Optimización heurística mediante aceptación por umbrales

En algunos posts anteriores hemos comentado lo que es un modelo matemático de optimización, qué son las metaheurísticas, o cómo poder optimizar las estructuras de hormigón. A continuación os presentamos un Polimedia donde se explica brevemente cómo podemos optimizar siguiendo la técnica de optimización heurística mediante aceptación por umbrales. Podréis comprobar cómo se trata de un caso similar a la famosa técnica de la cristalización simulada. Espero que os sea útil.

Podéis consultar, a modo de ejemplo, algunos artículos científicos que hemos escrito a ese respecto en las siguientes publicaciones:

  • CARBONELL, A.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2011). Heuristic optimization of reinforced concrete road vault underpasses. Advances in Engineering Software, 42(4): 151-159. ISSN: 0965-9978.  (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)
  • YEPES, V.; MEDINA, J.R. (2006). Economic Heuristic Optimization for Heterogeneous Fleet VRPHESTW. Journal of Transportation Engineering, ASCE, 132(4): 303-311. (link)

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los condicionantes físicos en el emplazamiento de una obra

cdt cs 23-3-06 (6)El espacio disponible, junto con las necesidades necesarias que se deben cubrir en una obra, son dos datos fundamentales para proyectar e implantar las instalaciones y planificar correctamente las tareas. Por ello, una correcta planificación debe considerar, entre otros, los siguientes aspectos: el solar, su situación geográfica, geometría, topografía y linderos, el emplazamiento respecto a la población, el planeamiento vigente, la calificación del suelo, el equipamiento urbano, las expropiaciones necesarias y servidumbres, etc. Es necesario un estudio geológico y geotécnico de la zona que ocupa la obra. Además, se debe conocer con precisión los condicionantes meteorológicos (temperatura, lluvia, viento, soleamiento, etc.). En obras marítimas también son necesarios estudios batimétricos, de clima marítimo, corrientes, etc.

Para el correcto desarrollo de las obras, se debe contar no sólo con el terreno necesario para la ocupación, sino que además, es necesario disponer, aunque sea de forma provisional, del espacio suficiente para las instalaciones de obra y los acopios de materiales, así como para obras provisionales inevitables como desvíos o ataguías. Además, resulta ineludible, en su caso, el acceso a las canteras o vertederos necesarios. Se aprovechan los desniveles para que la circulación de los materiales en las instalaciones sea por gravedad. En su caso, además, debe considerarse la necesidad de vallar el solar, o al menos, controlar sus accesos. Las aguas pluviales pueden dificultar el desarrollo normal de las obras, para lo cual se debe tener prevista la circulación y evacuación de dichas aguas. Para ello las pistas y caminos de obra deben drenar adecuadamente.

A este respecto, se distingue entre obras puntuales, lineales o extensas. Un ejemplo de las primeras son los edificios, donde los solares suelen ser pequeños con los consiguientes problemas de almacenamiento de materiales, instalaciones temporales, etc. Las obras lineales como las carreteras, los canales o las líneas ferroviarias, o las obras extensas como los aeropuertos o las urbanizaciones, presentan otros problemas como los transportes de materiales y equipos dentro de la obra, la reposición de servicios y servidumbres, o el control de los accesos, el vallado y la seguridad.

La elección del espacio necesario y de la situación óptima donde ubicar las instalaciones necesarias para ejecutar una obra es un problema que debe estudiarse con cierto detalle. En ocasiones tanto el espacio como su localización son datos fijos del problema, es decir, no existe la posibilidad de elegir alternativas. Por ejemplo, puede ocurrir que en una obra de edificación sólo podamos utilizar el propio solar o un solar anexo a la obra. Sin embargo, siempre que sea posible, es necesario dedicar el tiempo necesario para localizar la mejor opción posible. Hay que tener en cuenta que las personas y los materiales van a moverse por la obra de un sitio a otro. La elección de aquel lugar que minimice los movimientos va a tener una repercusión económica en los costes de ejecución de la obra. Una técnica de interés para estudiar la repercusión que tiene la localización de las instalaciones de una obra es el diagrama planimétrico de flujo o diagrama de recorrido. Se trata de una representación gráfica sobre plano del área en la cual se desarrolla la actividad, con las ubicaciones indicadas de los puestos de trabajo y el trazado de los movimientos de los hombres y de los materiales. Este tipo de gráfico muestra el trabajo realizado de forma clara y sencilla, permitiendo el estudio de cada actividad para realizar mejoras.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.M.C.; MOURA, H.; CATALÁ, J. (2008). Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, 231 pp. ISBN: 83-89780-48-8.

 

 

¿Cuántas piezas de repuesto debo tener en mi almacén de obra?

La gestión de inventarios o de stocks no es algo nuevo. Sin embargo, a veces no sabemos muy bien cuántas piezas de repuesto deberíamos tener en nuestro almacén de obra. Pues bien, en esta entrada dejo una forma sencilla de calcularlo basada en la probabilidad prevista de fallos para un periodo de tiempo determinado. Espero que os sea útil.

Para un buen funcionamiento de una máquina es necesario mantener un stock de piezas de recambio y un utillaje adecuado. Si bien mantener estas existencias significa una fuerte suma de capital inactivo, también es cierto que la falta de recambios puede suponer pérdidas importantes en la producción.

La previsión de los repuestos necesarios de un elemento de una máquina para un periodo de tiempo determinado depende de su tasa de fallos. Cuando los fallos aparecen de forma independiente, la distribución de Poisson proporciona la probabilidad de que un suceso con una tasa de fallos constante λ ocurra r veces en un intervalo de tiempo t:

 

Se comprueba que para r = 1 la distribución de Poisson describe el modelo exponencial de fallo descrito anteriormente.

Para el cálculo del número de repuestos, se puede acumular la probabilidad de tener r fallos o menos en un intervalo de tiempo t:

A continuación os dejo un Polimedia donde se explica con detalle la función de distribución de Poisson. Espero que os sea útil.

Os dejo un vídeo de mi canal de Youtube donde os explico un problema resuelto.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué es la optimización combinatoria?

Los problemas de optimización en los que las variables de decisión son enteras, es decir, donde el espacio de soluciones está formado por ordenaciones o subconjuntos de números naturales, reciben el nombre de problemas de optimización combinatoria. En este caso, se trata de hallar el mejor valor de entre un número finito o numerable de soluciones viables. Sin embargo la enumeración de este conjunto resulta prácticamente imposible, aún para problemas de tamaño moderado.

Las raíces históricas de la optimización combinatoria subyacen en ciertos problemas económicos: la planificación y gestión de operaciones y el uso eficiente de los recursos. Pronto comenzaron a modelizarse de esta manera aplicaciones más técnicas, y hoy vemos problemas de optimización discreta en diversas áreas: informática, gestión logística (rutas, almacenaje), telecomunicaciones, ingeniería, etc., así como para tareas variadas como el diseño de campañas de marketing, la planificación de inversiones, la división de áreas en distritos políticos, la secuenciación de genes, la clasificación de plantas y animales, el diseño de nuevas moléculas, el trazado de redes de comunicaciones, el posicionamiento de satélites, la determinación del tamaño de vehículos y las rutas de medios de transporte, la asignación de trabajadores a tareas, la construcción de códigos seguros, el diseño de circuitos electrónicos, etc. (Yepes, 2002). La trascendencia de estos modelos, además del elevado número de aplicaciones, estriba en el hecho de que “contiene los dos elementos que hacen atractivo un problema a los matemáticos: planteamiento sencillo y dificultad de resolución” (Garfinkel, 1985). En Grötschel y Lobas (1993) se enumeran otros campos en los cuales pueden utilizarse las técnicas de optimización combinatoria.

REFERENCIAS

GARFINKEL, R.S. (1985). Motivation and Modeling, in LAWLER, E.L.; LENSTRA, J.K.; RINNOOY KAN, A.H.G.; SHMOYS, D.B. (eds.) The Traveling Salesman Problem: A Guide Tour of Combinatorial Optimization. Wiley. Chichester.

GRÖTSCHEL, M.; LÓVASZ, L. (1993). Combinatorial Optimization: A Survey. Technical Report 93-29. DIMACS, May.

YEPES, V. (2002). Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW. Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universitat Politècnica de València. 352 pp. ISBN: 0-493-91360-2. (pdf)

Planificación de redes de transporte con baja demanda

La planificación y gestión de redes de distribución de baja demanda exige disponer de técnicas eficientes de optimización de rutas. El sistema de optimización de rutas disponible, no sólo afecta el desarrollo de operaciones sino, también las decisiones tácticas y estratégicas como el tamaño óptimo de flota, estimación de costes, políticas de publicidad y rotura de servicio, etc.  Por ejemplo, es habitual la venta de paquetes turísticos que incluyen el transporte; los precios se fijan mucho antes de que la demanda de transporte sea conocida, siendo frecuentes las cancelaciones de última hora y la llegada de nuevos clientes. Si  el número de pasajeros que debe ser transportado es pequeño, en comparación con la máxima capacidad de carga del vehículo óptimo a la distancia correspondiente, los beneficios o pérdidas generadas por el transporte dependen críticamente de la eficiencia del sistema de optimización de rutas. La Figura describe la influencia de la optimización de operaciones en la planificación y gestión de redes de distribución de baja demanda.

Redes de baja demanda
Planificación y Gestión de Redes de Distribución de Baja Demanda

Así pues, la planificación Continue reading “Planificación de redes de transporte con baja demanda”

Algoritmo del solterón aplicado a la optimización de rutas con flotas heterogéneas VRPHESTW

Me ha parecido interesante rescatar una pequeña publicación, que ya tiene 10 años, donde se aplicaba un algoritmo de optimización heurística curioso: Old Bachelor Acceptance, o “algoritmo del solterón“. En este caso, aplicado a la optimización de redes de transporte con flotas heterogéneas. Resulta curioso ver cómo determinados comportamientos sociales (colonias de hormigas), principios naturales (teoría de la evolución) o recreaciones de nuestro cerebro (redes neuronales) son capaces de resolver problemas complejos de optimización.

Espero que os sea de interés.

GDE Error: Error retrieving file - if necessary turn off error checking (404:Not Found)

¿Por qué son tan complicados los problemas de distribución física?

Aspecto de diversas soluciones al problema de rutas
Aspecto de diversas soluciones al problema de rutas

Los problemas de distribución física consisten básicamente en asignar una ruta a cada vehículo de una flota para repartir o recoger mercancías. Los clientes se localizan en puntos o arcos y a su vez pueden presentar horarios de servicio determinados; el problema consiste en establecer secuencias de clientes y programar los horarios de los vehículos de manera óptima. Los problemas reales de transporte son extraordinariamente variados. Yepes (2002) propone una clasificación que contiene un mínimo de 8,8·109 combinaciones posibles de modelos de distribución. Si alguien fuese capaz de describir en un segundo cada uno de ellos, tardaría cerca de 280 años en enunciarlos todos. La investigación científica se ha centrado, por tanto, en un grupo muy reducido de modelos teóricos que además tienden a simplificar excesivamente los problemas reales. Son típicos problemas de optimización matemática combinatoria. Continue reading “¿Por qué son tan complicados los problemas de distribución física?”

¿Qué es el Value Stream Mapping o mapa de flujo del valor?

Ejemplo de mapa de la cadena de valor. http://engineeringhelps.wordpress.com/

El mapa del flujo de valor es una herramienta utilizada en Lean manufacturing para analizar los flujos de materiales e información que se requieren para poner a disposición del cliente un producto o servicio, identificando las pérdidas de valor o desperdicios. Esta herramienta se desarrolló en Toyota donde se conocía con el nombre de Mapa del flujo de materiales e información.

Con este tipo de herramientas se pueden detectar para desarrollar una ventaja competitiva y evitar fallos en el proceso, además de crear un lenguaje normalizado dentro de la empresa para una mejor efectividad de los procesos y del personal. Se trata de intensificar los esfuerzos en aquellos procesos donde se produzcan más fallos o que aporten más valor a la producción. Aunque el mapa del flujo de valor se asocia tradicionalmente con el sector industrial, ha demostrado su efectividad para mejorar procesos en otros sectores, como el de servicios, logística, hospitalarios, desarrollo de software, etc.  El mapa de la cadena de valor  nos proporciona por si solo las respuestas pues es una herramienta muy útil en cualquier tipo de actividad de mejora.

Se pueden utilizar muchos tipos de símbolos para realizar estos mapas de flujo. Os dejo un ejemplo en la siguiente figura:

DIAGRAMA DE FLUJO

Fases para su implantación:

  1. Identificar el producto o servicio
  2. Dibujar el mapa de flujo de valor tal como está el proceso, mostrando cada una de las etapas, las esperas y las informaciones que se requieren para entregar el producto o servicio. Existen símbolos estandarizados que representan los distintos elementos de la cadena de valor.
  3. Identificar sobre el mapa los desperdicios que se encuentran (aquello que no aporta valor para el cliente). Para ello suelen buscarse los 7 desperdicios según el lean: sobreproducción, tiempo de espera, transportes innecesarios, exceso de procesado, inventario, movimientos innecesarios y defectos.
  4. Dibujar el mapa de estado futuro, es decir, el mapa como queda una vez eliminados los desperdicios.
  5. Implementar un plan de acciones de mejora (eventos kaizen) para llegar al mapa de estado futuro.

A continuación os dejo varios Polimedias de la Universitat Politècnica de València donde se explican bien esta herramienta. En el primero Juan Antonio Marín García nos explica la herramienta VSM, en qué consiste y qué puede aportar para la mejora de procesos.

En este otro vídeo se muestran los principales símbolos que representan el movimiento de información en un mapa de la cadena de valor. Su autor es Julio García Sabater. Espero que os guste.

 

 

Optimización económica de redes de transporte

Trascendencia del transporte

La trascendencia económica del sector del transporte genera costos sociales y medioambientales de gran envergadura. Esta actividad supone aproximadamente un sexto del Producto Interno Bruto (PIB) de los países industrializados (ver Yepes, 2002). Un estudio del National Council of Physical Distribution (ver Ballou, 1991) estima que el transporte sumó un 15% del PIB de Estados Unidos en 1978, constituyendo más del 45% de todos los costos logísticos de las organizaciones. En España, según datos del Ministerio de Fomento (ver CTCICCP, 2001), la participación del sector en el valor añadido bruto del año 1997 se situó en un 4.6%. En cuanto al empleo, 613,400 personas se encontraban ocupadas en el año 1999 en el sector de transportes en España, lo cual representa el 3.69% de la población activa. La distribución física representa para las empresas entre la sexta y la cuarta parte de las ventas y entre uno y dos tercios del total de los costos logísticos (Ballou, 1991). Continue reading “Optimización económica de redes de transporte”

¿Qué son las metaheurísticas?

 ¿Cómo se podrían optimizar en tiempos de cálculo razonable problemas complejos de redes de transporte, estructuras de hormigón (puentes, pórticos de edificación, túneles, etc.) y otro tipo de problemas de decisión empresarial cuando la dimensión del problema es de tal calibre que es imposible hacerlo con métodos matemáticos exactos? La respuesta son los métodos aproximados, también denominados heurísticas. Este artículo divulgativo trata de ampliar otros anteriores  donde ya hablamos de los algoritmos, de la optimización combinatoria, de los modelos matemáticos y otros temas similares. Para más adelante explicaremos otros temas relacionados específicamente con aplicaciones a problemas reales. Aunque para los más curiosos, os paso en abierto, una publicación donde se han optimizado con éxito algunas estructuras de hormigón como muros, pórticos o marcos de carretera: (González et al, 2008).

Desde los primeros años de la década de los 80, la investigación de los problemas de optimización combinatoria se centra en el diseño de estrategias generales que sirvan para guiar a las heurísticas. Se les ha llamado metaheurísticas. Se trata de combinar inteligentemente diversas técnicas para explorar el espacio de soluciones. Osman y Kelly (1996) nos aportan la siguiente definición: “Los procedimientos metaheurísticos son una clase de métodos aproximados que están diseñados para resolver problemas difíciles de optimización combinatoria, en los que los heurísticos clásicos no son ni efectivos ni eficientes. Los metaheurísticos proporcionan un marco general para crear nuevos algoritmos híbridos combinando diferentes conceptos derivados de la inteligencia artificial, la evolución biológica y la mecánica estadística”.

Aunque existen diferencias apreciables entre los distintos métodos desarrollados hasta el momento, todos ellos tratan de conjugar en mayor o menor medida la intensificación en la búsqueda –seleccionando movimientos que mejoren la valoración de la función objetivo-, y la diversificación –aceptando aquellas otras soluciones que, aun siendo peores, permiten la evasión de los óptimos locales-.

Las metaheurísticas son susceptibles de agruparse de varias formas. Algunas clasificaciones recurren a cambios sucesivos de una solución a otra en la búsqueda del óptimo, mientras otras se sirven de los movimientos aplicados a toda una población de soluciones. El empleo, en su caso, de memoria que guíe de la exploración del espacio de elecciones posibles permite otro tipo de agrupamiento. En otras circunstancias se emplean perturbaciones de las opciones, de la topología del espacio de soluciones, o de la función objetivo. En la Figura se recoge una propuesta de clasificación de las heurísticas y metaheurísticas empleadas en la optimización combinatoria (Yepes, 2002), teniendo en común todas ellas la necesidad de contar con soluciones iniciales que permitan cambios para alcanzar otras mejores. Es evidente que existen en este momento muchas más técnicas de optimización, pero puede ser dicha clasificación un punto de partida para una mejor taxonomía de las mismas.

 

Taxonomía de estrategias empleadas en la resolución aproximada de problemas de optimización combinatoria sobre la base de soluciones iniciales.
Figura. Taxonomía de estrategias empleadas en la resolución aproximada de problemas de optimización combinatoria sobre la base de soluciones iniciales (Yepes, 2002)

Las  metaheurísticas empleadas en la optimización combinatoria en podrían clasificarse en tres grandes conjuntos. Las primeras generalizan la búsqueda secuencial por entornos de modo que, una vez se ha emprendido el proceso, se recorre una trayectoria de una solución a otra vecina hasta que éste concluye. En el segundo grupo se incluyen los procedimientos que actúan sobre poblaciones de soluciones, evolucionando hacia generaciones de mayor calidad. El tercero lo constituyen las redes neuronales artificiales. Esta clasificación sería insuficiente para aquellas metaheurísticas híbridas que emplean, en mayor o menor medida, estrategias de unos grupos y otros. Esta eventualidad genera un enriquecimiento deseable de posibilidades adaptables, en su caso, a los diferentes problemas de optimización combinatoria.

Referencias

GONZÁLEZ-VIDOSA-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; CARRERA, M.; PEREA, C.; PAYÁ-ZAFORTEZA, I. (2008) Optimization of Reinforced Concrete Structures by Simulated Annealing. TAN, C.M. (ed): Simulated Annealing. I-Tech Education and Publishing, Vienna, pp. 307-320. (link)

OSMAN, I.H.; KELLY, J.P. (Eds.) (1996). Meta-Heuristics: Theory & Applications. Kluwer Academic Publishers.

YEPES, V. (2002). Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW. Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universitat Politècnica de València. 352 pp. ISBN: 0-493-91360-2. (pdf)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.