Efectos de las inundaciones en las estructuras de las edificaciones

Figura 1. Efectos de la DANA en Valencia. https://www.diariodesevilla.es/sociedad/catastrofe-inundaciones-valencia-directo_10_2002684877.html

Para comprender los efectos de las inundaciones en las estructuras de las edificaciones y cómo responder ante ellas, es fundamental entender tanto los factores que incrementan la vulnerabilidad de los edificios como las acciones preventivas y correctivas necesarias. Las inundaciones pueden afectar seriamente a las estructuras, dependiendo de la magnitud de las aguas, su salinidad, la saturación del suelo y la calidad de los materiales y prácticas constructivas empleados. La identificación de estos daños requiere evaluaciones técnicas detalladas y precisas. Este conocimiento es útil tanto para los propietarios, los técnicos y el personal de emergencias que deben tomar decisiones rápidas y bien fundamentadas en situaciones críticas.

1. Efectos de las inundaciones en la estructura de las edificaciones

Las inundaciones suponen una amenaza significativa para la integridad de los edificios y pueden afectar a la estructura de diversas maneras. Estos no siempre son visibles de inmediato y pueden empeorar con el tiempo si no se toman medidas correctivas. En las zonas propensas a las inundaciones, los edificios pueden sufrir diversos daños estructurales, como:

  • Socavación y fallos en la cimentación: La erosión causada por la corriente de agua disminuye la estabilidad de los cimientos. Cuando una inundación causa socavones cerca de una edificación, esto afecta directamente a la capacidad portante de los cimientos, ya que se pierde el soporte horizontal y lateral del suelo. Esto puede causar inclinaciones en las estructuras, grietas en los muros y, en casos extremos, el colapso parcial o total del edificio.
  • Erosión del suelo y pérdida de capacidad portante: La capacidad del suelo para soportar cargas se ve reducida debido a la erosión, lo que puede llevar al fallo de la cimentación.
  • Saturación del suelo: La acumulación de agua provoca saturación, lo que aumenta el riesgo de deslizamientos, derrumbes y avalanchas y afecta a la estabilidad del conjunto de cimentación y estructura. El suelo que rodea los cimientos de una edificación, al saturarse con agua, pierde densidad y estabilidad. Este fenómeno es especialmente crítico en áreas cercanas a cuerpos de agua (ríos, lagos o mares), donde el agua puede hacer que el suelo pierda su capacidad de soporte. Esto puede provocar fenómenos como deslizamientos, derrumbes y licuefacción. En casos graves, el terreno bajo la edificación se comporta casi como un líquido, perdiendo su capacidad para soportar el peso de la estructura y poniendo en riesgo su estabilidad.
  • Pérdida de soporte lateral y horizontal: Al disminuir la capacidad portante del suelo, la estructura pierde los soportes laterales y horizontales, lo que compromete su estabilidad y capacidad de carga.
  • Deterioro de los muros exteriores: Cuando el nivel de las inundaciones supera el metro de altura, la descompensación de presiones puede provocar fallos en los muros exteriores..
  • Inestabilidad estructural por impacto de escombros: Los escombros arrastrados por el agua, combinados con la presión hidrostática o hidrodinámica, pueden impactar en elementos estructurales y causar inestabilidad.
  • Aparición de grietas en muros, losas y columnas: Dependerá de la magnitud de la inundación y podría ocasionar daños que van desde reparables hasta irreparables.
  • Daños por capilaridad y humedad en las paredes: El fenómeno de capilaridad permite que el agua suba a través de los materiales porosos de los muros, debilitándolos progresivamente. Este problema es más frecuente en estructuras construidas directamente sobre el suelo sin barreras de impermeabilización o sobrecimientos. El agua absorbida por capilaridad puede afectar a la durabilidad y la resistencia de los materiales, provocando grietas y desprendimientos del revestimiento.
  • Deterioro de materiales de construcción: La exposición al agua contaminada o salina provoca corrosión en los materiales, especialmente en elementos metálicos no protegidos, galvanizados o inoxidables.
Figura 2. Presión hidrostática.

Para reducir estos riesgos, las nuevas construcciones en zonas de inundación deben ser diseñadas y construidas con especificaciones a prueba de inundaciones. Estas mejoras en la resistencia estructural no solo reducen el riesgo de fallos, sino que también disminuyen significativamente la probabilidad de víctimas en escenarios de inundación.

2. Problemática: daños y consecuencias

  • Daños estructurales: Las inundaciones generan múltiples efectos en la estabilidad de los edificios, afectando su integridad estructural. Entre estos daños destacan:
    • Presión hidrostática: La acumulación de agua en el perímetro de la edificación ejerce presión horizontal sobre los muros, proporcional al calado de la inundación. Este tipo de presión puede levantar los suelos o cimentación cuando el agua se acumula de un solo lado del edificio. En casos donde el agua ingresa al edificio, esta presión se neutraliza, pero introduce una carga gravitatoria que afecta elementos horizontales como forjados y soleras, pudiendo conducir al colapso de la estructura.
    • Presión hidrodinámica: El flujo de agua de un río desbordado puede alcanzar velocidades considerables y generar impactos en los muros, los cuales deben ser diseñados para soportar estas cargas dinámicas.
    • Impactos de objetos arrastrados: El agua arrastra escombros, vehículos y mobiliario urbano que impactan contra la edificación, generando daños considerables en sus elementos​.
    • Durabilidad y corrosión: El agua, especialmente si contiene minerales y sales, puede corroer el acero de refuerzo en estructuras de hormigón, debilitando su capacidad de carga. En materiales como la madera, la humedad reduce significativamente su resistencia estructural. Estos daños son más difíciles de detectar cuando los elementos están cubiertos o enterrados.
    • Erosión del material y del terreno: La exposición prolongada al agua, especialmente si el flujo es constante, puede erosionar materiales como ladrillo y bloque, deteriorando el mortero de unión y comprometiendo la estabilidad del edificio. El terreno también se ve afectado, sobre todo en su capacidad de soporte, agravando el riesgo de asentamientos diferenciales en la cimentación​.
  • Daños constructivos y estéticos: Las inundaciones afectan no solo a los elementos estructurales, sino también a los acabados y componentes funcionales de los edificios:
    • Daños en cerramientos y tabiques: Los paramentos exteriores e interiores pueden experimentar corrosión en elementos metálicos, pérdida de adhesión en revestimientos y daños en aplacados​.
    • Pérdida de estabilidad en fachadas y tabiques: Los impactos de objetos arrastrados por el agua o la reducción en las propiedades de los materiales debido a la humedad pueden hacer que las fachadas o tabiques colapsen​.
    • Daños en pavimentos: La prolongada presencia de agua produce abombamientos y deformaciones en los suelos, especialmente en los pavimentos de madera, causando el levantado de los materiales de agarre​.
    • Desperfectos estéticos: La humedad genera manchas y decoloración en superficies, mientras que los impactos pueden provocar la rotura de elementos ornamentales​.
    • Disfunción de instalaciones: Las instalaciones eléctricas, redes de saneamiento, sistemas de agua potable y equipos de ventilación y climatización pueden colapsar o fallar debido a la exposición a la humedad y obstrucción por residuos, lo cual compromete la funcionalidad del edificio​.
  • Daños al contenido: El ingreso de agua en el interior de un edificio provoca, inevitablemente, daños en su contenido, desde pérdidas materiales como aparatos electrónicos, mobiliario y documentos, hasta daños económicos significativos en edificaciones comerciales e industriales. Además, los edificios que almacenan bienes sensibles, como bibliotecas o museos, pueden sufrir daños irreparables en sus colecciones culturales o documentales.
  • Daños funcionales: Las inundaciones pueden afectar gravemente al funcionamiento de los edificios, especialmente en instalaciones críticas como hospitales o estaciones de bomberos, donde cualquier interrupción implica riesgos adicionales. Esto incluye la interrupción de servicios esenciales que comprometen la capacidad de respuesta en situaciones de crisis, la inactividad prolongada en edificaciones comerciales o industriales que ocasiona pérdidas económicas y la obstrucción de vías de acceso y evacuación, lo que dificulta las operaciones de emergencia y la seguridad de los ocupantes.
  • Daños relacionados con el entorno: Además de los daños directos a la estructura, las inundaciones pueden afectar a la parcela circundante y a los elementos del entorno inmediato, provocando erosión y desgaste en áreas sin edificación, como jardines o zonas comunes, donde se acumulan sedimentos y residuos que deterioran el terreno, el mobiliario y la vegetación. Asimismo, elementos del entorno, como vehículos o vegetación arrastrada, pueden afectar a la edificación y provocar asientos diferenciales por los desplazamientos del terreno. Finalmente, los residuos y contaminantes de instalaciones industriales o agrícolas arrastrados por el agua pueden afectar tanto al entorno natural como a la propia edificación.
  • Daños a largo plazo: Además de los daños inmediatos, las inundaciones pueden causar problemas que se manifiestan con el tiempo, como la corrosión en elementos estructurales debido a la humedad residual en materiales como el hormigón, lo que debilita las armaduras de acero y compromete la estructura gradualmente; también pueden surgir problemas de humedad persistente en áreas de difícil acceso, como los forjados sanitarios, donde el agua estancada crea condiciones favorables para el crecimiento de hongos y otros problemas fitosanitarios.

Estos puntos resaltan la complejidad de los efectos de una inundación en las edificaciones y su entorno, subrayando la importancia de contar con medidas preventivas y de rehabilitación efectivas para mitigar las consecuencias.

3. Identificación de los posibles daños en edificaciones debido a inundaciones

Este capítulo detalla los daños que pueden producirse en una edificación cuando ocurre una inundación. Abarca la identificación de puntos vulnerables, la inspección de elementos de valor, y la evaluación de daños en función del nivel de agua.

  • Identificación e inventario de puntos débiles: La ubicación y el riesgo del edificio son determinantes para identificar sus puntos débiles y reducir la vulnerabilidad ante las inundaciones. Los principales puntos de entrada del agua en las construcciones son los defectos en el mortero de ladrillo o mampostería, que facilitan la infiltración; las grietas en fachadas y juntas estructurales, especialmente en las uniones entre materiales diferentes, como paredes y losas; las ventanas y puertas, donde las fallas en el sellado y el contacto de los marcos permiten filtraciones; y las escaleras y entradas a sótanos, que al estar en niveles inferiores favorecen la acumulación de agua.
  • Comprobación de estabilidad estructural: Es crucial evaluar la capacidad de resistencia de los elementos estructurales a las fuerzas del agua, ya que las presiones desiguales pueden dañar paredes y pisos. La diferencia en la rapidez de entrada y salida del agua entre el exterior y el interior del edificio puede generar presión adicional, ocasionando daños estructurales importantes en muros y suelos.
  • Inspección de los elementos de valor del edificio: Realizar un inventario de los elementos importantes en el edificio permite diagnosticar daños potenciales y planificar su aseguramiento. Estos elementos se clasifican en: seres vivos (personas, mascotas y animales en actividades agropecuarias), continente (que abarca la estructura y el equipamiento, como cimientos, muros, sistemas de electricidad, agua y ventilación) y contenido (que varía según el uso del edificio e incluye mobiliario, documentos y materiales peligrosos).
  • Diagnóstico de daños en función de la altura del agua: El nivel del agua en el edificio influye directamente en el grado de daño. Ejemplos de daños según el nivel son:
    • 0 a 0,3 m (debajo del nivel de la planta baja): Posibles erosiones en cimientos, corrosión en elementos metálicos, acumulación de limo, y formación de moho.
    • 0,3 a 0,5 m: Saturación de revestimientos de paredes y suelos, problemas de humedad, y daños en puertas internas y externas.
    • Más de 0,5 m: Daños estructurales graves debido a la presión del agua, corrosión y fallos generalizados en sistemas eléctricos y sanitarios.

Estos daños muestran la importancia de realizar un diagnóstico exhaustivo para implementar medidas de mitigación eficientes, que garanticen la seguridad estructural del edificio y la protección de sus ocupantes y contenido.

Figura 3. Inventario de puntos de entrada del agua de inundación. Fuente: Preparing for Flood, Interim guidance for improving the flood resistance of domestic and small business properties. Office of the Deputy Prime Minister. 2003. Environment Agency – UK.

4. Factores de vulnerabilidad que agravan los daños por inundaciones

Las características constructivas y de mantenimiento de una edificación influyen en su vulnerabilidad frente a las inundaciones. Algunos factores clave incluyen:

  • Ausencia de sobrecimiento e impermeabilización: El sobrecimiento es una barrera de 30-50 cm de altura que se coloca en la base de los muros, y su función es proteger contra la humedad que asciende del suelo. La ausencia de este elemento en una construcción permite que el agua entre en contacto directo con las paredes, lo que facilita la absorción de agua por capilaridad. Además del sobrecimiento, la impermeabilización de cimientos y muros de la planta baja es vital para prevenir que el agua dañe las estructuras.
  • Calidad de los materiales: Cada material de construcción reacciona de manera distinta a la exposición prolongada al agua. La calidad del cemento, la arena y otros materiales utilizados en la construcción de los bloques y los cimientos influye en la resistencia de la edificación frente a las inundaciones. Los materiales de baja calidad se desintegran más rápidamente cuando entran en contacto con el agua. En áreas con edificaciones antiguas de tapial, por ejemplo, estos tienden a disolverse tras un contacto prolongado con el agua, provocando la descomposición de la estructura. El bahareque, compuesto tradicionalmente por madera, cañas y barro, presenta baja resistencia a la humedad y se deteriora rápidamente, con desprendimientos de revestimiento y deformaciones en la estructura de madera o caña, lo que puede causar inclinaciones o incluso el desplome de las viviendas. En el caso de la mampostería, aunque aparenta ser resistente, los bloques de cemento, por su porosidad y la falta de cocción de algunos materiales, son vulnerables al agua. La humedad puede deteriorar las primeras hiladas, debilitar la base y provocar el desplome parcial o total de la estructura, especialmente en zonas donde los bloques son de baja calidad o con una proporción insuficiente de cemento.
  • Errores en la construcción: En algunas construcciones, se cometen errores técnicos que comprometen la estabilidad de la estructura, especialmente en zonas inundables. Por ejemplo, el uso incorrecto de aparejos en mampostería o la falta de conocimientos técnicos en la ejecución de los cimientos puede resultar en problemas estructurales graves cuando la edificación enfrenta una inundación.

5. Medidas preventivas para minimizar daños en situaciones de inundación

La implementación de medidas preventivas ayuda a minimizar el impacto de las inundaciones en las edificaciones. Estas son algunas acciones recomendadas:

  • Inspección y mantenimiento regulares: Es crucial que las edificaciones en zonas propensas a inundaciones reciban mantenimiento constante y revisiones estructurales periódicas. Las inspecciones técnicas pueden identificar signos de desgaste o debilidades estructurales antes de que se conviertan en problemas graves. Esto incluye revisar cimientos, paredes y elementos de soporte clave.
  • Empleo de materiales resistentes al agua: Al construir o rehabilitar una vivienda en una zona propensa a las inundaciones, se recomienda usar materiales menos porosos y resistentes al agua. Asimismo, en áreas vulnerables, se recomienda aplicar revestimientos y pinturas impermeables en paredes y cimientos para evitar la absorción de humedad.
  • Adecuación del terreno y del sistema de drenaje: El sistema de drenaje del terreno circundante a una edificación es fundamental para evitar que el agua se acumule y afecte a los cimientos. En zonas propensas a las inundaciones, es importante crear canales de drenaje y pendientes que faciliten la salida del agua hacia áreas de menor riesgo.

6. Recomendaciones de emergencia para responder a inundaciones en edificaciones

En caso de inundación, estas son algunas recomendaciones prácticas para garantizar la seguridad de las personas y proteger, en la medida de lo posible, la estructura del edificio:

  • Inspección inmediata de daños: Una vez que el nivel del agua haya descendido, es fundamental realizar una inspección detallada del edificio para identificar daños visibles y ocultos. Los técnicos deben evaluar los cimientos y la estabilidad de las paredes para identificar signos de debilitamiento estructural que puedan suponer un riesgo.
  • Secado y limpieza de estructuras: Es crucial crucial eliminar el agua acumulada y permitir que las estructuras afectadas se sequen. El secado evita que la humedad siga dañando los materiales de construcción. Además, se debe limpiar la suciedad y los restos dejados por la inundación, ya que estos pueden acelerar el deterioro de los materiales.
  • Refuerzo y reparación de cimientos y paredes: Si las inspecciones revelan daños en los cimientos o paredes, es necesario realizar refuerzos inmediatos para evitar colapsos. Los cimientos debilitados pueden reforzarse con elementos estructurales adicionales y las paredes pueden requerir tratamientos impermeabilizantes o refuerzos de mampostería.

Conclusión

Entender los efectos de las inundaciones en las edificaciones es fundamental para aplicar medidas de prevención y reparación efectivas. Estos eventos pueden causar daños severos en la estructura, la estabilidad y el contenido de los edificios, lo que subraya la necesidad de realizar un diagnóstico preciso y de llevar a cabo acciones correctivas. La identificación de las áreas vulnerables, junto con el uso de materiales adecuados y sistemas de drenaje eficientes, es esencial para reducir los riesgos. Asimismo, el mantenimiento regular y una respuesta rápida ante las inundaciones son cruciales para proteger tanto la seguridad de los ocupantes como la integridad del edificio. La implementación de técnicas constructivas apropiadas mejora la resistencia de las estructuras frente a estos desastres.

A continuación, dejo algunos documentos que creo que pueden ser de interés.

Descargar (PDF, 24.19MB)

Descargar (PDF, 50.33MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Valencia frente a la amenaza de una nueva inundación: análisis, antecedentes y estrategias para mitigar el riesgo

https://www.rtve.es/noticias/20241030/catastrofico-temporal-valencia-lluvia-dana/16310046.shtml

Ante los acontecimientos catastróficos que estamos viviendo en Valencia como consecuencia de la DANA, he querido publicar un resumen de un informe del año 2014 denominado “Actualización del Plan Sur de Valencia. Estudio informativo acerca de los riesgos de que Valencia experimente una nueva inundación catastrófica“. Este resumen resalta los riesgos de que Valencia experimente una nueva inundación catastrófica basándose en el análisis del «Plan Sur de Valencia» y en las características geográficas, climáticas e históricas de la ciudad y su entorno. Aunque es de 2014, creo que no ha perdido vigencia, aunque estoy convencido de que en estos últimos 10 años se ha mejorado la información al respecto. El conocimiento se tiene y está claro lo que hay que hacer. Falta la voluntad de priorizar las actuaciones públicas.

Introducción y antecedentes

Valencia ha sido históricamente vulnerable a las inundaciones debido a su ubicación geográfica y la morfología de su entorno. Desde su fundación en el año 138 a. C., en una terraza del río Turia cercana a su desembocadura en el Mediterráneo, la ciudad ha soportado las crecidas de su principal cauce fluvial. Este asentamiento, que proporcionaba ventajas en términos de acceso al agua y a tierras cultivables, también expuso a la ciudad al riesgo de avenidas debido al régimen torrencial del Turia. Las crecidas y la sedimentación del río han modelado la región, elevando el suelo de Valencia en más de cinco metros y configurando un entorno altamente vulnerable.

Las primeras crónicas detalladas de inundaciones en Valencia datan del siglo XIV, cuando los registros empezaron a documentar las crecidas del Turia y sus efectos devastadores en la ciudad y las áreas circundantes. En estos registros se identifican 24 episodios de inundaciones graves entre 1321 y 1957, con un periodo de recurrencia aproximado de 27 años. Este historial de avenidas sugiere que, en ausencia de intervenciones significativas, la probabilidad de nuevas inundaciones se mantiene elevada.

Tras la gran riada de 1957, que causó cientos de muertes y pérdidas materiales significativas, las autoridades emprendieron la construcción de un nuevo cauce del río Turia con el fin de desviar el flujo de agua y reducir los riesgos de inundación en la ciudad. Sin embargo, estudios recientes del grupo «Impulso a Valencia» indican que las medidas adoptadas, aunque efectivas en parte, podrían ser insuficientes ante una avenida similar o superior a la de 1957.

Climatología y fenómeno de la gota fría

La Comunidad Valenciana posee un clima mediterráneo con marcada variabilidad en las precipitaciones, influido tanto por la orografía de la región como por las condiciones atmosféricas del Mediterráneo. La disposición de las montañas en la franja litoral y prelitoral intensifica el efecto de convección y precipitación en ciertos episodios. Así, Valencia se ve expuesta a lluvias torrenciales, que se concentran principalmente en los meses de otoño.

Una característica fundamental del clima valenciano son los episodios de «gota fría» o DANA (Depresión Aislada en Niveles Altos). Este fenómeno se produce cuando masas de aire frío en altura interactúan con aire cálido y húmedo del Mediterráneo, lo que genera precipitaciones intensas en cortos intervalos de tiempo. La situación se agrava cuando las lluvias coinciden con fuertes temporales marinos, que elevan el nivel del mar y dificultan la evacuación del caudal fluvial en la desembocadura del Turia.

Durante el periodo 1971-2000, la región registró más de 300 días con lluvias superiores a 100 mm y 16 episodios con precipitaciones que superaron los 300 mm en 24 horas. Estas intensas precipitaciones son capaces de desbordar el cauce del Turia, cuya capacidad máxima actual se estima en 3700 m³/segundo. Estos episodios de lluvias extremas, junto con el cambio climático, que eleva las temperaturas del mar, aumentan la frecuencia y la gravedad potencial de estos eventos.

Además, Valencia ocupa el tercer puesto a nivel mundial en exposición a lluvias torrenciales, después de dos áreas tropicales. Esta situación climatológica particular exige una infraestructura adecuada para mitigar los riesgos de inundación y proteger a la población ante el impacto de una avenida extrema.

Hechos históricos de inundación en Valencia

Desde tiempos romanos, las crecidas del Turia han sido un elemento constante en la vida de la ciudad. Ya en la época medieval, la distribución espacial del agua desbordada afectaba a zonas como Campanar, Marxalenes y el centro urbano. A lo largo de la historia, las murallas y defensas de la ciudad se construyeron tanto para proteger Valencia de los ataques como para contener las aguas del Turia. Durante la época de Pedro el Ceremonioso, se levantó una muralla septentrional con el propósito de evitar la entrada de las aguas en la ciudad, pero las grandes crecidas, como la de 1589, mostraron que incluso estas defensas eran insuficientes.

Entre 1321 y 1957 se documentaron 24 grandes avenidas, que devastaron el entorno urbano y las poblaciones cercanas. La riada de 1957 se recuerda como la peor, cuyo caudal inundó extensamente el área urbana y dejó Valencia sin un abastecimiento adecuado durante días. Este suceso marcó un punto de inflexión en la gestión del riesgo de inundación, lo que dio lugar a la construcción del «Nuevo Cauce» en 1969.

Sin embargo, el Plan Sur y el nuevo trazado del cauce, aunque eficaces en parte, no garantizan la protección completa. El informe estima que el actual cauce del Turia podría no soportar una riada de la magnitud de la de 1957, lo que vuelve crítica la necesidad de fortalecer las defensas fluviales y estudiar a fondo la capacidad de avenamiento actual.

Análisis de la Riada de 1957

La riada de 1957 es un evento de referencia para comprender la magnitud del riesgo al que Valencia está expuesta. En un día de octubre, las intensas lluvias descargaron precipitaciones sin precedentes sobre la cuenca del Turia, y el caudal del río alcanzó los 3700 m³/segundo, según cálculos de la época, aunque se estima que pudo haber sido incluso mayor. Las inundaciones resultantes cubrieron grandes extensiones de la ciudad, causando la pérdida de vidas, el desplazamiento de miles de personas y la destrucción de infraestructuras básicas.

El «Nuevo Cauce» se diseñó para un caudal de 5000 m³/segundo; sin embargo, su capacidad actual se ha recalculado en 3700 m³/segundo, lo que iguala el caudal de la riada del 57, según los registros de la Confederación Hidrográfica del Júcar. Así, si una avenida semejante o mayor ocurriera, el cauce del Turia se desbordaría, lo cual podría provocar una inundación a gran escala en la zona urbana y poner en riesgo nuevamente a miles de personas y una vasta área de la ciudad.

Propuestas de actuación para la mitigación de riesgos

El informe sugiere una serie de propuestas para mitigar los riesgos de inundación y aumentar la resiliencia de Valencia ante avenidas extremas:

  1. Reevaluación del cauce y mejoras estructurales: el primer paso consiste en analizar la capacidad real de drenaje del Turia desde Loriguilla hasta su desembocadura. Esto requiere actualizar las infraestructuras, con un énfasis especial en el tramo de Quart de Poblet, donde comienza el nuevo cauce. Además, sería necesario reforzar la mota que separa el viejo cauce del nuevo, pues si esta barrera fuera sobrepasada o se rompiera, Valencia quedaría gravemente expuesta a una nueva riada.
  2. Laminación de avenidas y protección ambiental: en la cuenca baja del Turia, se propone un plan de reforestación y mantenimiento de barrancos que ayude a regular las avenidas y reducir la velocidad de escorrentía. Una infraestructura de laminación, como un lago fluvial o un embalse en Vilamarxant, permitiría controlar el caudal y reducir los picos de crecida que llegan a Valencia. Este enfoque, que combina obras de infraestructura con medidas de protección ambiental, busca no solo proteger la ciudad, sino también minimizar el impacto en los ecosistemas y la zona agrícola de la cuenca baja.
  3. Mejoras en la desembocadura y mitigación del efecto dique: es necesario rediseñar la desembocadura del Turia para reducir el «efecto dique» que ocurre cuando el temporal marino obstruye la evacuación del agua hacia el mar. Este fenómeno, en el que las olas del Mediterráneo superan los cinco metros de altura, impide que el cauce fluya libremente y aumenta el riesgo de inundación en las zonas bajas de la ciudad. Un rediseño adecuado de la desembocadura permitiría una evacuación más eficiente del caudal fluvial incluso en condiciones de temporal.
  4. Red de monitorización y sistema de alerta temprana: dada la velocidad y fuerza de las avenidas en Valencia, es crucial establecer una red de estaciones pluviohidrológicas en toda la cuenca del Turia que permita un monitoreo constante y en tiempo real. Este sistema debería estar integrado con un mecanismo de alerta temprana, de modo que las autoridades y la población puedan tomar medidas de protección antes de que ocurra un evento catastrófico. La experiencia de la riada del 57 mostró que muchas víctimas fueron sorprendidas sin tiempo de reacción, de ahí la importancia de la preparación y la comunicación.
  5. Actualización de los planes de protección civil y simulacros de emergencia: los planes de emergencia y protección civil deben ser revisados y adaptados a la realidad climática actual y a las capacidades de infraestructura del río. Estos planes incluyen rutas de evacuación, centros de acogida y protocolos de comunicación, que son fundamentales para reducir el riesgo de pérdidas humanas y materiales en caso de una avenida.
  6. Evaluación y recurrencia admisible de crecidas: finalmente, el informe recomienda que se determinen los intervalos de recurrencia aceptables para futuras crecidas, considerando distintos escenarios de magnitud. Esta evaluación permitirá a las autoridades decidir sobre el diseño y las inversiones necesarias en infraestructura según el nivel de riesgo que la ciudadanía de Valencia está dispuesta a asumir.

Conclusión

La ciudad de Valencia se enfrenta a un riesgo significativo de sufrir otra inundación catastrófica, debido a sus condiciones climáticas, al cambio climático y a la infraestructura fluvial actual. Los sucesos catastróficos se evidencian con el actual desastre de finales de octubre de 2024. Las propuestas del informe «Impulso a Valencia» subrayan la importancia de tomar medidas preventivas y estructurales, y adaptar las capacidades de la ciudad para responder a episodios extremos. Sin embargo, es fundamental que la ciudadanía sea consciente de este riesgo y participe activamente en los sistemas de alerta y en los planes de emergencia para reducir las posibles pérdidas en el futuro.

Referencia:

VV.AA. (2014). Actualización del Plan Sur de Valencia. Estudio informativo acerca de los riesgos de que Valencia experimente una nueva inundación catastrófica. Ateneo Mercantil de Valencia, Grupo de Análisis “Impulso a Valencia”, 52 pp.

Descargar (PDF, 1.95MB)

 

La ingeniería humanitaria y la teoría del cisne negro: Totalán, DANA, Zaldibar y el coronavirus nos dan las claves

Fotografía con Ángel García Vidal, en la Escuela de Ingeniería de Caminos de Valencia

La primera vez que oí a alguien hablar de “ingeniería humanitaria” fue a Ángel García Vidal en una conferencia que impartió, junto con Mauricio Delgado, en la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Valencia el 24 de septiembre de 2019. Tal fue la impresión que me causó su relato de la tragedia de Totalán, que escribí un artículo en The Conversation sobre las lecciones aprendidas del rescate de Julen.

Después de ese día, Ángel y yo hemos conversado largo y tendido sobre el tema. Ángel intuía que el concepto de “ingeniería humanitaria” era especialmente importante, pero que se tenía que profundizar más en él. Todas nuestras conversaciones, junto con la de otros compañeros como Eugenio Pellicer, le hicieron reflexionar en una mesa redonda que tuvo lugar en el VIII Congreso Nacional de Ingeniería Civil que tuvo lugar en Madrid los días 17 y 18 de febrero de 2020. El escritor y articulista del diario El País Manuel Jabois escribía el 23 de enero de 2019 lo siguiente en referencia al concepto de Ingeniería Civil Humanitaria haciendo referencia a Ángel en una declaración que queda en las hemerotecas para la historia: “Esto no es una operación de rescate, sino una obra de Ingeniería Civil Humanitaria“.

Un cisne de la especie Cygnus atratus, desconocido en Occidente hasta el siglo XVIII. Wikipedia

Desde esos días de enero de 2019 han pasado muchos acontecimientos que deberían ocurrir solo de muy de vez en cuando. Según la teoría del cisne negro, desarrollada por el investigador Nassim Taleb, esta teoría es una metáfora que describe un suceso sorpresivo (para el observador), de gran impacto socioeconómico y que, una vez pasado el hecho, se racionaliza por retrospección (haciendo que parezca predecible o explicable, y dando impresión de que se esperaba que ocurriera).

Las características de la teoría del cisne negro es que determinados acontecimientos ocurren de forma sorpresiva, pues como los cisnes negros, son sucesos muy extraños. Estos acontecimientos presentan un alto impacto desproporcionado y es difícil de predecir, teniendo un papel dominante en la historia. Sin duda, la crisis actual del coronavirus (COVID-19) es un cisne negro.

Sin embargo, en solo unos meses, además han ocurrido impactos tales como el DANA (Depresión Aislada en Niveles Altos) que puso en jaque a nuestro país, con grandes desastres económicos y pérdidas de vidas humanas, o la desgracia del vertedero de Zaldibar, donde en estos momentos aún siguen dos personas sepultadas.

Todo parece indicar que sucesos de emergencia local, regional o global van a ser recurrentes y pueden poner en muy alto riesgo no solo vidas humanas, sino la economía y el futuro de las generaciones actuales y futuras.

¿Y cuál es el papel de la ingeniería ante estos sucesos que son emergentes? ¿Qué es la ingeniería civil humanitaria? Tras muchas reflexiones, aquí escribo alguna de ellas. Animo a Ángel a que publique el texto íntegro de su comunicación en el congreso al que hice antes referencia.

¿Cómo se podría definir el concepto de ingeniería civil humanitaria? Se trata de una idea que, si bien de una u otra forma existía de forma difusa desde el origen de los tiempos, cuando los humanos usaban su ingenio y su rudimentaria tecnología en ayudar al resto de sus congéneres, ha cobrado una gran actualidad con motivo del rescate del niño Julen en Totalán.

Pero antes de intentar dar una definición, debemos aclarar unas cuantas ideas y, sobre todo, debemos descartar algunas cosas que no deberían incluirse en este concepto. No toda la ingeniería civil tiene carácter humanitario, y es justamente el adjetivo humanitario el que permite caracterizar mejor esa parte de la ingeniería que tiene ciertas características que la diferencia del resto de ingeniería que hacemos los ingenieros civiles. Por otra parte, tampoco el carácter humanitario es exclusivo de la ingeniería civil. Otros ámbitos de la ingeniería, de la técnica y de cualquier actividad humana también puede tener este carácter. Por tanto, hay que buscar entre las características de una ingeniería muy específica, que es la civil, qué rasgos o características definen su carácter humanitario.

Humanitario es un adjetivo que, según la Real Academia de la Lengua, tiene tres acepciones. La primera nos dice “que mira o se refiere al bien del género humano”. Esta primera acepción entraría de lleno en los objetivos de la ingeniería civil en general. En efecto, si la ingeniería civil tiene como objeto el diseño, construcción y mantenimiento de todo tipo de infraestructuras, éstas son el soporte del progreso y bienestar de la sociedad y, por tanto, toda la ingeniería civil sería humanitaria con esta primera acepción. Por tanto, no es esta acepción la que nos interesa destacar.

La segunda acepción identifica humanitario con “benigno, caritativo, benéfico”. En nuestro caso se trataría de la ingeniería civil que es solidaria con el sufrimiento ajeno, que presta auxilio a los necesitados. De alguna forma, se trata de una ingeniería que dispone de los recursos técnicos y materiales que ayuda a aquellos que la necesitan. Esta idea se relaciona también con la tercera acepción del diccionario donde humanitario tiene “como finalidad aliviar los efectos que causan la guerra u otras calamidades en las personas que las padecen”.

Por tanto, en todas las acepciones humanitario siempre se relaciona con el auxilio a personas que necesitan dicha ayuda. Sin embargo, hay un aspecto de especial relevancia, y es que la ayuda sea desinteresada. En caso contrario, se trata de la ingeniería civil habitual, es decir, una actividad económica que, si bien tiene como fin el bien común, precisa de un beneficio económico para mantenerse en el tiempo. ¿Pero puede existir una ingeniería civil desinteresada que ayude a los demás?

Para responder a esta pregunta, antes hay que contestar otra más importante. Se trata de saber si, como dicen algunos, el hombre es malo por naturaleza y gracias al Estado reprime su impulso egoísta. Esta es una tesis del filósofo Thomas Hobbes que, afortunadamente, no se puede afirmar que sea cierta. En efecto, algunas investigaciones realizadas con niños han demostrado que más del 95% de ellos ayudaban a los demás sin recibir ningún tipo de orden o instrucción (https://www.elmundo.es/elmundo/2012/11/16/ciencia/1353063447.html). Esta tendencia innata al altruismo ya está presente en los ancestros comunes que tenemos los humanos con los chimpancés, que también tienen esta tendencia altruista. Impacta saber que un mono prefiere quedarse sin comer varios días antes que ver a los compañeros sufrir. Algunos han justificado este comportamiento de cooperación como una de las claves de nuestra supervivencia como especie. Por tanto, la cooperación, el altruismo y la moral, forman parte de lo más profundo de nuestro cableado humano. No obstante, contraejemplos de maldad intrínseca se encuentran por doquier, pero ello no justifica la maldad intrínseca del ser humano.

Otro de los aspectos que también interesa sacar a colación es averiguar si la ingeniería civil humanitaria tiene que estar planificada o bien debe actuar de forma inmediata ante un problema puntual. Pues las dos cosas.

Cuando existe un problema importante en una comunidad, por ejemplo, falta de agua por sequía, carencias de infraestructuras sanitarias o educativas, la ingeniería civil se pone al servicio de los programas de ayuda humanitaria y, de forma planificada, con recursos escasos, pero bien dirigidos, se pueden realizar infraestructuras que generan un beneficio extraordinario a la comunidad que los recibe.

Por otra parte, y es el caso de la tragedia de Totalán, una emergencia requiere de toda la voluntad y recursos disponibles para, de forma urgente, ayudar en lo posible a resolver un grave problema humanitario. Aquí la ingeniería civil actúa, como se ha podido comprobar, de forma directa con todos los recursos técnicos disponibles.

En ambos casos, con proyectos planificados o en situación de emergencia, la ingeniería civil ofrece todos sus recursos técnicos, humanos y materiales para ayudar, de forma desinteresada, a otras personas.

Pues bien, aquí tenemos una de las claves del concepto de ingeniería civil humanitaria. Se podría definir como el conjunto de recursos técnicos, humanos y materiales disponibles por la ingeniería civil para ayudar, de forma desinteresada, a las personas que lo necesitan, ya sea en forma de proyectos de ayuda o en situaciones de emergencia.

Todo esto es posible gracias a la naturaleza intrínsecamente buena del ser humano y al avance en la técnica disponible de la ingeniería civil puesta al servicio de la sociedad por parte de personas que, sin esperar nada a cambio, se ofrecen para auxilio de los demás.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Inundaciones, desastre de Biescas y normativa de campamentos de turismo

Con motivo de los episodios de fuertes lluvias que está sufriendo el sureste de España (DANA, depresión aislada en niveles altos), traigo a colación una aportación personal que hice en su momento en la legislación reguladora de los campamentos de turismo de la Comunidad Valenciana. Esta normativa tuvo muy en cuenta la tragedia del camping de Biescas (Huesca) ocurrida el 7 de agosto de 1996, donde murieron 87 personas y 187 resultaron heridas. Saco este tema a la luz para resaltar la importancia de la intervención técnica y de los estudios necesarios para evitar este tipo de catástrofes. Nunca la ciencia, la técnica, la legislación y las emergencias se necesitan tanto unas de otras.

En efecto, el antecedente fue el DECRETO 119/2002, de 30 de julio, del Gobierno Valenciano, Regulador de los Campamentos de Turismo de la Comunidad Valenciana. [2002/X8720] (DOGV núm. 4307 de 05.08.2002) que fue sustituido por el DECRETO 167/2005, de 11 de noviembre, del Consell de la Generalitat, por el que se modifica el Decreto 119/2002, de 30 de julio, Regulador de los Campamentos de Turismo de la Comunidad Valenciana. [2005/12617] que, a su vez, ha sido derogado a favor del actual DECRETO 6/2015, de 23 de enero, del Consell, regulador de los campings y de las áreas de pernocta en tránsito para autocaravanas de la Comunitat Valenciana. [2015/563].

Los artículos que tienen que ver con el riesgo de inundación, en los que intervine directamente, fueron los siguientes:

Artículo 14. Cumplimiento general de la normativa

Todos los campings deberán cumplir y hacer cumplir las obligaciones que se deriven de las disposiciones vigentes en materia de accesos, accesibilidad, construcción y edificación, instalación y funcionamiento de maquinaria, sanidad, seguridad de instalaciones, medio ambiente, acústica, prevención de incendios forestales, seguridad pública y riesgo de inundación, así como cualquier otra disposición de carácter sectorial que les afecten.

Artículo 15. Sistema de seguridad y protección

Todos los campings deberán disponer de las medidas e instalaciones de prevención, protección y seguridad para casos de incendio, inundación u otras emergencias previstas en la normativa vigente en estas materias.

En particular, contarán:

1. Con un plan de emergencia y autoprotección, redactado por técnico competente y ajustado a las disposiciones vigentes, en el que se contemplen las diferentes hipótesis de emergencia y los planes de actuación para cada una de ellas, así como las condiciones de uso y mantenimiento de las instalaciones afectas al plan.

El plan de emergencia y autoprotección justificará, en todo caso, la hipótesis de riesgo de inundación de forma que, para un caudal asociado a un periodo de retorno mínimo de cien años, no se permitirá que el calado del agua supere los 0,80 metros, ni que la velocidad máxima del agua exceda los 0,50 m/seg. Asimismo, y para dicho caudal, se garantizarán las condiciones necesarias que permitan la evacuación rápida, completa y segura de las personas, indicándose expresamente el tiempo de evacuación requerido.

Artículo 35. Cumplimiento general de la normativa

Todas las áreas de pernocta en tránsito para autocaravanas deberán cumplir y hacer cumplir las obligaciones que se deriven de las disposiciones vigentes en materia de riesgo de inundación, accesibilidad, construcción y edificación, instalación y funcionamiento de maquinaria, sanidad, seguridad de instalaciones, medio ambiente y seguridad pública, así como cualquier otra disposición de carácter sectorial que les afecten.

Artículo 36. Sistema de seguridad y protección

Las áreas de pernocta en tránsito para autocaravanas deberán disponer de las medidas e instalaciones de prevención, protección y seguridad para casos de incendio, inundación u otras emergencias previstas en la normativa vigente en estas materias, tal y como indica el artículo 15 de este decreto.

Resulta evidente que este tipo de disposiciones no solo son necesarias en el ámbito de los campamentos de turismo, sino que son extrapolables a cualquier ámbito donde se ponga en riesgo a las personas. Asimismo resalto la importancia de la intervención técnica de profesionales competentes, con experiencia y bien formados. También es cierto que, este tipo de normativa, está sujeta a cambios y actualizaciones en función de las investigaciones y aportaciones técnicas y científicas que mejoren el estado de conocimiento actual.