Puente de la cárcel o picudo, en Estella (Navarra). Imagen: V. Yepes (2018)
Los puentes y las guerras presentan asociaciones desastrosas. Uno de esos casos es el puente de la cárcel (o puente picudo, como se le conoce popularmente), que cruza el río Ega en Estella (Lizarra, en euskera), en Navarra. La III Guerra Carlista arruinó en 1873 un puente medieval del siglo XX de un solo arco de medio punto. Este puente se reconstruyó siguiendo el modelo del puente anterior. Se trata de uno de los pasos por donde pasa el peregrino camino de Santiago, constituyendo uno de los símbolos de esta ciudad de gran patrimonio cultural.
Pocas veces se incorporan en los proyectos de puentes actuales las variables sociales como factores determinantes de su diseño. Tampoco se dedica la atención suficiente al análisis del coste del ciclo de vida para evaluar la mejor alternativa posible de diseño. Considerar en nuestros proyectos este tipo de variables podría reducir, por ejemplo, en un 60% los costes de mantenimiento. También se constataría el hecho de que incrementar solamente 5 mm el recubrimiento de las armaduras de las estructuras de hormigón podría reducir el coste del mantenimiento en un 40%. Un ejemplo de la aplicación de este tipo de metodologías es la que nos acaban de publicar en la revista Sustainability. Allí se ha analizado el coste del ciclo de vida de las medidas de prevención aplicado a un puente de hormigón postesado expuesto al ataque de clorhídricos. Para ello se ha elegido el puente de la Isla de Arosa, en Galicia (España). Os dejo el artículo completo y la referencia.
Referencia:
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides.Sustainability, 10(3):845. doi:10.3390/su10030845 .
Viaductos en la nueva autovía de Mascara (Argelia). Imagen: A. Azorín
La cimbra autolanzable bajo tablero constituye, hoy en día, el proceso constructivo de autocimbra más habitual. Entre sus ventajas se encuentra la facilidad a la hora de variar el peralte o adaptarse a acuerdos verticales y curvas en planta; además, se libera la parte superior, lo que permite la introducción de ferralla prefabricada y el resto de materiales. Alguno de sus inconvenientes pasan por necesitar cierta altura libre mínima (7-12 m) bajo cabeza de pilas y que son más deformables que las cimbras autolanzables sobre tablero.
Os dejo a continuación un pequeño vídeo explicativo de este tipo de procedimiento constructivo. Espero que os sea de interés.
En el siguiente vídeo de Mecanotubo se puede ver, con todo detalle, una animación en 3D que describe con claridad el procedimiento.
A continuación podemos ver un vídeo realizado por voxelestudios del proceso constructivo del tablero de los viaductos de Contreras, que con autocimbras se ejecutaron tramos de luces de 66 m.
Referencias:
SEOPAN (2015). Manual de cimbras autolanzables. Tornapunta Ediciones, Madrid, 359 pp.
Acaban de publicarnos un artículo en la revista internacional Sustainability sobre análisis de ciclo de vida de puentes óptimos de vigas. La evaluación del impacto ambiental se realiza a lo largo del ciclo de vida de puentes de hormigón postesado de vigas artesa que previamente han sido optimizados mediante una metaheurística de algoritmos meméticos. Os dejo a continuación la referencia de la revista. Además os podéis descargar y distribuir el artículo sin problema, pues está editado en abierto:
PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge.Sustainability, 10(3):685. doi:10.3390/su10030685
Cuando no es posible el uso de grúas, se puede recurrir a los lanzadores de vigas, vigas de lanzamiento o cimbras autolanzables. Se trata de un procedimiento excepcional debido a su compleja puesta en obra y a su baja productividad. Se emplean si el ritmo de llegada de las vigas a obra es pequeño, por ejemplo un par de vigas al día. Las vigas de lanzamiento requieren personal especializado en su manejo y montaje debido a que los movimientos son complejos y los esfuerzos generados pueden comprometer la estabilidad del conjunto. Estos problemas se complican cuando la rasante vertical del puente presenta acuerdos de radios menores a 12000 m, en cuyo caso la viga se apoya en tres puntos, con sus consiguientes esfuerzos hiperestáticos.
Lanzador de vanos completos. http://www.weiku.com
Las vigas de lanzamiento cubren luces entre 35 y 75 m, con pesos entre 600 kN y 4500 kN y pendientes máximas para el lanzamiento del 5%. Constan de dos vigas reticuladas unidas en sus extremidades sobre las que rueda el tren de los cabrestantes, compuesto por dos carros para elevar la viga a lanzar y un tercero para el desplazamiento longitudinal de la viga y el armazón. Las vigas prefabricadas se transportan desde el acopio al lanzador mediante carros elefante. Téngase en cuenta que los carros pueden moverse a velocidades de 5 km/h mientras que el lanzador solo alcanza los 3 m/minuto.
Os paso a continuación una pequeña presentación que he preparado para explicar este procedimiento constructivo de puentes. También os paso algún vídeo más al respecto que espero os resulten interesantes.
Parece que fue ayer, pero este 2018 cumplimos 10 años desde que nos publicaron el primer artículo internacional relacionado con la optimización heurística de estructuras de hormigón. Sin embargo, todo empezó un poco antes, en el 2002, año en que defendí mi tesis doctoral denominada «Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW». Con ella pude ponerme al día con los procedimientos de optimización heurística más prometedores en ese momento. Sin embargo, pronto me dí cuenta de las posibilidades que tenía aplicar estos algoritmos a la optimización de problemas reales de ingeniería, en particular las estructuras de hormigón.
Por tanto, en septiembre del año 2002 fue el inicio del Grupo de Investigación de Procedimientos de Construcción, Optimización y Análisis de Estructuras. La iniciativa de creación del grupo correspondió a los profesores González-Vidosa y Yepes Piqueras. El primero de ellos, con una amplia experiencia en la investigación y la práctica profesional de las estructuras de hormigón armado y pretensado; y el segundo, con una experiencia reciente en el campo de la optimización heurística en la ingeniería. A partir de ese momento empezaron a gestarse las primeras tesis doctorales, las primeras de las cuales se defendieron en el año 2007, correspondientes a Cristian Perea de Dios y a Ignacio Javier Payá Zaforteza. En el año 2008 se publicaron nuestros tres primeros artículos: Perea et al. (2008), Payá et al. (2008) y Yepes et al. (2008).
En aquellos momentos, las preguntas a las que pretendíamos dar una solución fueron las siguientes:
¿Es capaz la inteligencia artificial de diseñar automáticamente las estructuras?
¿La inteligencia artificial podrá suplantar la experiencia del ingeniero en el prediseño de las estructuras?
¿Se pueden utilizar técnicas procedentes del campo de la Investigación Operativa en la optimización de las estructuras?
¿Puede alcanzarse una economía importante en los costes de construcción de las estructuras sin merma de la calidad?
¿Aparecerán nuevas patologías si los módulos de optimización automática empiezan a implantarse de forma habitual en los paquetes de cálculo comerciales?
¿Deberían revisarse las normas de cálculo si se extiende el cálculo optimizado de estructuras?
¿Deberán tenerse en cuenta estados límites no considerados hasta ahora en la comprobación de las estructuras optimizadas?
¿Pueden optimizarse varios criterios a la vez? ¿Cómo son las estructuras de bajo coste y alta seguridad?
¿Es posible valorar el coste de la seguridad integral de una estructura?
¿Podemos diseñar estructuras de bajo coste y que a la vez consuman poco CO2 y energía para hacer una ingeniería sostenible?
¿Se puede aplicar el concepto de “huella ecológica” al diseño de las estructuras?
Fueron nuestros tres primeros artículos internacionales, pero a fecha de hoy ya se han publicado más de 60 y dirigido una quincena de tesis doctorales, así como una decena de proyectos de investigación. La lista la podéis ver en el blog: http://victoryepes.blogs.upv.es/publicaciones/articulos-jcr/
Referencias:
PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization.Advances in Engineering Software, 39(8): 676-688.
PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing.Computer-Aided Civil and Infrastructure Engineering, 23(8): 596-610.
YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated Annealing. Engineering Structures, 30(3): 821-830.
Figura 1.- Esquema de un puente de hormigón postesado de sección en cajón para carreteras
Una viga de sección en cajón unicelular consta de una losa superior, dos almas y una losa inferior (Figura 1). La losa superior materializa la plataforma del puente, actúa como cabeza de compresión frente a momentos flectores positivos y sirve de alojamiento del pretensado necesario para resistir los momentos negativos. Las almas sostienen la losa superior, transmiten las cargas de cortante a los apoyos del puente y pueden alojar los cables de pretensado cuando estos se desplazan a lo largo del puente. Por último, la losa inferior une las secciones inferiores de las almas, aloja el pretensado para resistir los momentos positivos, sirve de cabeza de compresión ante momentos negativos y cierra el circuito de torsión de la estructura.
Según Schlaich y Scheef (1982), la sección en cajón es la tipología de superestructura más ampliamente utilizada en el proyecto y construcción de puentes. El Puente de Sclayn, sobre el río Maas, fue el primer puente continuo pretensado de sección en cajón. El puente, con dos tramos de 62,7 m, fue construido por Magnel en 1948. La sección en cajón no solo se puede encontrar en los puentes viga, sino en otras tipologías tipo arco, pórtico, atirantados y colgantes. El número de puentes continuos con esta sección ha aumentado recientemente (Ates, 2011) debido a su resistencia tanto a momentos flectores positivos como negativos, así como a la torsión. Además, otra característica importante es el peso propio reducido frente a otras tipologías. En cuanto a los métodos de construcción, los puentes de sección en cajón se pueden construir “in situ” o bien prefabricarse en dovelas que posterormente se izan y pretensan (Sennah y Kennedy, 2002). En la Figura 2 se muestra un puente en cajón situado sobre el nuevo cauce del río Turia, cuyo autor es Javier Manterola y que fue uno de los primeros puentes que tuve la oportunidad de construir durante mi etapa profesional en Dragados y Construcciones, S.A.
Figura 2.- Imagen aérea de la Estructura E-10, sobre el nuevo cauce del Turia, de Javier Manterola (1991). Uno de los primeros puentes que tuve la oportunidad de construir en mi etapa profesional en Dragados y Construcciones, S.A.
La investigación en el ámbito de los puentes en cajón ha tratado de mejorar su diseño (Yepes, 2017). Al principio, los trabajos se centraron en mejorar el comportamiento estructural (Chang y Gang, 1990; Ishac y Smith, 1985; Luo et al., 2002; Mentrasti, 1991; Razaqpur y Li, 1991; Shushkewich, 1988). Estos trabajos se centraron en el análisis del cortante y la distorsión de la sección. Posteriormente, Ates (2011) estudió el comportamiento de un puente viga continuo durante la etapa de construcción, incluyendo efectos dependientes del tiempo. Moon et al. (2005) también se centraron en la etapa de construcción, estudiando las grietas que aparecieron en la losa inferior de un puente prefabricado, que ocurrieron por una deformación excesiva durante el tesado provisional de las dovelas.
Otros autores investigaron el efecto de las condiciones de durabilidad en la resistencia. Liu et al. (2009) propusieron detectar los daños desarrollando técnicas de monitorización y evaluando el estado del puente. Guo et al. (2010) evaluaron la fiabilidad para estudiar la fluencia, la retracción y la corrosión a lo largo del tiempo de un puente mixto de vigas en cajón expuesto a un ambiente de cloruros. Lee et al. (2012) propusieron un sistema de gestión del ciclo de vida de puentes en cajón que integrase el diseño y la construcción. Fernandes et al. (2012) utilizaron métodos magnéticos para detectar la corrosión en los cables de pretensado de puentes prefabricados. Saad-Eldeen et al. (2013) estudiaron el momento flector último en vigas afectadas por corrosión. Los resultados se utilizaron para proponer un módulo tangente equivalente que tiene en cuenta la reducción total del área de la sección transversal debido a este tipo de degradación.
También existen algunas recomendaciones para el predimensionamiento de los puentes en cajón (Schlaich y Scheff, 1982; Fomento, 2000; SETRA, 2003). Sin embargo, consta relativamente muy poca investigación que haya abordado su diseño eficiente. Schlaich y Scheff (1982) indican que en el caso de puentes de sección en cajón “la solución óptima, siempre y exclusivamente una evaluación subjetiva, solo puede ser encontrada a través de la comparación de muchas soluciones alternativas”. La eficiencia, entendida como la máxima seguridad posible con un mínimo de inversión, constituye un objetivo común en el diseño estructural. Este tipo de problema presenta tal cantidad de variables, cada uno de las cuales puede adoptar una amplia gama de valores discretos, que hace que el espacio de soluciones sea tan inmenso que es muy difícil abordar la optimización sin emplear la inteligencia artificial. Además de esto, la preocupación por el medio ambiente, la importancia de la durabilidad y el desarrollo de nuevos materiales pueden modificar el diseño del puente. Los métodos de optimización ofrecen una alternativa eficaz a los diseños basados en la experiencia (García-Segura et al., 2014a; 2014b; 2015; 2017a; 2017b; García-Segura y Yepes, 2016; Yepes et al., 2017). Así, estas técnicas se han utilizado para abordar la optimización de sistemas estructurales reales. Por último, destacar la aplicación de las técnicas de decisión multicriterio a la hora de proyectar este tipo de puentes (Penadés-Plà et al., 2016).
Referencias:
Ates, S. (2011). Numerical modelling of continuous concrete box girder bridges considering construction stages. Applied Mathematical Modelling, 35(8), 3809–3820.
Chang, S.T.; Gang, J. Z. (1990). Analysis of cantilever decks of thin-walled box girder bridges. Journal of Structural Engineering, 116(9), 2410–2418.
Fernandes, B.; Titus, M.; Nims, D.K.; Ghorbanpoor, A.; Devabhaktuni, V. (2012). Field test of magnetic methods for corrosion detection in prestressing strands in adjacent box-beam bridges. Journal of Bridge Engineering, 17(6), 984–988.
Fomento M. (2000). New overpasses: general concepts. Madrid, Spain: Ministerio de Fomento.
García-Segura, T.; Yepes, V.; Alcalá, J. (2014a). Sustainable design using multiobjective optimization of high-strength concrete I-beams. In The 2014 International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI (Vol. 137, pp. 347–358). Ostend, Belgium.
García-Segura, T.; Yepes, V.; Martí, J.V.; Alcalá, J. (2014b). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190–1205.
García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112–122.
García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325–336.
García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1):139-150.,
García-Segura, T.; Yepes, V.; Frangopol, D.M.; Yang, D. Y. (2017b). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391.
Guo, T.; Sause, R.; Frangopol, D.M.; Li, A. (2010). Time-Dependent Reliability of PSC Box-Girder Bridge Considering Creep, Shrinkage, and Corrosion. Journal of Bridge Engineering, 16(1), 29-43.
Ishac, I.I.; Smith, T.R.G. (1985). Approximations for Moments in Box Girders. Journal of Structural Engineering, 111(11), 2333–2342.
Liu, C.; DeWolf, J.T.; Kim, J.H. (2009). Development of a baseline for structural health monitoring for a curved post-tensioned concrete box–girder bridge. Engineering Structures, 31(12), 3107–3115.
Luo, Q.Z.; Li, Q.S.; Tang, J. (2002). Shear lag in box girder bridges. Journal of Bridge Engineering, 7(5), 308.
Mentrasti, L. (1991). Torsion of box girders with deformable cross sections. Journal of Engineering Mechanics, 117(10), 2179–2200.
Moon, D.Y.; Sim, J.; Oh, H. (2005). Practical crack control during the construction of precast segmental box girder bridges. Computers & Structures, 83(31-32), 2584–2593.
Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12), 1295.
Razaqpur, A.G.; Li, H. (1991). Thin‐walled multicell box‐girder finite element. Journal of Structural Engineering, 117(10), 2953-2971.
Saad-Eldeen, S.; Garbatov, Y.; Guedes Soares, C. (2013). Effect of corrosion severity on the ultimate strength of a steel box girder. Engineering Structures, 49, 560–571.
Schlaich, J.; Scheff, H. (1982). Concrete Box-girder Bridges. International Association for Bridge and Structural Engineering. Zürich, Switzerland.
Sennah, K.M.; Kennedy, J.B. (2002). Literature review in analysis of box-girder bridges. Journal of Bridge Engineering, 7(2), 134–143.
SETRA (2003). Ponts en béton précontraint construits par encorbellements successifs: guide de concéption. M.E.T.L.T.M.
Shushkewich, K.W. (1988). Approximate analysis of concrete box girder bridges. Journal of Structural Engineering, 114(7), 1644–1657.
Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.
Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749.
Los métodos tradicionales empleados para el proyecto de un puente se basan en procedimientos de prueba y error que sirven para mejorar los diseños (Figura 1). Si bien la experiencia del proyectista permite definir “a priori” la geometría de la estructura, el resto de variables se determinan atendiendo al cumplimiento de los diferentes estados límite exigidos por los reglamentos para las situaciones de proyecto consideradas. De esta forma, la solución propuesta, si bien es funcionalmente correcta, no tiene porque ser la óptima. Los métodos de optimización, como pueden ser los algoritmos metaheurísticos o estocásticos, proporcionan una alternativa eficaz a los diseños estructurales basados en la experiencia. Estos algoritmos se caracterizan porque combinan unas reglas de decisión y la aleatoriedad para buscar de forma eficaz soluciones de alta calidad en espacios de soluciones de gran tamaño, tal y como son los originados por los problemas estructurales reales. Además, al explorar una gran cantidad de posibles combinaciones, encuentra soluciones que pueden estar alejadas de las reglas de diseño habituales empleadas por los proyectistas.
Figura 1. Diseño por prueba y error de las estructuras (Yepes, 2017)
Así, por ejemplo, los puentes de sección en cajón constituyen uno de las tipologías más habituales en los puentes continuos, pues presentan ventajas tanto desde la perspectiva de su eficiencia resistente como por su bajo peso propio. Sin embargo, las normas de diseño actuales no siempre contemplan los objetivos y las prioridades de una sociedad cambiante. El informe Brundtland (WCED, 1987) propone una visión a largo plazo para mantener los recursos, que serán necesarios para las necesidades futuras. El desarrollo sostenible requiere una triple visión que equilibre el desarrollo económico y las necesidades ambientales y sociales. Por lo tanto, las preocupaciones por construir un futuro más sostenible obligan a considerar aspectos como el impacto ambiental, la durabilidad y el nivel de seguridad, entre otros. Esto ha llevado al desarrollo de materiales de baja emisión de carbono, la búsqueda de nuevos diseños que reduzcan el impacto ambiental, la planificación de mantenimiento para prolongar la vida útil de las estructuras y la evaluación de su ciclo de vida para contemplar su impacto en su conjunto.
Esta nueva visión implica renovar la metodología de diseño de estructuras de modo que se consideren los criterios de sostenibilidad, que permita el uso de nuevos materiales y que, además, garantice un análisis estructural preciso. En este sentido, la optimización multiobjetivo encuentra soluciones óptimas con respecto a distintos objetivos, algunos de ellos contradictorios entre sí. Los actuales procedimientos de optimización heurística han permitido el diseño automatizado de estructuras óptimas. Sin embargo, existe una tendencia a considerar el diseño inicial y las operaciones de mantenimiento de la estructura como objetivos separados. Es decir, por una parte se estudia el diseño óptimo de una estructura para cumplir con los estados límite últimos y de servicio, y por otra parte, se considera la optimización de las operaciones de mantenimiento del puente durante su vida útil como un objetivo diferente, partiendo de una estructura ya construida, con un determinado estado de seguridad conocido. Como el mantenimiento depende del estado, el diseño inicial debe considerar los aspectos del ciclo de vida que también minimizan el mantenimiento futuro. Por lo tanto, es importante considerar la durabilidad con el fin de diseñar estructuras longevas y reducir los impactos a largo plazo. Es decir, se debe proyectar una estructura considerando todos los aspectos relacionados con su ciclo de vida.
La optimización multiobjetivo (MOO) de las estructuras reales requiere tiempos de cálculo elevados, incluso con la potencia de los actuales ordenadores, debido a la existencia de muchas variables de decisión, al procedimiento de análisis con métodos como el de los elementos finitos y al número de funciones objetivo consideradas. El uso de modelos predictivos tales como las redes neuronales artificiales (Artificial Neural Networks, ANNs) permite reducir el número necesario de evaluaciones exactas de la estructura y sustituir dicho cálculo por predicciones aproximadas. ANN aprende de los datos disponibles y permite predicciones incluso cuando las relaciones son altamente no lineales. Esta característica reduce el elevado coste computacional de las interaciones necesarias en los algoritmos de optimización heurística, al sustituir en dicho proceso una parte de los cálculos exactos por otros aproximados.
MOO conduce a una gama de soluciones óptimas, que se consideran igualmente buenas en función de los mútiples objetivos –la denominada frontera de Pareto-. El proceso de toma de decisiones para elegir la mejor de las opciones tiene lugar a posteriori, donde los expertos eligen la mejor solución en función de sus preferencias utilizando técnicas de toma de decisiones. Sin embargo, la asignación de pesos a cada uno de los objetivos del problema puede estar sujeta a incertidumbres o falta de objetividad. Sobre esta base, este trabajo sugiere una metodología capaz de introducir la información de selección (preferencia) en un proceso de toma de decisiones multicriterio en el que existen incertidumbres asociadas a la comparación de criterios.
Referencias:
García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges.Engineering Structures, 92, 112–122.
García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety.Engineering Structures, 125, 325–336.
García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks.Structural and Multidisciplinary Optimization, 56(1):139-150.,
Martí, J.V.; García-Segura, T.; Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy.Journal of Cleaner Production, 120, 231–240.
Martí, J.V.; González-Vidosa, F.; Yepes, V.; Alcalá, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing.Engineering Structures, 48, 342–352.
Martí, J.V.; Yepes, V.; González-Vidosa, F. (2015). Memetic algorithm approach to designing precast-prestressed concrete road bridges with steel fiber reinforcement.Journal of Structural Engineering, 141(2), 04014114.
Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.
Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015a). A cognitive approach for the multi-objective optimization of RC structural problems.Archives of Civil and Mechanical Engineering, 15(4), 1024–1036.
Yepes, V.; Martí, J.V.; García-Segura, T. (2015). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm.Automation in Construction, 49, 123–134.
Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges.Archives of Civil and Mechanical Engineering, 17(4), 738-749.
Hoy 2 de enero de 2018 empezamos oficialmente el proyecto de investigación DIMALIFE (BIA2017-85098-R): «Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos». Se trata de un proyecto trianual (2018-2020) financiado por el Ministerio de Economía, Industria y Competitividad, así como por el Fondo Europeo de Desarrollo Regional (FEDER). La entidad solicitante es la Universitat Politècnica de València y el Centro el ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Los investigadores principales son Víctor Yepes (IP1) y Eugenio Pellicer (IP2). Al proyecto también se le ha asignado un Contrato Predoctoral, que sacaremos a concurso próximamente. Con las restricciones presupuestarias tan fuertes en materia de I+D+i y con la alta competencia existente por conseguir proyectos de investigación, lo cierto es que estamos muy satisfechos por haber conseguido financiación. Además, estamos abiertos a cualquier tipo de colaboración tanto desde el mundo empresarial o universitario para reforzar este reto. Por tanto, lo primero que vamos a hacer es explicar los antecedentes y la motivación del proyecto.
La sostenibilidad económica y el desarrollo social de la mayoría de los países dependen directamente del comportamiento fiable y duradero de sus infraestructuras (Frangopol, 2011). Las infraestructuras del transporte presentan una especial relevancia, especialmente sus infraestructuras viarias y puentes, cuya construcción y mantenimiento influyen fuertemente en la actividad económica, el crecimiento y el empleo. Sin embargo, tal y como indica Marí (2007), estas actividades impactan significativamente en el medio ambiente, presentan efectos irreversibles y pueden comprometer el presente y el futuro de la sociedad. El gran reto, por tanto, será disponer de infraestructuras capaces de maximizar su beneficio social sin comprometer su sostenibilidad (Aguado et al., 2012). La sostenibilidad, de hecho, constituye un enfoque que ha dado un giro radical a la forma de afrontar nuestra existencia. El calentamiento global, las tensiones sociales derivadas de la presión demográfica y del reparto desequilibrado de la riqueza son, entre otros, los grandes retos que debe afrontar esta generación. Continue reading «Antecedentes y motivación del proyecto de investigación DIMALIFE (2018-2020)»→
Lanzamiento del Puente de Lanjarón. Torroja Ingeniería
Os paso una animación realizada por José Antonio Agudelo que muestra el proceso constructivo del Viaducto de Lanjarón en Granada, España. Se trata de un puente mixto, proyectado por Torroja Ingeniería, siendo un arco atirantado por su propio tablero que sólo transmite reacciones verticales al terreno.
Los datos más interesantes del puente son: 112,6 m de luz y 15 m de altura. En las referencias os dejo un artículo de Mario García González que explica los detalles del viaducto. Lo interesante del procedimiento constructivo es que, en una primera fase de empuje, el puente queda en voladizo un 50%, y en una segunda fase se realiza un tiro para dejar la estructura en su emplazamiento definitivo.