Acaban de publicarnos un artículo en el Journal of Construction Engineering and Management-ASCE, revista indexada en el primer cuartil del JCR. Se trata de optimizar la vía en placa mediante metamodelos para mejorar la sostenibilidad de la construcción ferroviaria. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
El ferrocarril es un medio de transporte eficaz, sin embargo, la construcción y el mantenimiento de las vías férreas tienen un impacto medioambiental importante en términos de emisiones de CO2 y uso de materias primas. Esto es especialmente cierto en el caso de la vía en placa, pues necesitan grandes cantidades de hormigón. También son más caras de construir que las vías convencionales con balasto, pero requieren menos mantenimiento y presentan otras ventajas que las convierten en una buena alternativa, especialmente para las líneas de alta velocidad. Para contribuir a un ferrocarril más sostenible, este trabajo pretende optimizar el diseño de una de las tipologías de vía en placa más comunes: RHEDA 2000. El objetivo principal es reducir la cantidad de hormigón necesaria para construir la losa sin comprometer su rendimiento y durabilidad. Para ello, se utilizó un modelo basado en el método de los elementos finitos (MEF) de la vía, emparejado con un metamodelo de kriging que permite analizar múltiples opciones de espesor de la losa y resistencia del hormigón de forma puntual. Mediante kriging, se obtuvieron soluciones óptimas que se validaron a través del modelo MEF para garantizar el cumplimiento de las restricciones mecánicas y geométricas predefinidas. Partiendo de una configuración inicial con una losa de 30 cm de hormigón con una resistencia característica de 40 MPa, se llegó a una solución optimizada, consistente en una losa de 24 cm de hormigón con una resistencia de 45 MPa, que arroja una reducción de costes del 17,5%. Este proceso puede aplicarse ahora a otras tipologías de losas para obtener diseños más sostenibles.
Abstract:
Railways are an efficient transport mode, but building and maintaining railway tracks have a significant environmental impact in terms of CO2 emissions and the use of raw materials. This is particularly true for slab tracks, which require large quantities of concrete. They are also more expensive to build than conventional ballasted tracks, but require less maintenance and have other advantages that make them a good alternative, especially for high-speed lines. To contribute to more sustainable railways, this paper aims to optimize the design of one of the most common slab track typologies: RHEDA 2000. The main objective is to reduce the amount of concrete required to build the slab without compromising its performance and durability. To do so, a model based on the finite-element method (FEM) of the track was used, paired with a kriging metamodel to allow analyzing multiple options of slab thickness and concrete strength in a timely manner. By means of kriging, optimal solutions were obtained and then validated through the FEM model to ensure that predefined mechanical and geometrical constraints were met. Starting from an initial setup with a 30-cm slab made of concrete with a characteristic strength of 40 MPa, an optimized solution was reached, consisting of a 24-cm slab made of concrete with a strength of 45 MPa, which yields a cost reduction of 17.5%. This process may be now applied to other slab typologies to obtain more sustainable designs.
Keywords:
Slab track; Optimization; Latin hypercube; Kriging; Finite-element method (FEM).
En ese trabajo se muestran las características principales de los forjados de losa postesa obtenidos tras aplicar métodos heurísticos de optimización. Estos forjados presentan ventajas frente a soluciones más convencionales a partir de ciertas luces. El proceso de diseño de estos forjados se puede plantear como un problema de optimización, que abordado con métodos heurísticos puede formularse de un modo totalmente realista. Se pueden encontrar diseños completos de forjados optimizados no solo con criterios de economía, sino también de sostenibilidad, pudiendo comparar ambos casos. Los resultados obtenidos en este trabajo muestran una clara tendencia a disponer cantos muy estrictos en los resultados óptimos. Aplicando criterios de sostenibilidad se tiende a hormigones de mayores resistencias que con criterios económicos. Finalmente se han realizado pruebas de sensibilidad a los precios, que muestran mucha independencia de los forjados óptimos frente a las variaciones de precios ensayadas.
RODRÍGUEZ-CALDERITA, A.M.; ALCALÁ, J.; YEPES, V.; MARTÍ, J.V. (2013). Optimización heurística aplicada al diseño automático de forjados de losa postesa. 2º Congreso Nacional de la Enseñanza de las Matemáticas en la Ingeniería de Edificación, EIMIE, 18-19 de julio, Valencia, pp. 63-75. ISBN: 978-84-8363-992-4.
En este trabajo se estudia el potencial del metamodelado de kriging para optimizar el diseño estructural con múltiples objetivos mediante el uso de software de análisis de elementos finitos y normas de diseño. Se propone un método que incluye la sostenibilidad y la constructibilidad, y se aplica a un caso de cimentaciones de hormigón armado para aerogeneradores de un gran proyecto de parque eólico sueco. Se realizan análisis de sensibilidad para investigar la influencia del factor de penalización aplicado a las soluciones no viables y el tamaño de la muestra inicial generada por el muestreo de hipercubos latinos. A continuación, se realiza una optimización multiobjetivo para obtener soluciones óptimas para diferentes combinaciones de pesos para los cuatro objetivos considerados. Los resultados indican que los diseños obtenidos mediante kriging a partir de muestras de 20 superan a los mejores diseños de las muestras de 1000. Las soluciones óptimas obtenidas por el método propuesto tienen un impacto de sostenibilidad entre un 8 y un 15% menor que los desarrollados por métodos tradicionales.
El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
In this work, we study the potential of using kriging metamodelling to perform multi-objective structural design optimization using finite element analysis software and design standards while keeping the computational efforts low. A method is proposed, which includes sustainability and buildability objectives, and it is applied to a case study of reinforced concrete foundations for wind turbines based on data from a large Swedish wind farm project. Sensitivity analyses are conducted to investigate the influence of the penalty factor applied to unfeasible solutions and the size of the initial sample generated by Latin hypercube sampling. Multi-objective optimization is then performed to obtain the optimum designs for different weight combinations for the four objectives considered. Results show that the kriging-obtained designs from samples of 20 designs outperform the best designs in the samples of 1000 designs. The optimum designs obtained by the proposed method have a sustainability impact 8–15% lower than the designs developed by traditional methods.
La optimización de puentes es un problema complejo debido al gran número de variables que intervienen. En este trabajo se ha realizado la optimización de un puente mixto en cajón considerando el coste como función objetivo. Para ello se ha aplicado el Recocido Simulado (SA) como ejemplo de algoritmo basado en la búsqueda de soluciones mediante trayectorias para la optimización de la estructura. Se observa que la adición de celdas a las secciones transversales del puente mejora no sólo el comportamiento de la sección sino también los resultados de la optimización. Finalmente, se observa que el diseño propuesto de doble acción compuesta materializando losas en el ala inferior sobre apoyos, permite eliminar los rigidizadores longitudinales continuos. Este método automatiza el proceso de optimización de un diseño inicial de un puente de material compuesto, que tradicionalmente se ha basado en la propia experiencia del técnico, permitiendo alcanzar resultados de forma más eficiente.
Referencia:
MARTÍNEZ-MUÑOZ, D.; SÁNCHEZ-GARRIDO, A.J.; MARTÍ, J.V.; YEPES, V. (2021). Composite bridge deck optimization with trajectory-based algorithms. 6th International Conference on Mechanical Models in Structural Engineering, CMMoST 2021, 1-3 December, Valladolid, Spain, pp. 174-187. ISNB: 978-84-09-39323-7
Como suele ser habitual, nuestro grupo de investigación suele presentar algunos de sus trabajos en la Conferencia Internacional sobre Modelos Mecánicos en Ingeniería Estructural. Estamos ya en la sexta edición, la CMMoST 2021, que se va a desarrollar del 1 al 3 de diciembre de 2021 en Valladolid (España). Se trata de un congreso bianual que, como bien indica su blog de presentación, es una excelente oportunidad para presentar a nivel internacional vuestros proyectos y compartir experiencias en el campo de los modelos mecánicos en la ingeniería estructural. CMMoST 2021 va dirigido tanto a investigadores como a profesionales dedicados al desarrollo y aplicación de modelos mecánicos en la ingeniería estructural. De este modo, ingenieros, arquitectos y otros expertos y profesionales relacionados con los modelos estructurales tienen cabida en este congreso internacional.
En esta ocasión, nos presentamos con dos comunicaciones que son parte de la investigación realizada en sendas tesis doctorales en marcha. A continuación os paso el resumen de los dos trabajos. Más adelante os pasaré las comunicaciones completas.
MARTÍNEZ-MUÑOZ, D.; SÁNCHEZ-GARRIDO, A.J.; MARTÍ, J.V.; YEPES, V. (2021). Composite bridge deck optimization with trajectory-based algorithms. 6th International Conference on Mechanical Models in Structural Engineering, CMMoST 2021, 1-3 December, Valladolid, Spain.
ABSTRACT
Bridge optimization can be difficult due to the large number of variables involved in the problem. In this work, the optimization of a steel‐concrete composite box girder bridge has been performed considering cost as objective function. To achieve this objective, Simulated Annealing (SA) has been applied as an example of trajectory‐based algorithm for the optimization of the structure. It is observed that the addition of cells to the bridge cross sections improves not only the section behavior but also the optimization results. Finally, it is observed that the proposed double composite‐action design materializing slabs on the bottom flange on supports, allows eliminating the continuous longitudinal stiffeners. This method automatize the optimization process of an initial design of a composite bridge, which has traditionally been based on the technician’s own experience, allowing to reach results in a more efficient way.
SÁNCHEZ-GARRIDO, A.J.; MARTÍNEZ-MUÑOZ, D.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic logic applied to the multi-criteria evaluation of sustainable alternatives for earth-retaining walls. 6th International Conference on Mechanical Models in Structural Engineering, CMMoST 2021, 1-3 December, Valladolid, Spain.
ABSTRACT
The sustainable design of infrastructures is one of the key aspects for the achievement of the Sustainable Development Goals, given the recognized magnitude of both the economic and environmental impacts of the construction sector. Multi-criteria decision methodologies allow addressing the sustainable design of infrastructures, simultaneously considering the impact of a design on the different dimensions of sustainability. This article proposes the use of neutrosophic logic to solve one of the main problems associated with decision making: the subjectivity of the experts involved. Through the neutrosophic approach of the AHP multi-criteria methodology and the use of the VIKOR technique, the economic and environmental impacts associated with four earth retaining wall designs are analyzed. In the present assessment, the most sustainable response over its life cycle has been found to be the gabion wall.
High visibility: indexed by the Science Citation Index Expanded, the Social Sciences Citation Index (Web of Science) and other databases. Impact Factor: 3.390 (2020)
Deadline for manuscript submissions: 30 September 2022.
Special Issue Editors
Guest Editor
Prof. Dr. Víctor Yepes
Concrete Science and Technology Institute (ICITECH), Department of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València Valencia, Spain Interests: multiobjective optimization; structures optimization; lifecycle assessment; social sustainability of infrastructures; reliability-based maintenance optimization; optimization and decision-making under uncertainty
Guest Editor
Prof. Dr. Moacir Kripka
Civil and Environmental Engineering Graduate Program (PPGEng), University of Passo Fundo, Passo Fundo CEP 99052-900, Brazil Interests: structural analysis; optimization; building; engineering optimization; civil engineering; linear programming; mathematical programming; heuristics; structural optimization; concrete; combinatorial optimization; structural engineering; multiobjective optimization; reinforced concrete; optimization methods; discrete optimization; optimization theory; simulated annealing; optimization software
Special Issue Information
Dear Colleagues,
This Special Issue is the 2nd edition of Trends in Sustainable Buildings and Infrastructure. The recently established Sustainable Development Goals call for a paradigm shift in the way buildings and infrastructures are conceived. The construction industry is a main source of environmental impacts, given its great material consumption and energy demands. It is also a major contributor to the economic growth of regions through the provision of useful infrastructure and generation of employment, among others. Conventional approaches underlying current building design practices fall short of covering the relevant environmental and social implications derived from inappropriate design, construction, and planning. The development of adequate sustainable design strategies is therefore becoming extremely relevant with regard to the achievement of the United Nations 2030 Agenda Goals for Sustainable Development.
This Special Issue aims to increase knowledge on sustainable design practices by highlighting the actual research trends that explore efficient ways to reduce the environmental consequences related to the construction industry while promoting social wellbeing and economic development. These objectives include but are not limited to:
Life-cycle-oriented building and infrastructure design;
Design optimization based on sustainable criteria;
Maintenance design towards sustainability;
Inclusion of social impacts in the design of buildings and infrastructures;
Resilience and sustainability;
Use of sustainable materials;
Decision-making processes that effectively integrate economic, environmental, and social aspects.
Papers selected for this Special Issue will be subject to a rigorous peer-review procedure with the aim of rapid and wide dissemination of research results, developments, and applications.
Submission
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Environmental Research and Public Health is an international peer-reviewed open access semimonthly journal published by MDPI.
Keywords
Sustainable design and construction
Life cycle assessment
Sustainability in decision making
Green buildings
Sustainable maintenance
Resilient structures
Sustainable materials
Social life cycle assessment
Sustainable management of infrastructures
Multiobjective optimization for sustainable development
This scientific event is a new edition of the High Performance and Optimum Design of Structures and Materials Conference and follows that originated in Southampton as long ago as 1989 and the Structures under Shock and Impact that started in Cambridge, Massachusetts, also in 1989.
The use of novel materials and new structural concepts nowadays is not restricted to highly technical areas like aerospace, aeronautical applications or the automotive industry, but affects all engineering fields including those such as civil engineering and architecture. The conference addresses issues involving advanced types of structures, particularly those based on new concepts. Contributions will highlight the latest development in design and manufacturing issues.
Most high-performance structures require the development of a generation of new materials, which can more easily resist a range of external stimuli or react in a non-conventional manner. Particular emphasis will be placed on intelligent structures and materials as well as the application of computational methods for their modelling, control and management.
The conference also addresses the topic of design optimisation. Contributions on numerical methods and different optimisation techniques are also welcome, as well as papers on new software. Optimisation problems of interest to the meeting involve those related to size, shape and topology of structures and materials. Optimisation techniques have much to offer to those involved in the design of new industrial products, as the appearance of powerful commercial computer codes has created a fertile field for the incorporation of optimisation in the design process in all engineering disciplines.
The performance of the structures under shock and impact loads is another objective of the meeting. The increasing need to protect civilian infrastructure and industrial facilities against unintentional loads arising from accidental impact and explosion events as well as terrorist attacks is reflected in the sustained interest worldwide. While advances have been made in the last decades, many challenges remain, such as developing more effective and efficient blast and impact mitigation approaches than those that currently exist or assessing the uncertainties associated with large and small scale testing and validation of numerical and analytical models. All of that aimed to a better understanding of critical issues relating to the testing behaviour, modelling and analyses of protective structures against blast and impact loading.
The meeting will provide a friendly and useful forum for the interchange of ideas and interaction amongst researchers, designers and scholars in the community to share advances in the scientific fields related to the conference topics.
All conference papers are archived in the Wessex Institute eLibrary (www.witpress.com/elibrary) where they are easily and permanently available in Open Access format to the international community.
Conference Topics
The following list covers some of the topics to be presented at HPSM/OPTI/SUSI 2022. Papers on other subjects related to the objectives of the conference are also welcome.
Composite materials
Material characterisation
Natural fibre composites
Nanocomposites
Green composites
Composites for automotive applications
Transformable structures
Environmentally friendly and sustainable structures
Reliability-based design optimisation
Non-deterministic approaches
Evolutionary methods in optimisation
Aerospace structures
Biomechanics application
Lightweight structures
Design for sustainability
Design for durability
Lifecycle assessment
Structural reliability
Smart materials and structures
Optimization of civil engineering structures
Optimization in mechanical engineering
Optimization in the car industry
Design optimization of tall buildings
Metaheuristic algorithms
New algorithms for size and topology optimisation
BIM tools for design optimization
Emerging materials
Impact and blast loading
Energy-absorbing issues
Computational and experimental results
Response of reinforced concrete under impact
Seismic behaviour
Protection of existing structures
Industrial accidents and explosions
Security issues
Response of composite structures to blast and impact
Acaban de publicarnos un artículo en la revista Mathematics, revista indexada en el primer decil del JCR. En este caso se ha desarrollado una aplicación para la optimización de una estrategia sostenible en la gestión de un proyecto de ingeniería internacional. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
El objetivo de este artículo es establecer un marco internacional para la gestión sostenible de proyectos en ingeniería, completar la investigación en este campo y proponer una base teórica para el establecimiento de un nuevo sistema de gestión de proyectos. El artículo adopta como método de investigación la revisión de la literatura, un algoritmo de programación matemática y el estudio de casos. La revisión de la literatura analizó los resultados de 21 años de investigación en este campo. Como resultado, se constató que el sistema de gestión de proyectos presenta deficiencias. Se estableció un modelo matemático para analizar la composición y los elementos del sistema optimizado de gestión de proyectos internacionales. La investigación de casos seleccionó grandes puentes para su análisis y verificó la superioridad y viabilidad del sistema teórico propuesto. La aportación de esta nueva investigación radica en el establecimiento de un modelo de sistema de gestión de proyectos internacional completo; en la integración del desarrollo sostenible con la gestión de proyectos; y en la propuesta de nuevos marcos de investigación y modelos de gestión para promover el desarrollo sostenible de la industria de la construcción.
Abstract:
The aim of this paper is to establish an international framework for sustainable project management in engineering, to make up the lack of research in this field, and to propose a scientific theoretical basis for the establishment of a new project management system. The article adopts literature review, mathematical programming algorithm and case study as the research method. The literature review applied the visual clustering research method and analyzed the results of 21-year research in this field. As a result, the project management system was found to have defects and deficiencies. A mathematical model was established to analyze the composition and elements of the optimized international project management system. The case study research selected large bridges for analysis and verified the superiority and practicability of the theoretical system. Thus, the goal of sustainable development of bridges was achieved. The value of this re-search lies in establishing a comprehensive international project management system model; truly integrating sustainable development with project management; providing new research frames and management models to promote the sustainable development of the construction industry.
Los inventarios son provisiones de artículos en espera de su utilización posterior, cuya utilidad depende de la cantidad, momento y lugar de su necesidad. En el entorno de la maquinaria, los constituyen desde las propias máquinas a las piezas de recambio u otros elementos necesarios para su funcionamiento. En general, los inventarios, existencias o stocks, evitan la escasez cuando la demanda futura del artículo sea incierta, para aprovechar la economía de escala que supone la solicitud de grandes cantidades a costos menores y para mantener el flujo de trabajo en los procesos productivos. No obstante, los artículos ociosos de inventario inmovilizan fondos y precisan de recursos para su almacenaje y mantenimiento, siendo en algún caso perecederos. Ello obliga al compromiso entre las ventajas aportadas por los grandes inventarios y los costes que suponen mantenerlos. La gestión de inventarios será la técnica que ayuda a los gerentes a determinar cuándo deben reabastecerse las existencias actuales y en qué cantidad. La gestión de las máquinas y repuestos, dichas funciones se realizan en los parques de maquinaria.
Componentes del coste de un sistema de inventarios
Una política de inventarios busca el mínimo coste esperado para un período determinado, por tanto, se deben estimar los diversos componentes que lo integran:
El coste del pedido o de organización, se asocia con el reabastecimiento de un inventario, siendo independiente del número de unidades pedidas. Incluye los tiempos de oficina y administrativos, cargos por fax, teléfonos, y otros como los gastos generales de la empresa.
Cada unidad pedida incurre en un coste de compra, que es un coste directo por unidad. Esta cifra puede depender del número de unidades pedidas, debido a los descuentos por cantidad.
El coste de conservación por período de tiempo para cada artículo del inventario incluye los gastos de almacenamiento (almacén, seguro, mermas de existencias, personal, etc.), y los costes de oportunidad del dinero comprometido en las existencias.
El coste de déficit o desabastecimiento es el asociado con la insatisfacción de la demanda. Pueden ser explícitos si existen penalizaciones al proveedor cada vez que exista una ruptura o cuando la venta de un producto se pierde, e implícitos, asociados a la insatisfacción del cliente y pérdidas de futuras ventas y de credibilidad. Cuando los artículos no se surten, además de estos costes fijos, los costes de déficit pueden incluir costes explícitos e implícitos por cada unidad de tiempo que un artículo sigue sin ser suministrado.
Modelos de demanda y gestión de existencias
Se entiende por control de existencias, el abastecimiento de la cantidad y calidad necesarias de elementos dados, en el momento y en el lugar en que se necesita, con la menor inversión posible. La gestión de existencias trata de minimizar los costes, buscando el compromiso entre el ahorro producido por un stock determinado y los gastos producidos al almacenarlo.
La mera posesión de las máquinas supone gastos fijos elevados, así pues, no resulta económico tener los equipos parados. A ello se suman los costes del propio almacén. Todo ello indica que los inventarios deben ser los estrictamente necesarios. La empresa constructora se encuentra presionada por fuerzas de sentido opuesto a la hora de determinar el volumen de existencias conveniente. Se trata de un problema de equilibrio, para cuya resolución se han formulado distintos modelos.
Los modelos de gestión de inventarios permiten dimensionar el almacén minimizando los costes de posesión y renovación de existencias para evitar las rupturas del inventario. En los parques de maquinaria, el volumen de reserva deberá minimizar los costes que por depreciación, mantenimiento y almacenaje de las máquinas, se sumen a los que se incurren si se paralizan o retrasan las obras por falta de suministro. Se recomiendan unos stocks reducidos para disminuir los recursos financieros destinados a los inventarios y sus gastos correspondientes.
La gestión de un almacén con artículos diferentes debe considerar la relación entre la demanda de cualquiera de ellos. La demanda de un artículo es independiente si no afecta a la demanda de los demás, en caso contrario es dependiente. La demanda determinística de un artículo es la que se conoce con certeza, mientras la probabilística está sujeta a la incertidumbre y variabilidad.
Si en un sistema de coordenadas representamos la cantidad de existencias y el tiempo, se obtiene la clásica curva en forma de “dientes de sierra” que representa la evolución temporal de las existencias. En la Figura 2 se representa una evolución de una demanda determinista y constante, fenómeno poco frecuente en la realidad, con un volumen de pedido S durante el periodo de reaprovisionamiento T.
Con este modelo determinista y constante, es necesario conocer el punto de pedido Sm, es decir, el número de unidades suficientes para hacer frente a la demanda durante el plazo de entrega l. Cuando el ritmo de salidas del parque y el de entradas son conocidos, no deben producirse rupturas. Sin embargo, como dichas variables son aleatorias, es necesario recurrir al stock de seguridad Se, también llamado stock de protección, de reserva o de acopio. Éste se define como el volumen de existencias que tenemos en almacén por encima de lo que se necesita habitualmente, para afrontar las fluctuaciones en exceso de la demanda, a los retrasos imprevistos en la recepción de los pedidos, o a ambos.
Cuando la demanda es variable existen diversos sistemas de gestión de inventarios o políticas de pedidos:
Sistema de la cantidad fija de pedido: El reaprovisionamiento se realiza cuando el inventario llega a un cierto nivel previamente especificado. El tiempo entre pedidos suele ser desigual. Esta política también se denomina revisión continua, pues requiere revisar el inventario frecuentemente para determinar cuándo se alcanza el punto de pedido. En la mayoría de los casos, se deja cierto margen o stock de seguridad.
Sistema de restablecimiento del nivel máximo de stock: Cada intervalo fijo de tiempo se reabastece el almacén al nivel máximo previsto de existencias. La cantidad pedida cada vez varía. Esta política también se denomina revisión periódica pues requiere inspeccionar el nivel de inventario cada cierto tiempo. Presenta el inconveniente de inducir mayores niveles de almacenamientos, que puede paliarse en buena parte incrementando la frecuencia de los pedidos y consecuentemente de los aprovisionamientos.
Sistema de los dos almacenes o restablecimiento condicional: La diferencia con el anterior consiste en que si al final del período establecido (final de mes, por ejemplo), no se ha bajado de determinado nivel de existencias, no se realiza el pedido. El proceso se repite en los períodos sucesivos, restableciendo o no el stock inicial en función del agotamiento hasta cierto nivel de las existencias iniciales o “primer almacén”.
Cuando la demanda es de un solo producto, podemos aplicar el modelo de Wilson o de la cantidad económica del pedido. Es un modelo matemático usado como base para la gestión de existencias en el que la demanda y el plazo de entrega son determinísticos, no permitiéndose los déficits y abasteciéndose el almacén por lotes. Así se obtiene una cantidad en inventario que hace mínima la suma de los gastos en pedidos (correo, teléfono, recepción de los materiales, inspección y trámites administrativos) y los gastos de mantenimiento de las existencias (almacenamiento, financiero y manejo de materiales). En este caso se demuestra que:
donde:
Q = Cantidad económica a pedir en el periodo considerado.
C = Consumo en el periodo considerado.
S = Coste de pedido por pedido.
I = Coste de mantenimiento por unidad de artículo y unidad de tiempo.
En el siguiente vídeo tenéis un ejercicio resuelto del modelo de Wilson:
Existen otras técnicas interesantes para realizar una gestión de existencias eficaz, y que consideran en mayor o menor medida la complejidad de una planta de producción: la planificación de necesidades de materiales (Materials requirement planning MRP), la planificación de recursos de fabricación y los sistemas de inventarios “justo a tiempo” (Just in time JIT).
Planificación de necesidades de materiales: Apropiada cuando las demandas de los artículos individuales dependen de la demanda del producto final en el que se usan como componentes. Proporciona no solo las cantidades de los lotes y los puntos de pedido, sino también un calendario de cuándo se necesita cada artículo y en qué cantidades, durante un proceso de producción, basándose en los costes de organización y de conservación involucrados.
Planificación de recursos de fabricación: Es un desarrollo del sistema anterior en el cual no solo se controlan los inventarios, sino que se coordinan todos los recursos y actividades de los distintos departamentos. Se coordina fabricación, ventas, compras, finanzas e ingeniería. En construcciones civiles, integrarían todos los departamentos de una obra concreta, en coordinación con sus proveedores.
Sistemas “justo a tiempo”: Ideados con el objeto de reducir a cero los stocks de una empresa, de forma que los suministradores aportan sus productos en el momento que se precisan. Ello supone minimizar los costes relativos a los stocks, para lo cual se precisa que los flujos de producción sean estables, que se simplifiquen los trabajos al máximo, que estén ubicados con corrección en los lugares de producción, y que exista una verdadera coordinación entre todos los integrantes de los procesos productivos.
En el diseño de puentes, es necesario modelar muchas variables como los materiales, las dimensiones de la sección transversal, las armaduras de refuerzo y el pretensado para evaluar el rendimiento estructural. Se pretende aumentar la eficiencia y satisfacer los estados límite últimos y de servicio impuestos por el código estructural. En este trabajo se presenta una herramienta informática para analizar los puentes de carretera de vigas continuas de sección en cajón de hormigón postesado para minimizar el coste y proporcionar las variables óptimas de diseño. El programa comprende seis módulos para realizar el proceso de optimización, el análisis por elementos finitos y la verificación de los estados límite. La metodología se define y se aplica a un caso práctico. Un algoritmo de búsqueda de armonía (HS) optimiza 33 variables que definen un puente de tres vanos situado en una región costera. Sin embargo, el mismo procedimiento podría aplicarse para optimizar cualquier estructura. Esta herramienta permite definir los parámetros fijos y las variables optimizadas por el algoritmo heurístico. Además el resultado proporciona reglas útiles para guiar a los ingenieros en el diseño de puentes de carretera de sección en cajón.