Open Access Book: Trends in Sustainable Buildings and Infrastructure

Tengo el placer de compartir con todos vosotros, totalmente en abierto, un libro que he editado junto con Ignacio J. Navarro. La labor de editar libros científicos es una oportunidad de poder seleccionar aquellos autores y temas que destacan en un ámbito determinado. En este caso, sobre las tendencias en las infraestructuras y la construcción sostenible.

Además, resulta gratificante ver que el libro se encuentra editado en abierto, por lo que cualquiera de vosotros os lo podéis descargar sin ningún tipo de problema en esta entrada del blog. También os lo podéis descargar, o incluso pedirlo en papel, en la página web de la editorial MPDI: https://www.mdpi.com/books/pdfview/book/3854

Referencia:

YEPES, V.; NAVARRO, I.J. (Eds.) (2021). Trends in Sustainable Buildings and Infrastructure. MPDI, 272 pp., Basel, Switzerland. ISBN: 978-3-0365-0914-3

 

Preface to ”Trends in Sustainable Buildings and Infrastructure”

The Sustainable Development Goals agreed by the United Nations in 2015 advocate for a profound paradigm shift in the way that infrastructures are designed. Actual practices usually fall short in assessing issues beyond the economic ones. Aspects such as the environmental impacts resulting from the life cycle of our structures, as well as the positive and negative effects that their construction and maintenance can have on society, are new criteria that need to be effectively included in our designs by 2030. To face such a challenging task, actual practices need to be reinvented, approaching the design of infrastructures from a holistic perspective that simultaneously integrates each of the three dimensions of sustainability, namely economy, environment and society. This book comprises 11 chapters that explore the actual sustainability-related trends in the construction sector. The chapters collect the papers included in the Special Issue “Trends in Sustainable Buildings and Infrastructure” of the International Journal of Environmental Research and Public Health. We would like to thank both the MDPI publishing and editorial staff for their excellent work, as well as the authors who have collaborated in its preparation. The papers included in this book cover a broad range of topics directly related to the sustainable design of infrastructures, addressing maintenance design criteria towards sustainability, life-cycle-oriented building and infrastructure design, design optimization based on sustainable criteria, inclusion of the social dimension in the design of infrastructures and the application of decision-making processes that effectively integrate the three dimensions of sustainability, resilience and the use of sustainable materials.

About the Editors

Víctor Yepes is a full professor of Construction Engineering; he holds a Ph.D. in civil engineering. He serves at the Department of Construction Engineering, Universitat Politècnica de València, Valencia, Spain. He has been the Academic Director of the M.S. studies in concrete materials and structures since 2007 and a Member of the Concrete Science and Technology Institute (ICITECH). He is currently involved in several projects related to the optimization and life-cycle assessment of concrete structures, as well as optimization models for infrastructure asset management. He currently teaches courses in construction methods, innovation, and quality management. He has authored more than 250 journals and conference papers, including more than 100 published in journals quoted in JCR. He acted as an expert for project proposal evaluation for the Spanish Ministry of Technology and Science, and he is a main researcher in many projects. He currently serves as an Editor-in-Chief for the International Journal of Construction Engineering and Management and a member of the editorial board of 12 other international journals (Structure and Infrastructure Engineering, Structural Engineering and Mechanics, Mathematics, Sustainability, Revista de la Construcci´on, Advances in Civil Engineering, Advances in Concrete Construction, among others).

Ignacio Navarro Martíınez holds a Ph.D. degree in civil engineering. He works at the Department of Construction Engineering, Universitat Politècnica de València, Valencia, Spain. He has published 11 articles and 9 conference papers in JCR journal. He combines his research activity with his professional career as a structural designer. During his professional experience, he has been dedicated to the calculation of steel and concrete structures related to renewable energies, especially in the field of wind energy, both onshore and offshore, as well as to the calculation of road and port structures. He has specialized in the numerical calculation of steel and concrete structures in onshore and offshore environments.

Descargar (PDF, 55.18MB)

Análisis de ciclo de vida de aislamientos reciclados en edificación para diferentes condiciones climáticas en España

Acaban de publicarnos un artículo en la revista Resources, Conservation and Recycling, revista de alto impacto indexada en el JCR. En este caso se ha realizado un análisis del ciclo de vida de los aislamientos utilizados en edificación reciclados y no reciclados, atendiendo a las diferentes condiciones climáticas de España. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El sector de la construcción representa más del 40% del consumo de energía en la Unión Europea, así como una de las causas significativas de impacto ambiental. Por ello, este sector necesita políticas que promuevan la eficiencia energética de los edificios. Uno de los componentes estructurales más importantes para alcanzar esta eficiencia energética son las fachadas. En este trabajo se elige la fachada ventilada por su mejor comportamiento de aislamiento térmico. El impacto ambiental de la fachada ventilada depende del material de aislamiento térmico. El objetivo de este trabajo es evaluar el impacto ambiental de diferentes fachadas ventiladas en función de su comportamiento de aislamiento térmico. Para ello, se aplica la evaluación del ciclo de vida en fachadas ventiladas con diferentes materiales en distintas ubicaciones. Los materiales estudiados son la lana de roca, el corcho natural y el corcho reciclado, y las ubicaciones consideradas son las diferentes zonas climáticas de España. Para llegar a una evaluación ambiental completa se considera todo el ciclo de vida de las fachadas ventiladas, desde la cuna hasta la tumba. Para ello se utiliza el software Open LCA con la base de datos Ecoinvent con el método ReCiPe. Los resultados muestran que el corcho reciclado es el aislamiento térmico con menor impacto ambiental, independientemente de la ubicación.

Abstract:

The construction sector represents more than 40% of energy consumption in the European Union, as well as one of the biggest causes of environmental impact. Therefore, this sector needs a great deal of intervention through policies that promote the energetic efficiency of the buildings. One of the most important structural components to reach this energetic efficiency is the facades. In this work, the facade ventilated is chosen due to its better thermal insulation behaviour. The environmental impact of the facade ventilated depends on the thermal insulation material. The goal of this paper is to evaluate the environmental impact of different ventilated facades according to their thermal insulation behavior. For this purpose, the life-cycle assessment is applied in ventilated facades with different materials in different locations. The materials studied are the rock wool, the natural cork and the recycled cork, and the locations considered are the different climatic areas of Spain. To reach a complete environmental assessment all the ventilated facades life-cycle is considered, from cradle to grave. To do this we use the Open LCA software with the Ecoinvent database with the ReCiPe method. The results show that the recycled cork is the thermal insulation with the lowest environmental impact regardless the location.

Keywords:

Life cycle assessment; ReCiPe; Facade ventilated; Thermal insulation; Sustainability

Reference:

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

Descargar (PDF, 1.25MB)

Hacia un mapa de conocimiento algorítmico de optimización de la industria AEC-AI (Arquitectura, Ingeniería, Construcción e Inteligencia Artificial)

Acaban de publicarnos un artículo en la revista IEEE Access, revista de alto impacto indexada en el JCR. En este caso se ha realizado un análisis conceptual macroscópico de la industria AEC-AI (Arquitectura, Ingeniería, Construcción e Inteligencia Artificial). El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La industria de la arquitectura, la ingeniería y la construcción (AEC) constituye uno de los sectores productivos más relevantes, por lo que también produce un alto impacto en los equilibrios económicos, la estabilidad de la sociedad y los desafíos globales en el cambio climático. En cuanto a su adopción de tecnologías, aplicaciones y procesos también se reconoce por su status-quo, su lento ritmo de innovación, y los enfoques conservadores. Sin embargo, una nueva era tecnológica -la Industria 4.0 alimentada por la IA- está impulsando los sectores productivos en un panorama sociopolítico y de competencia tecnológica global altamente presionado. En este trabajo, desarrollamos un enfoque adaptativo para la minería de contenido textual en el corpus de investigación de la literatura relacionada con las industrias de la AEC y la IA (AEC-AI), en particular en su relación con los procesos y aplicaciones tecnológicas. Presentamos un enfoque de primera etapa para una evaluación adaptativa de los algoritmos de IA, para formar una plataforma integradora de IA en la industria AEC, la industria AEC-AI 4.0. En esta etapa, se despliega un método adaptativo macroscópico para caracterizar la “Optimización”, un término clave en la industria AEC-AI, utilizando una metodología mixta que incorpora el aprendizaje automático y el proceso de evaluación clásico. Nuestros resultados muestran que el uso eficaz de los metadatos, las consultas de búsqueda restringidas y el conocimiento del dominio permiten obtener una evaluación macroscópica del concepto objetivo. Esto permite la extracción de un mapeo de alto nivel y la caracterización de la estructura conceptual del corpus bibliográfico. Los resultados son comparables, a este nivel, a las metodologías clásicas de revisión de la literatura. Además, nuestro método está diseñado para una evaluación adaptativa que permita incorporar otras etapas.

Abstract:

The Architecture, Engineering, and Construction (AEC) Industry is one of the most important productive sectors, hence also produce a high impact on the economic balances, societal stability, and global challenges in climate change. Regarding its adoption of technologies, applications and processes is also recognized by its status-quo, its slow innovation pace, and the conservative approaches. However, a new technological era – Industry 4.0 fueled by AI- is driving productive sectors in a highly pressurized global technological competition and sociopolitical landscape. In this paper, we develop an adaptive approach to mining text content in the literature research corpus related to the AEC and AI (AEC-AI) industries, in particular on its relation to technological processes and applications. We present a first stage approach to an adaptive assessment of AI algorithms, to form an integrative AI platform in the AEC industry, the AEC-AI industry 4.0. At this stage, a macroscopic adaptive method is deployed to characterize “Optimization,” a key term in AEC-AI industry, using a mixed methodology incorporating machine learning and classical evaluation process. Our results show that effective use of metadata, constrained search queries, and domain knowledge allows getting a macroscopic assessment of the target concept. This allows the extraction of a high-level mapping and conceptual structure characterization of the literature corpus. The results are comparable, at this level, to classical methodologies for the literature review. In addition, our method is designed for an adaptive assessment to incorporate further stages.

Keywords:

Architecture, engineering and construction, AEC, artificial intelligence, literature corpus, machine learning, optimization algorithms, knowledge mapping and structure

Reference:

MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879. DOI:10.1109/ACCESS.2021.3102215

Descargar (PDF, 6.14MB)

Open Access Book: Sustainable Construction II

Tengo el placer de compartir con todos vosotros, totalmente en abierto, un libro que he editado junto con el profesor, José V. Martí. La labor de editar libros científicos es una oportunidad de poder seleccionar aquellos autores y temas que destacan en un ámbito determinado. En este caso, la construcción sostenible.

Además, resulta gratificante ver que el libro se encuentra editado en abierto, por lo que cualquiera de vosotros os lo podéis descargar sin ningún tipo de problema en esta entrada del blog. También os lo podéis descargar, o incluso pedirlo en papel, en la página web de la editorial MPDI: https://www.mdpi.com/books/pdfview/book/3934

Referencia:

YEPES, V.; MARTÍ, J.V. (Eds.) (2021). Sustainable Construction II. MPDI, 112 pp., Basel, Switzerland. ISBN: 978-3-0365-0484-1

Preface to ”Sustainable Construction”

Construction is one of the main sectors that generates greenhouse gases. This industry consumes large amounts of raw materials, such as stone, timber, water, etc. Additionally, infrastructure should provide service over many years without safety problems. Therefore, their correct design, construction, maintenance, and dismantling are essential to reducing economic, environmental, and societal consequences. That is why promoting sustainable construction has recently become extremely important. To help address and resolve these types of questions, this book is comprised of five chapters that explore new ways of reducing the environmental impacts caused by the construction sector, as well to promote social progress and economic growth. The chapters collect papers included in the “Sustainable Construction II” Special Issue of the Sustainability journal. We would like to thank both the MDPI publishing and editorial staff for their excellent work, as well as the 18 authors who collaborated in its preparation. The papers cover a wide spectrum of issues related to the use of sustainable materials in construction, the optimization of designs based on sustainable indicators, the life-cycle assessment, the decision-making processes that integrate economic, social, and environmental aspects, and the promotion of durable materials that reduce future maintenance.

About the Editors

Víctor Yepes is a full professor of Construction Engineering; he holds a Ph.D. in civil engineering. He serves at the Department of Construction Engineering, Universitat Politècnica de València, Valencia, Spain. He has been the Academic Director of the M.S. studies in concrete materials and structures since 2007 and a Member of the Concrete Science and Technology Institute (ICITECH). He is currently involved in several projects related to the optimization and life-cycle assessment of concrete structures, as well as optimization models for infrastructure asset management. He currently teaches courses in construction methods, innovation, and quality management. He has authored more than 250 journals and conference papers, including more than 100 published in journals quoted in JCR. He acted as an expert for project proposal evaluation for the Spanish Ministry of Technology and Science, and he is a main researcher in many projects. He currently serves as an Editor-in-Chief for the International Journal of Construction Engineering and Management and a member of the editorial board of 12 other international journals (Structure and Infrastructure Engineering, Structural Engineering and Mechanics, Mathematics, Sustainability, Revista de la Construcción, Advances in Civil Engineering, Advances in Concrete Construction, among others).

José V. Martí is an Associate Professor in the Department of Construction Engineering and Civil Engineering Projects at the Universitat Politècnica de València, Spain. Initially, he worked for private companies in the construction sector, business consulting, and financial entities, and later as a freelance professional. He has taught since 1995 and, in many cases, served as the head of subjects in the Master of Civil Engineering, Geodetic Engineering and Topography, and in the degrees in Civil Engineering and PublicWorks. He has educated students on all matters related to the subject of construction procedures, quality, organization of works, and civil engineering machinery. He has participated in nine didactic books, 23 notebooks, 31 articles in teaching congresses, and a teaching innovation project. For his own research activity, he has a book as an author, a book chapter, and a participant in 29 articles in JCR journals. His lines of research are mainly focused on the optimization of structures through the application of metaheuristic techniques, and on the life-cycles and sustainability of structures.

Descargar (PDF, 13MB)

Open Access Book: Sustainable Construction

Tengo el placer de compartir con todos vosotros, totalmente en abierto, un libro que he editado junto con la profesora, Tatiana García Segura. La labor de editar libros científicos es una oportunidad de poder seleccionar aquellos autores y temas que destacan en un ámbito determinado. En este caso, la construcción sostenible.

Además, resulta gratificante ver que el libro se encuentra editado en abierto, por lo que cualquiera de vosotros os lo podéis descargar sin ningún tipo de problema en esta entrada del blog. También os lo podéis descargar, o incluso pedirlo en papel, en la página web de la editorial MPDI: https://www.mdpi.com/books/pdfview/book/3740

 

Referencia:

YEPES, V.; GARCÍA-SEGURA, T. (Eds.) (2021). Sustainable Construction. MPDI, 228 pp., Basel, Switzerland. ISBN: 978-3-0365-0482-7

 

Preface to ”Sustainable Construction”

Construction is one of the main sectors that generates greenhouse gases. This industry consumes large amounts of raw materials, such as stone, timber, water, etc. Additionally, infrastructure should provide service over many years without safety problems. Therefore, their correct design, construction, maintenance, and dismantling are essential to reducing economic, environmental, and societal consequences. That is why promoting sustainable construction has recently become extremely important. To help address and resolve these types of questions, this book is comprised of twelve chapters that explore new ways of reducing the environmental impacts caused by the construction sector, as well to promote social progress and economic growth. The chapters collect papers included in the “Sustainable Construction” Special Issue of the Sustainability journal. We would like to thank both the MDPI publishing and editorial staff for their excellent work, as well as the 43 authors who collaborated in its preparation. The papers cover a wide spectrum of issues related to the use of sustainable materials in construction, the optimization of designs based on sustainable indicators, the life-cycle assessment, the decision-making processes that integrate economic, social, and environmental aspects, and the promotion of durable materials that reduce future maintenance.

About the Editors

Víctor Yepes is a full professor of Construction Engineering; he holds a Ph.D. in civil engineering. He serves at the Department of Construction Engineering, Universitat Politècnica de València, Valencia, Spain. He has been the Academic Director of the M.S. studies in concrete materials and structures since 2007 and a Member of the Concrete Science and Technology Institute (ICITECH). He is currently involved in several projects related to the optimization and life-cycle assessment of concrete structures, as well as optimization models for infrastructure asset management. He currently teaches courses in construction methods, innovation, and quality management. He has authored more than 250 journals and conference papers, including more than 100 published in journals quoted in JCR. He acted as an expert for project proposal evaluation for the Spanish Ministry of Technology and Science, and he is a main researcher in many projects. He currently serves as an Editor-in-Chief for the International Journal of Construction Engineering and Management and a member of the editorial board of 12 other international journals (Structure and Infrastructure Engineering, Structural Engineering and Mechanics, Mathematics, Sustainability, Revista de la Construcci´on, Advances in Civil Engineering, Advances in Concrete Construction, among others).

Tatiana García-Segura is an Assistant Professor at the Department of Construction Engineering, Universitat Politècnica de València, Spain. She obtained her International Doctorate with outstanding ”cum laude” in 2016. She received the IALCCE (International Association for Life-Cycle Civil Engineering) international award for his scientific contributions and two awards for her Master’s Final Paper on sustainable construction (AEIPRO award and first prize of the Cemex-Sustainability Chair). She has published 24 articles in JCR journals, 30 articles in scientific congresses, has participated in several research projects (one as a PI), and one innovation project.

Descargar (PDF, 28.91MB)

Gestión de inventarios en obra

Figura 1. Necesidad de gestión de inventarios en una obra. https://www.interempresas.net/Robotica/Articulos/255497-Procesos-de-digitalizacion-en-las-obras-de-construccion.html

Los inventarios son provisiones de artículos en espera de su utilización posterior, cuya utilidad depende de la cantidad, momento y lugar de su necesidad. En el entorno de la maquinaria, los constituyen desde las propias máquinas a las piezas de recambio u otros elementos necesarios para su funcionamiento. En general, los inventarios, existencias o stocks, evitan la escasez cuando la demanda futura del artículo sea incierta, para aprovechar la economía de escala que supone la solicitud de grandes cantidades a costos menores y para mantener el flujo de trabajo en los procesos productivos. No obstante, los artículos ociosos de inventario inmovilizan fondos y precisan de recursos para su almacenaje y mantenimiento, siendo en algún caso perecederos. Ello obliga al compromiso entre las ventajas aportadas por los grandes inventarios y los costes que suponen mantenerlos. La gestión de inventarios será la técnica que ayuda a los gerentes a determinar cuándo deben reabastecerse las existencias actuales y en qué cantidad. La gestión de las máquinas y repuestos, dichas funciones se realizan en los parques de maquinaria.

Componentes del coste de un sistema de inventarios

Una política de inventarios busca el mínimo coste esperado para un período determinado, por tanto, se deben estimar los diversos componentes que lo integran:

  1. El coste del pedido o de organización, se asocia con el reabastecimiento de un inventario, siendo independiente del número de unidades pedidas. Incluye los tiempos de oficina y administrativos, cargos por fax, teléfonos, y otros como los gastos generales de la empresa.
  2. Cada unidad pedida incurre en un coste de compra, que es un coste directo por unidad. Esta cifra puede depender del número de unidades pedidas, debido a los descuentos por cantidad.
  3. El coste de conservación por período de tiempo para cada artículo del inventario incluye los gastos de almacenamiento (almacén, seguro, mermas de existencias, personal, etc.), y los costes de oportunidad del dinero comprometido en las existencias.
  4. El coste de déficit o desabastecimiento es el asociado con la insatisfacción de la demanda. Pueden ser explícitos si existen penalizaciones al proveedor cada vez que exista una ruptura o cuando la venta de un producto se pierde, e implícitos, asociados a la insatisfacción del cliente y pérdidas de futuras ventas y de credibilidad. Cuando los artículos no se surten, además de estos costes fijos, los costes de déficit pueden incluir costes explícitos e implícitos por cada unidad de tiempo que un artículo sigue sin ser suministrado.

Modelos de demanda y gestión de existencias

Se entiende por control de existencias, el abastecimiento de la cantidad y calidad necesarias de elementos dados, en el momento y en el lugar en que se necesita, con la menor inversión posible. La gestión de existencias trata de minimizar los costes, buscando el compromiso entre el ahorro producido por un stock determinado y los gastos producidos al almacenarlo.

La mera posesión de las máquinas supone gastos fijos elevados, así pues, no resulta económico tener los equipos parados. A ello se suman los costes del propio almacén. Todo ello indica que los inventarios deben ser los estrictamente necesarios. La empresa constructora se encuentra presionada por fuerzas de sentido opuesto a la hora de determinar el volumen de existencias conveniente. Se trata de un problema de equilibrio, para cuya resolución se han formulado distintos modelos.

Los modelos de gestión de inventarios permiten dimensionar el almacén minimizando los costes de posesión y renovación de existencias para evitar las rupturas del inventario. En los parques de maquinaria, el volumen de reserva deberá minimizar los costes que por depreciación, mantenimiento y almacenaje de las máquinas, se sumen a los que se incurren si se paralizan o retrasan las obras por falta de suministro. Se recomiendan unos stocks reducidos para disminuir los recursos financieros destinados a los inventarios y sus gastos correspondientes.

La gestión de un almacén con artículos diferentes debe considerar la relación entre la demanda de cualquiera de ellos. La demanda de un artículo es independiente si no afecta a la demanda de los demás, en caso contrario es dependiente. La demanda determinística de un artículo es la que se conoce con certeza, mientras la probabilística está sujeta a la incertidumbre y variabilidad.

Si en un sistema de coordenadas representamos la cantidad de existencias y el tiempo, se obtiene la clásica curva en forma de “dientes de sierra” que representa la evolución temporal de las existencias. En la Figura 2 se representa una evolución de una demanda determinista y constante, fenómeno poco frecuente en la realidad, con un volumen de pedido S durante el periodo de reaprovisionamiento T.

Figura 2. Evolución temporal del stock

Con este modelo determinista y constante, es necesario conocer el punto de pedido Sm, es decir, el número de unidades suficientes para hacer frente a la demanda durante el plazo de entrega l. Cuando el ritmo de salidas del parque y el de entradas son conocidos, no deben producirse rupturas. Sin embargo, como dichas variables son aleatorias, es necesario recurrir al stock de seguridad Se, también llamado stock de protección, de reserva o de acopio. Éste se define como el volumen de existencias que tenemos en almacén por encima de lo que se necesita habitualmente, para afrontar las fluctuaciones en exceso de la demanda, a los retrasos imprevistos en la recepción de los pedidos, o a ambos.

Cuando la demanda es variable existen diversos sistemas de gestión de inventarios o políticas de pedidos:

  • Sistema de la cantidad fija de pedido: El reaprovisionamiento se realiza cuando el inventario llega a un cierto nivel previamente especificado. El tiempo entre pedidos suele ser desigual. Esta política también se denomina revisión continua, pues requiere revisar el inventario frecuentemente para determinar cuándo se alcanza el punto de pedido. En la mayoría de los casos, se deja cierto margen o stock de seguridad.
  • Sistema de restablecimiento del nivel máximo de stock: Cada intervalo fijo de tiempo se reabastece el almacén al nivel máximo previsto de existencias. La cantidad pedida cada vez varía. Esta política también se denomina revisión periódica pues requiere inspeccionar el nivel de inventario cada cierto tiempo. Presenta el inconveniente de inducir mayores niveles de almacenamientos, que puede paliarse en buena parte incrementando la frecuencia de los pedidos y consecuentemente de los aprovisionamientos.
  • Sistema de los dos almacenes o restablecimiento condicional: La diferencia con el anterior consiste en que si al final del período establecido (final de mes, por ejemplo), no se ha bajado de determinado nivel de existencias, no se realiza el pedido. El proceso se repite en los períodos sucesivos, restableciendo o no el stock inicial en función del agotamiento hasta cierto nivel de las existencias iniciales o “primer almacén”.

Cuando la demanda es de un solo producto, podemos aplicar el modelo de Wilson o de la cantidad económica del pedido. Es un modelo matemático usado como base para la gestión de existencias en el que la demanda y el plazo de entrega son determinísticos, no permitiéndose los déficits y abasteciéndose el almacén por lotes. Así se obtiene una cantidad en inventario que hace mínima la suma de los gastos en pedidos (correo, teléfono, recepción de los materiales, inspección y trámites administrativos) y los gastos de mantenimiento de las existencias (almacenamiento, financiero y manejo de materiales). En este caso se demuestra que:

donde:

Q = Cantidad económica a pedir en el periodo considerado.

C = Consumo en el periodo considerado.

S = Coste de pedido por pedido.

I = Coste de mantenimiento por unidad de artículo y unidad de tiempo.

En el siguiente vídeo tenéis un ejercicio resuelto del modelo de Wilson:

Existen otras técnicas interesantes para realizar una gestión de existencias eficaz, y que consideran en mayor o menor medida la complejidad de una planta de producción: la planificación de necesidades de materiales (Materials requirement planning MRP), la planificación de recursos de fabricación y los sistemas de inventarios “justo a tiempo” (Just in time JIT).

  • Planificación de necesidades de materiales: Apropiada cuando las demandas de los artículos individuales dependen de la demanda del producto final en el que se usan como componentes. Proporciona no solo las cantidades de los lotes y los puntos de pedido, sino también un calendario de cuándo se necesita cada artículo y en qué cantidades, durante un proceso de producción, basándose en los costes de organización y de conservación involucrados.
  • Planificación de recursos de fabricación: Es un desarrollo del sistema anterior en el cual no solo se controlan los inventarios, sino que se coordinan todos los recursos y actividades de los distintos departamentos. Se coordina fabricación, ventas, compras, finanzas e ingeniería. En construcciones civiles, integrarían todos los departamentos de una obra concreta, en coordinación con sus proveedores.
  • Sistemas “justo a tiempo”: Ideados con el objeto de reducir a cero los stocks de una empresa, de forma que los suministradores aportan sus productos en el momento que se precisan. Ello supone minimizar los costes relativos a los stocks, para lo cual se precisa que los flujos de producción sean estables, que se simplifiquen los trabajos al máximo, que estén ubicados con corrección en los lugares de producción, y que exista una verdadera coordinación entre todos los integrantes de los procesos productivos.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 156 pp. ISBN: 978-84-9048-301-5. Ref. 402.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Selección de alternativas sostenibles para el proyecto de viviendas de bajo coste en Brasil

Nos acaban de publicar en la revista Sustainaibility (segundo cuartil en Web of Science) un artículo donde se aplica la toma de decisiones multicriterio y el análisis de ciclo de vida para seleccionar viviendas de bajo coste desde el punto de vista de la sostenibilidad en el contexto de Brasil.

Se trata del fruto del trabajo conjunto desarrollado por el profesor Moacir Kripka, catedrático de estructuras en la Universidade de Passo Fundo, que estuvo de estancia en nuestra universidad recientemente.

Este artículo forma parte de nuestra línea de investigación DIMALIFE en la que se pretenden optimizar estructuras atendiendo no sólo a su coste, sino al impacto ambiental y social que generan a lo largo de su ciclo de vida.

Como se trata de una publicación en abierto, os dejo a continuación el artículo completo para su descarga.

Referencia:

BIANCHI, P.F.; YEPES, V.; VITORIO, P.C., Jr.; KRIPKA, M. (2021). Study of alternatives for the design of sustainable low-income housing in BrazilSustainability, 13(9):4757. DOI:10.3390/su13094757

Descargar (PDF, 1.53MB)

 

 

Curso gratuito online masivo: Introducción a los procedimientos de construcción para la mejora de terrenos en obra civil y edificación

Compactación dinámica (cortesía de Menard)
Compactación dinámica (cortesía de Menard)

Acerca de este curso MOOC de la UPV

Este es un curso básico de procedimientos constructivos necesarios para la mejora de terrenos en obras civiles y de edificación. Es un curso que no requiere conocimientos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas técnicas de mejora del terreno utilizadas habitualmente en obras de ingeniería civil y de edificación. Se índice especialmente en la maquinaria necesaria, en los procedimientos constructivos, en la aplicabilidad a los distintos tipos de suelos, en aspectos económicos, medioambientales y de seguridad en los trabajos. A lo largo del curso se abordarán aspectos como la precarga, las columnas de grava, las inclusiones en el terreno, los pilotes de desplazamiento, la compactación dinámica, la compactación mecánica de suelos, las inyecciones del terreno, la estabilización de suelos, la mezcla profunda, los anclajes, el control del nivel freático, entre otros temas.

El contenido del curso está organizado en 8 módulos, cada uno con 4 secuencias de aprendizaje que permiten, con una dedicación menor a una hora diaria, aprender los aspectos básicos de las técnicas de mejora del terreno. Cada semana se trabaja un módulo, teniendo el curso una duración estimada de dos meses (8 semanas).

El inicio del curso es el 25 de mayo de 2021. La inscripción la puedes realizar en el siguiente enlace: https://www.edx.org/es/course/introduccion-a-los-procedimientos-de-construccion-para-la-mejora-de-terrenos-en-obra-civil-y-edificacion

Lo que aprenderás

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  • Comprender la utilidad y las limitaciones de las distintas técnicas de mejora del terreno empleadas en la construcción de obras civiles y de edificación.
  • Evaluar y seleccionar el mejor procedimiento constructivo y maquinaria necesaria para la mejora del terreno en unas condiciones determinadas, considerando la economía y la seguridad.

Programa del curso

  1. Clasificaciones de las técnicas de mejora y refuerzo del terreno
  2. Sustitución del terreno como técnica de mejora
  3. La precarga como técnica para la mejora de terrenos.
  4. Drenes verticales como técnica de mejora de terrenos
  5. Consolidación por vacío de suelos
  6. Columnas de grava
  7. Columna de grava ejecutada por medios convencionales
  8. Columna de grava mediante vibrodesplazamiento
  9. Columna de grava mediante vibrosustitución
  10. Columnas de grava compactada
  11. Pilotes de arena compactada
  12. Columnas encapsuladas con geotextil
  13. Refuerzo del terreno mediante inclusiones rígidas
  14. Concepto de pilotes y clasificaciones
  15. Pilotes de compactación
  16. Columnas de hormigón vibrado
  17. Columnas de módulo controlado
  18. Columnas de cal y de cal-cemento
  19. Columna de grava inyectada
  20. Pilotes de desplazamiento
  21. Pilotes de madera
  22. Pilotes metálicos
  23. Pilotes metálicos hincados
  24. Pilotes de hormigón armado hincados
  25. Pilotes prefabricados de hormigón pretensado
  26. Pilote de desplazamiento con azuche
  27. Sistema “Franki” de ejecución de pilotes de desplazamiento
  28. Hinca de pilotes con mazas de caída libre
  29. Hinca por vibración de pilotes
  30. Hinca silenciosa de pilotes
  31. Pilotes de extracción
  32. Pilotes perforados con barrena continua
  33. STARSOL: Pilotes con hélice continua mejorada
  34. Micropilotes
  35. Mejora del terreno mediante vibrocompactación
  36. Mejora de terreno mediante Terra-Probe
  37. Método vibroalas para mejora de suelos no cohesivos
  38. Compactación por resonancia de suelos
  39. Compactación dinámica
  40. Compactación dinámica rápida
  41. Sustitución dinámica
  42. Compactación con explosivos
  43. Compactación por impulso eléctrico
  44. Compactación por hidrovoladura
  45. Compactación mecánica de suelos
  46. Curva de compactación de un suelo
  47. Selección de un equipo de compactación
  48. Los tramos de prueba en la compactación de suelos
  49. Recomendaciones de trabajo en la compactación
  50. Técnicas de inyección del terreno
  51. Procedimientos empleados en la inyección de terrenos
  52. Materiales empleados en la inyección de terrenos
  53. Tipos de lechadas y aplicabilidad de los materiales de inyección de terrenos
  54. Inyección de lechadas inestables
  55. Inyección de lechadas estables
  56. Inyección de lechadas químicas
  57. Inyecciones de alta presión: Jet grouting
  58. Inyecciones de compactación
  59. Inyecciones de hidrofracturación
  60. Mezcla profunda de suelos
  61. Springsol: mejora de terrenos mediante columnas de suelo-cemento
  62. Pantallas realizadas por mezcla profunda de suelos (Deep Soil Mixing Walls)
  63. Pantallas de suelo-cemento con hidrofresa (Cutter Soil Mixing)
  64. Pantallas plásticas de bentonita-cemento
  65. Pantallas de suelo-bentonita
  66. Pantalla de lodo autoendurecible armado
  67. Pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
  68. Pantallas de geomembranas
  69. Muros de tierra mecánicamente estabilizada: Tierra Armada
  70. Suelo reforzado con geosintéticos
  71. Soil nailing o suelo claveteado
  72. La técnica del bulonaje
  73. Concepto y clasificación de los anclajes
  74. Zonas de un anclaje
  75. Ejecución de un anclaje
  76. Seguridad en la ejecución de los anclajes
  77. La estabilización de suelos
  78. Estabilización de suelos con cal
  79. Estabilización de suelos con cemento
  80. Estabilización de suelos con ligantes bituminosos
  81. Estabilización de suelos con cloruros
  82. Grava-cemento
  83. Grava-emulsión
  84. Grava-escoria
  85. Mejora de terrenos por calentamiento
  86. Congelación de suelos
  87. Métodos biológicos como técnica de mejora de terrenos
  88. El problema del agua en las excavaciones
  89. Clasificación de las técnicas de control del agua en excavaciones
  90. Selección del sistema de control del nivel freático
  91. Drenaje de excavaciones mediante bombeos superficiales y sumideros
  92. Drenaje de excavaciones mediante zanjas perimetrales
  93. Drenaje horizontal con pozos radiales
  94. Drenaje de excavaciones mediante pozos filtrantes profundos
  95. Control del nivel freático mediante lanzas de drenaje (wellpoints)
  96. Electroósmosis como técnica de drenaje del terreno

Conozca al profesor

Víctor Yepes Piqueras

Catedrático de Universidad. Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València. Consejero del Colegio de Ingenieros de Caminos, Canales y Puertos. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 6 proyectos de investigación competitivos. Ha publicado más de un centenar artículos en revistas indexadas en el JCR. Autor de 10 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 6 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos.

 

Evaluación neutrosófica multicriterio de alternativas sostenibles de estructuras de viviendas unifamiliares

Nos acaban de publicar en la revista Environmental Impact Assessment Review (primer cuartil del JCR) un artículo relacionado con la aplicación de la teoría neutrosófica para la toma de decisiones multicriterio de alternativas sostenibles de estructuras de viviendas unifamiliares. Se trata de una publicación de la próxima tesis doctoral de Antonio Sánchez Garrido, que codirijo con Ignacio J. Navarro, perteneciente al proyecto de investigación DIMALIFE.

Puedes descargar gratuitamente el artículo hasta el 9 de junio de 2021 en el siguiente enlace: https://authors.elsevier.com/c/1cxMKiZ5t5ESY

ABSTRACT

This paper proposes a methodology for the assessment of the sustainability among three different structural design alternatives for a single-family home. The response associated with each alternative has been measured using 43 indicators considering all stages of the life cycle. A decision-making model is carried out on the basis of a neutrosophic group analytical hierarchy process (NAHP-G) capturing the maximum information in terms of credibility, inconsistency and indetermination. The 9 criteria on which an expert group intervenes are finally evaluated using VIKOR. The results show that non-probabilistic uncertainties influence the weights obtained, with maximum deviations in the criteria between 11.91% and 4.95%, if compared to conventional AHP. From the methodology it is obtained that the technological alternative with non-conventional concrete performs best in sustainable terms. Although the industrialized option has less environmental impact, only the simultaneous consideration of the economic, environmental and social pillars in a project will lead to appropriate sustainable designs.

KEYWORDS:

Single-family house; Group multi-criteria decision making; Sustainable design; Neutrosophic sets theory; Analytic hierarchy process; Life cycle thinking; Modern methods of construction

REFERENCE:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homesEnvironmental Impact Assessment Review, 89:106572. DOI:10.1016/j.eiar.2021.106572

 

Curso en línea de “Compactación superficial y profunda de suelos en obras de ingeniería civil y edificación”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Compactación superficial y profunda de suelos en obras de ingeniería civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Empieza próximamente. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-compactacion-superficial-y-profunda-de-suelos-en-obras-de-ingenieria-civil-y-edificacion/

Os paso un vídeo explicativo y os doy algo de información tras el vídeo.

Este es un curso básico de técnicas y equipos de compactación superficial y profunda de suelos en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado para que el estudiante pueda profundizar en aquellos aspectos que les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás los conceptos básicos de las técnicas y equipos necesarios para la compactación de suelos, así como para su control, rendimientos y costes. El curso se centra especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la compactación, tanto superficial como profunda. Es un curso de espectro amplio que incide en el conocimiento de la maquinaria y procesos constructivos. Resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual, donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Asimismo, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso se organiza en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Al finalizar cada unidad didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos del tema abordado. Al final se han diseñado tres unidades adicionales para afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.

El curso está programado para 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Este curso único, impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.

Objetivos

Los objetivos de aprendizaje son los siguientes:

  1. Comprender la utilidad y las limitaciones de la maquinaria y de las técnicas de compactación superficial y profunda de terrenos
  2. Evaluar y seleccionar la mejor maquinaria y técnica de compactación en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Lección 1. Composición y clasificación de suelos
  • – Lección 2. Materiales de terraplén
  • – Lección 3. Efectos de la compactación y deformaciones
  • – Lección 4. Porosidad y permeabilidad
  • – Lección 5. La curva de compactación
  • – Lección 6. Densidad de los suelos granulares
  • – Lección 7. Ensayo Proctor
  • – Lección 8. Sistemas de compactación: compactación normal y seca
  • – Lección 9. Ensayos de resistencia del suelo
  • – Lección 10. Fundamentos de las técnicas de compactación
  • – Lección 11. Clasificación de los equipos de compactación mecánica
  • – Lección 12. Apisonadoras estáticas de rodillos lisos
  • – Lección 13. Compactadores estáticos de patas apisonadoras
  • – Lección 14. Compactadores estáticos de ruedas neumáticas
  • – Lección 15. Rodillos de malla y compactador por impactos con rodillo lobular
  • – Lección 16. Introducción a la compactación vibratoria
  • – Lección 17. Compactadores vibratorios cilíndricos
  • – Lección 18. Compactadores de pequeño tamaño y de tracción manual
  • – Lección 19. Compactadores de zanja
  • – Lección 20. Selección del equipo y método de compactación
  • – Lección 21. Espesor de tongada y número de pasadas óptimo: tramo de prueba
  • – Lección 22. Normas y recomendaciones de trabajo
  • – Lección 23. El control de la compactación
  • – Lección 24. Condiciones de seguridad de los compactadores
  • – Lección 25. Costes y productividad de la compactación
  • – Lección 26. Compactación de aglomerado asfáltico
  • – Lección 27. Mejora del terreno mediante vibrocompactación
  • – Lección 28. Mejora del terreno mediante Terra-Probe
  • – Lección 29. Método vibroalas para mejora de suelos no cohesivos
  • – Lección 30. Compactación por resonancia de suelos
  • – Lección 31. Compactación dinámica
  • – Lección 32. Compactación dinámica rápida
  • – Lección 33. Sustitución dinámica
  • – Lección 34. Compactación con explosivos
  • – Lección 35. Compactación por impulso eléctrico
  • – Lección 36. Refuerzo del terreno mediante inclusiones rígidas
  • – Lección 37. Pilotes de compactación
  • – Lección 38. Columna de grava mediante vibrodesplazamiento
  • – Lección 39. Columna de grava mediante vibrosustitución
  • – Lección 40. Columnas de grava ejecutadas por medios convencionales
  • – Lección 41. Columnas de grava compactada
  • – Lección 42. Columnas de arena compactada
  • – Lección 43. La estabilización de suelos
  • – Lección 44. Estabilización de suelos con cal
  • – Lección 45. Estabilización de suelos con cemento
  • – Lección 46. Estabilización de suelos con ligantes bituminosos
  • – Lección 47. Problema resuelto sobre rendimientos y costes
  • – Lección 48. Problema resuelto sobre curva de compactación
  • – Lección 49. Problema resuelto sobre tramo de prueba
  • – Lección 50. Problema resuelto sobre control de calidad
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de un centenar artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 16 tesis doctorales, con 8 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos.

Referencias:

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.