integra la toma de decisiones multicriterio (MCDM) con la optimización basada en Kriging para evaluar y optimizar los diseños de puentes en relación con objetivos económicos, medioambientales y estructurales. El enfoque MCDM permite evaluar de manera más exhaustiva las alternativas de diseño al tener en cuenta las compensaciones entre coste, impacto ambiental y rendimiento estructural. Esta integración contribuye al desarrollo sostenible de las infraestructuras, ya que facilita la selección de diseños óptimos que se ajusten a los objetivos de sostenibilidad.
En conclusión, esta tesis demuestra que el modelado sustitutivo, que utiliza explícitamente el Kriging y redes neuronales artificiales, es un enfoque práctico para optimizar las dimensiones medioambiental y económica del diseño de puentes. El marco de optimización en dos fases que aquí se presenta proporciona una metodología eficiente desde el punto de vista computacional que permite identificar soluciones de diseño óptimas y sostenibles que cumplen las restricciones estructurales y económicas. Los resultados sugieren que la metodología es aplicable a proyectos de infraestructuras a gran escala y sentarán las bases para futuras investigaciones. Futuros estudios podrían investigar el uso de algoritmos y modelos de optimización adicionales para perfeccionar aún más el proceso de optimización y mejorar la aplicabilidad de estas metodologías en proyectos reales.
Puente antiguo en celosía para un ferrocarril de vía única, reconvertido para uso peatonal y soporte de tuberías. https://es.wikipedia.org/wiki/Puente_en_celos%C3%ADa
El desarrollo de la ingeniería de puentes ferroviarios se ha sustentado en el avance progresivo de disciplinas fundamentales como la resistencia de materiales y la mecánica estructural. A lo largo de los siglos XVII y XVIII, diversos científicos establecieron los fundamentos del análisis racional de estructuras. En 1678, Robert Hooke formuló la ley que relaciona la fuerza elástica con la deformación. En 1705, Jacob Bernoulli llevó a cabo un estudio exhaustivo sobre las curvas de deflexión. Leonhard Euler y Charles-Augustin de Coulomb fueron pioneros en la investigación de la estabilidad elástica de los elementos sujetos a compresión. Posteriormente, en 1826, Louis Navier sentó las bases de una teoría más exhaustiva de la elasticidad.
Francia ocupó una posición destacada en la promoción de estos avances durante el siglo XVIII, contribuyendo significativamente al desarrollo de ingenieros dotados de una sólida formación científica. Estos profesionales ejercieron una notable influencia en el campo de la ingeniería ferroviaria estadounidense. Dignos de mención son los ingenieros Charles Ellet (1830), Ralph Modjeski (1855), L. F. G. Bouscaren, ingeniero jefe del ferrocarril de Cincinnati Southern (1873) y H. E. Vautelet, ingeniero de puentes del Canadian Pacific Railway hacia 1876, quienes se formaron en las primeras escuelas de ingeniería francesas. Esta formación, fundamentada en un enfoque riguroso de las matemáticas, la mecánica y el análisis estructural, resultó determinante en el desarrollo de la ingeniería de puentes ferroviarios en América del Norte. En este contexto, los profesionales aplicaron los principios adquiridos en Francia, introduciendo un diseño más racional y científico en sus respectivos contextos ferroviarios. Entre 1885 y 1889, el ingeniero alemán F. Engesser, especializado en puentes ferroviarios, realizó importantes avances en el análisis de la estabilidad de los elementos comprimidos. Gracias a su trabajo, este tipo de estudios se pudieron generalizar para su aplicación práctica en ingeniería estructural, y los ingenieros disponían de herramientas más precisas para evaluar el riesgo de pandeo en columnas y otros elementos críticos de los puentes metálicos. Estos desarrollos fueron especialmente relevantes en un contexto de creciente demanda de estructuras más resistentes y fiables en la red ferroviaria europea.
Desde su nacimiento en la década de 1820, el ferrocarril se expandió rápidamente durante más de ochenta años. Este crecimiento constante, unido al aumento del peso de las locomotoras, provocó que muchos puentes tuvieran que ser reemplazados cada diez o quince años. La necesidad de estructuras más resistentes, con mayor luz y fiabilidad, unida a los fallos estructurales que se producían en servicio, impulsó a los ingenieros de mediados del siglo XIX a adoptar un enfoque más científico en el diseño de puentes de hierro y acero. A causa del elevado número de accidentes ferroviarios debidos a fallos estructurales en los puentes, la ingeniería de estos elementos experimentó una evolución significativa a lo largo del siglo XIX. Estos incidentes pusieron de manifiesto la necesidad urgente de adoptar un enfoque más riguroso y científico en el diseño y la evaluación de las estructuras, lo que impulsó una serie de investigaciones y avances técnicos fundamentales para garantizar la seguridad en el transporte ferroviario.
En Estados Unidos, esta práctica era principalmente empírica, basada en la experiencia y en la repetición de diseños de armaduras probadas, como las de tipo Town, Long, Howe y Pratt, en los que se mejoraban los materiales, pero sin un conocimiento profundo de las fuerzas internas. Este enfoque se reveló insuficiente entre 1850 y 1870, cuando se produjeron numerosos fallos estructurales. La necesidad de aumentar la seguridad y responder a cargas mayores llevó al desarrollo de métodos analíticos más rigurosos. En este contexto, Squire Whipple publicó en 1847 el primer análisis racional de celosías isostáticas mediante el método de los nudos, lo que supuso un hito en la historia de la ingeniería estructural.
Entretanto, en Europa, ingenieros franceses, alemanes y británicos también avanzaban en la teoría de la elasticidad y la mecánica estructural. En 1849, P. E. Clapeyron desarrolló la ecuación de los tres momentos, que aplicó en 1857 al análisis del puente Britannia. El diseño de este puente se basó en un análisis de tramos simples, a pesar de que Fairbairn y Stephenson eran conscientes de los efectos de la continuidad sobre la flexión. Los tramos se montaron inicialmente con apoyos simples y, posteriormente, se elevaron secuencialmente en los pilares correspondientes. Una vez en su posición, los tramos se conectaron mediante placas remachadas para lograr la continuidad del mismo, un enfoque innovador que permitió superar las limitaciones de los métodos tradicionales de construcción de puentes de la época. En el Reino Unido, los ingenieros ferroviarios realizaron ensayos con metales y modelos a escala para evaluar la resistencia y estabilidad de los puentes.
A partir de los trabajos de Whipple, dos ingenieros europeos destacaron especialmente: D. J. Jourawski y Karl Culmann. Jourawski criticó el uso de refuerzos verticales de placa empleados por Stephenson en el puente Britannia. Consideraba que esta solución no era la más adecuada para garantizar la resistencia y estabilidad del puente y destacaba la importancia de emplear métodos más eficientes en el diseño de elementos de compresión en estructuras de gran envergadura. Culmann, ingeniero del Ferrocarril Real Bávaro, fue un defensor temprano del análisis matemático de estructuras. En 1851, estudió en detalle las celosías como la Howe, ampliamente utilizadas en Estados Unidos. Karl Culmann no solo se centró en celosías isostáticas como las de tipo Howe, sino que también analizó estructuras hiperestáticas, como las celosías Long, Town y Burr. Estas configuraciones, más complejas desde el punto de vista estructural por ser estáticamente indeterminadas, fueron estudiadas por Culmann mediante métodos aproximados, lo que supuso un paso importante para comprender y evaluar este tipo de estructuras. Aunque no se disponía aún de herramientas matemáticas completamente desarrolladas para resolver estos sistemas con precisión, sus aproximaciones permitieron establecer criterios útiles para su diseño y validación en el contexto ferroviario de la época.
Durante esta misma época, se desarrollaron nuevas formas estructurales como la celosía Warren (1846) y W. B. Blood ideó en 1850 un método de análisis específico para armaduras trianguladas. La viga Warren, caracterizada por su estructura triangular regular y su eficiencia en la distribución de esfuerzos, se utilizó por primera vez en un puente ferroviario en 1853, en la línea del Great Northern Railway del Reino Unido. Este hecho marcó el inicio de su aplicación práctica en la infraestructura ferroviaria, consolidándose progresivamente como una de las tipologías estructurales más versátiles y extendidas en Europa y América del Norte.
En el Reino Unido, la investigación sobre los efectos de las cargas móviles y la velocidad también se inició en la década de 1850, precedida por los estudios teóricos de Stokes y Willis sobre vibraciones y resistencia. Fairbairn abordó en 1857 el impacto de estas cargas sobre estructuras isostáticas.
En 1862, el ingeniero alemán J. W. Schwedler presentó una teoría fundamental sobre momentos flectores y esfuerzos cortantes en vigas, y contribuyó al análisis de armaduras mediante el uso del método de secciones. Ese mismo año, A. Ritter perfeccionó dicho método al desarrollar un enfoque basado en el equilibrio en la intersección de dos barras de la armadura. Paralelamente, entre 1864 y 1874, James Clerk Maxwell y Otto Mohr desarrollaron y perfeccionaron los métodos gráficos para el análisis de celosías. Estas técnicas permitieron representar visualmente y con gran precisión los flujos de fuerza en las estructuras, lo que facilitó el diseño y la comprensión del comportamiento estructural.
Además, Maxwell y W. J. M. Rankine realizaron importantes aportaciones teóricas en ámbitos clave como los cables de suspensión en puentes metálicos, las vigas en celosía y los efectos de flexión, cortante, deformación y estabilidad en elementos comprimidos. Sus trabajos sentaron las bases de muchas de las prácticas modernas en ingeniería de estructuras metálicas y contribuyeron decisivamente al avance del diseño de puentes ferroviarios. Culmann también abordó el análisis de vigas continuas y largueros, y en 1866 publicó una descripción general del método para diseñar puentes en voladizo. En 1866, Karl Culmann publicó una descripción extensa y sistemática del análisis gráfico de celosías, consolidando así una metodología visual que permitió a los ingenieros calcular con mayor claridad y eficacia las fuerzas internas en estructuras complejas. Su obra no solo facilitó el diseño de puentes ferroviarios más seguros y eficientes, sino que también sirvió como referencia durante décadas en la enseñanza y práctica de la ingeniería estructural.
Posteriormente, Culmann desarrolló teorías sobre cargas móviles y flexión de vigas que fueron ampliamente aceptadas en Europa y Estados Unidos. En 1867, E. Winkler introdujo las líneas de influencia, una herramienta clave para el análisis de estructuras sometidas a cargas en movimiento.
El estudio de los efectos dinámicos del tráfico ferroviario, como los impactos derivados de las irregularidades de la vía, el «golpe de ariete» de las locomotoras, el cabeceo, el balanceo y la oscilación, continuó impulsando la investigación teórica y experimental. El aumento de la carga ferroviaria también generó preocupación por la fatiga del material, un campo en el que A. Wöhler destacó por sus estudios para los ferrocarriles alemanes.
A finales del siglo XIX, la ingeniería de puentes ferroviarios en Norteamérica dio un nuevo paso hacia la consolidación de una práctica plenamente científica. El ingeniero J. A. L. Waddell desempeñó un papel clave en este proceso, ya que en 1898 y 1916 publicó dos obras de referencia sobre el diseño de puentes de acero. Estos textos sentaron las bases de una metodología rigurosa y estandarizada para el diseño estructural en el ámbito ferroviario.
Hasta entonces, era habitual que las compañías ferroviarias adquiriesen puentes completos a fabricantes que ofrecían soluciones prefabricadas y de diseño propio. Waddell y otros ingenieros promovieron un cambio radical: que los diseños los realizaran de forma independiente, ingenieros cualificados basándose en principios científicos y que las empresas solo se encargaran de la fabricación. La Erie Railroad fue la primera en aplicar este nuevo modelo, y su ejemplo fue seguido rápidamente por el resto de compañías ferroviarias estadounidenses. Así, el diseño independiente y técnicamente fundamentado se convirtió en la norma.
Así, a comienzos del siglo XX, la ingeniería de puentes ferroviarios había alcanzado una madurez técnica plena en Estados Unidos y Europa, basada en fundamentos científicos sólidos, metodologías de cálculo avanzadas y una clara profesionalización del diseño estructural.
Os dejo un vídeo de un puente de ferrocarril en celosía tipo Warren.
Squire Whipple (16 de septiembre de 1804, Hardwick, Massachusetts; 15 de marzo de 1888, Albany, Nueva York) fue una figura esencial en el desarrollo de la ingeniería estructural en Estados Unidos y es reconocido como el «padre de la construcción de puentes de hierro» en dicho país.
Nacido en el seno de una familia campesina, su primer contacto con la ingeniería se produjo a temprana edad, cuando su padre diseñó, construyó y operó una hilandería de algodón cerca de Greenwich, Massachusetts, entre 1811 y 1817. En 1817, cuando Whipple tenía trece años, su familia se trasladó al estado de Nueva York y se estableció en el condado de Otsego, donde su padre retomó las labores agrícolas.
Durante su adolescencia, Whipple recibió educación secundaria en la Fairfield Academy, en Herkimer, y también asistió a la Hartwick Academy. Gracias a su aptitud académica, pudo ingresar y graduarse en el Union College de Schenectady (Nueva York) en solo un año, en 1830. En la década siguiente, trabajó en distintos proyectos ferroviarios y de canales, y en los periodos de desempleo fabricaba y vendía instrumentos matemáticos de su propia elaboración.
Su participación en la ampliación del Canal Erie resultó decisiva para su desarrollo profesional. Al comprobar que los puentes de madera existentes no eran adecuados para el nuevo trazado ensanchado del canal, concluyó que era necesario utilizar hierro. En 1841 obtuvo la patente de una celosía de arco tensado (bowstring truss), que combinaba hierro forjado para los elementos sometidos a tracción y hierro fundido para los elementos a compresión, estableciendo una clara distinción funcional entre ambos materiales. Ese mismo año, construyó el primer puente con este sistema sobre el Canal Erie en Utica, y en los años siguientes se edificaron al menos seis estructuras similares en los estados de Nueva York y Erie. Sus diseños, especialmente los de vigas de celosía y puentes de arco tensado prefabricados, se adoptaron como estándar para los cruces del canal.
En 1847, publicó A Work on Bridge Building, una obra fundamental en la que presentó la teoría de celosías trianguladas mediante métodos gráficos y trigonométricos, una innovación que marcó el inicio de la independencia teórica de la ingeniería estructural estadounidense respecto del modelo europeo. En este tratado formuló una ecuación empírica para dimensionar montantes de hierro fundido, describió el comportamiento elástico-plástico de las vigas de ese material y realizó un análisis preliminar del fenómeno de fatiga, aunque sin emplear este término. Estos aportes sentaron las bases de la teoría de estructuras en Estados Unidos durante su etapa fundacional (1850-1875). A lo largo de su carrera, publicó otras obras relevantes, como Apéndice a la obra de Whipple sobre construcción de puentes (1869) y Tratado elemental y práctico sobre construcción de puentes (1873), que consolidaron su legado teórico.
Puente de arco tesado Whipple, construido entre 1867 y 1869 sobre el Normans Kill en Albany. https://es.wikipedia.org/wiki/Squire_Whipple
Entre los ejemplos más destacados de su obra construida se encuentra el puente de arco tensado de hierro forjado y fundido sobre el arroyo Normans Kill, en Albany (Nueva York), construido entre 1867 y 1869 por S. DeGraff, de Syracuse. Este puente, muy bien conservado, permaneció en uso continuo y sin restricciones de carga hasta su cierre al tráfico rodado en enero de 1990. Su elegante diseño ha llevado a muchos usuarios a creer erróneamente que se trata de una estructura moderna. Durante décadas, la autopista de peaje de Delaware atravesaba el puente hasta que, en 1929, fue reemplazado por una estructura nueva, más alta, larga y ancha. A pesar de ello, el puente original de Whipple aún se conserva como patrimonio histórico. Otro ejemplo notable se halla en el campus del Union College, donde hoy se utiliza como pasarela peatonal.
Asimismo, el puente Shaw es una pieza singular: es el único puente de arco tesado Whipple que se conserva en su ubicación original y la única estructura doble de este tipo que se conoce. Compuesto por dos tramos idénticos que comparten un pilar común, se le ha descrito como «una estructura de gran importancia para la historia de la ingeniería y la tecnología del transporte en Estados Unidos». A estos ejemplos se suman al menos cuatro puentes similares más que aún se conservan en el centro del estado de Nueva York y otro más en Newark (Ohio), lo que evidencia la amplia adopción de sus diseños.
Squire Whipple falleció el 15 de marzo de 1888 en su residencia de Albany. Fue sepultado en el Cementerio Rural de Albany, en Menands (Nueva York). Su legado, tanto teórico como práctico, perdura como un pilar fundamental en la historia de la ingeniería estructural y del diseño de puentes en América.
En España, las Escuelas de Ingeniería y Arquitectura ofrecen títulos universitarios habilitantes para ejercer profesiones reguladas en sectores fundamentales como la arquitectura, la medicina y la ingeniería. Este modelo formativo no solo tiene como objetivo proporcionar una sólida base teórica, sino también formar profesionales competentes para afrontar los retos del mundo laboral. Las Escuelas de Ingenieros de Caminos, Canales y Puertos ejemplifican la estrecha vinculación entre la docencia y la práctica profesional, siendo históricamente referentes gracias a sus catedráticos, quienes han combinado la labor académica con la ejecución de importantes proyectos de infraestructura.
Historia y vínculo con la práctica profesional
Desde sus inicios —como la Escuela de Ingenieros de Caminos de Madrid, fundada en 1802— estas instituciones han contado con profesores de reconocido prestigio internacional que han liderado y gestionado obras de gran envergadura (puentes, presas y puertos, entre otras). La experiencia directa acumulada en el campo aporta un valor añadido incalculable, ya que permite a los egresados no solo dominar la teoría, sino también comprender y aplicar soluciones reales a los desafíos técnicos y constructivos. La integración de la práctica profesional en la enseñanza resalta la inseparabilidad entre ciencia y técnica, base imprescindible para la formación completa del ingeniero.
Limitaciones del modelo universitario actual
El sistema universitario vigente ha privilegiado el desarrollo de la carrera investigadora y académica, orientando a estudiantes brillantes hacia el doctorado, contratos predoctorales, estancias de investigación y la promoción en el escalafón universitario. Si bien este enfoque es fundamental para el avance científico, en el ámbito de la ingeniería ha llevado a descuidar la incorporación de conocimientos derivados de la experiencia práctica de alto nivel. En las últimas décadas, se ha reducido drásticamente la presencia de profesores con una sólida trayectoria profesional en la dirección de grandes obras, lo que genera una desconexión entre el conocimiento teórico y las habilidades prácticas necesarias en el ejercicio profesional.
La figura del profesor asociado
Se ha sugerido que la figura del profesor asociado podría compensar la carencia de profesionales con experiencia práctica en el claustro universitario. No obstante, este modelo presenta áreas de mejora, ya que dichos profesionales, aunque compaginan la actividad práctica con la docencia, tienen contratos que impiden desarrollar, a largo plazo, una carrera académica estable y sólida. Esta situación limita su participación en procesos de investigación y en la toma de decisiones estratégicas a largo plazo, mermando la transferencia directa de conocimientos prácticos a las nuevas generaciones.
La necesidad de integrar la experiencia profesional en la academia
La ausencia de expertos con amplia experiencia en grandes proyectos de ingeniería repercute directamente en la formación de los estudiantes, quienes terminan sus estudios con un conocimiento teórico destacado, pero con habilidades y experiencia práctica mejorables para su incorporación en el mercado laboral. Esta limitación dificulta la transición profesional, pues las empresas y organismos demandan ingenieros capaces de aplicar sus conocimientos en la ejecución y gestión de obras complejas. Ante esta situación, resulta imperativo revisar los criterios de evaluación del profesorado universitario, de manera que la Agencia Nacional de Evaluación de la Calidad y Acreditación (ANECA) reconozca y valore especialmente la experiencia profesional de calidad al evaluar a este tipo de docentes.
Propuesta para la integración de profesionales en el ámbito universitario
Para solventar la brecha entre la formación teórica y la práctica profesional, se plantea la necesidad de crear nuevas vías de incorporación de profesionales con amplia experiencia en el ejercicio de la ingeniería al ámbito académico. Estas nuevas estructuras permitirían a dichos profesionales desarrollar una carrera académica paralela, estable y digna, sin renunciar a su actividad práctica. Resulta fundamental que esta reforma venga acompañada de una modificación en los criterios de evaluación de las instituciones, integrando los méritos derivados de la experiencia profesional junto a la excelencia investigadora. Modelos internacionales —como los desarrollados en Alemania, Canadá y Suiza— demuestran que es factible conciliar la actividad profesional y académica de manera efectiva, facilitando una mayor transferencia de conocimientos prácticos a los estudiantes y mejorando la conexión entre la formación y las necesidades del mercado laboral.
Conclusión y propuesta de acción
España no puede seguir anclada en un modelo educativo que excluya a aquellos profesionales que cuentan con la experiencia práctica necesaria para enriquecer la formación de los ingenieros. Es urgente la realización de una reforma que integre la experiencia profesional en la valoración del profesorado universitario, garantizando así una educación completa que responda a las exigencias del siglo XXI. En este sentido, se debería revisar en profundidad los criterios de evaluación del profesorado en la docencia de las profesiones reguladas y alcanzar un acuerdo que permita la incorporación efectiva de profesionales con trayectoria en la docencia y la investigación.