Tesis doctoral: Vulnerabilidad urbana, nueva caracterización y metodología para el diseño de escenarios óptimos

Ayer 1 de marzo de 2019 tuvo lugar la defensa de la tesis doctoral de D. Jorge Salas Herranz denominada “Vulnerabilidad urbana, nueva caracterización y metodología para el diseño de escenarios óptimos”, dirigida por Víctor Yepes Piqueras. La tesis recibió la calificación de “Sobresaliente cum laude” por unanimidad. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

La vulnerabilidad urbana es un problema a cuya solución la planificación estratégica urbana puede realizar una importante contribución, y cuya evaluación ha despertado un interés creciente en diferentes países. En España, este interés ha cristalizado en forma de Observatorio de Vulnerabilidad Urbana, donde se ofrece una evaluación que clasifica barrios en vulnerables o no vulnerables de acuerdo a tres indicadores básicos. Esta evaluación, sin embargo, no se ajusta aún a los requisitos actuales en materia de planificación estratégica, dificultando así su implementación en este tipo de procesos y haciendo necesaria su actualización.

La tendencia actual en planificación estratégica urbana se caracteriza por una serie de atributos que han sido objeto de desigual interés por parte de la comunidad científica, dando lugar a diferentes grados de avance en los métodos con los que implementarlos. Estos métodos tienen por objetivo posibilitar el empleo de enfoques cognitivos, e incorporar procesos participativos en el diseño de estrategias como medio de legitimarlas y para captar las preferencias de los diferentes interesados. También persiguen modelizar la naturaleza dinámica y multi-escala de los aspectos tanto temporales como político-administrativos que afectan a los problemas de planificación propios de este campo. La capacidad estratégica es, así mismo, otra cualidad demandada, para lo cual el empleo de enfoques multi-objetivo ofrecen una alternativa válida a la hora de localizar estrategias con las que hacer frente a los diversos problemas que acucian a nuestra sociedad.

Flamante doctor junto con el tribunal (Montserrat Zamorano, Javier Ordóñez y Eugenio Pellicer) y el director de la tesis

Toda estrategia, además, cifra buena parte de sus posibilidades de éxito en una correcta apreciación de las circunstancias que la rodean lo cual, por otro lado, la hace dependiente de las incertidumbres asociadas. En el ámbito de la planificación estratégica urbana, la creciente necesidad de incorporar estas incertidumbres a los procesos decisionales ha marcado la evolución que ha experimentado dicho campo, dando lugar al desarrollo de diferentes métodos de evaluación basados en la generación de escenarios y el análisis de alternativas bajo estos supuestos. Estos métodos analizan el comportamiento de diferentes estrategias a lo largo de un conjunto de escenarios que pueden ser óptimos o pésimos, pero no ambos. Esta laguna supone una limitación a la hora de identificar estrategias a la vez robustas frente a los escenarios más adversos, y sensibles frente a los más favorables. Entre estas técnicas, además, no figura ningún intento por incorporar la incertidumbre relacional, característica en sistemas de infraestructura implementados a lo largo de diferentes escalas político-administrativas.

Esta investigación propone solucionar dichas carencias mediante un sistema de soporte decisional integrado por diversos módulos que, en sintonía con los atributos actualmente exigibles a toda herramienta de planificación estratégica, cubra el proceso decisional completo. Partiendo de la selección de un modelo apropiado de evaluación de vulnerabilidad urbana, el sistema propuesto genera alternativas de planificación con las que hacerla frente, y permite seleccionar aquella que ofrezca un balance adecuado de riesgos y oportunidades. Así mismo, al final del proceso se ofrece un conjunto óptimo de medidas, en forma de sistema relacional, con las que acompañar la implementación de la alternativa elegida a través del tejido político-administrativo de un territorio.

Como consecuencia, es de esperar que la aplicación de la metodología propuesta contribuya a una mejor distribución de los importantes recursos movilizados para reducir la vulnerabilidad urbana y mejorar la resiliencia. Además, el sistema decisional está compuesto por una serie de métodos de caracterización, propuesta de alternativas y evaluación de incertidumbres, aplicables a problemas similares que puedan resultar de interés en el campo de la planificación estratégica urbana.

Referencias:

SALAS, J.; YEPES, V. (2019). VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain. Sustainability, 11, 2191. Doi:10.3390/su11082191

SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, 216:607-623. DOI:10.1016/j.jclepro.2018.12.083

SALAS, J.; YEPES, V. (2018). Urban vulnerability assessment: Advances from the strategic planning outlook. Journal of Cleaner Production, 179:544-558. DOI:1016/j.jclepro.2018.01.088

SALAS, J.; YEPES, V. (2018). A discursive, many-objective approach for selecting more-evolved urban vulnerability assessment models. Journal of Cleaner Production, 176:1231-1244. DOI:1016/j.jclepro.2017.11.249

 

 

 

MS-ReRo y D-ROSE: Nuevas metodologías para evaluar la incertidumbre de los riesgos y oportunidades de las infraestructuras

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production, revista de ELSEVIER indexada en el primer decil del JCR. Presentamos un sistema integral de apoyo a la planificación urbana que integra la generación de planificación de alternativas, la evaluación de dichas alternativas bajo un conjunto de escenarios relevantes seleccionados dinámicamente de forma cognitiva, y la propuesta de políticas que acompañen a la alternativa de planificación seleccionada. Para ello presentamos dos métodos novedosos: (1) la identificación “a posteriori” de escenarios relevantes para la evaluación de la vulnerabilidad y resiliencia de las alternativas, y (2) la evaluación de la incertidumbre relacional. De acuerdo con los riesgos y las oportunidades que soporta el sistema, la metodología permite seleccionar un plan de infraestructura para paliar el problema de la vulnerabilidad urbana, así como un conjunto de contratos para su correcta implementación en las diferentes administraciones públicas y en diferentes escalas del sistema de infraestructura. La metodología se aplica a un estudio de caso en España, en el que primero se proponen planes óptimos de infraestructura urbana que contribuyan a mejorar el problema de la urbanización, y luego evalúan los riesgos y las oportunidades asociadas a las alternativas de planificación para, finalmente presentar un conjunto de medidas políticas para acompañar la implementación de la alternativa seleccionada. Este artículo forma parte de nuestra línea de investigación BRIDLIFE en la que se pretenden optimizar estructuras atendiendo no sólo a su coste, sino al impacto ambiental y social que generan a lo largo de su ciclo de vida.

El artículo lo podéis descargar GRATUITAMENTE hasta el 3 de abril de 2019 en el siguiente enlace: https://authors.elsevier.com/c/1YZ1b3QCo9R7vs

Abstract

There is a growing interest in model-based decision support systems contributing to strategic planning. The application of these in the case of urban infrastructure planning requires methods specifically aimed at addressing the relational uncertainties arising from the complex, multi-scale, nature of this field. This study presents UPSS, a comprehensive urban planning support systemintegrating the generation of planning alternatives, the evaluation of alternatives under a set of relevant scenarios selected dynamically in a cognitive way, and the proposal of policies to accompany the planning alternative. For this purpose, UPSS integrates two novel methods. These deal respectively with the ex post identification of relevant scenarios for the evaluation of the vulnerability and resilience of the alternatives, and with the assessment of relational uncertainty. According to the risks and opportunities borne by the system, the process makes it possible to select an infrastructure plan to alleviate the problem of urban vulnerability, as well as a set of relational contracts for its proper implementation across the different governmental scales of the infrastructure system. The whole process is tested via a case study, in which USPP first proposes optimal urban infrastructure plans that contribute to ameliorate the problem of urban vulnerability in Spain, then evaluates the risks and opportunities attached to the planning alternatives, and finally presents sets of policy measures to accompany the implementation of the alternative selected.

Keywords:

Urban vulnerability; Infrastructure planning; Multi-scale; Risk; Opportunity; Relational uncertainty

Reference:

SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, 216:607-623. DOI:10.1016/j.jclepro.2018.12.083

 

 

 

Balance personal de 2018 en el ámbito docente e investigador

El 31 de diciembre suele ser una buena fecha para reflexionar lo que ha sido el año. Todo pasa muy rápido, demasiado rápido, las cosas cambian y las noticias del año que acaba suelen ser agridulces cuando se mira la prensa o la televisión. Desde el punto de vista de la ingeniería, me impactaron mucho los desastres del puente de Morandi en Génova y el hundimiento de una pasarela en Vigo, ambos casi simultáneos ocurridos en agosto, aunque son muchos más los desastres naturales y los relacionados con la ingeniería, el territorio y el cambio climático. Hoy toca realizar el balance del 2018 y destacar aquellos logros que hacen que haya merecido la pena el paso de este año. Como siempre, me centraré en el ámbito docente e investigador.

Lo primero que me gustaría destacar es el 50 aniversario de nuestra Escuela de Ingenieros de Caminos de Valencia. Va a ser difícil llegar a ver el centenario, pero con un poco de suerte, dentro de 25 años podremos ver cómo ha cambiado la Escuela y la profesión. Este año, muy especial en cuanto a fechas, también ha sido el año en que mi hija Lorena terminó de forma brillante el Máster en Ingeniería de Caminos, Canales y Puertos. También es momento de recordar a algunos que nos dejaron. Un recuerdo para los profesores Carlos A. Brebbia y David Billington.

En cuanto a la difusión de la ingeniería, he participado este año en varios programas de radio. En Radio Nacional, en el programa “Esto me suena” me han realizado varias entrevistas donde tuve la ocasión de divulgar aspectos menos conocidos por el público en general de la ingeniería civil. Esta colaboración ya viene siendo habitual desde el año 2016. Este año hemos hablado sobre cómo se construyeron los arcos a lo largo de la historia, sobre las tuneladoras, del viaducto sobre el río Almonte de Garrovillas de Alconétar y otra más sobre la seguridad de nuestros puentes. También me entrevistaron en À Punt Ràdio hablando de los algoritmos heurísticos basados en el jazz que hemos desarrollado en nuestro grupo de investigación como ayuda en la decisión de qué infraestructuras son las prioritarias a la hora de invertir. Esta noticia tuvo eco en numerosos medios de comunicación escrita. En Radio Alcoy también tuve la ocasión de hablar sobre la reparación del puente Fernando Reig, y allí hablé de la necesidad de reconocer a los autores de las obras de ingeniería. Además, de los desastres de Génova y Vigo tuve ocasión de hablar en un artículo denominado “Más allá de Génova y Vigo: la crisis de las infraestructuras es un problema global“, que se publicó en “The Conversation” y que luego se reprodujo en numerosos medios de comunicación escrita. Por último, no quiero olvidar mi labor de difusión a través de mi blog personal. Este año he escrito 130 entradas en el blog sobre diversos temas. Es un blog que ha crecido un 43,9% en número de usuarios respecto al año anterior. En este año 2018 han sido 428 mil usuarios los que han utilizado el blog, lo cual empiezan a ser cifras a tener en cuenta.

En cuanto a las publicaciones de artículos científicos en revistas indexadas, 2018 ha sido un buen año. He publicado 10 artículos internacionales en revistas indexadas en el JCR (Journal of Cleaner Production, Sustainability Environmental Impact Assessment Review), de las cuales 8 corresponden a revistas en el primer cuartil y 2 a las del segundo cuartil. De las 8 del primer cuartil, 7 son revistas del primer decil. Pero, además, a fecha de hoy, ya nos han publicado tres artículos en revistas de impacto para el año 2019 (Engineering Structures, Journal of Cleaner ProductionEnvironmental Impact Assessment Review), las tres del primer cuartil. Además, hemos publicado en 2018 también un par de artículos en revistas internacionales (Journal of Construction Engineering, Management & Innovation y Technologies). Asimismo, destaco mi contribución como Editor Invitado, junto con el profesor José Mª Moreno, al número especial “Optimization for Decision Making” de la revista Mathematics; así como Editor Asociado en el número especial “Advanced Optimization Techniques and Their Applications in Civil Engineering“, de la revista Advances in Civil Engineering. Todo esto no hubiera sido posible sin mis alumnos de doctorando y colegas del grupo de investigación. También debo reseñar el reconocimiento recibido por el Publons Peer Review Awards 2018, donde se reconoce estar durante el periodo 2017-2018 en el 1% de los revisores en el ámbito “Engineering”. El resultado ha sido que, a fecha de hoy, mi índice Hirsch de producción científica, según la Web of Science, es h=21, mientras que ese mismo índice en Google Académico es h=34.

En cuanto a Congresos, tuve la oportunidad de asistir a dos congresos donde, además de presentar ponencias, he pertenecido a los Comités Científicos. Del 11 al 13 de julio de 2018 asistí al HPSM/OPTI 2018 (International Conference on High Performance and Optimum Design of Structures and Materials), celebrado en Liubliana (Eslovenia). La comunicación presentada se publicará en 2019 en la revista International Journal of Computational Methods and Experimental Measurements). Por otra parte, del 28 al 31 de octubre asistí al IALCCE 2018 (The sixth International symposium on Life-Cycle Civil Engineering), que tuvo lugar en Gante (Bélgica). Este congreso fue especialmente importante porque Tatiana García Segura, a la que dirigí su tesis doctoral, recibió el  Junior Award IALCCE 2018, que premia al mejor investigador, con una edad menor a 42 años. Es la primera vez que un español gana este galardón, lo cual es un hito para la Escuela de Ingenieros de Caminos de Valencia y para la Universitat Politècnica de València. Sobre el tema de playas inteligentes me invitaron a impartir una conferencia magistral en el III Congreso Internacional de Calidad Ambiental en Playas Turísticas, organizado por la Universidad de la Guajira en Colombia, del que también formo parte del Comité Científico Internacional; dicho congreso se celebra entre el 21 y el 23 de marzo de 2018. Debido a problemas de agenda, se me invitó a impartir la charla por teleconferencia. Otros congresos donde participé este año han sido el Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2018, Valencia;  el ICERI2018,the 11th annual International Conference of Education, Research and Innovation, en Sevilla; y el VIBRArch Valencia 1 Bienial Research of Architecture, en Valencia.

En cuanto a proyectos de investigación competitivos, este año iniciamos el proyecto DIMALIFE  (Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos, BIA2017-85098-R), el cual tiene una duración prevista de tres anualidades y cuenta con la financiación necesaria para un contrato predoctoral FPI. Este es un proyecto donde soy investigador principal. Además, también empezamos el proyecto RTC-2017-6148-7-AR (Sistema integral de mantenimiento eficiente de pavimentos urbanos) donde participo como investigador. En cuanto a tesis doctorales, están muy avanzadas las de Jorge Salas, Ignacio Navarro y Vicent Penadés. Estas tres tesis se leerán, con toda seguridad, a lo largo del 2019.

En el ámbito docente, me gustaría destacar el Curso de Creatividad que impartí en marzo de este año en la universidad de La Rioja a personal docente y el Curso de Planificación y Gestión de Playas que impartí y dirigí en la Universidad de Oporto en junio. Pero, quizás sin duda, uno de los hitos de este año fue la puesta en marcha, por primera vez, de un curso MOOC (gratuito, masivo y online) denominado “Introducción a los encofrados y las cimbras en obra civil y edificación“, que este mismo año ya va por la tercera edición y ha tenido casi 4000 alumnos inscritos. Todo un éxito inesperado que espero poder repetir en un futuro próximo con otros temas. En cuanto a premios recibidos, destaco el Premio Docencia en Red 2017/2018, recibido en el contexto del Plan de Docencia en Red de la Universitat Politècnica de València por la elaboración de material educativo en formato digital.

Por último, me gustaría destacar las visitas de investigación recibidas por parte de profesores de prestigio internacional como ha sido el caso del profesor Gizo Partskhaladze, (Georgia) que nos ha visitado ya por tercera vez. También hemos recibido al profesor Moacir Kripka, catedrático de estructuras en la Universidade de Passo Fundo, en Brasil.

En definitiva, 2018 se puede calificar de un buen año en estos aspectos universitarios. Espero que 2019 siga siendo al menos, la mitad de bueno que éste. A continuación paso un listado de alguna de las cosas que he podido terminar este año.

INVESTIGADOR PRINCIPAL EN PROYECTOS DE INVESTIGACIÓN COMPETITIVOS:

  • Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos. DIMALIFE. [Reliability-based robust optimum design and maintenance of high social and environmental efficiency of bridges and highway infrastructures under restrictive budgets]. BIA2017-85098-R.

 

ARTÍCULOS INDEXADOS EN EL JCR:

  1. SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  2. PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015
  3. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:1016/j.eiar.2018.10.001
  4. GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202: 904-915. DOI:1016/j.jclepro.2018.08.177
  5. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110
  6. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:1016/j.eiar.2018.05.003
  7. DEDE, T.; KRIPKA, M.; TOGAN, V.; YEPES, V.; RAO, R.V. (2018). Advanced optimization techniques and their applications in civil engineering. Advances in Civil Engineering, 2018: 5913083. DOI:1155/2018/5913083
  8. PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192:411-420. DOI:1016/j.jclepro.2018.04.268
  9. SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI:1016/j.jclepro.2018.03.022
  10. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:3390/su10030845
  11. PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. DOI:3390/su10030685
  12. SALAS, J.; YEPES, V. (2018). Urban vulnerability assessment: Advances from the strategic planning outlook. Journal of Cleaner Production, 179:544-558. DOI:1016/j.jclepro.2018.01.088
  13. SALAS, J.; YEPES, V. (2018). A discursive, many-objective approach for selecting more-evolved urban vulnerability assessment models. Journal of Cleaner Production, 176:1231-1244. DOI:1016/j.jclepro.2017.11.249
  14. SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534. DOI:1016/j.jclepro.2017.12.140

 

OTROS ARTÍCULOS:

  • YEPES, V.; PÉREZ-LÓPEZ, E.; GARCÍA-SEGURA, T.; ALCALÁ, J. (2019). Optimization of high-performance concrete post-tensioned box-girder pedestrian bridges. International Journal of Computational Methods and Experimental Measurements, (accepted, in press).
  • YEPES, V.; PÉREZ-LÓPEZ, E.; ALCALÁ, J.; GARCÍA-SEGURA, T. (2018). Parametric study of concrete box-girder footbridges. Journal of Construction Engineering, Management & Innovation, 1(2):67-74. doi:10.31462/jcemi.2018.01067074
  • ALCALÁ, J.; GONZÁLEZ-VIDOSA, YEPES, V.; MARTÍ, J.V. (2018). Embodied energy optimization of prestressed concrete slab bridge decks. Technologies, 6(2):43. doi:10.3390/technologies6020043 (link)

 

CONGRESOS:

  • FERNÁNDEZ-MORA, V.; YEPES, V. (2018). Problems in the adoption of BIM for structural rehabilitation.  VIBRArch Valencia 1 Bienial Research of Architecture, Valencia (Spain),  18th-19th October 2018.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Heuristics in engineering education. A case study application to sustainable bridge management systems. Proceedings of ICERI2018,the 11th annual International Conference of Education, Research and Innovation, Seville (Spain), 12th-14th November 2018, pp. 9788-9797.  ISBN: 978-84-09-05948-5
  • NAVARRO, I.; MARTÍ, J.V.; YEPES, V. (2018). Multi-criteria decision making techniques in civil engineering education for sustainability. Proceedings of ICERI2018,the 11th annual International Conference of Education, Research and Innovation, Seville (Spain), 12th-14th November 2018, pp. 9798-9807.  ISBN: 978-84-09-05948-5
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V. (2018). Kriging-based heuristic optimization of a continuous concrete box-girger pedestrian bridge. Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE 2018), Ganth (Belgium), October 2018, pp. 2753-2759. ISBN: 9781138626331
  • YEPES, V. (2018). La transición de playas certificadas a playas inteligentes. III congreso Internacional de Calidad Ambiental en Playas Turísticas (CAPT 2018). Marzo, Universidad de la Guajira (Colombia).
  • YEPES, V. (2018). Correspondencia jerárquica entre las competencias y los resultados de aprendizaje. El caso de “Procedimientos de Construcción”. Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2018, Valencia, pp. 1-15. ISSN 2603-5863

 

TRABAJOS FIN DE MÁSTER

  • CALDERÓN, S. (2018). Estudio sobre BIM integrado. Análisis del caso práctico de la ampliación de la Tercera Compuerta en la Esclusa de Beatriz y Ensanchamiento del Canal de Lek (Holanda). Máster Universitario en Planificación y Gestión de la Construcción.
  • RÓDENAS, A. (2018). Comparativa Ambiental y Económica de Pantallas de Contención de Tierras para Edificación Mediante el Análisis del Ciclo de Vida. Máster Universitario en Planificación y Gestión de la Construcción.
  • TRONCOSO, P.T. (2018). Gestión de la Economía Circular en la Producción de Mezcla Asfáltica en Chile. Máster Universitario en Planificación y Gestión de la Construcción.
  • TRIANA, C.R. (2018). Gestión de Innovación de las Empresas del Sector de la Construcción en Colombia. Máster Universitario en Planificación y Gestión de la Construcción.

 

VÍDEOS EDUCATIVOS (POLIMEDIAS)

  1. Definición de cimbra autolanzable. 7 minutos, 11 segundos.
  2. Clasificación de las cimbras autolanzables. 6 minutos, 38 segundos.
  3. Cimbra autolanzable frente a otros procedimientos constructivos. 9 minutos, 13 segundos.
  4. Parámetros para seleccionar una cimbra autolanzable.  6 minutos, 50 segundos.
  5. Elementos de una cimbra autolanzable.  7 minutos, 57 segundos.
  6. Cimbra autolanzable bajo tablero.  7 minutos, 33 segundos.
  7. Cimbra autolanzable sobre tablero.  8 minutos, 4 segundos.
  8. Construcción de puentes mediante lanzador de vigas. 8 minutos, 0 segundos.

 

Método acelerado de optimización de puentes en cajón

 

Acaban de publicarnos en Engineering Structures, revista de ELSEVIER indexada en el primer cuartil del JCR, un artículo en el que hemos propuesto un novedoso método de optimización que acelera los cálculo al emplear Kriging como metamodelo en los cálculos intermedios de las iteraciones de un proceso de optimización heurística. Se ha aplicado en la optimización de la energía requerida para la construcción de un puente en cajón de hormigón pretensado, pero la metodología es aplicable al cálculo de cualquier estructura. Este artículo forma parte del proyecto de investigación DIMALIFE. Como se ha publicado en abierto, os puedo pasar el artículo completo, que os podéis descargar también en la propia revista.

ABSTRACT:

Structural optimization is normally carried out by means of conventional heuristic optimization due to the complexity of the structural problems. However, the conventional heuristic optimization still consumes a large amount of time. The use of metamodels helps to reduce the computational cost of the optimization and, along these lines, kriging-based heuristic optimization is presented as an alternative to carry out an accelerated optimization of complex problems. In this work, conventional heuristic optimization and kriging-based heuristic optimization will be applied to reach the optimal solution of a continuous box-girder pedestrian bridge of three spans with a low embodied energy. For this purpose, different penalizations and different initial sample sizes will be studied and compared. This work shows that kriging-based heuristic optimization provides results close to those of conventional heuristic optimization using less time. For the sample size of 50, the best solution differs about 2.54% compared to the conventional heuristic optimization, and reduces the computational cost by 99.06%. Therefore, the use of a kriging model in structural design problems offers a new means of solving certain structural problems that require a very high computational cost and reduces the difficulty of other problems.

KEYWORDS: Low-embodied energy; Post-tensioned concrete; Box-girder bridge; Structural optimization; Metamodel; Kriging

REFERENCE:
PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015

 

Cuantificación del estado de conservación de los puentes: índices de estado o condición

Guía para la realización de inspecciones principales de obras de paso en la Red de Carreteras del Estado. Ministerio de Fomento (2012)

Una noticia aparecida el 9 de diciembre de 2018 en El País con el siguiente titular “Fomento admite que hay 66 puentes con graves problemas de seguridad” abrió cierta inquietud en la opinión pública sobre la seguridad de nuestros puentes. Esta inquietud irrumpió el agosto pasado con el derrumbe de un puente en Génova (Italia). La pregunta que se hace el ciudadano de a pié es saber si cuando circula por carretera o por ferrocarril nuestras infraestructuras son lo suficientemente seguras. Además, este desasosiego se acentúa cuando, por una parte, la grave crisis económica que ha sufrido nuestro país ha reducido significativamente los presupuestos dedicados al mantenimiento de las infraestructuras y cuando, además, los datos que el Ministerio de Fomento dispone sobre el estado de los puentes, extraídos de su Sistema de Gestión de Puentes (SGP), no es suficientemente transparente, a diferencia de otros países, como Alemania. La que he denominado como “crisis de las infraestructuras“, en efecto, no es un problema solo de España, sino que afecta de forma generalizada a muchos países de nuestro entorno.

Pues bien, la noticia del 9 de diciembre nos decía que 66 puentes presentan graves problemas de seguridad. La justificación es que, tras la valoración de su estado por expertos, se calculan unos índices (extensión, gravedad y evolución) a los que se aplican algoritmos para obtener una clasificación final que va de 0 a 100. Esos 66 puentes obtenían más de 81 puntos, lo cual significa que presentan “patologías potencialmente graves que pueden afectar a su comportamiento resistente” y son objeto de un seguimiento especial. Teniendo en cuenta que el parque de las obras de paso en España son de casi 23000 puentes, ello supone que un 0,28% de ellos superan el umbral de los 81 puntos. Parecerían pocos puentes, pero bastaría el colapso de uno solo de ellos para que se pudiese reproducir una tragedia como la ocurrida en Génova este verano. Por tanto, no debemos restar importancia a estas cifras. De hecho, nuestro grupo de investigación, a través del proyecto DIMALIFE, está muy preocupado por investigar estos tema.

¿Significa esto que en España nuestros puentes no son seguros? En absoluto. No hay que alarmarse, pero hay que tomar medidas. Lo que le ocurre a cualquier infraestructura (puente, presa, puerto, túnel, hospital, etc.) es que todas ellas, sin excepción, presentan una disminución de sus prestaciones y funcionalidades que, pasado cierto umbral, hace que dejen de ser útiles, finalizando su vida útil. La vida de las infraestructuras se puede prolongar con un adecuado mantenimiento y acometiendo reparaciones, pero llega un momento que el coste de alargar la vida útil puede ser insostenible. Por tanto, los puentes “envejecen”.

Todo el mundo está de acuerdo en que los aviones deben someterse a exámenes periódicos y revisiones profundas, realizadas por expertos, que garanticen la seguridad en vuelo de estos aparatos. Asimismo, también resulta evidente que todas las personas deberíamos someternos a chequeos médicos periódicos para detectar a tiempo enfermedades que, sin una detección precoz, son inevitablemente mortales. Pues lo mismo le pasa a las infraestructuras, que deben acudir de vez en cuando al “médico de cabecera”, que si detecta algún problema grave, manda al paciente al “médico especialista” y éste, en caso necesario, opera al paciente o le somete al tratamiento correspondiente. Pues lo mismo le ocurre a los puentes, donde existen inspecciones básicas o rutinarias, inspecciones principales e inspecciones especiales. De ello ya hablamos en una entrada anterior. Siguiendo con la analogía médica, la “analítica” realizada a los puentes ha mostrado que su “colesterol” está por encima de 250. Ello no significa la muerte inmediata del paciente, pero sí que es necesario un cambio de hábitos (ejercicio físico, dieta alimentaria, etc.) o medicación para reducir dicho índice. En caso de no hacer nada, nuestro puente puede tener un “problema coronario” que puede acabar en un “ataque al corazón”. Por tanto, la buena noticia es que hemos detectado los problemas y ahora se trata de poner a nuestros puentes bajo un “tratamiento médico” estricto.

Para aclarar alguno de los conceptos sobre los que se ha basado la noticia de El País, voy a recoger aquí los aspectos básicos. Están basados en una monografía del Ministerio de Fomento denominada “Guía para la realización de inspecciones principales de obras de paso en la Red de Carreteras del Estado“. Tal y como indica la guía, para cada uno de los daños que existan en un determinado elemento de un puente, se recogen en campo los índices de extensión, gravedad y evolución (apartado 4.5.3). Con estos datos se obtiene, en primer lugar, un Índice de Deterioro para cada daño, que puede tomar un valor entre 0 y 100. Con todos los índices de los deterioros existentes en un puente, se puede valorar el estado de conservación con el Índice de Estado o Condición de la Estructura, que también tiene un valor entre 0 y 100. Existen también índices intermedios para valorar los elementos, componentes y zonas de la estructura, de esta forma se puede localizar rápidamente el origen de la causa de determinado índice en la condición de la estructura.

Los índices de deterioro se dividen en cinco intervalos, con los significados siguientes:

  • Índice entre 0 y 20: Deterioro sin consecuencias importantes “a priori”
  • Índice entre 21 y 40: Deterioro que puede tener una evolución patológica o reducir las condiciones de servicio o de durabilidad del elemento si no se repara en el tiempo adecuado.
  • Índice entre 41 y 60: Deterioro que indica una patología que supone una reducción de las condiciones de servicio o de la durabilidad del elemento.
  • Índice entre 61 y 80: Deterioro que se puede traducir en una modificación del comportamiento resistente o funcional.
  • Índice entre 81 y 100: Deterioro que compromete la seguridad del elemento.

De la misma forma, el Índice de Estado de la Estructura se divide en cinco intervalos:

  • Índice entre 0 y 20: Estructura sin patologías evidentes o con deterioros sin consecuencias relevantes para la durabilidad, condiciones de servicio o seguridad de la estructura.
  • Índice entre 21 y 40: Estructura con deterioros que pueden tener una evolución patológica que afecte a la durabilidad o a las condiciones de servicio de la estructura. Es conveniente seguir su evolución temporal para su determinación objetiva.
  • Índice entre 41 y 60: Estructura con deterioros que evidencian una patología que puede suponer una reducción de las condiciones de servicio o de la durabilidad de la estructura. Será necesario seguir la evolución de la patología en las posteriores inspecciones. Puede requerir una actuación a medio plazo para mejorar la durabilidad de la estructura.
  • Índice entre 61 y 80: Estructura con deterioros o patologías que se pueden traducir en una modificación del comportamiento resistente o una reducción importante de los niveles de servicio. Requiere una actuación a corto-medio plazo. En función de la naturaleza del daño puede requerir una inspección especial.
  • Índice entre 81 y 100: Estructura con deterioros o patologías que comprometen la seguridad del elemento/estructura. Requiere una inspección especial y una actuación urgente. En algunos casos puede ser necesario una limitación del uso.

Como vemos, los índices establecen pautas para que el gestor decida intervenir en una estructura, realizar estudios especiales, programar actuaciones a medio plazo o asignar presupuestos. Con todo, los inspectores tiene capacidad de ir más allá de esta cuantificación cuando detectan problemas o imponderables difíciles de cuantificar, como por ejemplo, el grado de “actualización” de la estructura a las normas vigentes.

La conclusión es clara. Al igual que los aviones requieren inspecciones periódicas minuciosas para garantizar la seguridad en el vuelo y las personas debemos realizar chequeos médicos periódicos, las infraestructuras (puentes, presas, túneles, puertos, hospitales, estadios de fútbol, etc.) deben someterse a inspecciones programadas y, sobre todo, se debe disponer de un presupuesto suficiente que garantice el mantenimiento y la rehabilitación si fuera necesario. Todo lo que no sea eso, será poner en riesgo no solo la seguridad de las personas, sino el estado de bienestar.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clasificación de los métodos de toma de decisión multicriterio multiatributo

Figura. Clasificación general de los MCDM

Seguimos en este entrada explicando los conceptos básicos que subyacen a a toma de decisión multicriterio. El concepto de toma de decisiones multi-criterio (MCDM) abarcaba en sus inicios al conjunto de métodos que servían como herramienta para el proceso de toma de decisiones (Cinelli et al., 2014). Sin embargo, el desarrollo de estos métodos ha sido exponencial, de forma que es necesario algún tipo de clasificación para entender mejor el funcionamiento de cada técnica.

Hwang and Yoon (1981) propusieron dividir los métodos MCDM en métodos de toma de decisión multi-atributo (Multi-attribute decision-making, MADM) y métodos de toma de decisión multi-objetivo (Multiobjective decision-making, MODM). En la Figura se puede ver esta clasificación general de los métodos. Los métodos MADM se utilizan para resolver problemas discretos: las alternativas están predeterminadas y los expertos valoran “a priori” cada criterio e indicando la importancia de cada uno de ellos. Los métodos MODM se utilizan para resolver problemas continuos: las alternativas no están predeterminadas, pues son grupos de soluciones igualmente buenas bajo una serie de restricciones, participando los expertos “a posteriori”.

Los métodos MADM, a su vez, se pueden subdividir en función del tipo de información inicial (determinista, estocástica o incierta), o dependiendo de los grupos de decisores (un único grupo o varios grupos). Sin embargo, la clasificación más habitual es la propuesta por Hajkwociz y Collins (2007) y De Brito y Evers (2016) en los siguientes métodos:

  • Los métodos de puntuación directa (scoring methods) son los más simples, basados en evaluar las diferentes alternativas mediante operaciones aritméticas básicas. SAW y COPRAS evalúan las alternativas sumando el valor normalizado de cada criterio por su peso correspondiente. SAW es más antiguo y permite realizar este proceso únicamente cuando se desea maximizar un criterio. COPRAS constituye una evolución de SAW y se aplica tanto para criterios que se desean maximizar como minimizar.
  • Los métodos basados en la distancia (distance-based methods) calculan la distancia entre cada alternativa y un punto concreto. El método GP pretende obtener la alternativa que satisfaga un conjunto de metas, es decir, el punto no es el óptimo, sino aquel que cumpla una serie de condiciones. El método CP trata de obtener aquella alternativa más próxima al hipotético punto óptimo. Los métodos VIKOR y TOPSIS se basan en CP, diferenciándose en la normalización de los criterios. VIKOR tiene en cuenta la distancia a la solución ideal y TOPSIS considera tanto la distancia tanto a la solución ideal como a la solución no ideal.
  • Los métodos de comparación por pares (pairwise comparision methods) son muy útiles para obtener los pesos de los diferentes criterios y evaluar criterios subjetivos comparando las alternativas entre sí. El método AHP fue el primero en desarrollarse y es uno de los métodos más usados en la toma decisiones. ANP es una evolución del AHP que permite usar criterios dependientes entre sí. MACBETH es una alternativa similar al AHP en cuanto a forma, pero con algunas diferencias en cuanto a conceptos.
  • Los métodos de superación (outranking methods) establecen una relación de preferencia entre un conjunto de soluciones donde cada una de ellas muestra un grado de dominación sobre las otras respecto a un criterio. Estos métodos son capaces de tratar con información incompleta y difusa, y permite clasificar las alternativas en función de la relación de preferencia existente entre ellas. Dentro de este grupo se encuentran PROMETHEE y ELECTRE.
  • Los métodos basados en funciones de utilidad o valor (utility/value methods) como MAUT (utilidad) y MAVT (valor), definen funciones que determinan el grado de satisfacción de una alternativa respecto a un criterio. Estas funciones convierten las valoraciones de las alternativas en un grado de satisfacción para cada criterio. Dichas funciones presentan diferentes formas en función de la relación entre la valoración y el grado de satisfacción. MIVES es un derivado de los anteriores en el cual se proporciona las ecuaciones que definen las diferentes funciones de satisfacción.

 

Tabla. Clasificación de los métodos MADM (Penadés-Plà et al., 2016)

A pesar de todo lo anterior, la vida real es compleja. Siempre existe una incertidumbre en las valoraciones o en las comparaciones. Es por ello que muchos de estos métodos utilizan herramientas como la teoría fuzzy, el método de Montecarlo o los números Grey. Además, cuando la toma de decisiones no es individual, suelen existir diferentes grupos con diferentes intereses, con lo que es necesario llegar a un consenso entre ellos. El método Delphi es una herramienta útil para cuando hay diferentes decisores.

Referencias:

Cinelli, M.; Coles, M.; Kirwan, K. Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecol. Indic. 2014, 46, 138–148.

De Brito, M. M.; Evers, M. Multi-criteria decision-making for flood risk management: A survey of the current state of the art. Nat. Hazards Earth Syst. Sci. 2016, 16, 1019–1033.

García-Segura, T.; Penadés-Plà, V.; Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202: 904-915.

Hajkowicz, S.; Collins, K. A review of multiple criteria analysis for water resource planning and management. Water Resour. Manag. 2007, 21, 1553–1566.

Hwang, C. L.; Yoon, K. Multiple attribute decision making: Methods and Applications; 1981.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295.

Zamarrón-Mieza, I.; Yepes, V.; Moreno-Jiménez, J.M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147:217-230.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Técnicas de decisión multicriterio para la educación de ingenieros en sostenibilidad

ABSTRACT

In recent times, a great deal of interest has emerged from different sectors of society towards sustainability and sustainable product design. Decision makers are increasingly encouraged to take into consideration the economic, environmental and social dimensions of reality when dealing with problems. Sustainability is of particular importance in the field of civil engineering, where structures are designed that are long lasting and shall cause significant impacts over a long period of time, such as bridges or dams. Consequently, when addressing a structural design, civil engineers shall account for the three dimensions of sustainability, which usually show conflicting perspectives. Multi-criteria methods allow the inclusion of non-monetary aspects into the design process of infrastructure. In the postgraduate course ‘Predictive and optimisation models for concrete structures’, offered at the Masters in Concrete Engineering of the Universitat Politècnica de València, civil engineering students are taught how to apply such tools within the framework of sustainable design of concrete structures. The present paper conducts a state-of-the-art review of the main multi-criteria decision making methodologies taught in the course in the context of sustainability. Articles are searched in recognized databases, such as SCOPUS and Web of Science. The most significant methods, such as Analytical Hierarchy Process (AHP), Elimination and Choice Expressing Reality (ELECTRE), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) or Complex Proportional Assessment (COPRAS) are systematically discussed, identifying the actual trends concerning the use of such methodologies in the field of civil engineering. The review provides a deep insight in the multi criteria techniques that are most frequently used when assessing sustainability of infrastructure designs.

KEYWORDS

Postgraduate education; multi-criteria decision making; sustainability; structural design; state of the art review

REFERENCE

NAVARRO, I.; MARTÍ, J.V.; YEPES, V. (2018). Multi-criteria decision making techniques in civil engineering education for sustainability. Proceedings of ICERI2018,the 11th annual International Conference of Education, Research and Innovation, Seville (Spain), 12th-14th November 2018, pp. 9798-9807.  ISBN: 978-84-09-05948-5

Descargar (PDF, 207KB)

Las heurísticas en la educación en ingeniería. Aplicación a los sistemas de gestión sostenible de puentes

ABSTRACT

This paper deals with the postgraduate course ‘Predictive and optimisation models for concrete structures’, offered at the Masters in Concrete Engineering of the Universitat Politècnica de València. Within this course, engineering students are introduced into different optimization algorithms, such as simulated annealing, neural networks, genetic algorithms, etc. of application in the automated design of concrete structures of any type. In recent times, such heuristic methods have turned out to be of great interest in the resolution of complex and actual engineering problems, such as the sustainable design and management of structures. This communication presents a case study where the ongoing research of the teaching body is applied so as to find the most sustainable management strategy for a particular bridge system consisting of 7 bridges whose lengths vary between 380 m and 1980 m. The optimization problem here aims to minimize both the economic and environmental life cycle impacts derived from the maintenance of the concrete decks of a bridge network by selecting the adequate maintenance intervals for every deck considering annual budgetary restrictions. A multi-objective simulated annealing algorithm is applied to find the set of Pareto optimal solutions for the presented engineering problem. The environmentally preferable maintenance strategy results in life cycle costs 4.9% greater than those related to the cost-optimal strategy, which in turn results in environmental impacts 5.6% greater than those from the environmentally optimized management option. Results are then compared to the optimal strategies considering a single bridge deck, showing that the optimality at the bridge level does not necessarily lead to a sustainable optimum at the network level. From this it follows that, when optimizing maintenance under budgetary restrictions, the network shall be analysed as a whole, and not as an aggregation of optimal strategies for each individual bridge. The case study presented here shows in a nutshell the close connection between the course curricula of the MSc course and the ongoing research of the teaching and research group.

KEYWORDS

Postgraduate education; applied research; heuristic algorithms; sustainable thinking; bridge management system

REFERENCE

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Heuristics in engineering education. A case study application to sustainable bridge management systems. Proceedings of ICERI2018,the 11th annual International Conference of Education, Research and Innovation, Seville (Spain), 12th-14th November 2018, pp. 9788-9797.  ISBN: 978-84-09-05948-5

Descargar (PDF, 663KB)

Algunas conclusiones de nuestros trabajos en optimización multiobjetivo de puentes

Hoy hace justo un año que realicé mi defensa pública de la plaza de Catedrático de Universidad en el Área de Ingeniería de la Construcción. Tuve en aquel momento la oportunidad de exponer como parte de la prueba un trabajo de investigación, basado fundamentalmente en los trabajos realizados por nuestro grupo. Se trataba del diseño eficiente de puentes de hormigón postesado de sección en cajón unicelular mediante una optimización multiobjetivo basada en criterios sostenibles. Las conclusiones que aquí se resumen son fruto de varios estudios previos para examinar el uso de cementos con adiciones, la importancia de la carbonatación en la captura de CO2 y en la durabilidad, la reutilización del hormigón, el uso del hormigón autocompactante, los diseños sostenibles de puentes artesa prefabricados de hormigón pretensado, la relación entre el coste y el CO2, así como la energía, los diseños sostenibles de pasarelas de hormigón postesado, los algoritmos heurísticos y las técnicas de toma de decisiones para analizar y reducir el conjunto óptimo de Pareto. Los resultados de estos estudios previos fueron la base del trabajo presentado. Se planteó una optimización multiobjetivo basada en criterios económicos, ambientales, de durabilidad y de seguridad. Además, se formuló una herramienta informática que permitió el uso de software comercial para realizar el análisis del puente con elementos finitos, en un proceso de diseño automático. Al final de la entrada os he dejado referencias directamente relacionadas con la investigación de nuestro grupo en optimización multiobjetivo y toma de decisión multicriterio de puentes a lo largo de su ciclo de vida.

En primer lugar, se estudió el diseño óptimo de puentes de carreteras de hormigón postesado de sección en cajón considerando los costes, las emisiones de CO2 y el coeficiente de seguridad global. Para aplicar la metodología propuesta, se realizó un estudio de caso de un puente continuo de tres vanos situado en una zona costera. Los resultados mostraron que tanto el coste económico como la reducción de las emisiones de CO2 conducen a una reducción en el consumo de material y por lo tanto, son objetivos alineados. Ello indica que la optimización de costes es un buen enfoque para lograr un diseño respetuoso con el medio ambiente. El análisis de la frontera de Pareto indicó las variables más eficientes para mejorar la seguridad con el coste mínimo y las emisiones de CO2. Dado que el coste y las emisiones estaban estrechamente relacionados, el desafío se tradujo en la conversión de las limitaciones estructurales de seguridad y durabilidad en funciones objetivo. Este enfoque permitió encontrar múltiples soluciones alternativas que, con un incremento muy pequeño en el coste, consiguen mayor seguridad y durabilidad. Además, se destacó la eficiencia del aumento de la resistencia y del recubrimiento del hormigón para prolongar la vida útil. La frontera de Pareto se utilizó posteriormente para seleccionar planes de mantenimiento del puente óptimos, basados en su nivel inicial de seguridad y durabilidad. Este planteamiento es consistente con el argumento de que el proceso de deterioro puede causar una reducción en la seguridad estructural. Este estudio permitió analizar las ventajas que presenta un diseño optimizado para prolongar la vida útil de la estructura y mejorar su seguridad. Se llevó a cabo una optimización de la vida útil sostenible a través de un enfoque probabilístico. El plan de mantenimiento óptimo tiene como objetivo minimizar los impactos económicos, ambientales y sociales mientras se satisface el objetivo de fiabilidad durante una vida útil. Finalmente, se compararon los costes del ciclo de vida y las emisiones entre las distintas alternativas.

En paralelo, se desarrolló un metamodelo basado en redes neuronales, para reducir el tiempo de cálculo. Las ANNs se entrenaron para predecir la respuesta estructural en términos de los estados límite en función de las variables de diseño, sin necesidad de un análisis completo del puente. Se propuso una metaheurística mejorada basada en la búsqueda de la armonía multiobjetivo. Se mejoró la diversificación y la intensificación en la búsqueda de soluciones para mejorar la convergencia. Finalmente, se propuso una técnica de toma de decisiones llamada AHP-VIKOR bajo incertidumbre para reducir la frontera de Pareto a un conjunto de soluciones preferidas. Este método permite al decisor introducir fácilmente las preferencias en un criterio específico sujeto a incertidumbre.

Las conclusiones generales de este trabajo de investigación fueron las siguientes:

  • La minimización de costes y emisiones de CO2 conduce a un diseño de puente que favorece la eficiencia estructural minimizando la cantidad de materiales. La inclusión del objetivo de seguridad destaca las mejores variables para mejorar la seguridad y por lo tanto, la robustez de cada variable para el diseño eficiente. El objetivo de durabilidad, evaluado como el inicio de la corrosión, estableció la mejor combinación de resistencia y recubrimiento del hormigón para alcanzar un objetivo de vida de servicio.
  • El canto, el espesor de la losa inferior, las armaduras activas y la armadura pasiva longitudinal son las variables principales que proporcionan la resistencia a flexión. Sin embargo, no se recomienda un incremento de espesor de la losa superior y del ala para mejorar la seguridad estructural, pues conduce a pesos propios adicionales. Para mejorar el comportamiento a flexión transversal, se incrementa el espesor del arranque del ala y se disminuye la longitud del ala. La inclinación del alma puede ser constante, pues tanto la profundidad como la anchura de inclinación del alma aumentan en paralelo para mejorar la seguridad. El espesor del alma no es la variable más económica para aumentar la resistencia a esfuerzo cortante; por el contrario, se incrementa la armadura de refuerzo.
  • El uso de hormigón de alta resistencia puede reducir el canto o la cantidad de armadura. Sin embargo, las restricciones relativas a los estados límite de servicio y las cuantías mínimas de armadura condicionan estas variables. Por lo tanto, el hormigón de alta resistencia no es la mejor solución para mejorar la seguridad. Sin embargo, este resultado cambia cuando se tiene en cuenta el ciclo de vida. Un incremento en la resistencia del hormigón alarga la vida útil de servicio, pues se retrasa el inicio de la corrosión. Por otro lado, el incremento en la resistencia del hormigón presenta mejores resultados a lo largo del ciclo de vida para diseños con inicios de corrosión similares, en comparación con el incremento del recubrimiento de hormigón.
  • Un diseño inicial que incorpore la durabilidad como objetivo y no como restricción resulta especialmente beneficioso si se quiere alargar el ciclo de vida de la estructura. Diseños que retrasen el inicio de la corrosión implican un menor coste del ciclo de vida, incluso con costes iniciales más altos. Sin embargo, un nivel de seguridad inicial más alto no siempre ofrece como resultado un mejor rendimiento del ciclo de vida.

 

A partir de los estudios, se extrajeron estas conclusiones específicas:

  • El empleo de cementos con adiciones conlleva una reducción en la captura de carbono y en la vida útil debido a la carbonatación. A pesar de esto, los cementos con adiciones disminuyen las emisiones anuales. El hormigón autocompactante no es aconsejable desde el punto de vista medioambiental. En términos de coste, se obtienen pocas diferencias entre el hormigón vibrado convencional y el hormigón autocompactante.
  • Es fundamental reutilizar el hormigón como gravas en material de relleno para lograr una completa carbonatación y reducir las emisiones de CO2.
  • En el puente postesado estudiado, la reducción del coste en 1 euro disminuye las emisiones de CO2 en 2,34 kg. En cuanto al coeficiente de seguridad global, se obtienen tres relaciones lineales entre el coste y este objetivo. Para aumentar el coeficiente de seguridad global de 1,0 a 1,4, los costes aumentan en 12,5%. Después de este punto, los resultados de mejora de la seguridad son más caros. Con respecto al inicio de la corrosión, con pequeños incrementos de coste se consiguen retrasos significativos.
  • El estado límite de descompresión es restrictivo y condiciona variables como el canto y el número de torones de pretensado. Dado que estas variables también influyen en la flexión, este estado límite no es restrictivo hasta que el coeficiente de seguridad global alcanza 1,4.
  • La relación entre el coste y el CO2 se mantiene para todos los niveles de seguridad y por lo tanto, la optimización de costes es un buen enfoque para minimizar las emisiones independientemente del nivel de seguridad.
  • En estructuras con un espacio de soluciones factibles pequeños, el coste y la emisión se encuentran muy relacionados. Sin embargo, las estructuras de hormigón armado, que presentan espacios factibles mayores, conducen a diseños medioambientales con mayores secciones, mayor cantidad de hormigón, menor acero y horigones con la menor resistencia característica.
  • El plan de mantenimiento óptimo es aquel que presenta menos operaciones que reparen simultáneamente todas las superficies deterioradas. A pesar de que existe un deterioro diferente para cada una de las caras de la sección expuesta, los resultados recomiendan reparar todas las superficies conjuntamente. Las operaciones de mantenimiento deben programarse al mismo tiempo para reducir el impacto de las interrupciones del tráfico.
  • Por lo general, la optimización del coste de mantenimiento también conduce a la minimización de las emisiones de CO2. Esto se atribuye al hecho de que tanto las emisiones como los costes pretenden reducir el número total de operaciones de mantenimiento. Sin embargo, la optimización de costes intenta retrasar la fecha de la primera reparación. Por lo tanto, la determinación del número de operaciones y el retraso de la primera fecha de mantenimiento, reduce también el coste al mínimo.
  • Las redes neuronales constituyen una buena herramienta para predecir la respuesta de la estructura, proporcionar una buena dirección de búsqueda y reducir el coste computacional. Sin embargo, al final del proceso de búsqueda, se necesitan modelos de análisis completo para converger más cerca de la frontera de Pareto real.
  • La transición de la diversificación a la intensificación, que elimina progresivamente la combinación de soluciones y la selección aleatoria, mejora el rendimiento del algoritmo.
  • El método AHP-VIKOR bajo incertidumbre redujo el conjunto de Pareto a pocas soluciones preferidas. Para este estudio de caso, se prefieren las soluciones con el mayor tiempo de inicio de la corrosión, pues la mejora de la durabilidad no implica grandes diferencias de costes.

 

Referencias:

  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015
  • NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:1016/j.eiar.2018.10.001
  • GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202: 904-915. DOI:1016/j.jclepro.2018.08.177
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:1016/j.eiar.2018.05.003
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI:1016/j.jclepro.2018.03.022
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:3390/su10030845
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. DOI:3390/su10030685
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534. DOI:1016/j.jclepro.2017.12.140
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. DOI:1007/s00158-017-1653-0
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013
  • PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. DOI:10.3390/su9101864
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53. DOI:10.1016/j.eiar.2017.02.004
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72. DOI:10.1016/j.eiar.2017.08.003
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI:10.1016/j.acme.2017.02.006
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI:10.1016/j.engstruct.2016.07.012
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI:10.1016/j.jclepro.2016.02.024
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridgesEngineering Structures, 92:112-122. DOI:10.1016/j.engstruct.2015.03.015
  • LUZ, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V. (2015). Design of open reinforced concrete abutments road bridges with hybrid stochastic hill climbing algorithms. Informes de la Construcción, 67(540), e114. DOI:10.3989/ic.14.089
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058
  • YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. DOI:10.1016/j.acme.2015.05.001
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI:10.1016/j.autcon.2014.10.013
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2014). Automated design of prestressed concrete precast road bridges with hybrid memetic algorithms. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(3), 145-154. DOI:10.1016/j.rimni.2013.04.010
  • GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7):1190 – 1205. DOI: 1590/S1679-78252014000700007
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI:10.1007/s11367-013-0614-0
  • MARTÍ-VARGAS, J.R.; FERRI, F.J.; YEPES, V. (2013). Prediction of the transfer length of prestressing strands with neural networks. Computers and Concrete, 12(2):187-209. DOI:10.12989/cac.2013.12.2.187
  • TORRES-MACHÍ, C.; YEPES, V.; ALCALA, J.; PELLICER, E. (2013). Optimization of high-performance concrete structures by variable neighborhood search. International Journal of Civil Engineering, 11(2):90-99.
  • MARTÍNEZ-MARTÍN, F.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics, 45(6): 723-740. DOI: 12989/sem.2013.45.6.723
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48:342-352. DOI:10.1016/j.engstruct.2012.09.014
  • MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering, 13(6):420-432. DOI:10.1631/jzus.A1100304
  • PEREA, C.; YEPES, V.; ALCALÁ, J.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2010). A parametric study of optimum road frame bridges by threshold acceptance. Indian Journal of Engineering & Materials Sciences, 17(6):427-437.
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88(5-6): 375-386. DOI:10.1016/j.compstruc.2009.11.009
  • YEPES, V.; DÍAZ, J.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2009). Statistical Characterization of Prestressed Concrete Road Bridge Decks. Revista de la Construcción, 8(2):95-109.
  • PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Advances in Engineering Software, 39(8): 676-688. DOI:10.1016/j.advengsoft.2007.07.007

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tatiana García Segura, Junior Award IALCCE 2018

Es un honor haber dirigido la tesis doctoral de Tatiana García Segura “Efficient design of post-tensioned concrete box-girder road bridges based on sustainable multi-objective criteria”. Esta joven doctora ingeniera de caminos acaba de recibir el Premio Internacional al mejor investigador joven del mundo en el ámbito del análisis de estructuras e infraestructuras a lo largo de su ciclo de vida. Se trata del Junior Award IALCCE 2018, que premia al mejor investigador, con una edad menor a 42 años. Es la primera vez que un español gana este galardón, lo cual es un hito para la Escuela de Ingenieros de Caminos de Valencia y para la Universitat Politècnica de València.

Tatiana, que fue becaria FPI del proyecto de investigación HORSOST e investigadora del ICITECH,  ya ganó el primer premio Cemex en sostenibilidad por su trabajo fin de máster “Métricas para el diseño eficiente de estructuras con hormigones no convencionales basados en criterios sostenibles multiobjetivo”Máster Universitario en Ingeniería del Hormigón, desarrollado dentro del . En este momento, es profesora ayudante doctor en el Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil, e investigadora en los proyectos BRIDLIFE y DIMALIFE. Un futuro muy brillante para esta joven investigadora y profesora.

En la fotografía, de izquierda a derecha, Tatiana García Segura, Dan M. Frangopol y Víctor Yepes

A continuación os dejo un listado de los artículos científicos indexados en revistas de fuerte impacto del JCR donde ha participado Tatiana hasta este momento.

Referencias:

  1. GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty.  Journal of Cleaner Production, 202:904-915. https://doi.org/10.1016/j.jclepro.2018.08.177
  2. PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. doi:10.3390/su10030685 (link)
  3. SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects.  Journal of Cleaner Production, 176:521-534. https://doi.org/10.1016/j.jclepro.2017.12.140
  4. PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.;  YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. Doi:10.3390/su9101864 (link)
  5. GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  6. GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. doi:10.1007/s00158-017-1653-0
  7. YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI: 10.1016/j.acme.2017.02.006
  8. MOLINA-MORENO, F.; GARCÍA-SEGURA; MARTÍ, J.V.; YEPES, V. (2017). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms. Engineering Structures, 134:205-216. DOI: 10.1016/j.engstruct.2016.12.042
  9. ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048. DOI: 10.1016/j.jclepro.2016.10.085
  10. PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295
  11. GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  12. MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  13. GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  14. YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. doi:10.1016/j.acme.2015.05.001
  15. YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  16. GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithmLatin American Journal of Solids and Structures,  11(7):1190 – 1205. ISSN: 1679-7817. (link)
  17. GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI 10.1007/s11367-013-0614-0 (link) (descargar versión autor)

 

Repercusión en la prensa:

https://www.lasprovincias.es/comunitat/mejor-ingeniera-civil-20181109011059-ntvo.html

https://www.lavanguardia.com/local/valencia/20181108/452802983492/una-ingeniera-de-la-upv-gana-un-premio-internacional-de-infraestructura-civil.html

https://www.elperiodic.com/valencia/noticias/592636_tatiana-garcia-primera-ingeniera-espanola-galardonada-international-association-life-cycle-civil-engineering-ialcce.html

https://www.20minutos.es/noticia/3486001/0/profesora-upv-primera-ingeniera-espanola-premiada-por-association-for-life-cycle-civil-engineering/

https://innovadores.larazon.es/es/not/una-espanola-mejor-investigadora-joven-del-mundo-en-infraestructura-civil

https://www.levante-emv.com/comunitat-valenciana/2018/11/08/profesora-upv-mejor-investigadora-joven/1792521.html

https://www.europapress.es/comunitat-valenciana/noticia-profesora-upv-primera-ingeniera-espanola-premiada-association-for-life-cycle-civil-engineering-20181108115129.html

http://www.upv.es/noticias-upv/noticia-10576-tatiana-garcia-es.html