Aplicación de la metodología de la superficie de respuesta en un curso de postgrado de optimización

Este trabajo describe la introducción de la metodología de superficie de respuesta en un curso de postgrado. Este caso se realiza en la asignatura de “Modelos predictivos y de optimización de estructuras de hormigón“. Esta asignatura se enmarca en el Plan de Estudios del Máster Universitario en Ingeniería del Hormigón. Los estudiantes aprenden aquí conceptos como la optimización de estructuras mediante algoritmos heurísticos, la toma de decisiones multicriterio, técnicas de diseño de experimentos y metamodelos como la superficie de respuesta para obtener resultados óptimos. En este caso de estudio, el objetivo es obtener una solución óptima de un muro de hormigón armado, utilizando las emisiones de CO2 como función objetivo para reducir su impacto. Para aplicar esta metodología, los estudiantes aprovechan programas comerciales. Por un lado, para realizar el análisis estadístico que permita obtener la superficie de respuesta se utiliza Minitab. Por otro lado, los estudiantes comprueban la resistencia de la estructura utilizando el software de cálculo estructural Cype. Como resultado de esta metodología se consigue que los estudiantes alcancen un mejor nivel en competencias transversales, como el diseño y el proyecto, el pensamiento crítico, el análisis y la resolución de problemas o el uso de software específico. En este trabajo se presentan futuros estudios de investigación relacionados con el uso de técnicas de optimización de estructuras por parte de los estudiantes aplicando otras técnicas de optimización diferentes.

Referencia:

YEPES, V.; MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V. (2021). Application of the response surface methodology in a postgraduate optimization course. 15th annual International Technology, Education and Development Conference (INTED 2021), 8th-9th March, 2021, pp. 869-878, Valencia, Spain. ISBN: 978-84-09-27666-0

Descargar (PDF, 232KB)

 

 

Constructibilidad para la optimización en BIM y gemelos híbridos digitales

En otros artículos anteriores ya hemos hablado de la computación cuántica y los gemelos híbridos digitales en ingeniería civil y edificación. Ahora os paso una comunicación que hicimos en el EAAE-ARCC International Conference que se celebró en Valencia el verano pasado, organizado por la Universitat Politècnica de València.

La introducción de los estándares de Lean Construction en la industria de la construcción ha cambiado la forma en que los profesionales abordan los problemas. El BIM y los gemelos digitales híbridos son nuevas tecnologías que mejoran la eficiencia de los procedimientos del sector. Los algoritmos de optimización se utilizan a menudo en combinación con estas técnicas para mejorar el resultado en varios puntos de la fase de diseño, incluyendo el proyecto estructural. La optimización puede realizarse utilizando diferentes criterios, como la economía, la sostenibilidad, el consumo de energía o la constructibilidad o una combinación entre ellos. Aunque existen fórmulas exactas para cuantificar algunos de estos criterios, no existe una universal para cuantificar la constructibilidad. En este artículo, establecemos los puntos clave para crear un criterio de constructibilidad para cada proyecto estructural y explorar su eficiencia. La forma de cuantificar la constructibilidad depende del diseño estructural y del elemento a optimizar y como no existe una fórmula exacta para cuantificarla se han definido los diferentes factores que influyen en ella y se han explorado sus combinaciones para un determinado problema estructural: la optimización de una viga de hormigón. Con ello, se consigue cuantificar la facilidad para construir un determinado proyecto estructural y reducir el tiempo de construcción y el coste de las cuadrillas y crear una forma de mejorar el diseño estructural. Este método expuesto puede ampliarse luego a diferentes elementos estructurales.

Referencia:

FERNÁNDEZ-MORA, V.; YEPES, V. (2020). Constructability criterion for structural optimization in BIM and Hybrid Digital Twins. EAAE-ARCC International Conference, June, 10-13, Valencia, 8 pp. DOI: http://dx.doi.org/10.4995/EAAE-ARCC-IC-2020.2020.XXXX

Descargar (PDF, 368KB)

Optimización energética de muros de contrafuertes

Acaban de publicarnos un artículo en la revista científica Applied Sciences (indexada en el JCR, Q2) un artículo que trata sobre el uso de distintas técnicas heurísticas para optimizar una pasarela de sección mixta hormigón-acero. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La importancia de la construcción en el consumo de recursos naturales está llevando a los profesionales del diseño estructural a crear diseños de estructuras más eficientes que reduzcan tanto las emisiones como la energía consumida. En este trabajo se presenta un proceso automatizado para obtener diseños óptimos energéticos de muros de contrafuertes. Se consideraron dos funciones objetivo para comparar la diferencia entre una optimización de costes y una optimización de energía incorporada. Para alcanzar el mejor diseño para cada criterio de optimización, se ajustaron los parámetros del algoritmo. Este estudio utilizó un algoritmo híbrido de optimización simulada para obtener los valores de la geometría, las resistencias del hormigón y las cantidades de hormigón y materiales. La relación entre todas las variables geométricas y la altura del muro se obtuvo ajustando las funciones lineales y parabólicas. Se encontró que la optimización de los costes y de la energía están vinculados. Una reducción de costes de 1 euro lleva asociada una reducción del consumo energético de 4,54 kWh. Para conseguir un diseño de baja energía, se recomienda reducir la distancia entre los contrafuertes con respecto a la optimización económica. Esta disminución permite reducir los refuerzos necesarios para resistir la flexión del alzado. La diferencia entre los resultados de las variables geométricas de la cimentación para los dos objetivos de optimización apenas revela variaciones entre ellos. Este trabajo proporciona a los técnicos algunas reglas prácticas de diseño óptimo. Además, compara los diseños obtenidos mediante estos dos objetivos de optimización con las recomendaciones de diseño tradicionales.

El artículo se ha publicado en abierto, y se puede descargar en el siguiente enlace: https://www.mdpi.com/2076-3417/11/4/1800

ABSTRACT:

The importance of construction in the consumption of natural resources is leading structural design professionals to create more efficient structure designs that reduce emissions as well as the energy consumed. This paper presents an automated process to obtain low embodied energy buttressed earth-retaining wall optimum designs. Two objective functions were considered to compare the difference between a cost optimization and an embodied energy optimization. To reach the best design for every optimization criterion, a tuning of the algorithm parameters was carried out. This study used a hybrid simulated optimization algorithm to obtain the values of the geometry, the concrete resistances, and the amounts of concrete and materials to obtain an optimum buttressed earth-retaining wall low embodied energy design. The relation between all the geometric variables and the wall height was obtained by adjusting the linear and parabolic functions. A relationship was found between the two optimization criteria, and it can be concluded that cost and energy optimization are linked. This allows us to state that a cost reduction of €1 has an associated energy consumption reduction of 4.54 kWh. To achieve a low embodied energy design, it is recommended to reduce the distance between buttresses with respect to economic optimization. This decrease allows a reduction in the reinforcing steel needed to resist stem bending. The difference between the results of the geometric variables of the foundation for the two-optimization objectives reveals hardly any variation between them. This work gives technicians some rules to get optimum cost and embodied energy design. Furthermore, it compares designs obtained through these two optimization objectives with traditional design recommendations.

Keywords:

Heuristic optimization; energy savings; sustainable construction; buttressed earth-retaining walls

Reference:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

Descargar (PDF, 1.02MB)

Discretización de metaheurísticas continuas a través de un operador KNN

Acaban de publicarnos un artículo en la revista Mathematics,  revista indexada en el primer cuartil del JCR. En este caso hemos abordado la binarización de metaheurísticas continuas. Se trata de una estrategia muy útil para el caso de la optimización de estructuras, puesto que éstas suelen presentar variables discretas para favoreces su constructabilidad. El trabajo entra dentro de la estrecha colaboración internacional de nuestro grupo de investigación, en este caso, con investigaciones chilenos.

En este trabajo se propone un operador de perturbación que utiliza la técnica de k-vecinos más cercanos, y se estudia con el objetivo de mejorar las propiedades de diversificación e intensificación de los algoritmos metaheurísticos en su versión binaria. Se diseñan operadores aleatorios para estudiar la contribución del operador de perturbación. Para verificar la propuesta, se estudian grandes instancias del conocido problema de cobertura de conjuntos. Se utilizan gráficos de caja, gráficos de convergencia y la prueba estadística de Wilcoxon para determinar la contribución del operador. Además, se realiza una comparación con técnicas metaheurísticas que utilizan mecanismos generales de binarización como las funciones de transferencia o el db-scan como métodos de binarización. Los resultados obtenidos indican que el operador de perturbación KNN mejora significativamente los resultados.

ABSTRACT:

The optimization methods and, in particular, metaheuristics must be constantly improved to reduce execution times, improve the results, and thus be able to address broader instances. In particular, addressing combinatorial optimization problems is critical in the areas of operational research and engineering. In this work, a perturbation operator is proposed which uses the k-nearest neighbors technique, and this is studied with the aim of improving the diversification and intensification properties of metaheuristic algorithms in their binary version. Random operators are designed to study the contribution of the perturbation operator. To verify the proposal, large instances of the well-known set covering problem are studied. Box plots, convergence charts, and the Wilcoxon statistical test are used to determine the operator contribution. Furthermore, a comparison is made using metaheuristic techniques that use general binarization mechanisms such as transfer functions or db-scan as binarization methods. The results obtained indicate that the KNN perturbation operator improves significantly the results.

KEYWORDS:

Combinatorial optimization; machine learning; KNN; metaheuristics; transfer functions

REFERENCE:

GARCÍA, J.; ASTORGA, G.; YEPES, V. (2021). An analysis of a KNN perturbation operator: an application to the binarization of continuous metaheuristics. Mathematics, 9(3):225. DOI:10.3390/math9030225.

Descargar (PDF, 1.02MB)

 

Special Issue “Optimization for Decision Making III”

 

 

 

 

 

Mathematics (ISSN 2227-7390) is a peer-reviewed open access journal which provides an advanced forum for studies related to mathematics, and is published monthly online by MDPI.

  • Open Access – free for readers, with article processing charges (APC) paid by authors or their institutions.
  • High visibility: Indexed in the Science Citation Indexed Expanded – SCIE (Web of Science) from Vol. 4 (2016), Scopus, and Zentralblatt MATH from Vol. 3 (2015).
  • Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 21.7 days after submission; acceptance to publication is undertaken in 5.3 days (median values for papers published in this journal in the second half of 2018).
  • Recognition of reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.

Impact Factor: 1.747 (2019)  (First decile JCR journal)

Special Issue “Optimization for Decision Making III”

Deadline for manuscript submissions: 30 June 2021.

Special Issue Editors

Guest Editor 

Prof. Víctor Yepes
Universitat Politècnica de València, Spain
Website | E-Mail
Interests: multiobjective optimization; structures optimization; lifecycle assessment; social sustainability of infrastructures; reliability-based maintenance optimization; optimization and decision-making under uncertainty

Guest Editor 

Prof. José M. Moreno-Jiménez
Universidad de Zaragoza
Website | E-Mail
Interests: multicriteria decision making; environmental selection; strategic planning; knowledge management; evaluation of systems; logistics and public decision making (e-government, e-participation, e-democracy and e-cognocracy)

Special Issue Information

Dear Colleagues,

In the current context of the electronic governance of society, both administrations and citizens are demanding greater participation of all the actors involved in the decision-making process relative to the governance of society. In addition, the design, planning, and operations management rely on mathematical models, the complexity of which depends on the detail of models and complexity/characteristics of the problem they represent. Unfortunately, decision-making by humans is often suboptimal in ways that can be reliably predicted. Furthermore, the process industry seeks not only to minimize cost, but also to minimize adverse environmental and social impacts. On the other hand, in order to give an appropriate response to the new challenges raised, the decision-making process can be done by applying different methods and tools, as well as using different objectives. In real-life problems, the formulation of decision-making problems and application of optimization techniques to support decisions is particularly complex, and a wide range of optimization techniques and methodologies are used to minimize risks or improve quality in making concomitant decisions. In addition, a sensitivity analysis should be done to validate/analyze the influence of uncertainty regarding decision-making.

Prof. Víctor Yepes
Prof. José Moreno-Jiménez
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI’s English editing service prior to publication or during author revisions.

Keywords

  • Multicriteria decision making
  • Optimization techniques
  • Multiobjective optimization

Papel de la dimensión social en la optimización del mantenimiento orientado a la sostenibilidad de los puentes en entornos costeros

http://www.revistacyt.com.mx/index.php/tecnologia/324-at-reparacion-de-pilotes-submarinos-proteccion-de-estructuras-en-contacto-con-el-medio-marino

En los objetivos de desarrollo sostenible recientemente establecidos se reconoce la importancia de las infraestructuras para lograr un futuro sostenible. A lo largo de su ciclo de vida, las infraestructuras generan una serie de impactos cuya reducción ha sido uno de los principales focos de atención de los investigadores en los últimos años. La optimización de los intervalos de mantenimiento de las estructuras, como los puentes, ha despertado la atención del sector de la ingeniería civil, pues la mayoría de los impactos de las infraestructuras se producen durante la fase de servicio. Así pues, actualmente los puentes se proyectan para atender a los efectos económicos y ambientales derivados de las actividades de mantenimiento. Sin embargo, en esos análisis se suele descuidar el pilar social de la sostenibilidad. Dado que todavía no existe una metodología universalmente aceptada para su evaluación, la dimensión social no se incluye de forma efectiva en las evaluaciones del ciclo de vida de las infraestructuras. En la presente comunicación se evalúan los efectos del ciclo de vida de diseños alternativos de los tableros de hormigón de los puentes en un ambiente costero que requiere mantenimiento. Los intervalos de mantenimiento derivados de la fiabilidad se optimizan primero minimizando los impactos económicos y ambientales. En una segunda etapa del análisis, se incluye la dimensión social en el proceso de optimización y se comparan los resultados. Los resultados de optimización de estas evaluaciones combinadas se obtienen aplicando la técnica de toma de decisiones multicriterio AHP-TOPSIS. En este trabajo se muestra cómo la inclusión de la dimensión social puede conducir a estrategias de mantenimiento óptimo diferentes y más orientadas a la sostenibilidad. El enfoque tridimensional que se aplica aquí ha dado lugar a que se prefieran otras alternativas a las derivadas de la evaluación convencional que considera las perspectivas económica y ambiental. Esa conclusión apoya la idea de que se requieren evaluaciones holísticas del ciclo de vida para el diseño sostenible de las infraestructuras y de que es necesario hacer más esfuerzos urgentes para integrar la dimensión social en las evaluaciones de la sostenibilidad de las estructuras.

Referencia:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Role of the social dimension on the sustainability-oriented maintenance optimization of bridges in coastal environments. 10th International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI 2020, pp. 205-215, 3-5 June 2020, Prague, Czech Republic.

Descargar (PDF, 469KB)

Optimización heurística de pórticos de paso de carretera de hormigón armado

A continuación recojo uno de los primeros trabajos que hizo nuestro grupo de investigación en el año 2005 sobre optimización heurística de estructuras de hormigón. Se trata de la optimización mediante varias heurísticas (máximo gradiente, aceptación por umbrales y recocido simulado) de un pórtico de paso de carretera de hormigón armado. En este caso se consideraron 28 variables para definir una solución de pórtico. Este artículo se publicó en la revista Hormigón y Acero. Espero que os sea de interés.

 

Referencia:

CARRERA, J.M.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2005). Optimización heurística de pórticos de paso de carretera de hormigón armado. Hormigón y Acero, 236: 85-95.

Descargar (PDF, 318KB)

Los algoritmos genéticos

Charles Darwin en una fotografía tomada por J.M. Cameron en 1869.

Resulta fascinante comprobar cómo aplicando los mecanismos básicos de la evolución ya descrita por Darwin en su obra fundamental, El origen de las especies por medio de la selección natural, o la preservación de las razas preferidas en la lucha por la vida, publicada en 1859, se pueden generar algoritmos capaces de optimizar problemas complejos. Este tipo de metaheurísticas inspiradas en la Naturaleza ya se comentaron en artículos anteriores cuando hablamos de la optimización por colonias de hormigas o de la cristalización simulada. Aunque es un algoritmo ampliamente conocido por la comunidad científica, voy a intentar dar un par de pinceladas con el único afán de divulgar esta técnica. La verdad es que las implicaciones filosóficas que subyacen tras la teoría de Darwin son de una profundidad difícil de entender cuando se lleva a sus últimos extremos. Pero el caso es que estos algoritmos funcionan perfectamente en la optimización de estructuras de hormigón, problemas de transporte y otros problemas difíciles de optimización combinatoria.

Para aquellos interesados, os paso en las referencias un par de artículos donde hemos aplicado los algoritmos genéticos para optimizar rutas de transporte aéreo o pilas de puente huecas de hormigón armado.

Sin embargo, para aquellos otros que queráis un buen libro para pensar, os recomiendo “La peligrosa idea de Darwin”, de Daniel C. Dennett. A más de uno le hará remover los cimientos más profundos de sus creencias. Os paso la referencia al final.

Básicamente, los algoritmos genéticos “Genetic Algorithms, GA”, simulan el proceso de evolución de las especies que se reproducen sexualmente. De manera muy general, se puede decir que en la evolución de los seres vivos, el problema al que cada individuo se enfrenta diariamente es el de la supervivencia. Para ello cuenta, entre otras, con las habilidades innatas provistas en su material genético. A nivel de los genes, el problema consiste en la búsqueda de aquellas adaptaciones beneficiosas en un medio hostil y cambiante. Debido en parte a la selección natural, cada especie gana cierta “información” que es incorporada a sus cromosomas.

Durante la reproducción sexual, un nuevo individuo, diferente de sus padres, se genera a través de la acción de dos mecanismos fundamentales: El primero es el cruzamiento, que combina parte del patrimonio genético de cada progenitor para elaborar el del nuevo individuo; el segundo es la mutación, que supone una modificación espontánea de esta información genética. La descendencia será diferente de los progenitores, pero mantendrá parte de sus características. Si los hijos heredan buenos atributos de sus padres, su probabilidad de supervivencia será mayor que aquellos otros que no las tengan. De este modo, los mejores tendrán altas probabilidades de reproducirse y diseminar su información genética a sus descendientes.

Holland (1975) estableció por primera vez una metaheurística basada en la analogía genética. Un individuo se puede asociar a una solución factible del problema, de modo que se pueda codificar en forma de un vector binario “string”. Entonces un operador de cruzamiento intercambia cadenas de los padres para producir un hijo. La mutación se configura como un operador secundario que cambia, con una probabilidad pequeña, algunos elementos del vector hijo. La aptitud del nuevo vector creado se evalúa de acuerdo con una función objetivo.

Los pasos a seguir con esta metaheurística serían los siguientes:

  1. Generar una población de vectores (individuos).
  2. Mientras no se encuentre un criterio de parada:
    1. Seleccionar un conjunto de vectores padre, que serán reemplazados de la población.
    2. Emparejar aleatoriamente a los progenitores y cruzarlos para obtener unos vectores hijo.
    3. Aplicar una mutación a cada descendiente.
    4. Evaluar a los hijos.
    5. Introducir a los hijos en la población.
    6. Eliminar a aquellos individuos menos eficaces.

Normalmente este proceso finaliza después de un numero determinado de generaciones o cuando la población ya no puede mejorar. La selección de los padres se elige probabilísticamente hacia los individuos más aptos. Al igual que ocurre con en la Naturaleza, los sujetos con mayor aptitud diseminan sus características en toda la población.

Esta descripción de los GA se adapta a cada situación concreta, siendo habitual la codificación de números enteros en vez de binarios. Del mismo modo se han sofisticado los distintos operadores de cruzamiento y mutación.

Os dejo a continuación un vídeo explicativo que he elaborado para mis clases de “Modelos predictivos y de optimización heurística de estructuras de hormigón“, del Máster Universitario en Ingeniería del Hormigón, de la Universitat Politècnica de València.

Referencias:

DENNETT, D.C. (1999). La peligrosa idea de Darwin. Galaxia Gutenberg. Círculo de Lectores, Barcelona.

HOLLAND, J.H. (1975). Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor.

MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)

MEDINA, J.R.; YEPES, V. (2003). Optimization of touristic distribution networks using genetic algorithms. Statistics and Operations Research Transactions, 27(1): 95-112.  ISSN: 1696-2281.  (pdf)

PONZ-TIENDA, J.L.; YEPES, V.; PELLICER, E.; MORENO-FLORES, J. (2013). The resource leveling problem with multiple resources using an adaptive genetic algorithm. Automation in Construction, 29(1):161-172. DOI:http://dx.doi.org/10.1016/j.autcon.2012.10.003. (link)

YEPES, V. (2003). Apuntes de optimización heurística en ingeniería. Editorial de la Universidad Politécnica de Valencia. Ref. 2003.249. Valencia, 266 pp. Depósito Legal: V-2720-2003.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cuál es el mejor algoritmo para optimizar un problema? “No free lunch”

Figura 1. Desgraciadamente, no existe la comida gratis. https://medium.com/@LeonFedden/the-no-free-lunch-theorem-62ae2c3ed10c

Después de años impartiendo docencia en asignaturas relacionadas con la optimización heurística de estructuras de hormigón, y tras muchos artículos científicos publicados y más donde he sido revisor de artículos de otros grupos de investigación, siempre se plantea la misma pregunta: De todos los algoritmos que utilizamos para optimizar, ¿cuál es el mejor? ¿Por qué dice en su artículo que su algoritmo es el mejor para este problema? ¿Por qué no nos ponemos de acuerdo?

Para resolver esta cuestión, dos investigadores norteamericanos, David Wolpert y William Macready, publicaron un artículo en 1997 donde establecieron un teorema denominado “No free lunch“, que traducido sería algo así como “no hay comida gratis”. Dicho teorema establece que, por cada par de algoritmos de búsqueda, hay tantos problemas en el que el primer algoritmo es mejor que el segundo como problemas en el que el segundo algoritmo es mejor que el primero.

Este teorema revolucionó la forma de entender el rendimiento de los algoritmos. Incluso una búsqueda aleatoria en el espacio de soluciones podría dar mejores resultados que cualquier algoritmo de búsqueda. La conclusión es que no existe un algoritmo que sea universalmente mejor que los demás, pues siempre habrá casos donde funcione peor que otros, lo cual significa que todos ellos se comportarán igual de bien (o de mal) en promedio.

De hecho, se podría decir que un experto en algoritmos genéticos podría diseñar un algoritmo genético más eficiente que, por ejemplo, un recocido simulado, y viceversa. Aquí el arte y la experiencia en un problema y en una familia de algoritmos determinados, suele ser decisivo. En la Figura 2 se puede ver cómo un algoritmo muy especializado, que conoce bien el problema, puede mejorar su rendimiento, pero pierde la generalidad de poder usarse en cualquier tipo de problema de optimización que no sea para el que se diseñó.

Figura 2. El uso del conocimiento del problema puede mejorar el rendimiento, a costa de la generalidad. https://medium.com/@LeonFedden/the-no-free-lunch-theorem-62ae2c3ed10c

¿Qué consecuencias obtenemos de este teorema? Lo primero, una gran decepción, pues hay que abandonar la idea del algoritmo inteligente capaz de optimizar cualquier problema. Lo segundo, que es necesario incorporar en el algoritmo cierto conocimiento específico del problema, lo cual equivale a una “carrera armamentística” para cada problema de optimización. Se escriben y escribirán miles de artículos científicos donde un investigador demuestre que su algoritmo es mejor que otro para un determinado problema.

Una forma de resolver este asunto de incorporar conocimiento específico del problema es el uso de la inteligencia artificial en ayuda de las metaheurísticas. Nuestro grupo de investigación está abriendo puertas en este sentido, incorporando “deep learning” en el diseño de los algoritmos (Yepes et al., 2020; García et al., 2020a; 2020b), o bien redes neuronales (García-Segura et al., 2017). Incluso, en este momento, me encuentro como editor de un número especial de la revista Mathematics (primer decil del JCR) denominado: “Deep Learning and Hybrid-Metaheuristics: Novel Engineering Applications”, al cual os invito a enviar vuestros trabajos de investigación.

Si nos centramos en un tipo de problema determinado, por ejemplo, la optimización de estructuras (puentes, pórticos de edificación, muros, etc.), el teorema nos indica que necesitamos gente formada y creativa para optimizar el problema concreto al que nos enfrentamos. Es por ello que no existen programas comerciales eficientes capaces de adaptarse a cualquier estructura para optimizarla. Tampoco son eficientes las herramientas generales “tools” que ofrecen algunos programas como Matlab para su uso inmediato e indiscriminado.

Por tanto, no se podrá elegir entre dos algoritmos solo basándose en lo bien que trabajaron anteriormente en un problema determinado, pues en el siguiente problema pueden optimizar de forma deficiente. Por tanto, se exige conocimiento intrínseco de cada problema para optimizarlo. Es por ello que, por ejemplo, un experto matemático o informático no puede, sin más, dedicarse a optimizar puentes atirantados.

Referencias:

GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020a). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics,  8(4), 555.

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020b). The buttressed  walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics,  8(6):862.

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150.

WOLPERT, D.H.; MACREADY, W.G. (1997). No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary Computation, 1(1):67-82.

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767.

A continuación os dejo el artículo original “No Free Lunch Theorems for Optimization”. Se ha convertido en un clásico en optimización heurística.

Descargar (PDF, 698KB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La resiliencia de las infraestructuras

Figura 1. https://www.un.org/sustainabledevelopment/es/2015/09/infraestructura-innovacion-e-industrias-inclusivas-claves-para-el-desarrollo/

La resiliencia es un concepto que viene del mundo de la psicología y representa la capacidad para adaptarse de forma positiva frente a situaciones adversas. Proviene del latín resilio, “volver atrás, volver de un salto, resaltar, rebotar”. En el campo de la mecánica, la resiliencia sería la capacidad de un material para recuperar su forma inicial después de haber sido deformado por una fuerza. En la ecología, un sistema es resiliente si puede tolerar una perturbación sin colapsar a un estado completamente distinto, controlado por otro conjunto de procesos. En un entorno tecnológico, este término se relaciona con la capacidad de un sistema de soportar y recuperarse ante desastres y perturbaciones. En este artículo vamos a indagar en el concepto de resiliencia de las infraestructuras.

Así, dentro de los objetivos de desarrollo sostenible de Naciones Unidas (Figura 1), encontramos el Objetivo 9: Construir infraestructuras resilientes, provomer la industrialización sostenible y fomentar la innovación. En efecto, las infraestructuras deben hacer frente al crecimiento de la población, pero también a los crecientes peligros físicos (cinéticos) como el terrorismo, o los asociados al clima extremo y los desastres naturales. La frecuencia y gravedad de estos eventos extremos se prevén crecientes, y, por tanto, es más que previsible un aumento en los costes e impacto humano. Además, debido a la cada vez más informatización y digitalización de las infraestructuras, el riesgo de ataques informáticos a las infraestructuras es más que evidente.

La resiliencia puede asociarse con cuatro atributos: robustez, que es la capacidad para resistir un evento extremo sin que el fracaso en la funcionalidad sea completo; rapidez, que sería la capacidad de recuperarse de forma eficiente y efectiva; la redundancia, que sería la reserva de componentes o de sistemas estructurales sustitutivos; y el ingenio, que sería la eficiencia en la identificación de problemas, priorizando soluciones y movilizando recursos para su solución (Bruneau et al., 2003).

Matemáticamente, se puede evaluar la resiliencia integrando la curva de funcionalidad a lo largo del tiempo (ver Figura 2).

donde Q(t) es la funcionalidad; t0 es el momento en el que ocurre el evento extremo y Tr es el horizonte hasta donde se estudia la funcionalidad.

Figura 2. Valoración de la resiliencia tras un evento extremo (Anwar et al., 2019)

En la Figura 2 se pueden observar los tres estados correspondientes con la funcionalidad. En la situación de fiabilidad, la infraestructura se encuentra con la funcionalidad de referencia, previo al evento extremo. La situación de recuperación comienza tras la ocurrencia del evento extremo, con una pérdida de funcionalidad dependiente de la robustez de la infraestructura, y con una recuperación que depende de los esfuerzos realizados en la reparación, que puede ser rápida o lenta en función del ingenio o la creatividad en las soluciones propuestas, así como de la redundancia de los sistemas previstos. Por último, la situación recuperada es la que ocurre cuando la funcionalidad vuelve a ser la de referencia.

Se comprueba en la Figura 2 cómo una infraestructura pasa de una funcionalidad de referencia a una residual tras el evento extremo. Tras el evento, puede darse una demora en la recuperación de la funcionalidad debido a las tareas de inspección, rediseño, financiación, contratación, permisos, etc.). La recuperación completa de la funcionalidad depende de la forma en la que se han abordado las tareas de reparación. Es fácil verificar que la resiliencia se puede calcular integrando la curva de recuperación de la funcionalidad desde la ocurrencia del evento extremo hasta la completa recuperación, dividiendo dicho valor por el tiempo empleado en dicha recuperación.

Este modelo simplificado permite establecer las pautas para mejorar la resiliencia de una infraestructura:

a) Incrementando la robustez de la infraestructura, es decir, maximizar su funcionalidad residual tras un evento extremo.

b) Acelerando las actividades de recuperación de la funcionalidad de la infraestructura.

En ambos casos, es necesario concebir la infraestructura desde el principio con diseños robustos, con sistemas redundantes y con una previsión de las tareas de reparación necesarias.

Con todo, la capacidad de recuperación comprende cuatro dimensiones interrelacionadas: técnica, organizativa, social y económica (Bruneau et al., 2003). La dimensión técnica de la resiliencia se refiere a la capacidad de los sistemas físicos (incluidos los componentes, sus interconexiones e interacciones, y los sistemas enteros) para funcionar a niveles aceptables o deseables cuando están sujetos a los eventos extremos. La dimensión organizativa de la resiliencia se refiere a la capacidad de las organizaciones que gestionan infraestructuras críticas y tienen la responsabilidad de tomar decisiones y adoptar medidas que contribuyan a lograr la resiliencia descrita anteriormente, es decir, que ayuden a lograr una mayor solidez, redundancia, ingenio y rapidez. La dimensión social de la resiliencia consiste en medidas específicamente diseñadas para disminuir los efectos de los eventos extremos por parte de la población debido a la pérdida de infraestructuras críticas. Análogamente, la dimensión económica de la resiliencia se refiere a la capacidad de reducir tanto las pérdidas directas e indirectas de los eventos extremos.

El problema de estas cuatro dimensiones se pueden sumar de forma homogénea, con interrelaciones entre ellas. El reto consiste en cuantificar y medir la resiliencia en todas sus dimensiones, así como sus interrelaciones. Se trata de un problema de investigación de gran trascendencia y complejidad, que afecta al ciclo de vida de las infraestructuras desde el inicio de la planificación (Salas y Yepes, 2020).

Referencias:

ANWAR, G.A.; DONG, Y.; ZHAI, C. (2020). Performance-based probabilistic framework for seismic risk, resilience, and sustainability assessment of reinforced concrete structures. Advances in Structural Engineering, 23(7):1454-1457.

BRUNEAU, M.; CHANG, S.E.; EGUCHI, R.T. et al. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra 19(4): 733–752.

SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. International Journal of Environmental Research and Public Health, 17(3): 962. DOI:10.3390/ijerph17030962

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.