Fases de un estudio de investigación operativa

La investigación operativa busca determinar la solución óptima para un problema de decisión con recursos limitados. Se trata de un procedimiento científico que analiza las actividades de un sistema de organización.

Las principales componentes de un modelo de investigación operativa son: alternativas, restricciones y un criterio objetivo para elegir la mejor opción. Las alternativas se representan como variables desconocidas que luego se utilizan para construir las restricciones y la función objetivo mediante métodos matemáticos. El modelo matemático establece la relación entre estas variables, restricciones y función objetivo. La solución consiste en asignar valores a las variables para optimizar (maximizar o minimizar) la función objetivo y cumplir con las restricciones. A esta solución se le denomina solución posible óptima.

El enfoque del estudio de la ingeniería de operaciones está relacionado con la toma de decisiones para aprovechar al máximo los recursos limitados. Para ello, utiliza herramientas y modelos adaptados a las necesidades para facilitar la toma de decisiones en la resolución de problemas. Implica un trabajo en equipo entre analistas y clientes, con una estrecha colaboración. Los analistas aportan conocimientos de modelado y el cliente, experiencia y cooperación.

Como herramienta para la toma de decisiones, la investigación de operaciones combina ciencia y arte. Es ciencia por sus técnicas matemáticas y arte, porque el éxito en todas las fases, antes y después de resolver el modelo matemático, depende de la creatividad y experiencia del equipo. La práctica efectiva de la investigación de operaciones requiere más que competencia analítica, e incluye la capacidad de juzgar cuándo y cómo utilizar una técnica, así como habilidades de comunicación y adaptación organizativa.

Es complicado recomendar acciones específicas, como las de la teoría precisa de los modelos matemáticos, para abordar factores intangibles. Solo pueden ofrecerse directrices generales para aplicar la investigación de operaciones en la práctica.

El estudio de investigación operativa consta de varias etapas principales, entre las que destacan las siguientes:

  1. Formulación y definición del problema.
  2. Construcción del modelo.
  3. Solución del modelo.
  4. Verificación del modelo y de la solución.
  5. Puesta en práctica y mantenimiento de la solución.

Aunque las fases del proyecto suelen iniciarse en el orden establecido, no suelen completarse en el mismo orden. La interacción entre las fases requiere revisarlas y actualizarlas continuamente hasta la finalización del proyecto. La tercera fase es la única de carácter puramente matemático, ya que en ella se aplican las técnicas y teorías matemáticas necesarias para resolver el problema. El éxito de las demás etapas depende más de la práctica que de la teoría, siendo la experiencia el factor clave para su correcta ejecución.

Definir el problema implica determinar su alcance, tarea que lleva a cabo todo el equipo de investigación de operaciones. El resultado final debe identificar tres elementos principales: 1) descripción de las alternativas de decisión, 2) determinación del objetivo del estudio y 3) especificación de las restricciones del sistema modelado. Además, se deben recolectar los datos necesarios.

La formulación del modelo es quizá la fase más delicada del proceso, ya que consiste en traducir el problema a relaciones matemáticas. Si el modelo se ajusta a un modelo matemático estándar, como la programación lineal, puede resolverse con los algoritmos correspondientes. Para ello, deben definirse las variables de decisión, la función objetivo y las restricciones. Si las relaciones son demasiado complejas para una solución analítica, se puede simplificar el modelo mediante un método heurístico o recurrir a una simulación aproximada. En algunos casos, puede ser necesaria una combinación de modelos matemáticos, simulaciones y heurísticas para resolver el problema de toma de decisiones.

La solución del modelo es la fase más sencilla de la investigación de operaciones, ya que utiliza algoritmos de optimización bien definidos para encontrar la solución óptima. Un aspecto clave es el análisis de sensibilidad, que proporciona información sobre la forma en que la solución óptima responde a cambios en los parámetros del modelo. Esto es crucial cuando los parámetros no se pueden estimar con precisión, puesto que permite estudiar cómo varía la solución cerca de los valores estimados.

La validación del modelo verifica si cumple su propósito, es decir, si predice adecuadamente el comportamiento del sistema estudiado. Para ello, se evalúa si la solución tiene sentido y si los resultados son aceptables, comparando la solución con datos históricos para verificar si habría sido la correcta. Sin embargo, esto no garantiza que el futuro imite al pasado. Si el modelo representa un sistema nuevo sin datos históricos, se puede usar una simulación como herramienta independiente para comprobar los resultados del modelo matemático.

La implantación de la solución de un modelo validado consiste en traducir los resultados en instrucciones claras para quienes gestionarán el sistema recomendado. Esta tarea recae principalmente en el equipo de investigación de operaciones. En esta fase, el equipo debe capacitar al personal encargado de aplicar el modelo, asegurándose de que puedan traducir sus resultados en instrucciones de operación y usarlo correctamente para tomar decisiones sobre los problemas que motivaron su creación.

Os dejo algún vídeo al respecto.

Referencias:

Altier, W. J. (1999). The thinking manager’s toolbox: Effective processes for problem solving and decision making. Oxford University Press.

Checkland, P. (1999). Systems thinking, system practice. Wiley.

Evans, J. (1991). Creative thinking in the decision and management sciences. South-Western Publishing.

Gass, S. (1990). Model world: Danger, beware the user as a modeler. Interfaces, 20(3), 60-64.

Morris, W. (1967). On the art of modeling. Management Science, 13, B707-B717.

Paulos, J. A. (1988). Innumeracy: Mathematical illiteracy and its consequences. Hill and Wang.

Taha, H. A., & Taha, H. A. (2003). Operations research: an introduction (Vol. 7). Upper Saddle River, NJ: Prentice hall.

Willemain, T. R. (1994). Insights on modeling from a dozen experts. Operations Research, 42(2), 213-222.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Teoría de juegos aplicada a la optimización multiobjetivo de puentes mixtos

Acaban de publicar nuestro artículo en la revista del primer decil del JCR Mathematics. El artículo presenta un método innovador para optimizar el diseño de puentes mixtos de acero y hormigón mediante un enfoque basado en la teoría de juegos. Este enfoque integra criterios de sostenibilidad económica, ambiental y social con la simplicidad constructiva, abordando de manera simultánea múltiples objetivos que suelen ser conflictivos en proyectos de infraestructura. La principal contribución radica en la aplicación de un método de optimización multiobjetivo (MOO) que permite equilibrar los tres pilares de la sostenibilidad, empleando el Análisis del Ciclo de Vida (LCA) para evaluar el impacto durante todo el ciclo de vida del puente, desde su fabricación hasta su desmantelamiento.

Destaca la implementación de una versión discreta del algoritmo Seno-Coseno (SCA), adaptada específicamente para resolver problemas de diseño estructural. Esta metodología no solo garantiza un diseño eficiente en términos de coste y sostenibilidad, sino que también proporciona una solución práctica que facilita la construcción al reducir los refuerzos en las losas superiores y realizar ajustes geométricos estratégicos. Este enfoque supone un avance en el campo de la ingeniería civil, ya que combina técnicas matemáticas avanzadas con consideraciones prácticas del sector. Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València.

La metodología descrita combina la teoría de juegos con un enfoque cooperativo, en el que los diferentes objetivos (coste, impacto ambiental, impacto social y facilidad constructiva) se representan como «jugadores». Estos jugadores colaboran para encontrar soluciones óptimas dentro del conjunto de soluciones Pareto-óptimas, utilizando el concepto de equilibrio de Nash y reglas de negociación.

El algoritmo Seno-Coseno (SCA) modificado desempeña un papel fundamental en este proceso, ya que permite gestionar variables discretas y restricciones estructurales mediante funciones de transferencia en forma de tangente hiperbólica. Además, se emplea la teoría de la entropía para asignar pesos objetivos, lo que asegura un equilibrio justo entre los criterios y minimiza la subjetividad en la toma de decisiones.

Los resultados muestran que la metodología basada en la teoría de juegos permite reducir el refuerzo de las losas superiores del puente y optimizar el uso de materiales sin comprometer la resistencia estructural. En comparación con un enfoque de optimización monoobjetivo centrado exclusivamente en costes, el método propuesto aumenta los costes en un 8,2 %, pero mejora sustancialmente los impactos ambientales y sociales asociados al diseño.

El estudio revela que, mediante la redistribución del material estructural, es posible mantener la rigidez necesaria en las secciones transversales del puente. En concreto, se observa un aumento en el uso de acero estructural en lugar de acero de refuerzo, lo que simplifica la construcción al reducir la cantidad de barras necesarias y, por ende, el tiempo de instalación y vibrado del hormigón. Este cambio también contribuye a mejorar la calidad del producto final, ya que reduce los errores constructivos y optimiza el tiempo de ejecución.

El análisis demuestra que las soluciones obtenidas mediante métricas de distancia Minkowski (L1, L2 y L∞) proporcionan diseños equilibrados que logran compromisos efectivos entre coste, sostenibilidad y facilidad constructiva. Estas soluciones son comparables a estudios previos en términos de costes, pero ofrecen beneficios adicionales al incluir una evaluación más integral de los impactos sociales y ambientales.

El enfoque presentado abre la puerta a diversas áreas de investigación. Una línea de investigación prometedora es la aplicación de algoritmos híbridos que combinen la teoría de juegos con otras metaheurísticas, como redes neuronales o algoritmos genéticos, para mejorar la exploración y explotación del espacio de soluciones. Esto podría reducir el tiempo de computación y permitir su aplicación a problemas más complejos.

Otra posible dirección de investigación sería ampliar el modelo para incluir criterios como la resiliencia ante desastres naturales o la evaluación de riesgos a largo plazo. También se podría explorar la incorporación de nuevos indicadores sociales, como el impacto en las comunidades locales durante la construcción y operación del puente, lo que ampliaría la evaluación de sostenibilidad. Asimismo, sería interesante aplicar esta metodología a otros tipos de estructuras, como edificios o infraestructuras de transporte masivo, para evaluar su viabilidad y adaptar el enfoque a diferentes contextos.

En definitiva, el artículo proporciona una herramienta muy valiosa para abordar los desafíos de sostenibilidad y eficiencia en el diseño de infraestructuras civiles. La combinación de la teoría de juegos y la optimización multiobjetivo es efectiva para equilibrar criterios complejos y conflictivos, y ofrece soluciones prácticas, sostenibles y viables desde el punto de vista económico y constructivo. Aunque computacionalmente intensivo, este enfoque establece una base sólida para futuras investigaciones y aplicaciones en el campo de la ingeniería civil, lo que permite avanzar en la evaluación integral de la sostenibilidad y en la mejora de los procesos de diseño estructural.

Referencia:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2025). Game Theory-Based Multi-Objective Optimization for Enhancing Environmental and Social Life Cycle Assessment in Steel-Concrete Composite Bridges. Mathematics, 13(2):273. DOI:10.3390/math13020273

Os dejo a continuación el artículo completo, pues se ha pbulicado en abierto.

Pincha aquí para descargar

Cambio climático y resiliencia comunitaria

En los artículos de este blog sobre resiliencia y cambio climático que estoy escribiendo, me centraré en los aspectos relacionados con la resiliencia comunitaria.

Acontecimientos como las inundaciones catastróficas ocurridas en la provincia de Valencia el 29 de noviembre de 2024 ponen de manifiesto la importancia de estas ideas.

Estas reflexiones se enmarcan dentro del proyecto RESILIFE que desarrollo en la actualidad como investigador principal, y se han basado en algunas ideas desarrolladas en el trabajo reciente de Ellingwood et al. (2024).

Este artículo trata sobre la resiliencia comunitaria y cómo incorporar los efectos del cambio climático en la planificación y diseño de edificios e infraestructuras a nivel comunitario. Se discuten los desafíos y consideraciones clave para lograr una mayor resiliencia de las comunidades frente a eventos climáticos extremos.

La resiliencia comunitaria es la capacidad para adaptarse a las situaciones adversas, adaptarse a condiciones cambiantes y mantener sus funciones e infraestructuras fundamentales, así como recuperarse rápidamente ante eventos extremos. En este contexto, «comunidad» se refiere a un lugar delimitado por fronteras geográficas que opera bajo la jurisdicción de una estructura de gobernanza, como una ciudad, área metropolitana o región. Es dentro de esta gobernanza local donde se identifican, aprueban, financian y ponen en marcha las decisiones, acciones y proyectos relacionados con la resiliencia. Este concepto subraya la importancia de guiar los procesos adaptativos dentro de la comunidad para preservar su identidad básica y permitir los cambios necesarios con el tiempo. La identidad de una comunidad la forman los valores y prioridades de sus miembros, por lo que los esfuerzos para aumentar la resiliencia deben implicarles en la definición de lo que valoran colectivamente y lo que pretenden proteger (Ellingwood et al., 2024).

Las repercusiones económicas del cambio climático varían mucho, con beneficios potenciales en las regiones templadas a niveles más bajos de calentamiento, pero con pérdidas crecientes a medida que aumentan las temperaturas. Los hogares y los países más pobres pueden experimentar efectos desproporcionados sobre su bienestar, aun cuando sus contribuciones económicas sean menos significativas. Las respuestas de adaptación efectivas, como el desarrollo de infraestructuras resilientes y tecnologías climáticamente inteligentes, pueden ayudar a mitigar estos impactos y mejorar la resiliencia de las comunidades (O’Neill et al., 2022).

Proceso para la planificación de la resiliencia comunitaria. https://www.nist.gov/community-resilience/planning-guide

El éxito de la resiliencia comunitaria no solo se centra en la recuperación de eventos relacionados con el cambio climático, sino que también abarca una variedad más amplia de retos, incluidos los sociales y económicos. Este concepto influye en las decisiones relativas al entorno construido, que abarca desde instalaciones individuales hasta sistemas de infraestructura regional. Para que la planificación de la resiliencia sea efectiva, es crucial incluir diversas perspectivas de las partes interesadas y comprender los sistemas sociales, políticos y económicos de la comunidad, así como sus vulnerabilidades inherentes (Eisenhauer et al., 2024). El entorno construido abarca todos los sistemas diseñados en una comunidad o región, como edificios, instalaciones y redes de infraestructura. Aunque muchas viviendas unifamiliares no son diseñadas por ingenieros, deben tenerse en cuenta en la evaluación de la resiliencia comunitaria. Este enfoque integrado permite identificar los objetivos de rendimiento de los edificios e infraestructuras y garantizar que las estrategias de resiliencia se adapten a las necesidades específicas de la comunidad.

Para lograr resiliencia a nivel comunitario, los edificios y sistemas de infraestructura deben cumplir los criterios de resiliencia establecidos a nivel local. Esta interdependencia entre escalas diferentes de resiliencia conecta la planificación regional con el diseño de infraestructuras individuales. Para que las instalaciones y los sistemas den un paso adelante y alcancen un desempeño resiliente, es necesario ir más allá de los requisitos de códigos y normas actuales, que se centran principalmente en la seguridad de las personas y en limitar el fallo estructural, especialmente en la recuperación de la funcionalidad. Los edificios e infraestructuras proporcionan refugio, servicios básicos y otros recursos, como escuelas y hospitales, y respaldan instituciones sociales y económicas esenciales para el bienestar de la comunidad.

Para desarrollar planes sólidos de resiliencia comunitaria, es fundamental involucrar a las partes interesadas. Una oficina dedicada a la resiliencia puede garantizar un liderazgo firme y un compromiso coherente entre los agentes locales. Es crucial comprender la identidad y los recursos únicos de la comunidad, así como fomentar la participación de los líderes sociales (Eisenhauer et al., 2024). Incluir las voces de todos los miembros de la comunidad en el proceso de planificación hace que los esfuerzos de resiliencia sean más equitativos y eficaces.

La resiliencia comunitaria se enfrenta a diversas limitaciones que deben abordarse para mejorar su capacidad de adaptación. Entre estas dificultades se encuentran las barreras económicas, los factores sociales y culturales, las limitaciones de capacidad humana, los problemas de gobernanza, los recursos financieros, la accesibilidad a la información, los obstáculos físicos y las influencias climáticas (O’Neill et al., 2022). Reconocer y superar estas limitaciones es fundamental para que las comunidades desarrollen su capacidad de adaptación ante amenazas actuales y emergentes.

Los sectores vulnerables dentro de las comunidades suelen verse afectados de manera desproporcionada por los peligros derivados del cambio climático, como las inundaciones, debido a políticas de uso del suelo, desventajas económicas y otros factores demográficos, como la raza/etnia, el género y la edad. Por lo tanto, los objetivos de resiliencia pueden variar de una comunidad a otra debido a diferencias en las características sociodemográficas, la edad y el estado de los edificios e infraestructuras, así como a los enfoques adoptados para abordar la equidad en los objetivos de resiliencia.

El cambio climático no solo afecta a los medios de subsistencia físicos, sino que también amenaza las estructuras sociales y las prácticas culturales. La erosión del capital social, exacerbada por la degradación de los recursos y la competencia, puede provocar un aumento de la tensión en el seno de las comunidades y entre ellas, lo que puede dar lugar a conflictos y migraciones forzosas. Los grupos vulnerables, como las personas mayores y con discapacidad, se ven afectados de forma desproporcionada por estos cambios, lo que subraya la necesidad de estrategias de adaptación específicas (IPCC, 1997) .

Consideraciones de proyecto para la resiliencia y los impactos climáticos

La consideración de eventos climáticos extremos futuros (como huracanes, olas de calor y precipitaciones intensas) está cobrando una importancia cada vez mayor para las comunidades. Aunque actualmente no se tienen en cuenta en los códigos o normas de construcción, muchas comunidades locales exigen que los efectos climáticos se integren en los proyectos. (Vogel et al., 2016). Además, el cambio climático puede agravar los impactos de los eventos de peligro extremo con el tiempo, no solo al modificar las cargas sobre las estructuras, sino también al afectar a su capacidad debido a procesos de envejecimiento y deterioro. Por ello, es fundamental tener en cuenta la resiliencia y los problemas climáticos en la planificación comunitaria, especialmente en el diseño de edificios e infraestructuras civiles.

El impacto de eventos extremos compuestos (como un tsunami posterior a un terremoto, o marejadas ciclónicas e inundaciones fluviales tras vientos de huracán) también puede intensificarse debido a los efectos climáticos (Bruneau et al., 2017). Actualmente, existe una falta de guías o herramientas suficientes para considerar estos eventos compuestos y su impacto en el entorno construido. Además de predecir peligros futuros, la no estacionariedad de los efectos climáticos en los eventos de peligro requerirá nuevos enfoques para abordar y comunicar la incertidumbre (Cooke, 2015).

El concepto de resiliencia se basa en la funcionalidad, que puede medirse a nivel de edificios, sistemas de infraestructura o comunidades. Por ello, los análisis de resiliencia deben adaptarse a la escala evaluada y utilizar métodos claros para agregar y desagregar información entre diferentes escalas. Las múltiples escalas de análisis de resiliencia también tienen implicaciones para las proyecciones climáticas regionales, en las que pueden ser necesarias proyecciones correlacionadas en lugares específicos.

Los edificios y los sistemas de infraestructura civil se diseñan y mantienen según diversas regulaciones, códigos y mejores prácticas, cada uno con su propia base de diseño y fiabilidad para evaluar el rendimiento (McAllister et al., 2022). Cada sistema tiene distintos objetivos de rendimiento, como la seguridad en edificios frente a eventos poco frecuentes o la interrupción en los servicios de electricidad y agua ante eventos frecuentes. La falta de coordinación genera disparidades en el rendimiento del entorno construido ante un mismo evento de peligro, que aumentan aún más al considerar el desempeño en términos de recuperación. Aunque la fiabilidad mide si se logran los objetivos de rendimiento, se requieren métricas diferentes para evaluar la recuperación de la funcionalidad.

En algunos sistemas, la fase de recuperación se mide en horas (por ejemplo, en los sistemas de distribución eléctrica), mientras que en otros puede medirse en meses (por ejemplo, en la reparación de un puente o túnel dañado). Estas disparidades se identifican y abordan mejor con una evaluación a nivel comunitario que permita identificar las necesidades específicas de cada proyecto. Una herramienta comúnmente utilizada es la denominada tabla de resiliencia, introducida por primera vez en San Francisco (Poland, 2009). En estas tablas, la comunidad establece el tiempo deseado para alcanzar un conjunto de métricas de desempeño de diversas infraestructuras (por ejemplo, el 75 % de las carreteras funcionales en 3 meses). Estas metas se comparan con el tiempo de recuperación previsto, evaluado por expertos técnicos. Los sectores donde la discrepancia entre la recuperación deseada y la prevista es mayor son aquellos donde más se necesitan intervenciones.

Tabla 1. Plazos para los objetivos de reconstrucción en un seísmo (Poland, 2009).

Fase Marco temporal Condición del entorno construido
1 1 a 7 días Respuesta inicial y preparación para la reconstrucción
Inmediato El alcalde ha declarado una emergencia local y ha abierto el Centro de Operaciones de Emergencia. Los hospitales, las comisarías, los parques de bomberos y los centros de operaciones de los departamentos de la ciudad están operativos.
Dentro de 4 horas Las personas que salgan o regresen a la ciudad para llegar a sus hogares pueden hacerlo
Dentro de 24 horas Los trabajadores de respuesta a emergencias pueden activarse y sus operaciones están completamente operativas. Los hoteles designados para alojar a estos trabajadores son seguros y están operativos. Los refugios están abiertos. Todos los hogares ocupados son inspeccionados por sus ocupantes y menos del 5 % de las viviendas son consideradas inseguras para ser ocupadas. Los residentes se refugiarán en edificios con daños superficiales, aunque los servicios públicos no funcionen.
Dentro de 72 horas El 90 % de los sistemas de servicios públicos (energía, agua, aguas residuales y comunicación) están operativos y prestan apoyo a las instalaciones de emergencia y a los vecindarios. Asimismo, el 90 % de las principales rutas de transporte, incluidos los cruces de la bahía y los aeropuertos, están abiertos al menos para la respuesta a emergencias. Los esfuerzos de recuperación inicial y reconstrucción se centrarán en reparar viviendas, escuelas y oficinas de proveedores médicos para que puedan utilizarse, además de restablecer los servicios públicos necesarios. Los servicios esenciales de la ciudad están completamente restablecidos.
2 30 a 60 días Viviendas restauradas – necesidades sociales continuas cubiertas
Dentro de 30 días Todos los sistemas de servicios públicos y las rutas de transporte que atienden a los vecindarios han recuperado el 95 % de los niveles de servicio previos al evento. El transporte público funciona al 90 % de su capacidad. Las escuelas públicas están abiertas y en funcionamiento. El 90 % de los negocios del barrio están abiertos y atendiendo a la fuerza laboral.
Dentro de 60 días Los aeropuertos están operativos y se pueden utilizar con normalidad. El transporte público funciona al 95 % de su capacidad. Las rutas de transporte menores se están reparando y reabriendo.
3 Varios años Reconstrucción a largo plazo
Dentro de 4 meses Los refugios temporales se han cerrado. Todos los hogares desplazados han regresado a sus hogares o han sido reubicados de forma permanente. El 95 % de los servicios minoristas de la comunidad han reabierto. El 50 % de los negocios de apoyo que no forman parte de la fuerza laboral están reabiertos.
Dentro de 3 años Todas las operaciones comerciales, incluidos todos los servicios de la ciudad que no estén relacionados con la respuesta a emergencias o la reconstrucción, se han restablecido a los niveles previos al seísmo.

Esta herramienta sencilla se utiliza para representar posibles efectos de los riesgos en un conjunto de escenarios posibles. Actualmente, estos se identifican para cada comunidad en función de los riesgos previstos y de las directrices disponibles. Los efectos del cambio climático pueden incorporarse seleccionando un conjunto de escenarios de eventos extremos que representen el clima futuro. Para avanzar en los análisis y resultados de resiliencia, es necesario un enfoque estandarizado para identificar estos escenarios de riesgo.

Los edificios, puentes y otras infraestructuras tienden a diseñarse para vidas útiles de entre 50 y 100 años. Sin embargo, muchos edificios e infraestructuras se utilizan más allá de su vida útil y su desempeño depende de rehabilitaciones, actualizaciones y mantenimiento. Por lo tanto, la vida útil de edificios, puentes y otras infraestructuras abarca un período en el que el clima puede cambiar sustancialmente, por lo que dichos sistemas se ven expuestos a condiciones y acciones climáticas diferentes a las especificadas en su proyecto. Esta misma consideración se aplica a las evaluaciones de resiliencia.

Todo el proceso de evaluación de la resiliencia comunitaria, desde la selección de peligros hasta la evaluación de escenarios y las evaluaciones cuantitativas del rendimiento, debe tener en cuenta la no estacionariedad de los efectos climáticos. Al evaluar el impacto del cambio climático en el diseño, el mantenimiento y la remodelación, la propiedad desempeña un papel crucial. Cuando los edificios e infraestructuras tienen el mismo propietario durante su vida útil, hay incentivos más fuertes para incluir consideraciones de resiliencia y cambio climático en la planificación y el mantenimiento. En cambio, los sistemas diseñados y mantenidos por diferentes entidades suelen cumplir solo con los requisitos mínimos, a menos que la demanda de resiliencia, consideraciones climáticas o mejoras que se puedan trasladar a los usuarios sea clara.

Las dependencias e interdependencias entre los sistemas de infraestructura de una comunidad requieren la coordinación de múltiples propietarios, lo que puede resultar difícil. Mejorar la resiliencia de un sistema frente a los efectos climáticos futuros puede ser menos efectivo de lo planeado si los propietarios o administradores de los sistemas de infraestructura interdependientes no realizan mejoras similares.

Desempeño funcional del entorno construido

Los objetivos de desempeño comunitario suelen expresarse como aspiraciones a largo plazo para la funcionalidad de los sistemas físicos, sociales y económicos. La incorporación del cambio climático en la funcionalidad a largo plazo de los sistemas comunitarios debe abordarse urgentemente. Los proyectistas necesitan objetivos cuantitativos de desempeño y criterios de diseño para evaluar instalaciones y sistemas individuales que puedan apoyar los objetivos comunitarios y hacer frente a la considerable incertidumbre asociada al cambio climático y a los eventos futuros.

Un entorno construido con un desempeño aceptable es necesario, pero no suficiente, para establecer la resiliencia comunitaria. Esta resiliencia abarca metas sociales y económicas, así como objetivos relacionados con los servicios físicos. Para vincular la respuesta de los sistemas de infraestructura a los objetivos de resiliencia, es fundamental cuantificar su rendimiento colectivo mediante métricas de funcionalidad y recuperación. Desarrollar métricas que respalden los objetivos sociales es crucial para abordar la resiliencia comunitaria a nivel nacional. A continuación, se muestran algunos ejemplos de metas y métricas de resiliencia comunitaria en la Tabla 2. Las métricas de resiliencia para los servicios de infraestructura son más relevantes para los ingenieros estructurales, pero el rendimiento resiliente del entorno construido también contribuye a los objetivos sociales y económicos. Por lo tanto, estos objetivos deben tenerse en cuenta al evaluar soluciones para el diseño, el mantenimiento o las mejoras estructurales.

Tabla 2. Ejemplos de metas de desempeño comunitario y métricas de resiliencia

Metas de rendimiento comunitario Ejemplos de métricas de resiliencia
Estabilidad poblacional Desplazamiento y migración; disponibilidad de viviendas.
Estabilidad económica Cambio en el empleo, impuestos e ingresos (recursos), presupuesto comunitario (necesidades).
Estabilidad de servicios sociales Acceso a atención médica, educación, comercio minorista, banca.
Estabilidad de servicios físicos Funcionalidad de edificios, transporte, agua, aguas residuales, energía eléctrica, gas, comunicaciones.
Estabilidad gubernamental Acceso a protección policial y contra incendios; servicios gubernamentales públicos esenciales.

Fuente: Ellingwood et al. (2020).

La recuperación funcional se refiere al restablecimiento de las funciones básicas del edificio o sistema de infraestructura tras un evento adverso. Desde la perspectiva de la resiliencia, el diseño de estos sistemas debe tener en cuenta el daño potencial y la forma en que se recuperarán durante el proceso de diseño. Este aspecto se aborda en parte en instalaciones críticas como hospitales y refugios, donde se aumentan los requisitos de carga y deformación para construir estructuras más sólidas.

Desde la perspectiva de la resiliencia comunitaria, otros edificios también pueden considerarse críticos según su función, como residencias de personas mayores y escuelas. Sin embargo, los códigos actuales se centran en la seguridad de las personas en edificios e infraestructuras individuales, sin considerar explícitamente las formas de fallo ni las reparaciones necesarias para restaurar la funcionalidad en un tiempo determinado. Para establecer normas que incluyan objetivos de desempeño en términos de funcionalidad y resiliencia, además de la seguridad, será necesario cambiar el proceso regulatorio, pasando de un diseño basado en componentes a un enfoque sistémico.

Se necesitan orientaciones sobre mejores prácticas y criterios de proyecto con objetivos que respalden las metas de resiliencia comunitaria para incluir la recuperación funcional. Se requieren objetivos funcionales y criterios para abordar mejor el papel de las infraestructuras, incluidos los niveles esperados de daño, el impacto en la funcionalidad de los edificios y otras infraestructuras, las reparaciones necesarias para restablecer la funcionalidad e impactos potenciales en la recuperación social y económica de la comunidad.

A medida que la ingeniería se esfuerza por incorporar los conceptos de resiliencia y recuperación funcional en su práctica, es necesario abordar el cambio climático en paralelo. La ASCE (2015) destacó un dilema clave para los ingenieros en ejercicio: «Aunque la comunidad científica está de acuerdo en que el clima está cambiando, existe una incertidumbre significativa sobre las distribuciones espaciales y temporales de los cambios durante la vida útil de los diseños y planes de infraestructura. La necesidad de que la infraestructura de ingeniería satisfaga las necesidades futuras y la incertidumbre sobre el clima futuro plantean un dilema para los ingenieros».

Los cambios en las condiciones climáticas pueden afectar a las infraestructuras y a su resiliencia de diversas maneras. ASCE (2018) identificó los tipos de impactos relacionados con el clima que deben abordarse, en particular, los relacionados con las inundaciones (el aumento de los niveles, de las velocidades de flujo y de las alturas de las olas), con las precipitaciones (las acciones de lluvia y nieve en los techos y el aumento de las acciones de las heladas en las estructuras) y con el viento (la mayor intensidad y frecuencia de tormentas y huracanes). El Manual de Práctica 144 de ASCE (ASCE, 2021) utiliza métodos probabilísticos para el análisis y la gestión de riesgos en los proyectos para abordar las incertidumbres dentro de un horizonte temporal. Este enfoque incluye la identificación y el análisis de riesgos, fallos del sistema, probabilidades asociadas y consecuencias, incluyendo pérdidas directas e indirectas, cuantificación de fallos y recuperación para la resiliencia, efectos en las comunidades, la economía de la resiliencia y las tecnologías para mejorar la resiliencia tanto en infraestructuras nuevas como existentes.

La resiliencia incorpora la dimensión temporal a través del proceso de recuperación y reconstrucción, pero los modelos de recuperación aún se encuentran en una etapa inicial de desarrollo. Además, durante la recuperación es necesario tener en cuenta las interdependencias, por ejemplo, cuando un edificio o sistema es funcional, pero otro sistema del que depende (por ejemplo, servicios públicos) aún no puede proporcionar el servicio necesario.

Cuando los edificios no son funcionales debido a retrasos en la financiación de reparaciones u otras causas, los efectos son enormes. En efecto, los retrasos en la recuperación de la funcionalidad de los edificios afectan directamente a la población, que se ve obligada a desplazarse y aumenta la probabilidad de emigrar, lo que repercute negativamente en las métricas de estabilidad poblacional (Tabla 2). La emigración también depende de la cohesión social y de factores como la fuente de refugio, empleo y educación de los niños en un hogar.

Desafíos para la resiliencia comunitaria en un clima cambiante

En la próxima década, probablemente evolucionen las mejores prácticas de los profesionales del diseño y las decisiones de los planificadores urbanos y las autoridades reguladoras para apoyar la forma en que se aborda el cambio climático en lo que respecta a la resiliencia comunitaria. El Diseño Basado en el Desempeño (PBD) ofrece una forma de abordar este conflicto y resolver los desafíos inherentes que surgirán al atender tanto las necesidades de las instalaciones como las de la comunidad. Desarrollar e incorporar enfoques PBD que aborden los peligros e impactos del cambio climático en las mejores prácticas, estándares y códigos es una necesidad urgente para la profesión de la ingeniería y la sociedad.

Los desafíos para los ingenieros estructurales incluyen los siguientes (Ellingwood et al., 2020):

  • Identificación de metas comunes de resiliencia comunitaria que aborden los futuros impactos del cambio climático, las cuales deberían ser establecidas por un grupo amplio de partes interesadas.
  • Objetivos de desempeño para los edificios, según categorías funcionales o agrupaciones (por ejemplo, edificios residenciales, instalaciones comerciales, gubernamentales) o instituciones socioeconómicas (por ejemplo, educación, atención médica), deben expresarse como requisitos compatibles con la práctica de ingeniería y ser prácticos de implementar desde una perspectiva de ingeniería.
  • Objetivos de fiabilidad para los edificios individuales en la práctica de diseño estructural actual (por ejemplo, ASCE 7-22, Sección 1.3) identifican requisitos mínimos de rendimiento a nivel de componente para la mayoría de las acciones, excepto las sísmicas. Se necesitan fiabilidades objetivo y criterios de desempeño a nivel de sistema para todas las cargas, con el fin de apoyar las metas de resiliencia comunitaria.
  • Códigos, normas y regulaciones para los sistemas de infraestructura (por ejemplo, edificios, puentes, comunicaciones críticas) deben coordinarse para apoyar las metas de resiliencia comunitaria e impactos del cambio climático, y para abordar la funcionalidad y recuperación de la infraestructura civil, así como la seguridad de las personas.

En resumen, la resiliencia comunitaria se refiere a la capacidad de las comunidades para adaptarse a situaciones adversas, mantener sus funciones esenciales y recuperarse rápidamente después de eventos extremos. Para desarrollar estrategias de adaptación eficaces, especialmente frente al cambio climático, es crucial que los miembros de la comunidad participen activamente en la identificación de sus valores y prioridades. Las comunidades vulnerables suelen sufrir impactos desproporcionados debido a factores socioeconómicos y demográficos, lo que subraya la necesidad de enfoques equitativos en la planificación de la resiliencia. Además, es fundamental tener en cuenta las interdependencias entre los sistemas de infraestructura y la coordinación entre múltiples propietarios para mejorar la resiliencia. La planificación debe incluir objetivos de rendimiento claros y métricas que aborden tanto la funcionalidad como la recuperación de los sistemas, para que las comunidades puedan hacer frente a los desafíos climáticos futuros de manera efectiva.

Aquí tenéis un mapa mental sobre el contenido de las reflexiones anteriores, que espero, os sea útil.

Dejo a continuación un documento que creo que os puede interesar sobre este tema.

Pincha aquí para descargar

Referencias:

ASCE. (2015). Adapting infrastructure and civil engineering practice to a changing climate. Reston, VA: ASCE.

ASCE. (2018). Climate-resilient infrastructure: Adaptive design and risk management, MOP 140. Reston, VA: ASCE.

ASCE. (2021). Hazard-resilient infrastructures: Analysis and design, MOP 144. Reston, VA: ASCE.

Bruneau, M., Barbato, M., Padgett, J. E., Zaghi, A. E., et al. (2017). State-of-the-art on multihazard design. Journal of Structural Engineering, 143(10), 03117002.

Cooke, R. M. (2015). Messaging climate change uncertainty. Nature Climate Change, 5(1), 8–10.

Ellingwood, B. R., van de Lindt, J. W., & McAllister, T. (2020). Community resilience: A new challenge to the practice of structural engineering. Structural Magazine, 27(11), 28–30.

Ellingwood, B. R., Bocchini, P., Lounis, Z., Ghosn, M., Liu, M., Yang, D., Capacci, L., Diniz, S., Lin, N., Tsiatas, G., Biondini, F., de Lindt, J., Frangopol, D.M., Akiyama, M., Li, Y., Barbato, M., Hong, H., McAllister, T., Tsampras, G. & Vahedifard, F. (2024). Impact of Climate Change on Infrastructure Performance. In Effects of Climate Change on Life-Cycle Performance of Structures and Infrastructure Systems: Safety, Reliability, and Risk (pp. 115-206). Reston, VA: American Society of Civil Engineers.

Eisenhauer, E., Henson, S., Matsler, A., Maxwell, K., Reilly, I., Shacklette, M., Julius, S., Kiessling, B., Fry, M., Nee, R., Bryant, J., Finley, J., & Kieber, B. (2024). Centering equity in community resilience planning: Lessons from case studies. Natural Hazards Forum, Washington, D.C.

IPCC (1997). The regional impacts of climate change: an assessment of vulnerability. IPCC, Geneva.

McAllister, T., Walker, R., & Baker, A. (2022). Assessment of resilience in codes, standards, regulations, and best practices for buildings and infrastructure systems. NIST Technical Note 2209. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.TN.2209

O’Neill, B., van Aalst, M., Zaiton Ibrahim, Z., Berrang Ford, L., Bhadwal, S., Buhaug, H., Diaz, D., Frieler, K., Garschagen, M., Magnan, A., Midgley, G., Mirzabaev, A., Thomas, A., & Warren, R. (2022). Key risks across sectors and regions. In H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama (Eds.), Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 2411–2538). Cambridge University Press. https://doi.org/10.1017/9781009325844.025

Poland, C. D. (2009). The resilient city: Defining what San Francisco needs from its seismic mitigation policies. San Francisco Planning and Urban Research Association Report. Earthquake Engineering Research Institute.

Vogel, J., Carney, K. M., Smith, J. B., Herrick, C., et al. (2016). Climate adaptation: The state of practice in US communities. The Kresge Foundation and Abt Associates.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Lecciones aprendidas: proteger a la población es la prioridad

En el día de Navidad no podía dejar de pensar en las personas, especialmente en aquellas que sufren por injusticias, guerras, discriminación o desastres naturales, entre otras muchas cosas. A continuación, os dejo una reflexión que me pidieron para un número especial de iAgua. Creo que no puede haber un día mejor para divulgarla. ¡Feliz Navidad!

Lecciones aprendidas: proteger a la población es la prioridad

La reciente DANA en Valencia dejó una lección incontestable: ante fenómenos climáticos extremos, la máxima prioridad debe ser proteger a la población. Estos eventos exigen un replanteamiento inmediato de la gestión del riesgo de inundaciones. La seguridad de las personas no puede depender de respuestas improvisadas, sino de estrategias basadas en el conocimiento científico.

Las inundaciones suponen un riesgo directo para las personas, pero también tienen efectos indirectos devastadores. Cuando fallan los servicios esenciales, como el suministro eléctrico o el acceso a agua potable, las comunidades se enfrentan a situaciones de alta vulnerabilidad. Durante la reciente emergencia, muchas zonas quedaron incomunicadas y sin recursos básicos.

Frente a esto, existen medidas estructurales y no estructurales para minimizar estos riesgos. Las primeras consisten en regular las cuencas para reducir el impacto de las inundaciones. Por ejemplo, las presas almacenan grandes volúmenes de agua que van liberando gradualmente, lo que evita desbordamientos aguas abajo. Los encauzamientos reducen significativamente los riesgos. Sin embargo, estas intervenciones deben planificarse cuidadosamente para evitar impactos ambientales y garantizar que cumplan su función. Para ello, es necesario un enfoque holístico, pues el problema es complejo.

Por otro lado, las medidas no estructurales incluyen planes de emergencia, sistemas de alerta temprana y la educación de la población. Un plan de emergencia debe detallar las rutas de evacuación, los puntos seguros y los procedimientos de actuación en caso de inundación. La preparación salva vidas, pero solo es efectiva si las personas saben cómo actuar y confían en las instituciones que gestionan la crisis.

Los sistemas de alerta temprana son fundamentales para ganar tiempo en situaciones críticas. Hay que mejorar las tecnologías que permitan predecir inundaciones con mayor precisión. La información debe llegar rápidamente a la población a través de canales fiables y accesibles para evitar el caos y la desinformación que suelen acompañar a estos eventos.

La planificación territorial también forma parte de las medidas no estructurales. Debemos ser más estrictos a la hora de evitar construcciones en zonas de alto riesgo y priorizar el desarrollo urbano en áreas menos vulnerables. Además, la recuperación de espacios naturales puede actuar como barrera de protección frente a inundaciones. No obstante, es necesario considerar que algunas medidas solo son adecuadas para un volumen moderado de precipitaciones.

No obstante, ninguna medida será suficiente sin una adecuada coordinación entre instituciones y comunidades. La gestión del riesgo de inundación debe ser un esfuerzo conjunto en el que participen gobiernos, científicos, ingenieros y ciudadanos. La falta de preparación no solo agrava el impacto, sino que también debilita la confianza de la población en las autoridades.

La recuperación tras una emergencia debe centrarse en reforzar las infraestructuras y estrategias existentes. Reconstruir mejor no es solo un eslogan, sino una necesidad. Cada inundación nos enseña algo nuevo sobre cómo proteger mejor a la población. No podemos ignorar la responsabilidad de aplicar estas lecciones.

En Valencia, hemos visto hasta dónde llega nuestra preparación frente a fenómenos extremos. Ahora es el momento de pasar a la acción. La inversión y los planes de emergencia no solo protege las infraestructuras, sino que salva vidas. Ignorar esta realidad pone en peligro a quienes más dependen de un sistema resiliente y preparado.

La protección de la población no puede ser un objetivo secundario. Es el núcleo de cualquier estrategia de gestión de riesgos. Como científicos, tenemos el deber de ofrecer soluciones basadas en evidencias, y como sociedad, la responsabilidad de exigir que se implementen. La próxima DANA llegará, pero la manera en que nos encuentre preparados marcará la diferencia entre un desastre y una respuesta ejemplar.

Pincha aquí para descargar

Optimización de programas de mantenimiento vial: eficiencia y estrategias a largo plazo con algoritmos heurísticos.

Optimal pavement maintenance programs based on a hybrid Greedy Randomized Adaptive Search Procedure Algorithm

El artículo, titulado «Optimal pavement maintenance programs based on a hybrid Greedy Randomized Adaptive Search Procedure Algorithm», escrito por Víctor Yepes, Cristina Torres-Machí, Alondra Chamorro y Eugenio Pellicer, y publicado en el Journal of Civil Engineering and Management, presenta una innovadora herramienta para la gestión eficiente del mantenimiento vial. Este trabajo aborda cómo diseñar programas que maximicen la efectividad a largo plazo (Long-Term Effectiveness, LTE) en redes viales, superando las limitaciones presupuestarias y el desgaste progresivo de las infraestructuras. Para ello, se desarrolla un enfoque híbrido que combina los algoritmos Greedy Randomized Adaptive Search Procedure (GRASP) y Threshold Accepting (TA), lo que permite optimizar la asignación de recursos y cumplir con restricciones técnicas y económicas. Entre los resultados más destacados, se encuentra una mejora del 40 % en la LTE en comparación con estrategias reactivas, que también subraya la importancia de priorizar inversiones tempranas y de implementar tratamientos preventivos como la opción más eficiente a largo plazo.

Introducción

La infraestructura vial es uno de los activos más valiosos de cualquier nación, ya que tiene un impacto directo en el desarrollo económico y social al facilitar el transporte de bienes y personas, por lo que es necesario realizar un mantenimiento adecuado para evitar el deterioro y el incremento de los costes futuros de rehabilitación. Sin embargo, los presupuestos de las agencias públicas son limitados y no alcanzan a cubrir las necesidades de conservación, lo que genera una brecha cada vez mayor entre el estado actual de las infraestructuras y los niveles de inversión requeridos. En Estados Unidos, un tercio de las carreteras están en condiciones mediocres o deficientes, y uno de cada nueve puentes presenta deficiencias estructurales. En España, las necesidades de mantenimiento vial superan los 5500 millones de euros, pero los presupuestos se redujeron un 20 % en 2012, lo que agravó aún más la situación. Este mantenimiento tardío no solo incrementa los riesgos estructurales, sino que también triplica los costes de rehabilitación y los gastos operativos de los vehículos, lo que plantea un problema central: decidir cómo asignar los fondos disponibles de forma óptima para maximizar el rendimiento a largo plazo de las infraestructuras, respetando restricciones técnicas y económicas, y considerando los beneficios acumulados para los usuarios.

Metodología

Formulación del problema de optimización

El problema se define como la maximización de la LTE, un indicador que mide los beneficios acumulados derivados de una infraestructura bien mantenida durante su ciclo de vida.

  1. Función objetivo:
    • Maximizar el área bajo la curva de rendimiento de las infraestructuras (Area Bounded by the Performance Curve, ABPC). Este área refleja la calidad y el nivel de servicio de la infraestructura a lo largo del tiempo.
  2. Restricciones:
    • Presupuestaria: Garantizar que los costos anuales de mantenimiento no excedan el presupuesto disponible en cada año del periodo de planificación.
    • Técnica: Mantener las secciones de la red en una condición mínima aceptable. Esto se evalúa mediante indicadores como el Urban Pavement Condition Index (UPCI, Índice de Condición del Pavimento Urbano), que clasifica la calidad del pavimento en una escala del 1 (peor) al 10 (mejor).
  3. Variables de diseño:
    • Determinar qué secciones de la red deben tratarse, qué tratamiento aplicar y en qué momento realizarlo durante el horizonte de planificación.
  4. Parámetros:
    • Inventario: Datos sobre el tipo de pavimento, su longitud y ancho, condiciones climáticas y características del tráfico.
    • Técnicos: Condición inicial del pavimento, modelos de deterioro a lo largo del tiempo y el conjunto de tratamientos disponibles.
    • Económicos: Costos unitarios de mantenimiento para cada tratamiento.
    • Estratégicos: Periodo de planificación, tasa de descuento y estándares mínimos requeridos.
Las actividades de mantenimiento conllevan un aumento de la vida útil del firme (ΔSL) y, por tanto, una mejora inmediata de su estado (ΔUPCI) en el momento de su aplicación

Algoritmo GRASP-TA

El enfoque híbrido combina dos estrategias complementarias:

  1. GRASP (Procedimiento de Búsqueda Aleatoria Codiciosa Adaptativa):
    • Genera una población inicial de soluciones viables considerando una relajación controlada de las restricciones presupuestarias.
    • Utiliza funciones de priorización para evaluar el impacto de cada posible tratamiento en la LTE y seleccionar las mejores alternativas mediante un proceso probabilístico.
  2. TA (Aceptación de Umbral):
    • Realiza una optimización local a las soluciones generadas por GRASP.
    • Permite aceptar soluciones ligeramente peores en las primeras iteraciones para evitar quedarse atrapado en óptimos locales.
    • Ajusta iterativamente las restricciones presupuestarias relajadas en GRASP para cumplir con las condiciones originales.
Efecto del tratamiento sn para construir la solución en el año t con el algoritmo GRASP

Caso de estudio: red urbana en Santiago, Chile

La red analizada se encuentra en Santiago de Chile. Está compuesta por 20 secciones con pavimentos flexibles (asfálticos) y rígidos (hormigón). El clima de la región es mediterráneo, lo que influye en los patrones de deterioro del pavimento. La condición inicial media de la red es 6,8, según el Índice de Condición del Pavimento Urbano (UPCI), lo que indica una calidad intermedia.

Para los pavimentos asfálticos, los tratamientos evaluados incluyeron opciones de preservación, mantenimiento y rehabilitación. En preservación, el sellado de fisuras aumenta la vida útil en 2 años y tiene un coste de 0,99 USD/m². En el mantenimiento, el fresado y la repavimentación funcional ofrecen 10 años de vida útil por 23,24 USD/m². En rehabilitación, la rehabilitación en frío alcanza los 13 años con un coste de 36,50 USD/m².

Para los pavimentos de hormigón, los tratamientos incluyeron preservación y rehabilitación. El pulido con diamante aumenta la vida útil en 10 años y tiene un coste de 15,39 USD/m². La reconstrucción completa proporciona 25 años de servicio por un coste de 134,60 USD/m². Estos tratamientos representan opciones para diferentes niveles de deterioro y requisitos estructurales.

El programa optimizado mostró un impacto significativo en la efectividad a largo plazo (LTE). Se logró una mejora del 40 % en la LTE en comparación con las estrategias reactivas. Los tratamientos preventivos dominaron las decisiones, seleccionándose en el 80 % de los casos, lo que evidencia su mayor efectividad frente a opciones correctivas o de rehabilitación.

En términos de coste-eficacia, no se seleccionaron los tratamientos reciclados. Aunque ofrecen beneficios similares en términos de vida útil, su alto coste los hace menos competitivos frente a alternativas más económicas, lo que destaca la importancia de equilibrar costes y beneficios en el diseño de programas de mantenimiento.

Análisis de escenarios

1. Escenarios de inventario:

Se analizaron redes con diferentes proporciones de pavimentos asfálticos y de hormigón, con configuraciones del 25 %, 50 % y 75 % para cada tipo. También se estudiaron tres condiciones iniciales de las redes: buenas, intermedias y deficientes. Este análisis permitió evaluar la influencia de las características estructurales y del estado inicial en la optimización de los programas de mantenimiento.

En todos los casos, los resultados mostraron que la optimización mediante el algoritmo GRASP-TA era superior a las estrategias reactivas tradicionales. Esto demostró que el método es altamente adaptable a diversas configuraciones de red y capaz de ofrecer soluciones efectivas en términos de LTE, independientemente de las características de la red o de su estado inicial.

2. Escenarios presupuestarios:

El análisis incluyó variaciones en el presupuesto total, con incrementos y reducciones de hasta el 20 %, así como cambios en la distribución de los fondos a lo largo del tiempo. Se evaluaron dos configuraciones principales para entender su impacto en el rendimiento a largo plazo.

El escenario con mayor inversión en los primeros años mostró un aumento significativo de la LTE. Esto puso de manifiesto que la asignación temprana de fondos mejora sustancialmente los resultados del mantenimiento. Por el contrario, los aumentos progresivos anuales redujeron la LTE en un 15 % respecto al caso base, lo que indica que posponer la inversión perjudica el rendimiento de la red.

Conclusiones

Asignar más recursos durante los primeros años de un programa de mantenimiento es fundamental para optimizar el rendimiento a largo plazo de las infraestructuras. Este análisis pone de manifiesto la importancia de una planificación presupuestaria estratégica, ya que señala que el momento en que se invierten los recursos tiene un impacto considerable en los beneficios acumulados de la red.

  1. Eficiencia del método GRASP-TA: Diseña programas que maximizan la LTE bajo restricciones técnicas y económicas reales.
  2. Importancia de la prevención: Las actividades preventivas son significativamente más rentables a largo plazo.
  3. Estrategias presupuestarias: Es esencial priorizar mayores inversiones en los primeros años del programa para maximizar su impacto.
  4. Limitaciones de los tratamientos reciclados: Aunque presentan beneficios ambientales, su alto costo relativo limita su inclusión en las soluciones optimizadas cuando solo se consideran aspectos técnicos y económicos.

Como recomendaciones futuras habría que integrar criterios de sostenibilidad, como impactos ambientales y sociales, y extender el análisis a redes más grandes y diversas.

Referencia:

YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI:10.3846/13923730.2015.1120770

Aquí os dejo el artículo por si os resulta de interés.

Pincha aquí para descargar

 

Tesis doctoral: Optimización social y ambiental de estructuras prefabricadas de hormigón armado bajo presupuestos restrictivos

De izquierda a derecha: Julián Alcalá, Tatiana García, Andrés Ruiz, Salvador Ivorra, Antonio Tomás y Víctor Yepes

Ayer, 4 de diciembre de 2024, tuvo lugar la defensa de la tesis doctoral de D. Andrés Ruiz Vélez, titulada “Optimal design of socially and environmentally efficient reinforced concrete precast modular road frames under constrained budgets”, dirigida por los profesores Víctor Yepes Piqueras y Julián Alcalá González. La tesis recibió la calificación de sobresaliente «cum laude». A continuación, presentamos un pequeño resumen de la misma.

Resumen:

La infraestructura de transporte es esencial para el desarrollo humano, ya que impulsa el crecimiento industrial y promueve la evolución social al mejorar la interacción y la conectividad. Su construcción actúa como un catalizador de transformaciones socioeconómicas, puesto que fomenta las economías locales y facilita el flujo de recursos y de la fuerza laboral. Sin embargo, la creciente concienciación sobre los impactos negativos de las prácticas insostenibles en la ingeniería de la construcción exige una transición hacia métodos más responsables. Históricamente, la viabilidad económica ha sido el enfoque principal en ingeniería estructural. No obstante, en la actualidad se otorga mayor relevancia a la evaluación de los impactos a lo largo del ciclo de vida de los proyectos. Aunque este enfoque supone un avance en la integración del diseño estructural con los objetivos de desarrollo sostenible, todavía no abarca plenamente la complejidad y diversidad que implica la sostenibilidad a lo largo de todo el ciclo de vida de las infraestructuras.

Esta tesis doctoral desarrolla de manera sistemática un marco de diseño que integra la sostenibilidad en la construcción de infraestructuras de transporte. Se propone un enfoque modular y prefabricado para proyectos de estructuras viales, que se posiciona como una alternativa más eficiente y atractiva frente a los métodos tradicionales de hormigonado in situ. El diseño estructural, junto con los procesos ambientales y sociales asociados al ciclo de vida de la estructura, se modela mediante un enfoque matemático avanzado. Este modelo permite aplicar técnicas de optimización monoobjetivo y multiobjetivo, combinadas con algoritmos multicriterio de toma de decisiones. Dada la complejidad y la diversidad de variables involucradas, el uso de métodos exactos de optimización no es viable. Por ello, la investigación adopta metaheurísticas híbridas y basadas en entornos para minimizar el coste final de la estructura desde una perspectiva monoobjetivo. Entre las técnicas evaluadas, las metaheurísticas de recocido simulado y aceptación por umbrales, calibradas con cadenas de mayor longitud, ofrecen resultados de alta calidad, aunque con un considerable esfuerzo computacional. En contraste, una versión híbrida del recocido simulado enriquecida con un operador de mutación común en algoritmos basados en poblaciones alcanza soluciones de calidad comparable con un menor esfuerzo computacional. La hibridación de metaheurísticas se presenta como una estrategia eficaz para ampliar las capacidades exploratorias de estos algoritmos, optimizando el equilibrio entre la calidad de los resultados y la eficiencia computacional.

El análisis del ciclo de vida de diferentes configuraciones de marcos con un coste óptimo revela claras ventajas ambientales del enfoque modular prefabricado en comparación con la construcción convencional in situ. Sin embargo, las implicaciones sociales son más complejas y destacan la relevancia de incorporar los impactos del ciclo de vida como funciones objetivo en el proceso de optimización. Este hallazgo subraya la necesidad de emplear técnicas multicriterio para evaluar y clasificar eficazmente las alternativas. De este modo, se garantiza un equilibrio adecuado entre los impactos ambientales y sociales, y se asegura una toma de decisiones más integral y sostenible dentro del marco del diseño y la planificación.

Esta investigación desarrolla operadores de cruce, mutación y reparación diseñados para discretizar eficazmente el problema de optimización, dotando así a los algoritmos genéticos y evolutivos de la capacidad necesaria para abordar la complejidad del proceso de optimización multiobjetivo. En particular, el operador de reparación estadístico muestra un buen rendimiento cuando se combina con los algoritmos genéticos NSGA-II y NSGA-III, así como con el algoritmo evolutivo RVEA. Aunque existen diferencias metodológicas entre estas técnicas, la herramienta de toma de decisiones FUCA produce clasificaciones equivalentes a las obtenidas mediante el método de ponderación aditiva simple. Esta coherencia también se observa con técnicas como TOPSIS, PROMETHEE y VIKOR. Para garantizar la imparcialidad en la ponderación de criterios, se aplica un proceso de cálculo basado en la teoría de la entropía, lo que proporciona un enfoque metódico a las técnicas de decisión multicriterio. La integración de algoritmos de optimización multiobjetivo con herramientas de decisión multicriterio en un marco de diseño fundamentado en modelos matemáticos permite identificar y clasificar diseños óptimos no dominados. Estos diseños logran un equilibrio integral entre las dimensiones económica, ambiental y social, y promueven la sostenibilidad del ciclo de vida de la estructura.

Referencias:

RUIZ-VÉLEZ, A.; GARCÍA, J.; PARTSKHALADZE, G.; ALCALÁ, J.; YEPES, V. (2024). Enhanced Structural Design of Prestressed Arched Trusses through Multi-Objective Optimization and MCDM. Mathematics, 12(16), 2567. DOI:10.3390/math12162567

RUIZ-VÉLEZ, A.; GARCÍA, J.; ALCALÁ, J.; YEPES, V. (2024). Enhancing Robustness in Precast Modular Frame Optimization: Integrating NSGA-II, NSGA-III, and RVEA for Sustainable Infrastructure. Mathematics, 12(10):1478. DOI:10.3390/math12101478

RUIZ-VÉLEZ, A.; GARCÍA, J.; ALCALÁ, J.; YEPES, V. (2024). Sustainable Road Infrastructure Decision-Making: Custom NSGA-II with Repair Operators for Multi-objective Optimization. Mathematics, 12(5):730. DOI:10.3390/math12050730

RUIZ-VÉLEZ, A.; ALCALÁ, J.; YEPES, V. (2023). A parametric study of optimum road modular hinged frames by hybrid metaheuristics. Materials, 16(3):931. DOI:10.3390/ma16030931

RUIZ-VÉLEZ, A.; ALCALÁ, J.; YEPES, V. (2023). Optimal design of sustainable reinforced concrete precast hinged frames. Materials, 16(1):204. DOI:10.3390/ma16010204

RUIZ-VÉLEZ, A.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2023). Perspectiva social de un marco modular óptimo: Análisis integral del ciclo de vida. Revista CIATEC-UPF, 15(1):1-19. DOI:10.5335/ciatec.v15i1.14974

RUIZ-VÉLEZ, A.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2022). Optimización de marcos articulados prefabricados de hormigón armado mediante recocido simulado. Revista CIATEC-UPF, 14(3):41-55. DOI:10.5335/ciatec.v14i3.14079

 

DANA 2024. Causas, consecuencias y soluciones

En el marco del Observatorio de la Inversión en Obra Pública, el Colegio de Ingenieros de Caminos, Canales y Puertos celebró el 2 de diciembre de 2024, la jornada «DANA 2024: causas, consecuencias y soluciones».

Durante la sesión, se analizó el desastre natural que asoló la Comunidad Valenciana, Castilla-La Mancha y Andalucía desde un punto de vista técnico. Miguel Ángel Carrillo, presidente del Colegio, también realizó una declaración institucional sobre la DANA.

A continuación os dejo el vídeo del acto celebrado, un resumen y un mapa conceptual del mismo. Espero que os sea de interés.

Resumen detallado del vídeo: DANA 2024. Causas, consecuencias y soluciones

El vídeo analiza la jornada dedicada al desastre natural DANA 2024, un fenómeno extremo que afectó gravemente a Valencia, y explora las causas, consecuencias y posibles soluciones desde diversas perspectivas técnicas y sociales. Organizada por el Colegio de Ingenieros de Caminos, esta jornada tiene como objetivo generar conocimientos prácticos y estratégicos para prevenir y mitigar futuros desastres similares. A lo largo de la jornada, expertos en ingeniería, planificación urbana y gestión ambiental reflexionan sobre la importancia de la planificación hidrológica, la resiliencia urbana y la reconstrucción sostenible.


Introducción y contexto inicial

[00:21]
El evento comienza con una introducción realizada por el Presidente del Colegio, Miguel Ángel Carrillo, donde detallada el desastre de la DANA de 2024, consideradolo uno de los más devastadores de Valencia en el último siglo. La jornada se organizó para analizar en profundidad las causas y consecuencias de este fenómeno y proponer soluciones basadas en la experiencia y el conocimiento técnico. El Colegio de Ingenieros de Caminos resaltó la necesidad de desarrollar respuestas integrales a las tragedias y pérdidas humanas, materiales y económicas derivadas de la catástrofe. Además, se hizo hincapié en que este tipo de análisis es crucial para fortalecer la capacidad de prevención y respuesta ante fenómenos climáticos extremos, especialmente en una región como Valencia, que es particularmente vulnerable al cambio climático.


Importancia de la evaluación in situ

[41:22]
El vídeo destaca la importancia de evaluar directamente las zonas afectadas por desastres naturales. Según los expertos, estar presente en el lugar del desastre permite observar de primera mano los daños, lo que es crucial para comprender la magnitud del problema y priorizar soluciones efectivas. Javier Machí, decano de la Demarcación de Valencia, comparte su experiencia personal al inspeccionar los daños sufridos en su comunidad y describe cómo estas visitas le permitieron identificar puntos críticos que requerían intervenciones inmediatas. Asimismo, se expresa una preocupación generalizada por el riesgo de que, con el tiempo, las huellas del desastre desaparezcan sin que se hayan documentado y aprendido las lecciones esenciales. Según los expertos, este olvido limitaría la capacidad de prevenir futuros eventos similares.


Impacto de las intensas lluvias y los desbordamientos

[01:22:46]
El análisis técnico de las lluvias torrenciales que caracterizaron el evento la DANA 2024 revela cifras impactantes. Para ilustrar la magnitud de las precipitaciones, que superaron ampliamente los promedios anuales en un corto periodo de tiempo, se utilizaron mapas de isoyetas. Uno de los ejemplos más notables fue la crecida del río Ojos de Moya, que provocó graves inundaciones en localidades como Utiel y afectó al río Magro. Estos desbordamientos pusieron de manifiesto las limitaciones de las infraestructuras existentes para manejar lluvias de esta intensidad. Además, se resaltó la relación directa entre este tipo de fenómenos meteorológicos extremos y el cambio climático, lo que obliga a reconsiderar la planificación y gestión de los recursos hídricos en la región.


Renaturalización y soluciones medioambientales

[02:04:11]
Una de las soluciones propuestas durante la jornada fue la renaturalización de los cauces fluviales para mitigar el impacto de las inundaciones. Este enfoque busca restaurar el equilibrio natural de los ecosistemas fluviales, lo que no solo reduce el impacto ambiental, sino que también mejora la capacidad de desagüe en zonas críticas. Sin embargo, en áreas urbanas densamente pobladas, las limitaciones espaciales obligan a adoptar medidas más drásticas, como la reforestación estratégica y la construcción de micropresas. También se mencionó un plan implementado en 2006 que incluyó el desvío de ciertos cauces para proteger ecosistemas vulnerables. Algunos expertos señalaron que estas medidas podrían requerir sacrificar áreas agrícolas para crear corredores verdes que reduzcan el riesgo de inundaciones, lo que ha abierto un debate sobre las prioridades entre la sostenibilidad ambiental y la producción agrícola.


Organización de la jornada y reconstrucción

[02:46:17]
La jornada contó con una notable participación presencial y virtual, lo que refleja el interés público y técnico en abordar las consecuencias de la DANA de 2024. En la tercera sesión, los ponentes debatieron sobre las inversiones necesarias para la reconstrucción de las zonas afectadas, haciendo hincapié en la solidaridad con las víctimas. En esta sesión se reunieron representantes de sectores clave, como la ingeniería, la construcción y la banca, que ofrecieron perspectivas complementarias sobre cómo financiar y ejecutar proyectos de reconstrucción. También se hizo hincapié en la importancia de coordinar esfuerzos entre diferentes actores para garantizar una recuperación eficiente y sostenible que no solo repare los daños, sino que también fortalezca la resiliencia de las comunidades.


Infraestructura hidráulica y cambio climático

[03:26:58]
Se hizo hincapié en la necesidad de realizar inversiones significativas en infraestructura hidráulica para hacer frente a los desafíos que plantea el cambio climático. Según los datos presentados, solo se ejecuta actualmente el 30 % de los planes hidrológicos en España, lo que deja un amplio margen para la mejora. Los expertos hicieron hincapié en la necesidad de desarrollar un proyecto nacional que destine suficientes recursos a la protección contra inundaciones. La colaboración público-privada también se identificó como un componente clave para financiar y ejecutar proyectos complejos, como encauzamientos y presas de laminación, que son esenciales para proteger a las comunidades en riesgo.


Planificación hidrológica y ordenación territorial

[04:08:21]
En este segmento, se destacó que una de las lecciones más importantes de la DANA 2024 es la necesidad de una planificación hidrológica y una ordenación territorial más efectivas. En una mesa redonda, expertos analizaron las causas y consecuencias del desastre, así como las acciones necesarias para la reconstrucción. Los ponentes hicieron hincapié en que, además de reparar las infraestructuras dañadas, es fundamental planificar a largo plazo para prevenir desastres futuros. Se debatió sobre cómo la ingeniería, en combinación con una ordenación territorial adecuada, puede reducir significativamente los riesgos asociados a fenómenos extremos.


Resiliencia urbana y gestión estratégica

[04:49:46]
La jornada concluyó con un análisis sobre la importancia de la resiliencia urbana en la gestión del territorio. Este concepto, que implica la capacidad de las ciudades para adaptarse y recuperarse de los desastres, se ha convertido en una prioridad global. Se mencionó el caso de Barcelona, que forma parte de una red internacional de ciudades resilientes y constituye un ejemplo de buenas prácticas. También se reflexionó sobre el Plan Sur, una ley que inicialmente buscaba coordinar estrategias urbanas en España, pero que ha perdido impulso en los últimos años. Los expertos hicieron un llamamiento para adoptar una visión integral y a largo plazo que permita a las ciudades hacer frente a los desafíos del cambio climático, al tiempo que se fomenta la responsabilidad ciudadana en la gestión del territorio.


Conclusión general

El vídeo destaca que la DANA 2024 no solo es una tragedia climática, sino también una oportunidad para reflexionar y actuar. Las propuestas abarcan desde soluciones técnicas, como la renaturalización y mejora de infraestructuras, hasta enfoques estratégicos, como la planificación hidrológica y el fortalecimiento de la resiliencia urbana. Los expertos coinciden en que hacer frente al cambio climático requerirá un esfuerzo conjunto, inversiones significativas y un compromiso político y social continuado.

A continuación os dejo un mapa conceptual del contenido del vídeo.

 

El programa completo del acto fue el siguiente:

Pincha aquí para descargar

Evaluación de la vulnerabilidad urbana desde la perspectiva de la planificación estratégica

Destrucción causada por la DANA del 29 de octubre de 2024 en Valencia. https://www.iagua.es/blogs/jose-maria-bodoque/como-mejorar-gestion-riesgo-zonas-afectadas-dana-evitar-catastrofe

La evaluación de la vulnerabilidad urbana (EVA) se ha convertido en una herramienta esencial para la gestión de riesgos y la planificación estratégica de ciudades sostenibles. Un artículo publicado en el Journal of Cleaner Production describe los avances en este campo, abordando las metodologías más avanzadas, las líneas de investigación prioritarias y sus implicaciones para la práctica y la formulación de políticas. Este informe desglosa los hallazgos principales y resalta su impacto práctico y las aportaciones metodológicas. Destacamos la importancia de este trabajo, relacionado directamente con el desastre provocado por la DANA en Valencia, el 29 de octubre de 2024.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

¿Qué es la vulnerabilidad urbana y por qué evaluarla?

La vulnerabilidad urbana mide la susceptibilidad de las ciudades a impactos negativos como desastres naturales, cambios climáticos, fallos en la infraestructura y crisis sociales. Según el artículo, la vulnerabilidad de un sistema urbano depende de:

  • Exposición: Grado en que el sistema está sujeto a una amenaza.
  • Sensibilidad: Capacidad del sistema para ser afectado negativamente.
  • Capacidad adaptativa: Habilidad para responder y recuperarse de las amenazas.

La Evaluación de Vulnerabilidad Urbana (EVA) tiene como objetivo identificar estos factores para informar sobre la toma de decisiones en el ámbito de la planificación estratégica, orientando las acciones hacia la resiliencia y la sostenibilidad urbana.

Relación con la Planificación Estratégica Urbana (USP)

La planificación estratégica urbana, basada en enfoques que evolucionan desde la predicción y el control hacia la adaptabilidad y la inclusión, proporciona un marco idóneo para integrar la EVA. Ambas disciplinas comparten desafíos como la incertidumbre, la necesidad de enfoques multidimensionales y la participación de actores clave.

Evolución y marco conceptual

Tres etapas en la evolución de la EVA

El artículo traza la evolución de la EVA a través de tres etapas fundamentales:

  1. Etapa predictiva: Los métodos iniciales se enfocaban en evaluar impactos utilizando modelos simples y lineales. Estos se limitaban a prever riesgos y sugerir respuestas reactivas.
  2. Etapa de vulnerabilidad: Incorporó conceptos de capacidad adaptativa y sensibilidad. Comenzó a incluir enfoques más integrales que consideraban aspectos socioeconómicos y biológicos.
  3. Etapa adaptativa: Introduce una visión dinámica, aceptando la incertidumbre y adoptando estrategias que respondan a cambios continuos. Esta etapa se centra en la planificación adaptativa y el manejo de riesgos en múltiples escenarios.

Marco conceptual para la EVA

El análisis del artículo se estructura en torno a atributos genéricos y de investigación, que permiten categorizar y evaluar los métodos de EVA:

  • Atributos genéricos:
    1. Abordaje: Clasificado en biológico, social e integral. Este último combina ambos factores, proporcionando una evaluación más holística.
    2. Estímulos: Incluyen amenazas como terremotos, inundaciones y fallas de infraestructura, clasificadas como de primer o segundo orden según su origen.
    3. Etapa de desarrollo: Impacto (diagnóstico inicial), vulnerabilidad (caracterización de capacidades) o adaptación (formulación de estrategias adaptativas).
  • Atributos de investigación:
    1. Robustez: Habilidad del modelo para manejar incertidumbre.
    2. Procesos participativos: Incorporación de opiniones y experiencias de múltiples actores.
    3. Multiescala: Integración de diferentes niveles de análisis.
    4. Naturaleza dinámica: Consideración del cambio en el tiempo y el contexto.
    5. Capacidad multiobjetivo: Evaluación de múltiples intereses y conflictos.
    6. Enfoques cognitivos: Identificación de relaciones causa-efecto y apoyo al aprendizaje en la toma de decisiones.

Metodología aplicada en el análisis

El artículo utiliza una metodología sistemática en cuatro pasos para identificar y analizar métodos EVA:

  1. Búsqueda exhaustiva: En bases de datos como Scopus y Web of Science, enfocándose en estudios recientes (a partir de 2010).
  2. Revisión por contenido: Identificación de trabajos relevantes que incluyan métodos novedosos de EVA.
  3. Categorización: Clasificación según atributos genéricos y de investigación.
  4. Análisis cuantitativo: Uso de herramientas estadísticas para evaluar tendencias, correlaciones y vacíos en la investigación.

De los 65 estudios seleccionados, la mayoría se encuentra en la etapa de vulnerabilidad, lo que refleja una transición hacia enfoques más integrales y adaptativos.

Hallazgos principales

Los estudios actuales muestran un predominio de métodos integrales que combinan factores biológicos y sociales (35 %), superando a los enfoques exclusivamente biológicos (34 %) y sociales (31 %), lo que permite evaluaciones más precisas para la toma de decisiones. El atributo más investigado es la robustez (33 %), lo que refleja la prioridad de gestionar la incertidumbre y mejorar la fiabilidad de los resultados. Sin embargo, la participación ciudadana, que es fundamental para integrar las perspectivas sociales, está poco desarrollada (22 %), mientras que las dimensiones multiescalares y dinámicas, que son esenciales para entender la complejidad urbana, reciben poca atención (6 %).

Relación entre atributos y estímulos

Los métodos EVA se centran principalmente en amenazas naturales como terremotos (34 %) e inundaciones (24 %). Estas categorías tienen mayor presencia en enfoques biológicos e integrales, mientras que los estímulos sociales y relacionados con infraestructuras están menos representados.

Impacto de los enfoques integrales

Los enfoques integrales son eficaces para avanzar hacia etapas adaptativas. En el caso de los fallos de infraestructura, combinar simulaciones con análisis socioeconómicos permite identificar vulnerabilidades críticas y proponer soluciones integradas. En casos de inundaciones, los modelos de robustez y el análisis de participación comunitaria refuerzan la legitimidad de las estrategias adaptativas.

Implicaciones prácticas

Política y planificación

  1. Desarrollo de infraestructuras resilientes: Incorporar resultados de EVA en la planificación de sistemas urbanos adaptativos y flexibles.
  2. Participación comunitaria: Diseñar procesos inclusivos que canalicen las perspectivas ciudadanas hacia decisiones legítimas y eficaces.
  3. Integración de escalas: Conectar análisis locales con dinámicas regionales y globales, fomentando la coherencia entre niveles de planificación.

Investigación y tecnología

  1. Mejora de modelos de robustez: Implementar técnicas avanzadas como redes complejas y análisis de Monte Carlo.
  2. Promoción de métodos multiobjetivo: Usar enfoques heurísticos y de optimización para equilibrar múltiples intereses.
  3. Fomento de enfoques dinámicos: Incluir simulaciones basadas en el tiempo para anticipar cambios en la vulnerabilidad.

Conclusión

La evaluación de la vulnerabilidad urbana ha progresado significativamente hacia enfoques integrales y adaptativos, pero persisten desafíos, especialmente en lo que respecta a la participación ciudadana, la multiescala y la naturaleza dinámica. Los métodos EVA son fundamentales para abordar la complejidad de la planificación urbana en un mundo cada vez más incierto. El artículo destaca que la inversión en investigación interdisciplinaria y tecnología puede acelerar la transición hacia ciudades más resilientes y sostenibles.

Referencia:

SALAS, J.; YEPES, V. (2018). Urban vulnerability assessment: Advances from the strategic planning outlook. Journal of Cleaner Production, 179:544-558. DOI:10.1016/j.jclepro.2018.01.088

Os paso la versión autor del artículo completo, por si os interesa leerlo.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Qué es una presa. «La via verda», À Punt

En el programa «La via verda», de la televisión autonómica valenciana À Punt, intervine para explicar qué es una presa, sus características y su efecto laminador en caso de una avenida. Aquí dejo un pequeño resumen del vídeo, que también dejo al final para su visualización completa.

El vídeo de este programa aborda la importancia de las presas de Forata y Buseo durante el episodio de lluvias torrenciales ocurrido en la provincia de Valencia el 29 de octubre de 2024. Se explica cómo estas presas alcanzaron su capacidad máxima y tuvieron que liberar agua de manera controlada. Se proporcionan datos específicos sobre los caudales de entrada y salida, así como sobre la capacidad de almacenamiento de las presas. También se destaca el papel crucial de las presas en la reducción de las crecidas y la mitigación de las inundaciones, y se explica cómo han ayudado a evitar daños potenciales aguas abajo.

Papel fundamental de las presas durante episodios de lluvias torrenciales

Las presas son fundamentales para regular el agua, especialmente en situaciones críticas como lluvias torrenciales. Su capacidad para manejar grandes volúmenes de agua permite reducir significativamente el riesgo de desbordamientos e inundaciones y proteger las zonas cercanas. Estas infraestructuras pueden manejar caudales extremos y minimizar el impacto negativo en las zonas inundables.

Funcionamiento y contribución durante inundaciones

Las presas de una cuenca hidrográfica cumplen funciones clave, como el almacenamiento de agua y la regulación del flujo durante las lluvias intensas. Cuando se producen precipitaciones torrenciales, estas estructuras aumentan su capacidad operativa para evitar desbordamientos y proteger las zonas situadas aguas abajo. Además de suministrar agua para consumo humano y actividades agrícolas, las presas actúan como barreras contra las inundaciones, lo que demuestra su valor multifuncional en la gestión hídrica.

Reducción de zonas inundables y el efecto laminador

Una de las funciones más destacadas de las presas es su capacidad para regular el flujo de agua en función de las precipitaciones, lo que reduce el impacto de las inundaciones. Este efecto laminador reduce el caudal de agua que fluye hacia las zonas urbanas y rurales, lo que disminuye significativamente las zonas inundables. Además, la capacidad de almacenamiento de estas infraestructuras permite gestionar mejor las aguas torrenciales y evitar así daños mayores en las comunidades.

Desafíos y necesidad de adaptación ante el cambio climático

Aunque las presas han demostrado su eficacia para prevenir desastres, también entrañan riesgos si no se gestionan adecuadamente. Un fallo en una presa podría tener consecuencias catastróficas, donde se ha comparado el impacto potencial con el de un tsunami. Esto pone de manifiesto la importancia de contar con un sistema de planificación y evacuación adecuado para proteger a la población en caso de emergencias.

En un contexto de cambios climáticos extremos, con sequías severas y lluvias torrenciales alternándose, es crucial reevaluar y adaptar el uso de las presas. La planificación y el mantenimiento de estas infraestructuras deben centrarse en garantizar su resiliencia frente a condiciones climáticas variables para asegurar que sigan cumpliendo su función de manera efectiva y segura.

El vídeo del programa lo tenéis aquí. Aunque está en valenciano, mis intervenciones son en castellano. Espero que os sea de interés.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Losas aligeradas con análisis multivariante: innovación, eficiencia y sostenibilidad en los Métodos Modernos de Construcción

Innovación y optimización en el diseño estructural: losas aligeradas con análisis multivariante

La construcción moderna está en constante evolución para superar los retos asociados al alto consumo de materiales, la sostenibilidad ambiental y los costes elevados. En este contexto, las losas aligeradas con esferas o discos plásticos presurizados se presentan como una solución estructural innovadora que combina eficiencia, sostenibilidad y funcionalidad. Este artículo detalla, basándose en el análisis exhaustivo del documento presentado, cómo la metodología de análisis multivariante permite dimensionar con precisión este tipo de losas, optimizando recursos y reduciendo el impacto ambiental.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Losas de hormigón armado sin vigas, aligeradas con esferas o discos plásticos. https://www.prenovaglobal.com/index.php/es/losas-sin-vigas-con-esferas-o-discos/

Introducción a las losas aligeradas

Las losas de hormigón armado son elementos clave en cualquier edificación, diseñadas para soportar cargas verticales y transferirlas a los soportes principales. Sin embargo, su peso propio plantea un desafío técnico y económico, especialmente cuando hay grandes luces entre apoyos, ya que se necesitan más materiales y refuerzos, lo que aumenta los costos y el impacto ambiental.

El concepto de losas aligeradas

Este sistema estructural combina los Métodos Modernos de Construcción (MMC) con la sostenibilidad ambiental e integra aligeradores huecos de materiales reciclados, como discos o esferas plásticas presurizadas, en el núcleo de las losas. Estas estructuras reducen el peso propio, optimizan las cargas transmitidas y permiten utilizar menos hormigón y acero sin comprometer la resistencia estructural.

Innovación técnica: metodología para el dimensionamiento

Base del estudio

La metodología presentada analiza 67 edificios construidos con losas aligeradas y registra 75 observaciones de forjados. Estos datos se procesaron mediante análisis estadístico y modelos de regresión multivariante, lo que permitió desarrollar ecuaciones predictivas altamente precisas para calcular el espesor de las losas en función de sus características estructurales.

Variables clave

  1. Luz principal (L): Distancia entre los apoyos principales.
  2. Espesor de la losa (E): Variable dependiente del modelo.
  3. Altura del disco o diámetro de la esfera (H): Elemento aligerante.
  4. Sobrecarga (Q): Definida por el uso del edificio.
  5. Superficie construida: Influye en la carga total transferida.
  6. Número de plantas: Relacionado con la distribución de cargas.

Resultados del análisis

El estudio identificó una fuerte correlación entre estas variables, especialmente entre el espesor de la losa y la luz entre apoyos. Esto permitió formular una ecuación que explica hasta el 98,34 % de la variabilidad del espesor de las losas aligeradas.

Ecuación ajustada del modelo final:

Aspectos destacados:

  • La relación cuadrática entre la luz y el espesor refleja la carga que predomina en la sección.
  • La altura del disco aligerante influye directamente en el diseño, que está condicionada por los espesores comerciales disponibles.

Validación estadística

Se realizaron pruebas de normalidad (Shapiro-Wilk y Kolmogorov-Smirnov) y análisis de residuos. Los residuos siguieron una distribución normal, confirmando la robustez y validez del modelo propuesto.

Criterios de diseño

  • Para luces mayores de 7,2 m o sobrecargas superiores a 2 kN/m², el modelo proporciona cálculos más precisos que las reglas tradicionales.
  • Se recomienda utilizar este modelo como guía inicial para seleccionar el tamaño adecuado de los aligeradores.

Beneficios económicos y ambientales

El uso de losas aligeradas supone una mejora sustancial en términos de costes y sostenibilidad:

Ahorro de materiales

  • Se ha reducido el consumo de hormigón hasta en un 30 %, lo que equivale a 1000 m³ menos por cada 10 000 m² de losas construidas.
  • Disminución del uso de acero en un 20 %, lo que optimiza los refuerzos y las cimentaciones.

Impacto ambiental

  • Reducción de emisiones de CO₂: por cada 10 000 m² de losas, se evita la emisión de 220 toneladas de CO₂.
  • Uso de materiales reciclados para los aligeradores, lo que promueve la economía circular.
  • Se consume menos agua y energía durante la construcción.

Optimización de costes

  • Las estructuras más ligeras reducen la demanda de cimentaciones y elementos de soporte.
  • Se necesita menos cimbrado y los tiempos de construcción son más cortos.
  • Aumento de la eficiencia global del proyecto.

Aplicaciones y comparativas estructurales

Las losas aligeradas son particularmente útiles en edificios residenciales, comerciales e industriales donde se requieren luces amplias (de 5 a 16 m). Su flexibilidad y adaptabilidad permiten su uso en una amplia variedad de aplicaciones.

Comparación con losas macizas

  1. Peso y carga:
    • Las losas aligeradas reducen el peso propio hasta en un 30 %.
    • Al transferir menos cargas a los pilares y cimentaciones, se reduce el riesgo de daños.
  2. Resistencia estructural:
    • Ofrece una resistencia a la flexión y al punzonamiento comparable a la de las losas macizas.
    • Incorporación de zonas macizas alrededor de los pilares para mejorar la capacidad cortante.
  3. Flexibilidad en el diseño:
    • Permite mayores luces y diseños arquitectónicos más libres.
    • Facilita la apertura de huecos para instalaciones o reformas en el futuro.

Desafíos y perspectivas futuras

Aunque este sistema presenta numerosos beneficios, aún enfrenta ciertos retos que deben abordarse:

  1. Estandarización del diseño:
    • Es necesario desarrollar normas que regulen el uso de aligeradores en distintos contextos.
    • Hay que incorporar criterios adicionales, como la resistencia al fuego y la durabilidad, en los modelos de diseño.
  2. Optimización del sistema:
    • Explorar nuevos materiales reciclados para mejorar la sostenibilidad del sistema.
    • Desarrollar herramientas digitales basadas en dicho modelo para facilitar su aplicación.
  3. Estudios comparativos ampliados:
    • Evaluar el rendimiento de las losas aligeradas frente a sistemas tradicionales, como los forjados reticulares.
    • Realizar un análisis del ciclo de vida completo que tenga en cuenta el impacto económico, ambiental y social.

Conclusiones

Este estudio ofrece una herramienta innovadora para el dimensionamiento eficiente de losas aligeradas, basada en el análisis multivariante y en criterios estadísticos rigurosos. Estas estructuras no solo optimizan el uso de materiales, sino que también reducen el impacto ambiental y fomentan la sostenibilidad en la construcción.

Con un enfoque que combina diseño avanzado, ahorro de recursos y flexibilidad arquitectónica, las losas aligeradas están transformando la forma de construir edificios modernos. A medida que se perfeccionen los modelos y se amplíen sus aplicaciones, este sistema se perfilará como una solución fundamental para construir un futuro más sostenible y eficiente.

Os dejo la presentación que se hizo en el congreso:

Como está publicado en abierto, os dejo la comunicación completa a continuación:

Pincha aquí para descargar

Referencia:

SÁNCHEZ-GARRIDO, A.; GUAYGUA, B.; VILLALBA, P.; YEPES, V. (2024). Ingeniería de proyectos basada en modelos de análisis multivariante. Aplicación al dimensionamiento de losas planas aligeradas. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain), pp. 445-459. DOI:10.61547/2402013

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.