¿Más allá del ladrillo? El sorprendente futuro de la vivienda social sostenible

Introducción: El reto de los 1 600 millones.

La crisis de la vivienda no es solo una estadística, sino una emergencia humanitaria. Según UN-Habitat, más de 1 600 millones de personas carecen de una vivienda adecuada y, para cerrar esta brecha, el mundo debe enfrentarse al titánico reto de construir 96 000 viviendas al día hasta el año 2030. Este desafío tiene un rostro concreto en distritos como Carabayllo, en Lima (Perú), una zona de expansión urbana acelerada donde la necesidad de soluciones rápidas suele chocar con la falta de recursos y la precariedad constructiva.

Ante este panorama, surge la pregunta central: ¿es posible construir viviendas económicas y rápidas que también respeten el medio ambiente y la dignidad de quienes las habitan? Para responderla, la ciencia del urbanismo recurre hoy a métodos avanzados de evaluación, como el análisis del ciclo de vida (LCA), el análisis de costes del ciclo de vida (LCC) y el análisis del ciclo de vida social (S-LCA). Los resultados de aplicar estas herramientas en el contexto peruano revelan que el futuro de la vivienda social no radica en el ladrillo tradicional, sino en la construcción industrializada.

Punto 1: el acero ligero (LSF) es el nuevo referente en materia de sostenibilidad.

En la búsqueda del sistema constructivo ideal, el acero ligero, también conocido como Light Steel Frame (LSF), ha destronado a las opciones convencionales. Su éxito se debe a su equilibrio casi perfecto entre peso, resistencia y sostenibilidad. Al ser un sistema de baja intensidad material, el LSF utiliza los recursos de forma quirúrgica, minimizando el desperdicio que abunda en las obras tradicionales.

Desde el punto de vista financiero, el LSF no solo es competitivo, sino también transformador: reduce el coste inicial de construcción en un 15 % y los costes de fin de vida (demolición y reciclaje) en un asombroso 77 % en comparación con la mampostería confinada (RCF-M). Al ser altamente reciclable, el acero hace que el edificio, al final de su vida útil, no se convierta en escombro, sino en un recurso.

«El Life Cycle Steel Frame (LSF) ha obtenido la máxima puntuación en sostenibilidad en todas las categorías».

Punto 2: lo social ya no es secundario (pesa un 40 %).

Quizás el hallazgo más revolucionario de la investigación es que la sostenibilidad ya no se mide solo en toneladas de CO₂. Los indicadores sociales representaron casi el 40 % del peso total (38,93 %) en la toma de decisiones, superando por primera vez a los factores económicos y ambientales.

Este estudio introduce una métrica basada en el factor humano: las horas de riesgo medio (MRH). En lugar de limitarse a calcular el ahorro de energía, el análisis cuantifica la seguridad del trabajador, las condiciones laborales y el impacto en la comunidad local. Lo fascinante es que estos resultados son robustos: el análisis de sensibilidad (S-BWM) demostró que, independientemente de si el evaluador era un experto sénior con 35 años de experiencia o un especialista júnior, los datos señalaban de manera consistente al LSF como el camino más ético y eficiente.

Punto 3: La trampa del coste inicial frente al ciclo de vida.

En urbanismo sostenible, lo que hoy es barato puede resultar carísimo mañana. Existe una brecha crítica entre el presupuesto de obra y el LCC (costo del ciclo de vida) a 50 años. Aquí es donde entra en juego la funcionalidad (C9): no debemos considerar la vivienda social como un «refugio temporal», sino como un activo permanente que garantiza la dignidad y el patrimonio familiar.

Los sistemas pesados, como los paneles sándwich, pueden prometer rapidez, pero imponen cargas de mantenimiento y de demolición mucho más elevadas. Para evitar esta trampa, la evaluación debe considerar tres momentos:

  • Construcción: el gasto inmediato en materiales y mano de obra especializada.
  • Uso (mantenimiento): la inversión necesaria para que la casa sea habitable y segura (pintura, anticorrosión).
  • Fin de vida (EoL): el coste de «desaparecer» la estructura de forma responsable.

Punto 4: El «efecto dominó» del coste medioambiental.

Gracias al análisis causal DEMATEL, hemos descubierto que la sostenibilidad funciona como un juego de dominó. El coste de construcción es la pieza clave: el motor principal que impulsa el resto de los impactos.

La ciencia nos dice que no podemos mejorar la salud humana (C5), lo cual actúa como un criterio dependiente o «efecto» si simplemente nos enfocamos en indicadores sanitarios aislados. Para proteger la salud de las poblaciones urbanas, debemos «atacar» los impulsores causales: si optimizamos el coste inicial y la gestión de recursos desde el diseño, reduciremos inevitablemente la contaminación y el estrés ambiental que enferma a las ciudades décadas después.

Punto 5: El mito de que lo prefabricado siempre es mejor.

El estudio revela una ironía tecnológica. Los paneles sándwich con conexiones de pernos (LBSPS), que a primera vista parecen la cúspide de la innovación «prefabricada», ocuparon el último lugar en el ranking de sostenibilidad.

¿Por qué este sistema falló en el contexto de Lima? El análisis revela una paradoja: resultó un 20 % más costoso que la mampostería tradicional que pretendía reemplazar. El sistema se penalizó por una cadena de suministro local inmadura y la necesidad de una mano de obra extremadamente especializada. Esto debe servir de advertencia a los responsables de la toma de decisiones: la tecnología sin un marco institucional y un mercado local preparado es solo una solución teórica, no una realidad social.

Conclusión: una brújula para la política de vivienda.

No existe un sistema «perfecto», sino decisiones equilibradas basadas en datos. Mientras el LSF lidera la vanguardia, los muros de hormigón armado (RCW) se consolidan como la segunda opción: una alternativa económicamente sólida y viable en contextos donde la capacidad industrial del acero es limitada.

Como especialistas, nuestra misión es avanzar hacia procesos de evaluación que no sacrifiquen la calidad de vida en aras de la rapidez. Debemos comprender que cada ladrillo o cada perfil de acero es una decisión que afecta la salud y la economía de las generaciones futuras.

Ante el déficit global de vivienda, ¿estamos dispuestos a cambiar nuestra cultura constructiva para garantizar un hogar digno y sostenible para las generaciones futuras?

Aquí tienes una conversación en la que puedes escuchar argumentos sobre este trabajo.

En este vídeo puedes ver un resumen de las ideas más interesantes sobre este tema.

También os dejo un documento resumen, a modo de presentación.

Vivienda Social Sostenibilidad y Decisiones Integrales.pdf

 

Referencia:

LUQUE CASTILLO, X.; YEPES-BELLVER, L.; YEPES, V. (2026). Towards Sustainable Social Housing: An Integrative Life Cycle and Multi-Criteria ApproachSustainable Cities and Society, 137, 107164. DOI:10.1016/j.scs.2026.107164

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Vivienda social sostenible: un enfoque integrador de ciclo de vida y evaluación multicriterio

Acaban de publicar un artículo nuestro en Sustainable Cities and Society, una de las revistas de mayor impacto científico, ubicada en el primer decil del JCR. En este trabajo se propone un enfoque integrador basado en el ciclo de vida y en métodos de evaluación multicriterio para analizar la vivienda social sostenible. La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo.

Los principales resultados revelan que el sistema Light Steel Frame (LSF) es la alternativa más sostenible, ya que logra un equilibrio superior entre la eficiencia en el uso de los recursos, la durabilidad y la reducción del mantenimiento. Un descubrimiento crucial es el papel de la dimensión social, que representó casi el 40 % del peso total en la evaluación, por encima de las dimensiones económica y medioambiental. El análisis causal identifica el coste de construcción, la funcionalidad y los agentes de la cadena de valor como los principales factores que condicionan el rendimiento sostenible del resto del sistema.

El artículo presenta un marco metodológico integrador que combina evaluaciones basadas en el ciclo de vida —análisis de ciclo de vida (LCA), análisis de coste del ciclo de vida (LCC) y análisis de ciclo de vida estocástico (S-LCA)— con técnicas avanzadas de decisión multicriterio: método mejor-peor (BWM), análisis DEMATEL difuso y análisis MARCOS. Esta integración permite incorporar ponderaciones de expertos, modelar relaciones causales entre criterios y sintetizar resultados frente a soluciones ideales o anti-ideales, lo que aumenta la transparencia en la priorización de alternativas constructivas. Este enfoque se ha aplicado a un caso real de vivienda social en Perú, en el que se han comparado cinco sistemas estructurales representativos: LSF, LBSPS, RCW, RCF-M y RCF-CP. El estudio ha proporcionado pruebas empíricas sobre los costes del ciclo de vida, los impactos ambientales y las prestaciones sociales que respaldan las decisiones de diseño y las políticas.

El estudio analiza cinco sistemas constructivos adaptados a contextos de urbanización rápida (específicamente en Lima, Perú), que van desde métodos convencionales hasta industrializados:

Entre las aportaciones metodológicas, la combinación de BWM con una agregación basada en credenciales profesionales reduce la carga de comparación y atenúa los sesgos en la agregación de juicios, mientras que la extensión difusa de DEMATEL permite identificar los criterios que funcionan como impulsores del sistema y los que actúan como receptores. Esta capacidad para distinguir entre causas y efectos permite aclarar qué palancas hay que modificar para lograr efectos amplificados en la sostenibilidad. Por último, la validación cruzada con otros métodos de MCDM y los ensayos de sensibilidad aumentan la confianza en la estabilidad de los resultados.

Discusión de resultados

Los análisis económicos muestran que, en un horizonte de 50 años y por metro cuadrado, los sistemas basados en acero ligero (LSF) tienen los menores costes totales de ciclo de vida, mientras que algunas alternativas prefabricadas, como el LBSPS, tienen los mayores costes de construcción. Estos datos implican que si solo se tiene en cuenta la inversión inicial, se pueden tomar decisiones subóptimas, ya que no se consideran el mantenimiento y el fin de vida.

En términos ambientales, la evaluación con ReCiPe (endpoint) sitúa al LSF como el sistema con el menor impacto agregado, principalmente debido a su menor intensidad material. Por el contrario, las soluciones con mayor presencia de hormigón y ladrillo presentan una carga superior, especialmente en la dimensión de recursos. Esta diferenciación pone de manifiesto la influencia del perfil material y del proceso de fabricación en la huella medioambiental de la vivienda y sugiere que, en la práctica profesional, se deben priorizar medidas que reduzcan la demanda de materiales energéticamente intensivos en la fase de fabricación.

La S-LCA revela una tensión entre la industrialización y la exposición social: las alternativas más industrializadas, como el LSF y el LBSPS, presentan mayores valores de exposición laboral y de funcionalidad exigente, mientras que las tipologías convencionales de hormigón muestran menores riesgos sociales, medidos en Medium Risk Hours. Este resultado indica que la adopción de sistemas industrializados exige prestar atención explícita a la gestión del trabajo, la formación y la coordinación de la cadena de suministro para evitar que los impactos negativos se transfieran al personal y a la comunidad.

La síntesis mediante MARCOS ubica a LSF como la alternativa mejor valorada en el escenario analizado, seguida de RCW y RCF-M. Los sistemas LBSPS y RCF-CP quedan en posiciones inferiores. Las pruebas de sensibilidad (variación de los pesos de ±15 %, escenarios de distancia de transporte y estratificación de expertos) muestran que el orden general se mantiene, lo que indica cierta robustez frente a perturbaciones razonables en los supuestos. Estos resultados permiten extraer una conclusión práctica: en contextos con características similares a las del caso estudiado, las soluciones ligeras industrializadas pueden mejorar la relación entre coste, impacto ambiental y rendimiento técnico, siempre que se gestionen adecuadamente los aspectos sociales y de ejecución.

Un aspecto metodológico de interés es la identificación de los criterios causales. La técnica DEMATEL identifica el coste de construcción, la funcionalidad y las interacciones con la cadena de valor como criterios que inciden en el resto del sistema, mientras que los indicadores ambientales, como la salud humana y la conservación de los ecosistemas, se presentan principalmente como efectos. Esto sugiere que las intervenciones en los costes de construcción y en la organización funcional pueden provocar mejoras indirectas en la sostenibilidad ambiental y social, lo cual resulta relevante al diseñar políticas y contratos que incentiven las prácticas integradas.

Futuras líneas de investigación

Una línea de trabajo inmediata consiste en ampliar la diversidad y el tamaño del panel de agentes consultados para captar las variaciones en las prioridades y las competencias profesionales. Esto permitiría evaluar la sensibilidad de las ponderaciones y mejorar la representatividad social del proceso. Otra opción es trasladar y recalibrar el marco a otros contextos geográficos y tipologías constructivas, como viviendas de mayor altura o equipamientos públicos, para evaluar la transferibilidad de la clasificación y de la estructura causal identificada en este estudio.

En el ámbito técnico, utilizar datos primarios de obras reales en lugar de bases de datos secundarias aumentará la fiabilidad de la evaluación del ciclo de vida (LCA) y del análisis del ciclo de vida (S-LCA) y mejorará la precisión de los modelos de coste del ciclo de vida (LCC). La incorporación de enfoques dinámicos, como la LCA dinámica o las simulaciones acopladas a plataformas BIM, puede facilitar las evaluaciones en etapas iniciales y permitir análisis de sensibilidad más detallados relacionados con la sustitución de componentes, las reparaciones y las evoluciones tecnológicas. Asimismo, explorar técnicas de optimización multiobjetivo que vinculen explícitamente las restricciones económicas con las metas ambientales y sociales podría proporcionar soluciones de diseño más operativas para promotores y organismos públicos.

Desde la perspectiva social, investigar intervenciones concretas de capacitación, reorganización de procesos y de contratos que reduzcan la exposición de los trabajadores a los sistemas industrializados aportará pruebas sobre cómo mantener los beneficios ambientales y económicos sin incrementar los impactos sociales. Por último, el estudio de la interacción entre políticas públicas, incentivos financieros y la adopción tecnológica ofrecerá información útil para diseñar instrumentos que favorezcan soluciones constructivas más equilibradas en el marco de los programas de vivienda social.

Conclusión

El estudio proporciona un marco metodológico replicable y sólido que combina la evaluación del ciclo de vida con técnicas multicriterio capaces de representar las interdependencias y la incertidumbre. Los resultados empíricos indican que, en el caso analizado, las soluciones ligeras industrializadas presentan ventajas en términos de coste y de huella ambiental, aunque se requieren medidas específicas para reducir los riesgos sociales derivados de su ejecución. La metodología y los resultados obtenidos sientan las bases para orientar las políticas y las decisiones de los proyectos y ponen de manifiesto la necesidad de ampliar los datos primarios, diversificar la muestra de expertos y conectar el análisis con herramientas digitales de diseño y gestión.

Referencia:

LUQUE CASTILLO, X.; YEPES-BELLVER, L.; YEPES, V. (2026). Towards Sustainable Social Housing: An Integrative Life Cycle and Multi-Criteria ApproachSustainable Cities and Society, 137, 107164. DOI:10.1016/j.scs.2026.107164

Dejo a continuación el artículo completo, ya que está publicado en abierto.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Descifrando la construcción moderna: una guía clave para entender la jerga de la industria

1. Introducción: ¿Por qué hay tanta confusión?

El campo de la innovación en la construcción está lleno de siglas y términos que pueden resultar abrumadores para cualquiera que se inicie en este mundo. Acrónimos como MMC, IC, OSC y conceptos como prefabricación o construcción modular se utilizan a menudo de manera inconsistente, lo que crea una barrera de confusión para quienes se inician en este campo.

El propósito de este artículo es actuar como un decodificador, no solo por rigor académico, sino porque la capacidad de la industria para resolver desafíos urgentes, como la crisis de la vivienda, la productividad estancada y la descarbonización del entorno construido, depende de una comprensión común y una estrategia coherente.

La situación actual es como si hubiera un conjunto de etiquetas superpuestas para describir un mismo ecosistema: unas describen el clima (el enfoque general), otras las especies de árboles (los sistemas técnicos) y otras el suelo en el que crecen (las tecnologías habilitadoras). Sin un mapa que las organice, es fácil perderse.

En esta guía, basada en el trabajo de Paul D. Kremer, desglosaremos esta jerga compleja, empezando por los tres términos más amplios y confusos, que actúan como grandes «paraguas» conceptuales.

2. Los grandes «paraguas»: aclarando MMC, IC y OSC/OSM.

Los términos más confusos son aquellos que buscan describir enfoques generales para modernizar la construcción. Aunque a menudo se usan como sinónimos, representan ideas fundamentalmente distintas.

  • Métodos Modernos de Construcción (MMC): es un «término paraguas» amplio, principalmente impulsado por políticas gubernamentales, que carece de una definición técnica estable y coherente. La investigación es clara al respecto y señala que el MMC funciona «en gran medida como un paraguas impulsado por políticas con poca o ninguna frontera técnica coherente». En la práctica, su significado varía según el contexto. En algunos documentos, MMC puede referirse a sistemas modulares volumétricos, a herramientas digitales de gestión o a un conjunto de estrategias para mejorar la productividad. Es un término retórico útil para las políticas públicas, pero analíticamente débil por su ambigüedad.

 

  • Construcción industrializada (CI): es el paradigma más coherente y estable de los tres. Consiste en aplicar la lógica de la fabricación al proceso constructivo. No se trata simplemente de construir en una fábrica, sino de reconfigurar todo el sistema de producción. Sus características principales son:
    • Repetibilidad y normalización: trata la construcción como un sistema de producción orquestado, con componentes y procesos estandarizados, en lugar de una serie de prototipos únicos.
    • Logística coordinada: enfatiza la planificación de la producción y las operaciones de la cadena de suministro totalmente integradas, similar a la de una línea de ensamblaje de automóviles.
    • Enfoque en el proceso: se centra en cómo se organiza la construcción (el flujo de trabajo, la estandarización, la eficiencia) y no solo en dónde ocurre (en la obra o en una fábrica).

 

  • Construcción/fabricación en taller (OSC/OSM): (del inglés, Off-Site Construction/Manufacturing) se refiere a la ubicación. Su función principal es indicar que una parte o la totalidad del proceso de construcción se traslada de la obra a un entorno controlado, como una fábrica. Sin embargo, el término no especifica nada sobre el sistema de producción subyacente. La investigación en este campo suele centrarse en las interfaces entre la fábrica y la obra, las restricciones de transporte y la secuencia de instalación, pero rara vez aborda los principios de fabricación o la integración digital que definen un sistema de producción completo.

Síntesis comparativa

Para visualizar mejor las diferencias, aquí tienes una tabla comparativa:

Característica Métodos modernos de construcción (MMC) Construcción industrializada (IC) Construcción en taller (OSC/OSM)
Concepto clave Un «paraguas» de políticas que agrupa diversas innovaciones. Una filosofía de producción basada en la lógica de la fabricación. Un descriptor que indica la ubicación de la producción (fábrica vs. obra).
Enfoque principal Modernización de la industria en un sentido amplio y flexible. Eficiencia del proceso, repetibilidad y cadena de suministro integrada. El traslado de actividades fuera de la obra para mejorar el control y la calidad.
Analogía simple Una etiqueta de «comida saludable» (puede significar muchas cosas). La «cocina de un chef» (un sistema organizado con procesos definidos). «Comida para llevar» (hecha en otro lugar, sin importar cómo se cocinó).

Ahora que hemos aclarado estos conceptos generales, podemos explorar los tipos de sistemas técnicos más específicos que suelen estar englobados por estos «paraguas».

3. Los «ladrillos»: tipos de sistemas técnicos.

A diferencia de los «paraguas» conceptuales, términos como prefabricado, modular y panelizado se refieren a arquetipos técnicos específicos o «subdominios». Son los verdaderos «ladrillos» con los que se construye.

  1. Sistemas modulares volumétricos: se trata de módulos tridimensionales (3D) altamente prefabricados en fábrica, como habitaciones completas, módulos de baño o de cocina. Estos «bloques» se transportan a la obra y se ensamblan rápidamente. Su principal ventaja es la rapidez de instalación, que reduce drásticamente el tiempo de construcción.
  2. Sistemas panelizados: son componentes bidimensionales (2D), como paredes, losas de piso o paneles de techo, fabricados con alta precisión en una fábrica. Estos paneles se ensamblan en la obra para conformar la estructura del edificio. Un ejemplo prominente son los sistemas de madera de ingeniería (Mass Timber), como el CLT (Cross-Laminated Timber), que demuestran un gran potencial para la construcción rápida y la reducción de emisiones de carbono. Ofrecen una gran flexibilidad de configuración y diseño, ya que los paneles pueden combinarse de múltiples maneras.
  3. Sistemas híbridos: son una mezcla inteligente de componentes prefabricados (modulares o panelizados) y de construcción tradicional in situ. Por ejemplo, se puede construir un podio de hormigón en la obra y luego montar módulos prefabricados encima. A menudo superan a los sistemas totalmente modulares o totalmente in situ en términos de coste y viabilidad, especialmente en entornos urbanos complejos con restricciones de espacio.
  4. Prefabricación (como término general): es importante señalar que el término «prefabricación» es amplio y abarca tanto los sistemas modulares como los panelizados. Simplemente significa que los componentes del edificio se fabrican en un lugar distinto de su ubicación final antes de ser instalados.

Estos sistemas técnicos no funcionan de manera aislada, sino que dependen de un conjunto de tecnologías y metodologías transversales que garantizan su eficiencia y coherencia.

4. Los «habilitadores»: las tecnologías que lo unen todo.

Independientemente del sistema constructivo utilizado (modular, panelizado o híbrido), hay dos «habilitadores» transversales fundamentales para que la construcción moderna funcione de manera integrada y eficiente: la DfMA y la digitalización.

Diseño para la fabricación y el ensamblaje (DfMA): El DfMA no es un método de construcción, sino un «sistema operativo de diseño». Se trata de una metodología que obliga a considerar la fabricación y el ensamblaje desde las primeras etapas del diseño, en lugar de resolverlos sobre la marcha. Sus funciones clave son las siguientes:

  • Alinear el diseño con la realidad: asegura que el diseño arquitectónico sea compatible con las limitaciones y capacidades de la fabricación desde el principio.
  • Considerar la logística como diseño: incorpora variables como las tolerancias de fabricación, la secuencia de transporte y la logística de ensamblaje como parte integral del proceso de diseño.
  • Actuar como núcleo conector: funciona como el nexo que conecta el concepto arquitectónico con la producción industrializada, garantizando que lo que se diseña se pueda fabricar y ensamblar eficientemente.

Digitalización: es la «infraestructura de información» que coordina todo el proceso, desde el diseño hasta el ensamblaje final. Proporciona las herramientas necesarias para gestionar la complejidad de la construcción industrializada. Entre las herramientas clave se encuentran el modelado de información para la construcción (BIM), los gemelos digitales, el modelado paramétrico, los configuradores de diseño, la simulación de procesos y la robótica. Todas ellas conforman la infraestructura de información que coordina los entornos de fábrica y de obra. Con todas estas piezas —los paraguas, los ladrillos y los habilitadores— sobre la mesa, es posible entender un nuevo marco que busca unificarlo todo de manera coherente.

5. Uniendo las piezas: el marco de la neoconstrucción.

Para resolver la fragmentación y la ambigüedad conceptual que hemos analizado, la investigación propone un nuevo término integrador: «neoconstrucción». Este marco no pretende sustituir los términos existentes, sino organizarlos en una estructura lógica.

La neoconstrucción se define como un paradigma de construcción sociotécnica, coordinado digitalmente, industrializado y circular, que integra principios de fabricación, modelos organizativos orientados a plataformas y flujos de trabajo de diseño a producción, dirigidos por DfMA, para entregar sistemas del entorno construido configurables y de alto rendimiento.

Esta densa definición se puede desglosar en cinco componentes esenciales que forman el núcleo del marco:

  1. Integración digital: coordinación basada en modelos (BIM), sistemas de configuración paramétricos y herramientas de soporte a la decisión digital, que constituyen la columna vertebral de la información que conecta el diseño, la producción y la logística.
  2. Producción industrializada: flujos de producción estructurados, estandarización y logística coordinada que conforman la lógica subyacente al paradigma de «construcción como fabricación».
  3. Gobernanza de plataforma: uso de plataformas de productos, definición de interfaces y de ecosistemas de cadena de suministro integrados para permitir la escalabilidad, la consistencia y la coordinación del ecosistema.
  4. Lógicas de diseño a producción (DfMA): integración de la «fabricabilidad», tolerancias, reglas de ensamblaje y principios de diseño circular (DfMA) para garantizar que el diseño se alinee con la realidad de la fabricación y la logística.
  5. Circularidad y rendimiento de por vida: principios de diseño para el desmontaje, la reutilización, la adaptabilidad y la recuperación de materiales para alinear el marco con los imperativos de sostenibilidad y el valor a largo plazo.

Este marco organiza de manera coherente los términos anteriores, posicionando la construcción industrializada (CI) como la «columna vertebral de la producción» y el DfMA como el «sistema operativo de diseño». Esta claridad conceptual no es solo un ejercicio académico, sino que es fundamental para el futuro de una industria que necesita innovar de manera estructurada y escalable.

6. Conclusión: de la confusión a la claridad.

Entender la jerga de la construcción moderna no es tarea imposible. Al organizar los términos en una jerarquía lógica, podemos pasar de la confusión a la claridad.

A continuación, se presenta un resumen de las distinciones clave:

  • MMC: es un término de política, amplio y retórico, no una categoría técnica.
  • IC: es una filosofía de producción centrada en la lógica de la fabricación.
  • OSC: es un descriptor de ubicación que indica dónde se realiza el trabajo.
  • Modular/panelizado: se trata de productos técnicos, los «ladrillos» del sistema.
  • DfMA y digitalización: son los habilitadores transversales, el «sistema operativo» y la «infraestructura de información» que lo unen todo.

Para cualquier estudiante o profesional del sector, dominar esta jerarquía proporciona una base sólida para navegar por la innovación en la construcción. La clave está en ir más allá de los términos de moda y centrarse en la lógica subyacente que realmente impulsa el cambio: una mentalidad de fabricación, un diseño integrado y una coordinación digital impecable. Solo con esta claridad conceptual, la industria podrá afrontar de manera sistemática sus grandes retos en materia de productividad, sostenibilidad y resiliencia.

En esta conversación podéis escuchar aspectos interesantes sobre este tema:

Aquí tenéis un vídeo que resume lo más interesante.

En este documento también os dejo las ideas principales del trabajo de Kremer (2025).

Pincha aquí para descargar

Referencia:

Kremer, P.D. (2025). Defining Modern Methods of Construction: Resolving Conceptual Ambiguity Through the Neo-Construction Framework (preprint)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Construcción sostenible: por qué nuestra intuición nos falla.

En un mundo cada vez más consciente de la emergencia climática, la construcción sostenible ha dejado de ser una opción para convertirse en una necesidad. Arquitectos, ingenieros y promotores buscan constantemente el método constructivo «perfecto»: aquel que sea económico, ecológico y socialmente responsable. Sin embargo, ¿qué pasaría si nuestras ideas más arraigadas sobre lo que es «mejor» estuvieran equivocadas?

Un detallado estudio científico realizado por nuestro grupo de investigación, dentro del proyecto RESILIFE, ha puesto a prueba nuestras creencias. En él, los investigadores compararon de forma exhaustiva cuatro métodos de construcción para una vivienda unifamiliar: uno tradicional y tres alternativas industrializadas que prometen mayor eficiencia y sostenibilidad. Sus conclusiones no solo son sorprendentes, sino que también revelan por qué nuestra intuición sobre la construcción sostenible a menudo falla. Este artículo desvela los hallazgos que nos obligan a replantearnos qué significa realmente construir de forma sostenible.

Vivienda unifamiliar adosada analizada.

Intuición fallida n.º 1: la búsqueda de un «campeón» absoluto.

La primera gran revelación del estudio es que no existe una solución mágica que destaque en todas las categorías. Nuestra intuición busca un único «campeón» de la sostenibilidad, pero la realidad es un complejo juego de equilibrios. Cada método constructivo destacó en una dimensión diferente, lo que demuestra que la opción ideal depende de las prioridades del proyecto.

El estudio identificó un ganador claro para cada una de las tres dimensiones:

  • Dimensión económica: la alternativa «PRE» (losa de hormigón aligerada con discos huecos) fue la más económica. Su ventaja radica en su alta eficiencia estructural, ya que requiere «la mitad de material para las mismas solicitaciones estructurales» en comparación con la losa convencional.
  • Dimensión medioambiental: la alternativa «YTN» (prefabricada con hormigón celular autoclavado) obtuvo el mejor rendimiento ecológico. Esto se debe a que es un «material 100 % mineral» que necesita poca materia prima (1 m³ de materia prima produce 5 m³ de producto) y tiene un «bajo consumo de energía en su fabricación».
  • Dimensión social: la alternativa «ELE» (elementos de doble pared) fue la óptima desde una perspectiva social, impulsada en gran medida por un mayor confort de usuario, gracias a su excepcional rendimiento térmico, derivado de la gruesa capa de EPS utilizada como encofrado perdido.

Este hallazgo es fundamental. La sostenibilidad real no consiste en maximizar una única métrica, como la reducción de CO₂, sino en encontrar un equilibrio inteligente entre factores que, a menudo, están en conflicto.

Intuición fallida n.º 2: asumir que lo más «verde» es siempre lo mejor.

Podríamos pensar que la opción con menor impacto medioambiental (YTN) sería automáticamente la más sostenible, pero no es así. Sin embargo, el estudio demuestra que no es tan simple. Al combinar todos los factores en un «Índice Global de Sostenibilidad Estructural» (GSSI), la alternativa ganadora fue la «PRE» (losa aligerada).

¿Por qué ganó? La razón es el equilibrio. Aunque no fue la mejor en los ámbitos medioambiental y social, la alternativa PRE ofreció un excelente rendimiento económico y resultados muy sólidos en las otras dos áreas. El estudio la selecciona como la opción más sostenible porque, en sus palabras, presenta las respuestas más equilibradas a los criterios. Esta conclusión subraya una idea crucial: la solución más sostenible no es un extremo, sino un compromiso inteligente y equilibrado.

Los métodos «modernos» no son infalibles: sorpresas en los costes.

El estudio desveló dos realidades incómodas sobre los costes, tanto económicos como medioambientales, de algunas de las alternativas más innovadoras y puso en tela de juicio la idea de que «moderno» siempre significa «mejor».

En primer lugar, el método prefabricado (YTN), que a menudo se asocia con la eficiencia y el ahorro, resultó ser el más caro de todos. Su coste de construcción fue un 30,4 % superior al del método convencional de referencia.

Pero el sobrecoste económico no es el único precio oculto que reveló el estudio. La alternativa más tecnológica, ELE, conlleva una elevada factura medioambiental. Aunque fue la mejor valorada socialmente, su rendimiento ecológico fue pobre debido al enorme consumo de energía necesario para producir el poliestireno expandido (EPS) que utiliza como encofrado perdido. El estudio es contundente al respecto:

«Esto significa que, solo en los forjados, la alternativa ELE provoca un consumo de energía tres veces superior al necesario para obtener el EPS que requiere la solución de referencia».

Este hallazgo nos recuerda la importancia de analizar el ciclo de vida completo de los materiales y no dejarnos seducir únicamente por etiquetas como «moderno» o «tecnológico».

El mayor riesgo es el «business as usual»: el método tradicional fue el peor.

Quizás el hallazgo más importante y aleccionador del estudio es el pobre desempeño del método de construcción convencional (denominado «REF»). Al compararlo con las tres alternativas industrializadas, el sistema tradicional resultó ser la opción menos sostenible en todos los aspectos.

La conclusión de los investigadores es clara e inequívoca: «La alternativa REF es la peor opción en todos los criterios individuales y, en consecuencia, obtiene la menor prioridad en la caracterización de la sostenibilidad». Este resultado debe hacer reflexionar al sector: seguir construyendo como siempre se ha hecho, sin evaluar ni adoptar nuevas alternativas, es la decisión menos sostenible que podemos tomar.

Conclusión: repensando la construcción sostenible.

Este estudio demuestra que la sostenibilidad es un problema complejo que desafía las soluciones simplistas y las ideas preconcebidas. No se trata de encontrar una solución universal, sino de evaluar de manera integral y equilibrada las dimensiones económica, medioambiental y social de cada proyecto.

Como resumen, los propios autores: «Solo la consideración simultánea de los tres campos de la sostenibilidad […] conducirá a diseños adecuados». Esto nos obliga a cambiar nuestra pregunta fundamental: en lugar de buscar el material más ecológico o la técnica más barata, debemos preguntarnos cuál es la solución más equilibrada para un contexto específico.

Teniendo en cuenta estos resultados, ¿cómo deberíamos redefinir «la mejor forma de construir» para conseguir un futuro verdaderamente sostenible?

Aquí tenéis un audio que explica estos conceptos.

Os dejo un vídeo resumen sobre estas ideas.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿El futuro de la construcción nació en 1624? 4 revelaciones sobre los edificios del mañana.

Introducción: Más allá de los ladrillos y el cemento.

Cuando pensamos en el sector de la construcción, a menudo lo imaginamos como un sector lento, tradicional y reacio al cambio. Se trata de una imagen de ladrillos, cemento y procesos que parecen haber cambiado poco en las últimas décadas. Sin embargo, bajo la superficie, una revolución silenciosa está cobrando impulso y transformando radicalmente esta percepción.

Esta revolución se conoce como Métodos Modernos de Construcción (MMC). Impulsados por las tecnologías de la Industria 4.0, como la inteligencia artificial y el diseño digital, los MMC están redefiniendo lo que es posible construir, cómo se construye y a qué velocidad. Se trata de un cambio de paradigma que promete edificios más rápidos, económicos y eficientes. Aunque esta revolución pueda parecer novedosa, algunos países ya viven este futuro: en los Países Bajos, el 50 % de las nuevas viviendas se construyen con estos métodos, seguidos de cerca por Suecia y Japón.

Componentes de la Construcción 4.0

Aunque conceptos como «automatización robótica» o «gemelos digitales» suenen a ciencia ficción, las raíces de esta transformación son sorprendentemente antiguas. Sus implicaciones van mucho más allá de la simple eficiencia, ya que apuntan a un futuro en el que los edificios no solo minimizan su impacto ambiental, sino que también lo revierten de forma positiva. A continuación, revelamos los cuatro secretos más impactantes sobre este nuevo paradigma que está transformando nuestro mundo.

Primer secreto: no es una idea nueva, sino una idea antigua que por fin funciona.

Su origen no es del siglo XXI, sino del siglo XVII.

Contrariamente a la creencia popular, la idea de prefabricar edificios no es un concepto moderno. De hecho, sus orígenes se remontan a mucho antes de la era digital. El primer caso registrado de casas prefabricadas data de 1624, cuando se fabricaron en Inglaterra para ser enviadas y ensambladas en Massachusetts.

No se trató de un hecho aislado, sino que la idea reapareció a lo largo de la historia, esperando a que la tecnología se pusiera a su altura. El siglo XX fue testigo de varios intentos clave para descifrar el código.

  • Las populares «Kit Houses» que la empresa Sears vendía por catálogo en 1908 reducían el tiempo de construcción hasta en un 40%.
  • El visionario sistema «Maison Dom-ino» de Le Corbusier, de 1914, es un armazón estructural de losas y pilares que sentó las bases de la arquitectura moderna.
  • Las «American System-Built Houses», diseñadas por Frank Lloyd Wright entre 1911 y 1917, utilizaban un sistema de producción industrializada para los componentes del edificio.

Entonces, ¿por qué esta idea centenaria está despegando ahora con tanta fuerza? La respuesta está en la convergencia tecnológica. El concepto, aunque antiguo, ha encontrado por fin sus catalizadores definitivos. Los avances en inteligencia artificial (IA), la adopción de metodologías colaborativas, como el modelado de información para la construcción (BIM), y un enfoque renovado en la sostenibilidad han creado el ecosistema perfecto para que la prefabricación alcance la precisión, la eficiencia y la sofisticación necesarias para superar a la construcción tradicional.

Segundo secreto: la velocidad es casi increíble (y se demostró en una crisis).

Puede reducir los tiempos de construcción a la mitad.

Uno de los datos más contundentes sobre la eficacia de los MMC es su impacto directo en los plazos y costes de construcción. Las investigaciones han demostrado que los sistemas industrializados y la prefabricación pueden generar ahorros de hasta el 50 % en el tiempo de construcción y del 30 % en los costes.

Esta estadística cobró vida de manera espectacular durante una de las mayores crisis globales recientes. Durante la pandemia de la enfermedad por coronavirus (Covid-19), el mundo fue testigo de la construcción de dos hospitales de emergencia en Wuhan (China) en solo 12 días. Este hito, imposible de alcanzar con métodos tradicionales, demostró el poder de los MMC para responder a las emergencias con una velocidad sin precedentes.

Esta capacidad no solo es crucial en situaciones de crisis. Permite satisfacer la creciente demanda de vivienda de manera más rápida, acelerar el desarrollo de infraestructuras críticas y aumentar drásticamente la eficiencia de un sector que históricamente ha luchado contra los retrasos y los sobrecostes.

Tercer secreto: los edificios más inteligentes no solo son sostenibles, sino «regenerativos».

La sostenibilidad está quedándose obsoleta; el futuro es el diseño regenerativo.

Durante años, la «sostenibilidad» ha sido el objetivo final en la construcción, el santo grial del diseño responsable. Pero ¿y si ya no es suficiente? La vanguardia de la innovación arquitectónica sostiene que la estrategia de «hacer menos daño» está abocada al fracaso. El futuro no solo es sostenible, sino también regenerativo.

Este nuevo paradigma, denominado «diseño regenerativo», no se conforma con minimizar el impacto negativo, un concepto que se resume en el lema «reciclar, reducir y reutilizar». El diseño regenerativo busca generar activamente impactos positivos y adopta un nuevo lema: «restaurar, renovar y reemplazar». Se trata de diseñar edificios que no solo consuman menos, sino que contribuyan a la regeneración de los ecosistemas naturales y humanos que los rodean.

El paradigma actual ya no es suficiente, como señala la investigación:

«Sin embargo, el actual paradigma de la sostenibilidad ya no es suficiente para reducir el impacto medioambiental de la actividad humana».

Los MMC son la herramienta perfecta para hacer realidad este futuro ambicioso. El control preciso de los materiales, la optimización de los procesos desde la fase de diseño y la capacidad de integrar tecnologías innovadoras convierten la construcción industrializada en la plataforma ideal para crear edificios que devuelvan a la naturaleza más de lo que consumen.

Cuarto secreto: su mayor desafío no es construir cosas nuevas, sino arreglar las antiguas.

Su gran potencial oculto radica en la rehabilitación de nuestros edificios existentes.

A pesar de que el enfoque se centra en la nueva construcción, uno de los mayores potenciales de los MMC se encuentra en un área sorprendentemente desatendida: la rehabilitación y modernización (retrofitting) de los edificios existentes. Esta es la diferencia más significativa entre el enfoque científico y la necesidad social identificada por la investigación: la mayoría de los estudios se centran en la obra nueva, pero el mayor impacto climático se consigue mejorando los edificios que ya tenemos.

La importancia de esta tarea es enorme. La industria de la construcción es responsable de aproximadamente el 40 % del consumo final de energía en la Unión Europea. La renovación energética del extenso parque de edificios existentes no es solo una opción, sino una necesidad urgente para cumplir con los objetivos climáticos.

Aquí es donde los MMC pueden cambiar las reglas del juego. Imaginemos la combinación de tecnologías como BIM para crear un mapa digital de un edificio existente, drones para inspeccionar su estado y elementos prefabricados, como paneles de fachada de alto rendimiento, fabricados a medida en una fábrica y ensamblados rápidamente in situ. Este enfoque podría acelerar masivamente la modernización energética de nuestras ciudades, un desafío que hoy parece casi insuperable con los métodos tradicionales.

Conclusión: Rediseñando nuestro mundo.

Los métodos modernos de construcción son mucho más que una simple técnica, ya que suponen un profundo cambio de paradigma. Fusionan una idea con siglos de antigüedad con tecnología de vanguardia para ofrecer soluciones a algunos de los mayores retos de nuestro tiempo: la necesidad de vivienda, la urgencia de la crisis climática y la ineficiencia de las industrias tradicionales.

Hemos visto que sus raíces son más antiguas de lo que imaginamos, que su velocidad puede ser asombrosa, que su objetivo ya no es solo ser sostenible, sino regenerativo y que su próximo gran desafío podría ser la renovación de lo ya construido.

Ahora que sabemos que podemos construir hospitales en 12 días y diseñar edificios que regeneran su entorno, la verdadera pregunta no es qué podemos construir, sino qué queremos construir.

Os dejo a continuación un audio en el que se puede escuchar una conversación sobre este tema, que espero que os resulte interesante y os aporte información valiosa.

Asimismo, en este vídeo podéis ver un resumen de las ideas principales que se tratan en el artículo, el cual os será de utilidad para comprender mejor el contenido.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Journal of Building Engineering, 73:106725. DOI:10.1016/j.jobe.2023.106725

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ni ladrillo ni hormigón: las 5 claves sorprendentes de la casa del futuro

De vez en cuando, los resultados de los trabajos de investigación de nuestro grupo tienen una gran repercusión. En algunos artículos anteriores podéis ver un ejemplo de la repercusión del proyecto RESILIFE. En este caso, se trata de una entrevista que me realizó Eduard Muñoz para el programa Un día perfecte. Se trata de un espacio donde se abre una puerta a todas aquellas personas con inquietudes culturales y científicas. Mi agradecimiento.

A continuación, os dejo un resumen de la entrevista. Al final del artículo, podréis escucharla completa. Espero que os resulte interesante.

El acceso a una vivienda digna, asequible y sostenible es uno de los grandes desafíos de nuestra era. Ante la escasez, el aumento de los costes y la necesidad de reducir el impacto medioambiental, buscar soluciones se ha convertido en una urgencia global. A menudo, las respuestas más innovadoras no provienen de las oficinas de las grandes constructoras, sino de la investigación académica. En este caso, un equipo de la Universitat Politècnica de València (UPV), dirigido por el investigador Víctor Yepes y la doctoranda Ximena Luque, ha desarrollado una nueva metodología que cambia nuestra forma de entender la construcción. Sus conclusiones, fruto de un riguroso análisis, desafían muchas de nuestras ideas preconcebidas sobre cómo debe ser la casa del futuro.

Olvida la idea del «barracón»: la prefabricación de alta calidad ya está aquí.

En España, la palabra «prefabricado» suele evocar una imagen de baja calidad, de construcciones temporales o «barracones» poco estéticos. Sin embargo, como explica Yepes, esta percepción está completamente desactualizada. Para desmontar este mito, propone una analogía contundente: las autocaravanas de gran lujo o los yates son elementos industrializados y prefabricados que alcanzan un altísimo nivel de acabado y calidad. El principio es el mismo: fabricar componentes en un entorno de fábrica controlado permite un nivel de precisión y de control de calidad difícil de lograr en una obra a la intemperie. Este nuevo enfoque de construcción industrializada no es una solución de segunda categoría, sino una tendencia en auge en los países nórdicos y en ciudades como Londres, que demuestra que la eficiencia de la fabricación en serie puede ir de la mano de la excelencia y el diseño.

La vivienda más eficiente está hecha de acero ligero.

El proyecto de investigación RESILIFE se centró en un caso de estudio en Perú, un país que se enfrenta a dos grandes desafíos en materia de vivienda: la prevalencia de la autoconstrucción de baja calidad y el alto riesgo sísmico. Tras analizar múltiples alternativas, desde los tradicionales muros de ladrillo y hormigón armado hasta paneles prefabricados, el estudio halló la solución óptima para este contexto específico: un sistema industrializado de acero ligero conocido como light steel frame.

Esta solución resultó ser superior por varias razones clave:

  • Seguridad sísmica: cumple con la estricta normativa de zonas de alto riesgo sísmico.
  • Eficiencia energética: proporciona un alto rendimiento energético, lo que reduce los costes de mantenimiento a largo plazo.
  • Estructura liviana: se basa en paneles prefabricados que conforman una estructura muy ligera.
  • Velocidad de construcción: permite una edificación extraordinariamente rápida, una ventaja crucial en situaciones de emergencia, como demostró China al construir un hospital en 15 días durante la pandemia.

Este caso demuestra que los materiales tradicionales no siempre son la respuesta más inteligente.

«El hormigón y el ladrillo son formas tradicionales de construcción en España, pero no hay que descartar otras posibilidades que, gracias a las nuevas tecnologías de inteligencia artificial, diseño asistido por ordenador, etc., harán que en el futuro sean posiblemente las más rápidas y eficientes».

— Víctor Yepes, investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH).

Reducir el coste de construcción no basta para solucionar la crisis de la vivienda.

Los sistemas industrializados, como el de acero ligero, pueden reducir los costes directos de construcción entre un 15 % y un 20 %, lo cual no es una cifra desdeñable. Sin embargo, este ahorro no es la solución mágica a la crisis de asequibilidad, al menos en España. El investigador señala una realidad estructural del mercado inmobiliario español: el suelo SUELE representa más del 50 % del precio final de una vivienda. Por lo tanto, aunque abaratar la construcción es un paso positivo, la solución fundamental para que los precios bajen pasa por otra vía: es necesario poner más suelo público en el mercado para equilibrar la oferta y la demanda.

La clave no es un tipo de casa, sino una «receta» inteligente para construirla.

Aunque la casa de acero ligero en Perú es un resultado interesante, el verdadero avance de esta investigación no es un producto, sino un proceso. El resultado más importante es la creación de una metodología universal y adaptable, un motor capaz de generar la mejor solución para cualquier lugar del mundo. El equipo ha desarrollado una herramienta objetiva e imparcial que, mediante el uso de inteligencia artificial, puede analizar las condiciones locales y determinar la solución constructiva más adecuada.

Esta metodología tiene en cuenta una gran variedad de factores para tomar la decisión más acertada.

  • Costes locales de energía, electricidad y transporte.
  • La normativa vigente en la zona.
  • Disponibilidad de materiales y mano de obra.
  • Nivel de especialización de los trabajadores locales.

Esto significa que la mejor solución para Perú no tiene por qué serlo para España o el Reino Unido. La verdadera innovación consiste en ofrecer una solución personalizada y optimizada para las circunstancias específicas de cada lugar.

El futuro de la construcción debe ser inteligente, pero también humano.

Este trabajo demuestra que el futuro de la vivienda no depende de aferrarse a un único material, sino de aplicar inteligencia y una visión holística. No obstante, los investigadores advierten contra una solución puramente tecnocrática. Un proceso industrial muy eficiente puede reducir costes, pero si deja de lado a la mano de obra local, simplemente cambia un problema por otro. Por ello, ahora estudian cómo integrar el «factor humano» en su metodología. La casa verdaderamente «inteligente» del futuro también debe tener un impacto social inteligente, equilibrando la eficiencia con el empleo.

El conocimiento para construir mejor ya existe. Como subraya Víctor Yepes, la ciencia y la universidad generan soluciones aplicables a problemas reales. Su llamamiento final es un recordatorio crucial para los responsables políticos y económicos: es hora de escuchar a la investigación y aplicar estos criterios para construir un futuro más sostenible y justo para todos.

Si la ciencia ya nos ofrece las herramientas para construir de forma más inteligente y sostenible, ¿estamos preparados como sociedad para adoptar el cambio?

Os dejo la entrevista completa. Espero que os resulte interesante.

Referencia

LUQUE-CASTILLO, X.; YEPES, V. (2025). Life Cycle Assessment of Social Housing Construction: A Multicriteria Approach. Building and Environment, 282:113294. DOI:10.1016/j.buildenv.2025.113294

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cómo construir viviendas sociales más baratas y sostenibles y de forma más rápida

A continuación, os paso el contenido de una nota de prensa que ha lanzado la UPV sobre uno de nuestros trabajos de investigación relacionados con el proyecto RESILIFE. También os dejo enlaces a la noticia. Espero que os resulte interesante.

Investigadores de la UPV han desarrollado una nueva herramienta para ayudar a gobiernos y profesionales del sector de la construcción a edificar viviendas sociales de forma más eficiente, económica y respetuosa con el medio ambiente

La investigación, publicada en la revista Building and Environment, se enmarca en el proyecto RESILIFE

Investigadores de la Universitat Politècnica de València (UPV) han desarrollado una nueva herramienta para ayudar a gobiernos y profesionales del sector de la construcción a edificar viviendas sociales de forma más eficiente, económica y respetuosa con el medio ambiente. El trabajo, liderado por el investigador del Instituto ICITECH Víctor Yepes y la doctoranda Ximena Luque, se ha centrado en Perú, un país con un elevado déficit habitacional, si bien sus resultados podrían aplicarse a otros países con necesidades similares.

La investigación, publicada en la revista Building and Environment, se enmarca en el proyecto RESILIFE y analiza cinco sistemas constructivos diferentes —desde métodos tradicionales como el hormigón con ladrillo hasta métodos industrializados como el Light Steel Frame (LSF). Además, evalúa no solo costes de construcción, sino también los de mantenimiento, demolición e impacto ambiental durante todo el ciclo de vida de la vivienda.

“No se trata de solo construir más, sino de construir mejor. Por eso analizamos cada sistema de principio a fin, con el enfoque conocido como desde la cuna hasta la tumba, evaluando tanto el impacto técnico, económico y medioambiental de la construcción. Nuestro estudio no solo se centra en el precio o la velocidad de construcción. También analizó el impacto de cada tipo de vivienda a lo largo de toda su vida útil: desde la extracción de los materiales hasta su demolición”, explica Víctor Yepes

El sistema más eficiente: rápido, limpio y rentable

De los cinco modelos analizados, el sistema LSF —una estructura metálica prefabricada y liviana— es el más eficiente, según el estudio realizado por Víctor Yepes y Ximena Luque. Es el más barato a largo plazo (en construcción, mantenimiento y demolición); el que menos impacto ambiental genera y el que permite construir más rápido, lo que resulta clave para reducir el déficit habitacional en corto tiempo.

“Los sistemas tradicionales, aunque parecen más baratos al inicio, terminan siendo más costosos a largo plazo por sus residuos y su dificultad para ser reciclados. El estudio también señala que ningún sistema es perfecto. Por ejemplo, los paneles sándwich de hormigón son muy rápidos de montar, pero tienen mayores costes e impactos. El sistema convencional, aunque ampliamente empleado, tarda más en construirse y tiene un impacto ambiental alto. Sin embargo, necesita menos mano de obra especializada, lo que también es un factor que debemos considerar. Aun así, en más del 90 % de los escenarios evaluados, el LSF siguió siendo la mejor alternativa”, explica Yepes.

Guía práctica y modelo replicable

Además de identificar el “sistema para construir mejor”, el equipo de la UPV ha desarrollado una guía práctica para programas de vivienda social, planteando una metodología que se puede replicar en otros países en desarrollo.

Nuestro estudio ofrece una herramienta práctica y replicable que puede ayudar a ingenieros, arquitectos y autoridades a tomar decisiones más informadas. Al tener en cuenta todo el ciclo de vida de una vivienda y varios criterios de sostenibilidad, nuestro trabajo pretende contribuir a conseguir hacia soluciones habitacionales más justas, rápidas y respetuosas con el medio ambiente en aquellos países que lo necesitan”, añade Yepes.

Próximos pasos: sumar el factor humano

El equipo de la UPV trabaja ya en la siguiente fase del proyecto, que incorporará el impacto social de cada sistema constructivo, evaluando cómo influyen en la calidad de vida de las personas, el empleo local y la cohesión comunitaria.

“Construir bien, no es solo colocar ladrillos y hormigón. También es considerar a las personas que habitarán ese espacio y cómo la vivienda puede mejorar su bienestar y sus oportunidades”, concluye Víctor Yepes.

Referencia

LUQUE-CASTILLO, X.; YEPES, V. (2025). Life Cycle Assessment of Social Housing Construction: A Multicriteria Approach. Building and Environment, 282:113294. DOI:10.1016/j.buildenv.2025.113294

Noticia en À Punt:

Entrevistas en RNE y Ser

Noticia en medios:

La UPV plantea un modelo «replicable» para construir viviendas sociales baratas y sostenibles

https://cadenaser.com/comunitat-valenciana/2025/08/03/un-estudio-de-la-upv-propone-como-construir-viviendas-sociales-mas-baratas-y-sostenibles-y-de-forma-mas-rapida-radio-valencia/

https://www.larazon.es/comunidad-valenciana/mas-baratas-eficientes-upv-tiene-clave-construir-mas-viviendas_20250803688f1efac5e9fd602f666afd.html

https://www.20minutos.es/nacional/estudio-propone-construir-viviendas-sociales-baratas-sostenibles_6233824_0.html

https://valencia.elperiodicodeaqui.com/epda-noticias/un-estudio-de-la-upv-propone-como-construir-viviendas-sociales-mas-baratas-y-sostenibles/374196

https://www.noticiasde.es/comunidad-valenciana/la-upv-ha-propuesto-un-metodo-para-construir-viviendas-sociales-de-forma-mas-economica-sostenible-y-rapida/

https://www.ultimahora.es/noticias/comunidades/2025/08/03/2443119/estudio-upv-propone-como-construir-viviendas-sociales-mas-baratas-sostenibles-forma-mas-rapida.html

Un estudio de la UPV propone cómo construir viviendas sociales «más baratas y sostenibles» y de forma «más rápida»

https://alicanteplaza.es/alicanteplaza/innovacion-alicante/un-estudio-de-la-upv-propone-como-construir-viviendas-sociales-mas-baratas-y-sostenibles

Un estudio de la UPV propone cómo construir viviendas sociales más baratas y sostenibles | Murcia Plaza

https://economia3.com/2025/08/04/701578-upv-impulsa-una-nueva-forma-de-construir-viviendas-sociales-mas-eficientes/

https://www.ultimahora.es/noticias/comunidades/2025/08/03/2443119/estudio-upv-propone-como-construir-viviendas-sociales-mas-baratas-sostenibles-forma-mas-rapida.html

Nou estudi de la UPV revela com construir vivendes socials més econòmiques i sostenibles

 

Preguntas sobre el prefabricado de hormigón: Historia, ventajas y futuro

1. ¿Qué es un elemento prefabricado de hormigón y cómo se diferencia de la construcción con hormigón tradicional?

Un elemento prefabricado de hormigón se define como un producto fabricado con hormigón y elaborado en un lugar distinto de su ubicación final. Durante su fabricación, está protegido de las condiciones ambientales adversas y se obtiene mediante un proceso industrial con un sistema de control de la producción en fábrica. Esto permite acortar los plazos de entrega. En términos prácticos, la prefabricación consiste en aplicar principios industriales a la construcción, como la racionalización de procesos, la búsqueda de la economía de escala y el desarrollo a partir de la repetición de tareas cuidadosamente planificadas, ejecutadas en entornos favorables, con medios suficientes y por personal especializado.

La principal diferencia con el hormigón tradicional (o in situ) radica en el lugar y el método de fraguado y de control. El hormigón tradicional se concibe como un material fresco que cura libremente en la obra (ejecución in situ), mientras que el prefabricado es un producto terminado que se diseña y fabrica previamente en una planta industrial, con todas sus características adquiridas de forma controlada. Esto le confiere una entidad propia y una serie de cualidades inherentes que lo distinguen, como una mayor precisión dimensional, mejores acabados y la eliminación de incertidumbres en el resultado final, lo que a menudo se traduce en precios más competitivos.

https://www.telecinco.es/noticias/catalunya/20250730/levantan-bloque-vivienda-publica-diez-dias-barcelona_18_016247482.html

2. ¿Cuándo y cómo se originó el concepto de prefabricación aplicado al hormigón?

Aunque el uso del hormigón se remonta al Imperio romano (7000 a. C., según algunos historiadores), el origen de la prefabricación, entendida como la aplicación de procesos industriales a la construcción, se sitúa a mediados del siglo XVIII, con la Revolución Industrial y la aparición de nuevos materiales como el acero y el vidrio. Sin embargo, la combinación específica del material (hormigón) y la técnica (prefabricación) es relativamente reciente y ha experimentado un desarrollo espectacular a partir de la segunda mitad del siglo XX.

Un hito clave fue la patente concedida en 1824 a Joseph Aspdin para la producción de «cemento Portland». A partir de 1848 y 1849 se registran los primeros elementos prefabricados de hormigón, como la barca de Joseph Louis Lambot y la jardinera de Joseph Monier. No obstante, un hito trascendental fue la patente del hormigón pretensado presentada por Eugène Freyssinet en 1928, que revolucionó la forma de construir al convertir el hormigón en un material activo y duradero, lo que impulsó la creación de las primeras fábricas de elementos prefabricados.

3. ¿Cuáles fueron los hitos más importantes en el desarrollo del hormigón prefabricado entre 1850 y 1970?

El desarrollo del hormigón prefabricado se puede dividir en varias etapas significativas:

  • 1850-1940 (Primera época): Estuvo marcada por la visión de ingenieros que vieron en el hormigón una alternativa a la piedra natural. Los hitos incluyen:
    • Primeros elementos prefabricados como la barca de Lambot (1848) y la jardinera de Monier (1849).
    • El primer edificio con bloques prefabricados de cemento Portland, Castle House (1851).
    • La invención del concreto armado por William Wilkinson (1854).
    • La patente de un edificio prefabricado con módulos tridimensionales de Eduard T. Potter (1889).
    • La construcción del primer edificio con estructura prefabricada de hormigón, un molino de harina en Swansea (1897).
    • La invención del hormigón pretensado por Eugène Freyssinet (1928) transformó el material.
  • 1940-1970 (Segunda época): Influenciada por la necesidad de reconstrucción rápida y económica tras la Segunda Guerra Mundial y por el aprovechamiento del tejido industrial bélico.
    • Difusión del pretensado (Francisco Fernández Conde obtuvo las patentes para España y América Latina en 1942).
    • La Unión Soviética adoptó masivamente los paneles prefabricados de hormigón para la construcción de barrios urbanos debido a la reducción de costos y a la rapidez (1947-1951).
    • Estandarización de sistemas prefabricados en Inglaterra (1960).
    • Diseños icónicos como la cúpula del Palacio de Deportes de Pier Luigi Nervi para los JJ.OO. de Roma (1960) y el complejo de viviendas Habitat 67 de Moshe Safdie en Montreal (1967).
    • Desarrollo de losas alveolares y de la escuela francesa de «grandes paneles».

4. ¿Cómo ha evolucionado el hormigón prefabricado desde el último tercio del siglo XX hasta la actualidad?

Desde finales del siglo XX, la industria del prefabricado ha experimentado una creciente mecanización y un enfoque hacia una prefabricación más «abierta». Los fabricantes pasaron de producir grandes volúmenes de elementos repetitivos a crear soluciones más flexibles y adaptables a diversas obras y demandas. En este periodo, Italia y los países nórdicos destacaron, ya que su clima favorece la construcción industrializada.

Se mejoraron las posibilidades estéticas del prefabricado, como se evidenció en la Ópera de Sídney, que empleó grandes conchas prefabricadas. Aumentó la demanda de grandes elementos prefabricados para viviendas, escuelas, centros comerciales y estadios, lo que impulsó la mejora de sus propiedades estructurales. En el ámbito de la obra civil, el prefabricado se convirtió en la opción dominante para puentes, canalizaciones, túneles y traviesas ferroviarias.

En la actualidad, la construcción prefabricada es un método con entidad propia que destaca por su capacidad para aplicar técnicas de producción de alto rendimiento con elevados niveles de control, lo que asegura una mayor calidad y precisión dimensional. También se destaca la capacidad de las piezas para su desmontaje y reutilización, lo que contribuye a la sostenibilidad. La evolución informática permite realizar diseños complejos que antes resultaban inviables. Además, se ha logrado combinar la libertad arquitectónica con la eficiencia constructiva, lo que permite realizar diseños flexibles y adaptables que permiten cambiar el uso de los edificios sin afectar a su estructura.

https://resimart.com/beneficios-prefabricados-de-hormigon/

5. ¿Qué ventajas ofrece la prefabricación de hormigón en comparación con los métodos de construcción tradicionales?

La prefabricación de hormigón ofrece múltiples ventajas significativas:

  • Mayor calidad y precisión dimensional: el proceso industrial en fábrica, bajo sistemas de control de producción, asegura una calidad superior, homogeneidad y precisión dimensionales de los elementos, eliminando las incertidumbres del resultado final.
  • Ahorro de tiempo y costes: la fabricación en un entorno controlado acelera los plazos de entrega y permite una planificación más detallada, lo que se traduce en mayor productividad, menores costes laborales in situ y, a menudo, un precio final más competitivo.
  • Mayor durabilidad y resistencia: El hormigón prefabricado utiliza materiales de mejores prestaciones y un curado más controlado, lo que contribuye a una mayor durabilidad y resistencia, especialmente evidente tras la invención del pretensado.
  • Sostenibilidad y eficiencia energética: contribuyen a la reducción de residuos en obra, al uso de hormigones de mejores prestaciones (mayor durabilidad) y a una alta inercia térmica, lo que se traduce en un menor consumo de energía y un mayor confort para los usuarios. La posibilidad de desmontar y reutilizar las piezas también mejora su impacto ambiental a largo plazo.
  • Versatilidad arquitectónica y estructural: permite la creación de formas complejas, texturas, relieves, colores y aligeramientos, así como la adaptación a requisitos arquitectónicos cambiantes sin sacrificar la eficiencia. Los diseños flexibles permiten cambiar el uso de los edificios sin afectar la estructura.
  • Mejores condiciones laborales: La aplicación del hormigón autocompactante en plantas de prefabricados ha mejorado notablemente las condiciones de trabajo de los operarios al reducir la carga sonora y las vibraciones.

6. ¿Cuáles son los principales campos de aplicación del hormigón prefabricado en la actualidad?

El entorno urbano está lleno de elementos prefabricados de hormigón que forman parte de nuestro paisaje cotidiano y tienen una amplia gama de aplicaciones en la edificación y la obra civil.

En edificación (arquitectura), el prefabricado se utiliza masivamente para:

  • Viviendas (Habitat 67 es un ejemplo icónico).
  • Escuelas, pabellones, centros comerciales, aparcamientos.
  • Estadios y hospitales.
  • Elementos estructurales y de cerramiento, incluyendo paneles de fachada de grandes dimensiones con mejoras estéticas (colores, texturas, diseños de vanguardia como fachadas translúcidas).
  • Forjados (desde viguetas y bovedillas hasta losas alveolares).

En obra civil (ingeniería), el desarrollo de los prefabricados de hormigón ha sido fundamental para:

  • Puentes (tanto la estructura como las losas que unen las vigas).
  • Canalizaciones y tuberías.
  • Dovelas para túneles.
  • Traviesas para ferrocarril.
  • Mobiliario urbano y pavimentos.

En general, el prefabricado responde satisfactoriamente a todas las exigencias técnicas y funcionales y se adapta cada vez más a diseños arquitectónicos libres y a la integración de servicios e instalaciones en la estructura prefabricada.

7. ¿Qué mitos persisten sobre el hormigón prefabricado y cómo se están superando?

Aunque la acepción peyorativa del término «prefabricado» está disminuyendo, aún persisten ciertos mitos infundados que impiden un mayor avance de la industria. Estos mitos incluyen la percepción de que los elementos prefabricados son una solución «inferior» o carecen de versatilidad estética y funcional. Se asocia erróneamente con la necesidad de producir grandes cantidades de elementos muy repetitivos para optimizar costes, una idea que la industria ya ha corregido, pues es capaz de producir elementos a costes razonables para demandas más pequeñas y diferenciadas.

La realidad es que el diseño y la fabricación en un entorno técnico y controlado conducen a elementos y soluciones más precisos y de mayor calidad. Los avances tecnológicos en dosificación, curado, control de calidad, moldes, acabados, nuevos materiales y la introducción de hormigones autocompactantes han superado las limitaciones estéticas y funcionales previas. La industria ha sabido responder adecuadamente a las exigencias técnicas, funcionales y estéticas y ha logrado una mayor libertad arquitectónica sin sacrificar la eficiencia. La difusión de sus ventajas y el éxito en obras emblemáticas están ayudando a disipar estos mitos.

8. ¿Cuáles son los principales retos y las vías de innovación para la industria del hormigón prefabricado en los próximos años?

La industria del prefabricado de hormigón se enfrenta a varios retos prometedores para ganar mayor presencia en el mercado:

  • Sostenibilidad: Se trata de un eje fundamental, impulsado por políticas reglamentarias que bonifican las soluciones respetuosas con el medio ambiente. El prefabricado ofrece ventajas como una mayor inercia térmica (que reduce el consumo de energía), una menor generación de residuos y el uso de concretos de mejores prestaciones para aumentar su durabilidad. También se investiga la adición de materia prima para dotar a los elementos de capacidades descontaminantes.
  • Innovación tecnológica: En un entorno competitivo, la innovación es crucial. Se busca la mejora continua mediante la I+D+i, en colaboración con centros tecnológicos y universidades. Las innovaciones incluyen el aumento de la resistencia mecánica del hormigón, la ampliación de las formas, texturas, relieves y colores de los elementos vistos, y la mejora de las materias primas (cementos, aditivos, aceros pretensados y fibras) para lograr dimensiones, ligereza y acabados antes inimaginables.
  • Automatización y digitalización: El progreso tecnológico en la maquinaria permite a las plantas de prefabricados alcanzar altos niveles de automatización, incluyendo la impresión 3D, moldes más duraderos, sistemas de vaciado eficientes, cortes guiados por láser y sistemas de curado más eficaces. La integración de sensores en la fabricación para monitorizar parámetros (por ejemplo, la resistencia a la compresión) y el desarrollo de productos conforme a la metodología BIM también son áreas de profundización.
  • Adaptación a nuevas exigencias: El objetivo es mejorar el comportamiento sísmico, rediseñar las piezas estructurales para cubrir un mayor rango dimensional y optimizar las conexiones de los elementos estructurales, con el fin de seguir expandiendo las aplicaciones y la eficiencia del prefabricado.

Creo que estos vídeos pueden interesarte.

Os dejo un artículo que, espero, sea de vuestro interés.

Referencias:

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

RESILIFE: Optimización resiliente de estructuras híbridas en condiciones extremas

En este artículo se explica el proyecto RESILIFE, cuyos investigadores principales son Víctor Yepes y Julián Alcalá, de la Universitat Politècnica de València. Se trata de un proyecto de investigación de carácter internacional en el que también colaboran profesores de Brasil, Chile y China. Además, se están realizando varias tesis doctorales de estudiantes de Cuba, Perú, México y Ecuador, así como de estudiantes españoles. A continuación, se describe brevemente el proyecto y se incluye una comunicación reciente donde se explica con más detalle.

El proyecto RESILIFE se centra en optimizar de forma resiliente el ciclo de vida de estructuras híbridas y modulares para conseguir una alta eficiencia social y medioambiental, especialmente en condiciones extremas. La investigación aborda la necesidad de diseñar, construir y mantener infraestructuras que puedan resistir y recuperarse rápidamente de desastres naturales o provocados por el ser humano, minimizando las pérdidas y el impacto en la sociedad y el medioambiente. Para ello, el estudio propone utilizar inteligencia artificial, metaheurísticas híbridas, aprendizaje profundo y teoría de juegos en un enfoque multicriterio. El objetivo es mejorar la seguridad, reducir costes y optimizar la recuperación, alineándose con los Objetivos de Desarrollo Sostenible (ODS). La metodología integral incluye el análisis del ciclo de vida, así como la aplicación de lógica neutrosófica y redes bayesianas para la toma de decisiones.

¿Qué problema aborda el proyecto RESILIFE y por qué es urgente?

El proyecto RESILIFE aborda el desafío crítico que supone diseñar y mantener infraestructuras resilientes y sostenibles frente a desastres naturales y provocados por el ser humano. La urgencia es evidente debido a las enormes pérdidas humanas y económicas causadas por estos eventos (más de 1,1 millones de muertes y 1,5 billones de dólares en pérdidas entre 2003 y 2013), lo que subraya la necesidad de estructuras de alto rendimiento que protejan vidas y economías, al tiempo que se alinean con los Objetivos de Desarrollo Sostenible (ODS) de las Naciones Unidas. Además, los errores de diseño y construcción, así como la falta de mantenimiento, han demostrado ser causas significativas de colapso estructural, y solo el 50 % de las reparaciones de hormigón resultan efectivas en Europa.

¿Cuál es el objetivo principal de RESILIFE?

El objetivo general del proyecto RESILIFE es optimizar el diseño, el mantenimiento y la reparación de estructuras híbridas y modulares (MMC) de alta eficiencia social y medioambiental para que puedan resistir condiciones extremas. Para ello, se deben abordar problemas complejos de toma de decisiones en los ámbitos público y privado, integrando criterios de sostenibilidad social y medioambiental durante todo el ciclo de vida de las estructuras y teniendo en cuenta la variabilidad e incertidumbre inherentes al mundo real. El objetivo es que estas estructuras sean tan seguras como las tradicionales, pero con una mayor capacidad de recuperación rápida y un menor impacto social y medioambiental.

 

¿Qué tipos de estructuras son el foco de RESILIFE y por qué?

El proyecto se centra en estructuras híbridas (que combinan, por ejemplo, acero y hormigón) y en estructuras basadas en métodos modernos de construcción (MMC), especialmente las modulares. Estas estructuras se han elegido como objeto de estudio debido a su gran potencial para mejorar la resiliencia estructural, la eficiencia en la construcción (al reducir las interrupciones en obra y mejorar el control de calidad) y la sostenibilidad. A pesar de sus ventajas, se han identificado lagunas en la investigación sobre su optimización para eventos extremos y su aplicación en estructuras complejas, aspectos que el proyecto RESILIFE busca subsanar.

¿Qué metodologías innovadoras utiliza RESILIFE para lograr sus objetivos?

RESILIFE emplea un enfoque multidisciplinario e innovador que integra diversas técnicas avanzadas:

¿Cómo aborda RESILIFE la incertidumbre y la variabilidad en el diseño y mantenimiento de estructuras?

El proyecto aborda la incertidumbre y la variabilidad mediante varias estrategias:

  • Análisis de funciones de distribución de eventos extremos: Para el diseño óptimo basado en fiabilidad.
  • Metamodelos y metaheurísticas híbridas basadas en fiabilidad: Permiten manejar la aleatoriedad de los parámetros y asegurar que los proyectos optimizados no sean inviables ante pequeños cambios en las condiciones.
  • Técnicas de decisión multicriterio (lógica neutrosófica y redes bayesianas): Integran aspectos inciertos y criterios subjetivos en la toma de decisiones.
  • Análisis de sensibilidad: De los escenarios presupuestarios y las hipótesis del ciclo de vida para identificar las mejores prácticas.

¿Qué se entiende por «resiliencia» en el contexto de RESILIFE y cómo se cuantifica?

En el contexto de RESILIFE, la resiliencia se define como la capacidad de una estructura para resistir eventos extremos, mantener su funcionalidad o recuperarla rápidamente con reparaciones mínimas tras sufrir daños, y con un bajo coste social y medioambiental. El objetivo es ir más allá de la simple resistencia y centrarse en la capacidad de adaptación y recuperación. El proyecto tiene como objetivo desarrollar procedimientos explícitos para cuantificar la resiliencia de las estructuras e infraestructuras en el contexto de múltiples amenazas, un aspecto que actualmente presenta una laguna en la investigación. Esto incluye tener en cuenta la funcionalidad técnico-socioeconómica y los impactos a lo largo de toda su vida útil.

¿Qué tipo de casos de estudio se aplican en la metodología RESILIFE?

La metodología de RESILIFE se aplica a varios casos de estudio clave:

  • Optimización de pórticos de edificios altos: Con estructura de acero híbrido y hormigón armado, sometidos a un fuerte incremento de temperatura, o ante el fallo completo de soportes para evitar el colapso progresivo.
  • Viviendas sociales prefabricadas en zonas sísmicas: Optimizando su resistencia a acciones extremas y su capacidad de reparación rápida.
  • Mantenimiento y reparación de patologías: Resultantes de eventos extremos en diversas estructuras.
  • Otras estructuras como puentes mixtos y estructuras modulares: Ampliando el alcance más allá de las viviendas. Estos casos de estudio permiten validar la aplicabilidad de las metodologías propuestas en situaciones reales y complejas.

¿Cuáles son las principales contribuciones esperadas de RESILIFE a la ingeniería estructural y la sostenibilidad?

Las principales contribuciones esperadas de RESILIFE son:

  • Desarrollo de soluciones constructivas innovadoras: Como conexiones especiales y estructuras fusibles para aumentar la resiliencia y evitar el colapso progresivo.
  • Formulación de metodologías de participación social: Para integrar criterios objetivos y subjetivos en decisiones multicriterio.
  • Propuesta de técnicas de optimización multiobjetivo avanzadas: Basadas en metaheurísticas híbridas de deep learning, teoría de juegos y fiabilidad.
  • Introducción de nuevas métricas: Que prioricen soluciones resilientes en la frontera de Pareto.
  • Identificación de políticas presupuestarias efectivas: Y definición de buenas prácticas de diseño, reparación y mantenimiento robusto en construcciones MMC y estructuras híbridas.
  • Avances en la modelización y evaluación: De la sostenibilidad a largo plazo y el impacto ambiental de las infraestructuras, contribuyendo a normativas y software de diseño más eficientes.

Pincha aquí para descargar

Glosario de términos clave

  • Resiliencia (estructural): Capacidad de una estructura para absorber, resistir, adaptarse y recuperarse de un evento extremo, manteniendo o recuperando su funcionalidad rápidamente y con costes mínimos.
  • Estructuras híbridas: Estructuras que combinan dos o más materiales estructurales diferentes, como acero y hormigón, para optimizar sus propiedades y rendimiento.
  • Estructuras modulares: Estructuras compuestas por unidades o módulos prefabricados que se ensamblan en el lugar de la construcción, ofreciendo ventajas en velocidad de construcción y control de calidad.
  • Eventos extremos: Desastres naturales (terremotos, tsunamis, inundaciones) o provocados por humanos (explosiones, impactos) que causan daños significativos a las estructuras y la sociedad.
  • Optimización del ciclo de vida: Proceso de diseño, construcción, mantenimiento y reparación de una estructura, considerando su impacto total (económico, social, ambiental) a lo largo de toda su vida útil.
  • Sostenibilidad: Principio que busca satisfacer las necesidades actuales sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades, integrando aspectos ambientales, sociales y económicos.
  • Inteligencia artificial (IA): Campo de la informática que dota a las máquinas de la capacidad de aprender, razonar y resolver problemas, utilizada aquí para evaluar y mejorar la resiliencia.
  • Metaheurísticas híbridas: Algoritmos de optimización que combinan diferentes técnicas heurísticas o metaheurísticas para encontrar soluciones eficientes a problemas complejos, especialmente en la optimización multiobjetivo.
  • Aprendizaje profundo (Deep Learning – DL): Subcampo del aprendizaje automático que utiliza redes neuronales artificiales con múltiples capas para aprender representaciones de datos, aplicado para mejorar la toma de decisiones y reducir tiempos de cálculo.
  • Teoría de juegos: Rama de las matemáticas que estudia las interacciones estratégicas entre agentes racionales, aplicada en la optimización multiobjetivo para el diseño de estructuras.
  • Lógica neutrosófica: Marco matemático para tratar la indeterminación y la inconsistencia, utilizado en la toma de decisiones multicriterio para manejar la incertidumbre.
  • Redes bayesianas: Modelos gráficos probabilísticos que representan relaciones de dependencia condicional entre variables, empleadas en el análisis multicriterio y la gestión de incertidumbre.
  • Colapso progresivo: Fenómeno en el cual un daño inicial localizado en una estructura se propaga a otras partes, llevando al colapso desproporcionado de una gran porción o de toda la estructura.
  • Modern Methods of Construction (MMC): Métodos de construcción modernos que incluyen tecnologías de prefabricación, construcción modular e impresión 3D, buscando mayor eficiencia y control de calidad.
  • BIM (Building Information Modeling / Modelos de Información en la Construcción): Proceso de creación y gestión de un modelo digital de un edificio o infraestructura, que facilita la integración del proyecto estructural y la toma de decisiones a lo largo del ciclo de vida.
  • Metamodelo (o modelo subrogado): Modelo simplificado de un sistema complejo que permite realizar cálculos más rápidos y eficientes, crucial para reducir los tiempos de computación en la optimización.
  • Diseño óptimo basado en fiabilidad: Enfoque de diseño que considera la probabilidad de fallo y las incertidumbres inherentes para optimizar las estructuras, garantizando un nivel de seguridad predefinido.
  • Frontera de Pareto: Conjunto de soluciones óptimas en problemas de optimización multiobjetivo, donde ninguna de las funciones objetivo puede mejorarse sin degradar al menos otra función objetivo.

Agradecimientos:

Grant PID2023-150003OB-I00 funded by MCIN/AEI/10.13039/501100011033, and the European Regional Development Fund (ERDF), a program of the European Union (EU).

Evaluación del ciclo de vida en viviendas sociales: un enfoque multicriterio para decisiones sostenibles

Acaban de publicarnos un artículo en la revista Building and Environment, revista indexada en el JCR en el primer decil. Presenta un análisis integral del impacto ambiental, económico y técnico de cinco soluciones estructurales aplicables a viviendas sociales. La investigación cobra especial relevancia en contextos como el peruano, donde la elevada demanda de vivienda y las limitaciones presupuestarias requieren soluciones eficientes, sostenibles y ampliamente replicables. Este trabajo se inscribe dentro del marco de los Objetivos de Desarrollo Sostenible (ODS), y aporta criterios objetivos para la toma de decisiones en el diseño y ejecución de programas como Techo Propio y Fondo Mi Vivienda.

El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. A continuación se recoge un resumen sintético del trabajo.

Este artículo describe una investigación que evalúa la sostenibilidad de diferentes sistemas estructurales para viviendas sociales, enfocándose en su impacto ambiental, económico y técnico a lo largo de todo su ciclo de vida. La metodología empleada integra el Análisis del Ciclo de Vida (LCA), el Coste del Ciclo de Vida (LCC) y la Toma de Decisiones Multicriterio (MCDM) para proporcionar una visión completa. Los hallazgos principales indican que los sistemas de Light Steel Frame (LSF) son los más equilibrados en términos de sostenibilidad y rentabilidad, lo que ofrece criterios objetivos para la planificación de proyectos de vivienda social, especialmente en contextos como el peruano. El estudio resalta la importancia de una evaluación holística para la toma de decisiones en el sector de la construcción.

La principal aportación del artículo es la integración de tres herramientas de evaluación: el Análisis del Ciclo de Vida (LCA), el Coste del Ciclo de Vida (LCC) y la Toma de Decisiones Multicriterio (MCDM). El análisis se realiza con un enfoque cradle-to-grave, es decir, considerando todas las etapas del ciclo de vida de una vivienda: desde la extracción de materias primas hasta la demolición y el tratamiento de residuos. Esta perspectiva ofrece una visión más completa y realista del impacto de cada sistema constructivo, en contraste con los estudios más limitados comúnmente aplicados en América Latina.

Los cinco sistemas estructurales analizados fueron los siguientes: (1) estructuras de hormigón armado con muros de ladrillo (RCF-M), (2) muros hormigonados in situ (RCW), (3) sistemas industrializados de acero ligero tipo Light Steel Frame (LSF), (4) estructuras de hormigón armado con paneles sándwich prefabricados (RCF-CP) y (5) paneles sándwich de hormigón atornillados (LBSPS). Todas las alternativas se diseñaron siguiendo las normas técnicas peruanas de edificación (RNE), incluidos los requisitos sísmicos y de eficiencia energética. La unidad funcional utilizada fue el metro cuadrado de vivienda construida, con una vida útil de 50 años.

Desde el punto de vista ambiental, el sistema LSF resultó ser el de menor impacto global, incluso por debajo de soluciones convencionales como el RCF-M, que destacó por su alto consumo energético y emisiones durante la etapa de fabricación, principalmente debido a la producción de ladrillos cerámicos. En contraste, los sistemas prefabricados como LBSPS, aunque reducen los tiempos de ejecución, presentaron impactos ambientales elevados debido al uso intensivo de maquinaria y transporte especializado. El potencial de calentamiento global (GWP) fue la categoría con mayor peso ambiental, seguida del consumo de recursos naturales.

En cuanto al análisis económico, el sistema LSF también demostró ser el más competitivo. Su menor coste de construcción, el reducido mantenimiento y la facilidad de desmontaje le confieren ventajas económicas importantes. El sistema RCF-M, aunque tiene un bajo coste inicial, tiene mayores costes durante la fase de uso y al final de su vida útil debido a su elevada generación de residuos y dificultad de reciclaje. Las alternativas basadas en hormigón (RCW y RCF-CP) mostraron costes intermedios, con un mayor gasto en mantenimiento preventivo debido a la necesidad de recubrimientos anticorrosivos y anticarbonatación.

Para integrar todas estas variables, se emplearon seis métodos de decisión multicriterio (AHP, DEMATEL, TOPSIS, WASPAS, EDAS, MABAC y MARCOS), y a cada criterio se le asignaron pesos según la experiencia de un panel de expertos. Los criterios que más influyeron en la toma de decisiones fueron el coste de construcción, la necesidad de mano de obra especializada y el impacto ambiental sobre los recursos. La consistencia entre los métodos aplicados y los análisis de sensibilidad realizados confirma la solidez de los resultados: en más del 90 % de los escenarios simulados, el sistema LSF se mantuvo como la mejor opción global.

Las conclusiones del estudio son claras: ningún sistema constructivo es perfecto en todos los aspectos, pero el LSF se posiciona como la solución más equilibrada en términos de sostenibilidad, coste y eficiencia técnica. Esto tiene implicaciones directas para la planificación de proyectos de vivienda social, donde la rapidez de ejecución, la reducción de emisiones y la viabilidad económica deben ir de la mano. Además, el marco metodológico propuesto en este trabajo puede replicarse en otros países o contextos donde se busque optimizar la selección de sistemas constructivos en función de múltiples criterios.

En definitiva, este artículo supone un avance significativo en la evaluación integral de las tecnologías constructivas para la vivienda social. Proporciona a ingenieros, arquitectos y responsables de políticas públicas una herramienta sólida para fundamentar sus decisiones, superando enfoques tradicionales centrados únicamente en el coste o la rapidez constructiva. La aplicación de metodologías multicriterio, combinadas con análisis del ciclo de vida, se consolida así como un enfoque clave para impulsar una construcción social verdaderamente sostenible.

Referencia:

LUQUE-CASTILLO, X.; YEPES, V. (2025). Life Cycle Assessment of Social Housing Construction: A Multicriteria Approach. Building and Environment, 282:113294. DOI:10.1016/j.buildenv.2025.113294

Os paso el artículo, pues está publicado en abierto.

Pincha aquí para descargar

Glosario de términos clave

  • Análisis del ciclo de vida (LCA – Life Cycle Assessment): Una herramienta para evaluar los impactos ambientales asociados con todas las etapas de la vida de un producto, desde la extracción de la materia prima hasta la disposición final.
  • Coste del ciclo de vida (LCC – Life Cycle Costing): Una herramienta de evaluación económica que considera todos los costes relevantes de un producto o sistema a lo largo de su vida útil, incluyendo diseño, construcción, operación, mantenimiento y disposición.
  • Toma de decisiones multicriterio (MCDM – Multi-Criteria Decision-Making): Un conjunto de métodos y técnicas utilizados para evaluar y clasificar alternativas cuando hay múltiples criterios en conflicto, permitiendo tomar decisiones más informadas.
  • Enfoque «Cradle-to-Grave»: Una metodología de análisis que abarca todas las etapas del ciclo de vida de un producto o sistema, desde la «cuna» (extracción de materias primas) hasta la “tumba” (disposición final o reciclaje).
  • Objetivos de Desarrollo Sostenible (ODS): Un conjunto de 17 objetivos globales establecidos por las Naciones Unidas para lograr un futuro más sostenible para todos, abordando desafíos como la pobreza, la desigualdad, el cambio climático y la degradación ambiental.
  • RESILIFE: El proyecto de investigación en el marco del cual se realizó este estudio, dirigido por el investigador principal en la Universitat Politècnica de València.
  • Techo Propio y Fondo Mi Vivienda: Programas de vivienda social en Perú mencionados como contextos clave donde los hallazgos del estudio pueden aplicarse para la toma de decisiones.
  • RCF-M (Hormigón armado con muros de ladrillo): Uno de los sistemas estructurales analizados, que representa una solución constructiva convencional.
  • RCW (Muros hormigonados in situ): Uno de los sistemas estructurales analizados, caracterizado por el vertido de hormigón directamente en el lugar de la obra.
  • LSF (Light Steel Frame): Un sistema industrializado de acero ligero, destacado en el estudio por su eficiencia ambiental y económica.
  • RCF-CP (Estructuras de hormigón armado con paneles sándwich prefabricados): Un sistema que combina hormigón armado con paneles prefabricados.
  • LBSPS (Paneles sándwich de hormigón atornillados): Un sistema prefabricado de paneles sándwich de hormigón que se ensamblan mediante atornillado.
  • Unidad funcional: El parámetro de referencia utilizado en el LCA y LCC para comparar diferentes alternativas, en este caso, el metro cuadrado de vivienda construida con una vida útil de 50 años.
  • Potencial de calentamiento global (GWP – Global Warming Potential): Una medida del impacto de una sustancia en el calentamiento global, expresada en equivalentes de CO₂. Fue la categoría de mayor peso ambiental en el estudio.