Curso en línea de “Gestión de costes y producción de la maquinaria empleada en la construcción”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Gestión de costes y producción de la maquinaria empleada en la construcción”.

El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Empieza el 13 de junio de 2022 y termina el 25 de julio de 2022. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-gestion-de-costes-y-produccion-de-la-maquinaria-empleada-en-la-construccion/

Os paso un vídeo explicativo y os doy algo de información tras el vídeo.

Este es un curso básico sobre la gestión de los costes y la producción de los equipos y maquinaria empleada en la construcción, tanto en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado para que el estudiante pueda profundizar en aquellos aspectos que les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás los conceptos básicos sobre la gestión de la producción, la selección económica de los bienes de equipo, los costes de propiedad y operación de la maquinaria, su amortización, la disponibilidad y fiabilidad de los equipos, el mantenimiento y reparación, los parques de maquinaria y la gestión de instalaciones, almacenes e inventarios, el estudio del trabajo y la productividad, las políticas de incentivos, métodos de medición del trabajo y la producción de equipos de máquinas. El curso se centra especialmente en la comprensión de los fundamentos básicos que gobiernan la gestión de los costes y la producción de los equipos, mostrando especial atención a la maquinaria pesada de movimientos de tierras y compactación. Es un curso de espectro amplio que incide en el conocimiento de los fundamentos de la ingeniería de la producción. Resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de los métodos y técnicas empleadas en la gestión de los costes y el rendimiento de la maquinaria en casos concretos. El curso trata llenar el hueco que deja la bibliografía habitual, donde no se profundiza en el coste y la producción de conjuntos de equipos. Además, el curso está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso se organiza en 30 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. Además, se entregan 75 problemas resueltos que complementan la teoría estudiada en cada lección. La dedicación aproximada para cada lección se estima en 2-3 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Al finalizar cada unidad didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos del tema abordado. Al final se han diseñado tres unidades adicionales para afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y su capacidad para resolver problemas reales. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.

El curso está programado para 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Objetivos

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de las técnicas actuales para la gestión de costes y producción de los equipos de máquinas empleados para la construcción
  2. Evaluar y seleccionar la maquinaria atendiendo a criterios económicos y técnicos
  3. Conocer la gestión de los sistemas de almacenamiento de materiales en obra y los parques de maquinaria
  4. Aplicar las técnicas de estudios de métodos y medición del trabajo para mejorar la eficiencia de los equipos
  5. Aplicar técnicas de aprendizaje e incentivos a la producción para mejorar la productividad

Programa

  • – Lección 1. Mecanización de las obras
  • – Lección 2. Adquisición y renovación de la maquinaria
  • – Lección 3. La depreciación de los equipos y su vida económica
  • – Lección 4. Selección de máquinas y equipos
  • – Lección 5. La estructura del coste
  • – Lección 6. Costes de propiedad de las máquinas
  • – Lección 7. Costes de operación de las máquinas
  • – Lección 8. Fondo horario y disponibilidad de los equipos
  • – Lección 9. Fiabilidad de los equipos
  • – Lección 10. Mantenimiento y reparación de los equipos
  • – Lección 11. Instalación y organización interna de la obra
  • – Lección 12. Parques de maquinaria y gestión de inventarios
  • – Lección 13. Constructividad y constructibilidad
  • – Lección 14. Estudio del trabajo y productividad
  • – Lección 15. Los incentivos a la productividad en la construcción
  • – Lección 16. Estudio de métodos
  • – Lección 17. Medición del trabajo
  • – Lección 18. La curva de aprendizaje en la construcción
  • – Lección 19. Ciclo de trabajo y factor de acoplamiento
  • – Lección 20. Producción de los equipos
  • – Lección 21. Composición y clasificación de suelos
  • – Lección 22. Movimiento de tierras y factor de esponjamiento
  • – Lección 23. Producción de los buldóceres
  • – Lección 24. Producción de las cargadoras
  • – Lección 25. Producción de las motoniveladoras
  • – Lección 26. Producción de las mototraíllas
  • – Lección 27. Producción de las retroexcavadoras
  • – Lección 28. Producción de las dragalinas
  • – Lección 29. Producción de los equipos de acarreo
  • – Lección 30. Producción de los compactadores
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de un centenar artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos.

Referencias:

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 157 pp. ISBN: 978-84-9048-301-5. Ref. 402.

Procedimiento Triger de excavación bajo nivel freático

Figura 1. Un esquema de un cajón abierto ideado por Triger (1846). https://es.wikipedia.org/wiki/Jacques_Triger

Tal día como hoy, 11 de marzo, nació el geólogo francés Jacques Triger (1801-1867), inventor del “procedimiento Triger” para ejecutar excavaciones bajo nivel freático. Se trata de realizar la excavación en el interior de una cámara o cajón abierta en su parte inferior a la que se bombea aire comprimido para evitar la entrada de agua (Figura 1).

Se empezó a emplear en las minas de carbón en 1839 (minas de Chalonnes-sur-Loire). Estas minas estaban situadas bajo el lecho del río Loira, y para llegar a la roca había que cortar 20 m de aluvión anegado de agua. En este caso, se inyectaba el aire a presión mediante una bomba de vapor.

En la Figura 2 se puede ver con mayor detalle cuál era el procedimiento constructivo ideado por Triger. Sobre la sección inferior presurizada y sellada por el terreno (B), había otra sección, (A), con esclusas arriba y abajo (M y N), con dos válvulas y un grifo. Una de las válvulas suministraba el aire comprimido a la caja y la otra lo llevaba al tubo. La válvula posibilitaba reponer el equilibrio de presión, entre la caja y las secciones contiguas. El agua se evacuaba por un tubo desde el fondo al exterior impulsado por la presión el aire, sin necesidad de bombas (S). Los descensos del tubo ocurrían al bajar la presión de la cámara.

Figura 2. Procedimiento de Jacques Triger en el pozo de Chalonne. https://jluisgsa.blogspot.com/2020/03/la-cara-oculta-de-los-puentes-con-pilas.html

Su invento fue ampliamente utilizado en la ingeniería de la construcción, especialmente para hundir los cimientos de los pilares de los puentes en los lechos de los ríos. Esta tecnología se utilizó por primera vez en Italia en la década de 1850 bajo la supervisión de empresas de construcción británicas y francesas. También se utilizó el procedimiento en obras emblemáticas como en la cimentación del puente de Brooklyn o en el puente del Firth of Forth en Escocia o en la cimentación de dos de los cuatro pilares de la Torre Eiffel (Figura 3).

Figura 3. Construcción de los cimientos de la Torre Eiffel (1887). https://es.wikipedia.org/wiki/Jacques_Triger

Esta técnica presenta riesgos elevados para los trabajadores, pues el entorno hiperbárico provoca graves daños si no se realiza una descompresión adecuada. Hoy en día, su uso es marginal y tiende a desaparecer. Otros métodos más seguros y económicos han sustituido a esta técnica.

En un artículo escrito en este blog sobre cimentación mediante aire comprimido se analiza con mayor detalle este procedimiento constructivo. Actualmente también es posible controlar el nivel freático mediante aire comprimido en excavaciones realizadas por escudos. Remito al lector a un artículo específico que escribimos en su día de esta tecnología.

Referencias:

  • GALLO, J.; PÉREZ, H.; GARCÍA, D. (2016). Excavación, sostenimiento y técnicas de corrección de túneles, obras subterráneas y labores mineras. Universidad del País Vasco, Bilbao, 277 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • MENDAÑA, F.; FERNÁNDEZ, R. (2011). Hidroescudos y tuneladoras E.P.B. Campos de utilización. Revista de Obras Públicas, 3525:67-86
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Contención del agua mediante inyección de lechadas inestables

Figura 1. Inyección de lechada. Fuente: https://www.suelosingenieria.com/index.php/actividades/construccion/mejoramientos-de-suelos/inyecciones-lechada

La inyección de morteros o suspensiones inestables es el caso habitual de las lechadas de cemento (Figura 1). Se trata de una suspensión de cemento en agua cuya homogeneidad está condicionada a la agitación de la mezcla. Una vez cesa la agitación, se inicia la sedimentación del cemento. Esa sedimentación provoca el taponamiento de los poros y la inyección se obstaculiza. El cemento es un excelente material de inyección, pues no solo rellena los huecos, sino que, al fraguar, endurece el terreno o los macizos rocosos.

La aplicación habitual de la inyección de lechadas inestables es aumentar la resistencia de un macizo rocoso, aunque también se consigue impermeabilizar, especialmente si se emplean lechadas tratadas químicamente (estables). Lo habitual es que la inyección con lechadas de cemento sea por impregnación (2 a 5 MPa) o por fractura (9 a 10 MPa). También se podría realizar una inyección de compactación, pero requiere que el fluido sea muy denso, de forma que los bulbos de mortero fraguado desplacen y compacten la masa de suelo en sus alrededores.

La impermeabilización facilita tanto la ejecución de trabajos posteriores, como es el caso de la excavación de pozos o galerías bajo nivel freático que luego se revestirán, como para completar trabajos definitivos, como es la ejecución de pantallas estancas bajo presas, cuando se adivinan filtraciones de agua importantes (Figura 2). La inyección a alta presión no sería necesaria para garantizar la impermeabilización, sin embargo, es frecuente pues permite utilizar explosivos en la excavación posterior sin perjudicar la calidad del tratamiento.

Figura 2. Tratamiento de inyecciones en presa de hormigón. Adaptado de Houlsby (1990)

La consolidación mediante inyecciones de cemento en un macizo rocoso facilita la ejecución de trabajos posteriores, como es el caso de la perforación de galerías en terrenos difíciles y mejora la capacidad resistente de la cimentación de una obra, por ejemplo, bajo la pila de un puente, en los estribos de una presa bóveda, etc.

Figura 3. Formación de una bóveda a la entrada de un intersticio en un suelo granular

El prototipo de suspensión inestable es un mortero de un tipo análogo al de uso corriente, pero suficientemente diluido para que pueda ser inyectable. Es decir, un mortero muy fluido (lechada), inestable por el tamaño de los granos de cemento y por el proceso de fabricación. El grado de dilución en este tipo de suspensiones es variable, con relaciones máximas de 10 litros de agua/1 kg de cemento, y lo mismo que en los morteros estables pueden añadirse proporciones de arena. Las relaciones agua/cemento varían desde 0,5:1 hasta 10:1, aunque es habitual una proporción de 0,8:1 a 5:1 (Bell, 1993).

La penetrabilidad de las lechadas de cemento depende del tamaño de los granos de cemento, de la posibilidad de formación de un cúmulo de granos en bóveda al atravesar un intersticio (Figura 3) y de la velocidad del fluido con la que comienza la sedimentación del cemento. Es por ello una solución muy adecuada para materiales granulares gruesos como zahorras, gravas y arenas gruesas, o bien para la inyección de grietas en macizos rocosos. En cambio, resulta un procedimiento poco eficaz en arenas, excepto si lo que se pretende es la consolidación o compactación conseguida cuando se inyecta en cortos intervalos (Tomlinson, 1982). Se trata de una solución sencilla y de relativamente poco coste, pero que se encuentran limitadas por la permeabilidad del medio. El uso de cemento portland corriente y agua ya no es adecuado en suelos con una permeabilidad menor a 10-3 m/s.

Figura 4. Selección de inyección para consolidación y estabilización de suelos. Fuente: https://col.sika.com/dms/getdocument.get/8de57674-59ac-3af1-ada7-a6bddb323deb/CONSOLIDACION,%20ESTABILIZACION%20E%20IMP%20DE%20SUELOS%20Y%20ROCAS.pdf

Se pueden distinguir, entre las lechadas de cemento, las siguientes:

  • Suspensiones de cemento puro: con una relación cemento/agua que oscila entre 0,1 y 0,5 en peso.
  • Suspensiones de cemento rebajado: donde se reemplaza parte del cemento por un polvo inerte como una arena fina o cenizas volantes. Con el porcentaje de arena, la resistencia decrece rápidamente, pero no es problema si se pretende impermeabilidad. No obstante, las suspensiones de arena desgastan rápidamente las bombas de inyección.

El equipo empleado para la elaboración de las mezclas de cemento consta de un turbo mezclador de altas revoluciones (más de 1250 rpm); un mezclador de bajas revoluciones (de 60 a 80 rpm) que mantiene en agitación la mezcla durante la inyección; bombas de tornillo sinfín o de doble pistón con capacidad de inyección variable de 0 a 60 l/min y presión ajustable de 0 a 3 o 4 MPa; obturadores mecánicos, neumáticos o hidráulicos y manómetros registradores (Figura 5).

Figura 5. Esquema del equipo de inyección (Cambefort, 1968)

El tiempo de inyección está relacionado con la evolución de la viscosidad del material inyectado, con la presión de inyección admisible y con el radio efectivo (Bielza, 1999). En las suspensiones de cemento, el tiempo de inyección se limita a 2-4 horas. Cuando comienza la hidratación total, se inicia el fraguado del cemento. La lechada es bombeable desde la fase de agitación hasta que son inyectadas, también después del inicio de la hidratación. Sin embargo, tras ese comienzo la resistencia final del material se reduce. Por tanto, no se aconseja la inyección de suspensiones bajo condiciones de hidratación. Las resistencias normales a compresión simple oscilan entre 5 y 50 MPa a 28 días. El tiempo de fraguado aumenta con la relación agua/cemento. Así, las lechadas de cemento fraguan en unas 4-5 horas, pero si están muy diluidas, este periodo se puede alargar a las 10-15 horas. Incluso algunas lechadas con relaciones agua/cemento mayores a 10 nunca llegan a fraguar.

Como las lechadas de cemento son inestables, su velocidad de flujo baja rápidamente conforme crece la distancia desde la perforación hasta la zona de inyección, sedimentando las partículas en una proporción decreciente con la relación agua/cemento de la mezcla. Es decir, cuanta mayor dosificación tenga el mortero, más elevada será la velocidad crítica de sedimentación. Es por ello que se aconseja que la lechada inicial tenga poca dosificación, por ejemplo, una relación a/c de 10:1 a 15:1 para evitar los taponamientos prematuros. La dosificación ideal sería la más pequeña que permita alcanzar la contrapresión de rechazo establecida de antemano. En la práctica, la dosificación inicial se determina a partir del resultado del ensayo de agua (ensayo Lugeon).

Para aumentar la penetrabilidad se aconseja el empleo de cemento de alta finura de molido o micro cementos. Se evitan las bóvedas de granos al atravesar intersticios utilizando mezclas muy fluidas, denominadas mezclas medias. Sin embargo, el tratamiento de impregnación en masa no resulta aconsejable con este tipo de suspensiones inestables. Para que una inyección inestable sea factible, o no sea muy complicada, el tamaño mínimo de las partículas del terreno debería situarse entre 5 y 10 mm. Además, en terrenos con un 10% de finos ya no es factible inyectar cemento. En arenas y gravas se hincan tubos de punta perdida, un tubo de inyección cada 4 m2 aproximadamente, inyectándose por zonas de unos 50 cm de altura. Si las inyecciones son con lechadas de cemento de molido normal y tamaños muy diferentes (0 a 160 μ) no se pueden utilizar en fisuras de abertura inferior a 0,1 mm ni en suelos arenosos de tamaño inferior a 0,8 mm, pues se produce un filtrado de las partículas y la lechada no penetra en el terreno (Schulze y Simmer, 1978). Es decir, las arcillas no pueden ser inyectadas. Por el contrario, si son los huecos demasiado grandes, se deposita inmediatamente la lechada, dando a la inyección un radio de acción muy pequeño.

En cambio, la aplicabilidad de las lechadas de cemento se encuentra plenamente justificada en el caso de macizos rocosos fisurados (presencia de diaclasas, planos de debilidad, estratificación). La presión del fluido desciende con la distancia, y también la velocidad, con lo cual comienza la sedimentación. Son habituales taladros de 60 a 90 mm separados de 2 a 5 m, según la roca. La lechada de cemento se inyecta por capas de 3 a 5 m de espesor, según el porcentaje de finos a cerrar.

En rocas o materiales gruesos se puede realizar una excavación bajo nivel freático colocando una cortina de mortero inyectado. Tomlinson (1982) recomienda dos filas de perforaciones para una inyección primaria con sus centros separados de 3 a 6 m en ambas direcciones, con unos segundos taladros, incluso terceros, entre ellos (Figura 6). Una regla empírica habitual para inyectar pasta en las grietas de los estratos rocosos es el uso de 0,07 kg/cm2 por cada 30 cm de profundidad de la perforación. Se proporciona mayor presión en las inyecciones secundarias y terciarias en función de la eficacia de la inyección primaria.

Figura 6. Disposición de las perforaciones para formar una cortina impermeable con inyección de lechada de cemento alrededor de una excavación. Adaptado de Tomlinson (1982)

La presión de inyección de las lechadas inestables constituye uno de los parámetros de diseño más importantes, pues favorece la apertura de las fisuras en el caso de una roca fisurada. Esta presión puede alcanzar de 8 a 9 MPa. La presión facilita la expulsión del exceso de agua y permite corregir errores en la dosificación. Agranda tanto la longitud de penetración como las fisuras existentes, creando nuevas fisuras. Independientemente de la presión utilizada, la calidad del cemento depositado en las fisuras aumenta con la presión de inyección.

Por otra parte, la lechada discurre de forma casi paralela a los planos de estratificación o diaclasas del macizo rocoso. Las fisuras perpendiculares a la inclinación general del macizo son artificiales y ocurren en capas menos resistentes bajo la acción de presiones superiores a 10 MPa.

La mayor parte de los tratamientos de inyección en roca están relacionados con la construcción y mantenimiento de presas y túneles, y también en algunas aplicaciones en minería. Se trata de obras subterráneas donde las inyecciones tratan de reducir y controlar la filtración del agua. Suele ser habitual las lechadas de cemento, aunque en algunos casos se han realizado inyecciones químicas e inyecciones con resina.

Hay que apuntar, por último, que en la actualidad se utilizan las mezclas estables en la mayoría de los tratamientos de inyección y consolidación por sus mejores características reológicas. Sin embargo, si el terreno no presenta muchas dificultades, las inyecciones con lechadas inestables son un método económico y eficaz.

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • HOULSBY, A.C. (1990). Construction and Design of Cement Grouting. John Wiley & Sons, Inc, New York.
  • SCHULZE, W.E.; SIMMER, K. (1978). Cimentaciones. Editorial Blume, Madrid, 365 pp.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp. POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Problemas teóricamente sencillos pero que marean a nuestros estudiantes

Cuando llevas casi 28 años impartiendo una asignatura, examen tras examen, llega un momento que te falta cierta imaginación para no repetir los problemas. Con toda la buena intención del mundo, propones un ejercicio que crees sencillo de resolver y luego te das cuenta que es más difícil de lo que habías planeado.

Si analizas las posibles causas te das cuenta que no suele fallar lo que se explica en clase, sino ciertos conceptos muy básicos que deberían haberse adquirido en Bachiller, o incluso en Secundaria. Mi impresión es que algunos estudiantes prefieren aprender un método o forma de solucionar un problema antes de pensar un poco e intentar resolverlo. Voy a poner algún ejemplo de estos problemas, con su solución para que veáis de qué estoy hablando.

Descargar (PDF, 81KB)

Curso en línea de “Compactación superficial y profunda de suelos en obras de ingeniería civil y edificación”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Compactación superficial y profunda de suelos en obras de ingeniería civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Empieza el 10 de mayo de 2021 y termina el 21 de junio de 2021. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-compactacion-superficial-y-profunda-de-suelos-en-obras-de-ingenieria-civil-y-edificacion/

Os paso un vídeo explicativo y os doy algo de información tras el vídeo.

Este es un curso básico de técnicas y equipos de compactación superficial y profunda de suelos en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado para que el estudiante pueda profundizar en aquellos aspectos que les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás los conceptos básicos de las técnicas y equipos necesarios para la compactación de suelos, así como para su control, rendimientos y costes. El curso se centra especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la compactación, tanto superficial como profunda. Es un curso de espectro amplio que incide en el conocimiento de la maquinaria y procesos constructivos. Resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Asimismo, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso se organiza en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Al finalizar cada unidad didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos del tema abordado. Al final se han diseñado tres unidades adicionales para afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.

El curso está programado para 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Este curso único, impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.

Objetivos

Los objetivos de aprendizaje son los siguientes:

  1. Comprender la utilidad y las limitaciones de la maquinaria y de las técnicas de compactación superficial y profunda de terrenos
  2. Evaluar y seleccionar la mejor maquinaria y técnica de compactación en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Lección 1. Composición y clasificación de suelos
  • – Lección 2. Materiales de terraplén
  • – Lección 3. Efectos de la compactación y deformaciones
  • – Lección 4. Porosidad y permeabilidad
  • – Lección 5. La curva de compactación
  • – Lección 6. Densidad de los suelos granulares
  • – Lección 7. Ensayo Proctor
  • – Lección 8. Sistemas de compactación: compactación normal y seca
  • – Lección 9. Ensayos de resistencia del suelo
  • – Lección 10. Fundamentos de las técnicas de compactación
  • – Lección 11. Clasificación de los equipos de compactación mecánica
  • – Lección 12. Apisonadoras estáticas de rodillos lisos
  • – Lección 13. Compactadores estáticos de patas apisonadoras
  • – Lección 14. Compactadores estáticos de ruedas neumáticas
  • – Lección 15. Rodillos de malla y compactador por impactos con rodillo lobular
  • – Lección 16. Introducción a la compactación vibratoria
  • – Lección 17. Compactadores vibratorios cilíndricos
  • – Lección 18. Compactadores de pequeño tamaño y de tracción manual
  • – Lección 19. Compactadores de zanja
  • – Lección 20. Selección del equipo y método de compactación
  • – Lección 21. Espesor de tongada y número de pasadas óptimo: tramo de prueba
  • – Lección 22. Normas y recomendaciones de trabajo
  • – Lección 23. El control de la compactación
  • – Lección 24. Condiciones de seguridad de los compactadores
  • – Lección 25. Costes y productividad de la compactación
  • – Lección 26. Compactación de aglomerado asfáltico
  • – Lección 27. Mejora del terreno mediante vibrocompactación
  • – Lección 28. Mejora del terreno mediante Terra-Probe
  • – Lección 29. Método vibroalas para mejora de suelos no cohesivos
  • – Lección 30. Compactación por resonancia de suelos
  • – Lección 31. Compactación dinámica
  • – Lección 32. Compactación dinámica rápida
  • – Lección 33. Sustitución dinámica
  • – Lección 34. Compactación con explosivos
  • – Lección 35. Compactación por impulso eléctrico
  • – Lección 36. Refuerzo del terreno mediante inclusiones rígidas
  • – Lección 37. Pilotes de compactación
  • – Lección 38. Columna de grava mediante vibrodesplazamiento
  • – Lección 39. Columna de grava mediante vibrosustitución
  • – Lección 40. Columnas de grava ejecutadas por medios convencionales
  • – Lección 41. Columnas de grava compactada
  • – Lección 42. Columnas de arena compactada
  • – Lección 43. La estabilización de suelos
  • – Lección 44. Estabilización de suelos con cal
  • – Lección 45. Estabilización de suelos con cemento
  • – Lección 46. Estabilización de suelos con ligantes bituminosos
  • – Lección 47. Problema resuelto sobre rendimientos y costes
  • – Lección 48. Problema resuelto sobre curva de compactación
  • – Lección 49. Problema resuelto sobre tramo de prueba
  • – Lección 50. Problema resuelto sobre control de calidad
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de un centenar artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos.

Referencias:

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Dúmper sobre orugas

Figura 1. Dúmper sobre orugas Cat Raupentransporter de 30 t. https://www.youtube.com/watch?v=R2a-Eir2pss

El desplazamiento sobre dos carros de orugas supone, para las máquinas de movimiento de tierras, una mayor adherencia al terreno. Es el caso de terrenos embarrados o de baja capacidad portante, donde es necesaria cierta flotabilidad y adherencia y donde los neumáticos no son útiles. Un caso habitual del uso de las orugas son las palas cargadoras, buldóceres, retroexcavadoras, etc.

Las máquinas de acarreo de tierras, como los dúmperes, también pueden montarse sobre orugas. En la Figura 1 se observa un dúmper de gran tamaño, pero también podemos encontrar este tipo de máquinas en trabajos pequeños, donde su diseño compacto permite desplazarse por terrenos accidentados y bordillos (Figura 2).

Figura 2. Dúmper sobre orugas DT05 de Wacker Neuson, para carga útil de 500 kg. https://www.wackerneuson.es/es/productos/dumpers/dumpers-sobre-orugas/

Os dejo algunos vídeos de este tipo de maquinaria, que espero os sean de utilidad.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

 

Sustitución del terreno como técnica de mejora

Figura 1. Mototraílla excavando y transportando material.

La forma más directa de mejorar un terreno de mala calidad es sustituirlo. Sería el caso de suelos blandos, con baja capacidad portante, que presentan deformaciones diferidas importantes o incluso que provoquen roturas parciales en terraplenes. Aparentemente se trata de una solución sencilla en terrenos blandos, pero puede ser problemática desde el punto de vista medioambiental debido a la cantidad de trabajos de excavación y movimiento de tierras necesarios.

El proceso pasa por excavar y retirar el terreno original que presenta una capacidad portante baja, tales como rellenos antrópicos, tierra vegetal, arcillas y limos blandos, arcillas expansivas, suelos colapsables, etc. El material retirado se sustituye por la aportación de otro de mayor calidad que deberá ser compactado. Sin embargo, también es posible aportar terreno sin necesidad de retirarlo previamente cuando se construyen terraplenes, salvo la posible retirada del material que formará el cimiento del terraplén, si éste es inadecuado.

En otras ocasiones, se elimina parte del material y se sustituye por otro de menor peso para reducir la sobrecarga. Es el caso del uso de geoespumas de bloques de poliestireno expandido que se han utilizado en la rehabilitación de infraestructuras y en la construcción de carreteras y terraplenes.

Figura 2. Uso de geoespuma de poliestireno expandido. https://www.epsindustry.org/other-applications/geofoam

Se trata de un método sencillo cuando la profundidad de excavación no supera el entorno de los 3-4 m y se encuentra por encima del nivel freático. En caso contrario, se debe eliminar con maquinaria adecuada, como puede ser una dragalina; después se rellena con escollera para alcanzar cierto grado de compacidad. Otra complicación puede aparecer cuando los suelos son excesivamente blandos, como las turbas, donde a la maquinaria se le dificulta su trabajo.

Las ventajas de este procedimiento es que es aplicable a cualquier tipo de terreno que sea excavable. Además, la mejora se alcanza en un corto periodo de tiempo en comparación con otras técnicas que supongan la consolidación, por ejemplo. Asimismo, la capacidad de carga y los asientos del terreno se pueden controlar fácilmente.

Os dejo a continuación un vídeo de una dragalina extrayendo material.

En este otro vídeo podemos ver la colocación de bloques de poliestireno expandido.

References:

CHU, J.; VARAKSIN, S.; KLOTZ, U.; MENGÉ, P. (2009). Construction Processes. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, pp. 3006-3135. IOS Press, doi:10.3233/978-1-60750-031-5-3006

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sostenimiento de un muro pantalla y elementos de sujeción

Los muros pantalla, en función de la calidad del terreno y del proyecto de construcción, se pueden clasificar en apoyadas y sin apoyo. En las apoyadas, la estabilidad se consigue mediante una o varias líneas de tirantes o puntos de apoyo, además del empuje pasivo del empotramiento. En las pantallas sin apoyo, denominadas autoestables o en voladizo, la estabilidad solo se debe a las reacciones del suelo en la parte empotrada.

Figura 1. Arriostramiento de muros pantalla mediante anclajes. Imagen: V. Yepes

Para dimensionar los elementos de sujeción, se deben tomar los máximos esfuerzos derivados de las comprobaciones de estabilidad de la pantalla, aplicando los coeficientes de seguridad parciales correspondientes. A este respecto, se remite al lector a la Tabla 2.1 del DB SE-C del Código Técnico de Edificación y las disposiciones de la Instrucción de Hormigón Estructural vigentes. Los elementos de sujeción habituales en un muro pantalla son los anclajes, los puntales o tornapuntas, las celosías metálicas y los propios forjados de la estructura principal.

Una forma habitual de realizar el soporte lateral de las pantallas es mediante anclajes que pueden estar en uno o en varios niveles. En la Figura 1 se observa el anclaje de los muros pantalla de un recinto para una vivienda. En estos casos, los anclajes se pueden utilizar siempre que no afecten a los edificios o servicios colindantes a la pantalla. Deben tener una longitud capaz de sostener la superficie pésima de deslizamiento debidas a las comprobaciones de estabilidad general y de estabilidad de la pantalla. Además, es necesario contemplar medidas para evitar la corrosión de los anclajes, ya sean definitivos o provisionales de larga duración.

Otra forma de contener un muro pantalla es mediante puntales o tornapuntas, que son elementos que permiten apear la pantalla. Estos elementos inclinados se apoyan tanto en la propia pantalla como en la parte inferior con durmientes fijos (Figura 2). En el caso de que los esfuerzos al terreno sean elevados, deberá disponerse una zapata corrida paralela a la pantalla. En cualquier caso, los puntales deben afectar lo menos posible a la excavación y a la ejecución de cimientos y estructura.

Figura 2. Arriostramiento de muros pantalla mediante tornapuntas

También se pueden apoyar los muros pantalla mediante codales metálicos. En la Figura 3 se observa el apoyo de una pantalla contra otra, incluso en las esquinas. Se trata de una obra realizada en Valencia, la misma de la Figura 1.

Figura 3. Arriostramiento de muros pantalla. Imagen: V. Yepes

También es habitual apuntalar las propias pantallas entre sí mediante celosías metálicas dispuestas en planos horizontales, tal y como muestran las Figuras 4 y 5, fotografías tomadas en Burgos en el 2019. Se trata de evitar en lo posible entorpecer las labores de excavación y en la construcción de cimentaciones y estructura del edificio.

Figura 4. . Arriostramiento mediante celosías metálicas. Imagen: V. Yepes

 

Figura 5. Detalle del arriostramiento mediante celosías metálicas en esquina. Imagen: V. Yepes

Otro sistema de apuntalamiento del muro pantalla es el formado por los propios forjados de un edificio (Figura 6). En efecto, con el procedimiento constructivo “top-down”, ascendente-descendente. Se trata de acodalar los muros de contención mediante los propios forjados de los sótanos, que se construyen a medida que se profundiza el vaciado. Téngase en cuenta que hay que considerar en el cálculo de los forjados los esfuerzos de los empujes de las pantallas. Para el apoyo de estos forjados, normalmente se construyen pilotes interiores. Este sistema es muy adecuado para grandes profundidades de excavación o cuando el terreno es de mala calidad y se pretende controlar los movimientos del terreno exterior a la excavación.

Figura 6. Arriostramiento de muro pantalla mediante los forjados del edificio

REFERENCIAS:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Procedimientos de construcción de cimentaciones y estructuras de contención. Segunda edición ampliada

Os presento la segunda edición ampliada del libro que he publicado sobre procedimientos de construcción de cimentaciones y estructuras de contención. El libro trata de los aspectos relacionados con los procedimientos constructivos, maquinaria y equipos auxiliares empleados en la construcción de cimentaciones superficiales, cimentaciones profundas, pilotes, cajones, estructuras de contención de tierras, muros, pantallas de hormigón, anclajes, entibaciones y tablestacas. Pero se ha ampliado esta edición con tres capítulos nuevos dedicados a los procedimientos de contención y control de las aguas subterráneas. Además, de incluir la bibliografía para ampliar conocimientos, se incluyen cuestiones de autoevaluación con respuestas y un tesauro para el aprendizaje de los conceptos más importantes de estos temas. Este texto tiene como objetivo apoyar los contenidos lectivos de los programas de los estudios de grado relacionados con la ingeniería civil, la edificación y las obras públicas.

Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_328-9-2

El libro tiene 480 páginas, 439 figuras y fotografías, así como 430 cuestiones de autoevaluación resueltas. Los contenidos de esta publicación han sido evaluados mediante el sistema doble ciego, siguiendo el procedimiento que se recoge en: http://www.upv.es/entidades/AEUPV/info/891747normalc.html

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Es director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

https://gdocu.upv.es/alfresco/service/api/node/content/workspace/SpacesStore/31b0d684-f0a7-4ee7-b8f4-73694e138d5e/TOC_0328_09_02.pdf?guest=true

Descargar (PDF, 476KB)

 

 

La excavación por bataches

Figura 1. Excavación por bataches (Cano et al., 2020). Aunque es posible hacerlo en módulo de dos, es preferible hacerlos en módulo de tres, según Figura 4.

Cuando se está realizando una excavación para el vaciado, por ejemplo, de unos sótanos de un edificio, lo primero que se plantea es si es necesario algún sistema de contención provisional (muros pantalla, muro berlinés, tablestacas, suelo armado o apuntalamiento provisional) hasta que se permita construir unos muros o estructuras de contención definitiva de las tierras. Sin embargo, a veces no se precisa de una estructura de contención provisional, pues se puede realizar, bajo determinadas condiciones, el vaciado mediante una excavación vertical o en talud, mediante bermas o bien mediante bataches. Este artículo explica la excavación por bataches.

La primera consideración a tener en cuenta es que solo se podrán acometer excavaciones sin una contención provisional en el caso de que no se vea perjudicada por las aguas subterráneas o cuando no exista afección sobre estructuras vecinas o servicios públicos. Por tanto, la excavación por bataches solo será aplicable en el caso de que el vaciado se encuentre por encima del nivel freático, no existan cimentaciones próximas y se puedan mantener los taludes estables o se puedan apuntalar. En este caso, la excavación por bataches permite el vaciado mediante etapas. El sistema se basa en la excavación alterna de tramos del frente de una berma perimetral previamente ejecutada. En el caso de edificaciones, la excavación por bataches es habitual para un solo sótano, aunque se podrían excavar dos o tres sótanos con un sistema más complejo basado en la creación de anillos descendentes, normalmente anclados.

Tal y como se muestra en la Figura 2, el batache es la excavación que queda vertical entre dos espaldones, que actúan a modo de contrafuerte de terreno. Según la norma NTE-ADZ, el ancho E del batache no podrá superar los 2 m, ni tampoco podrá superar la altura vertical del espaldón HE, los 3 m (caso de realizar la excavación con maquinaria). En caso de que alguno de estos dos parámetros se incumpla, deberá procederse al entibado.

Con todo, hay que tener presente que en España las antiguas Normas Tecnológicas de la Edificación, NTE, del Ministerio de la Vivienda, se encuentran en desuso, haciendo referencia de forma genérica al ancho de excavación sin tener en cuenta los parámetros geotécnicos del terreno. Por tanto, estas dimensiones límite de las NTE deben ser indicativas, pues se debería realizar un estudio en mayor profundidad con datos reales para ajustar los límites en casos complejos. Por ejemplo, los anchos de los bataches podrían llegar incluso a 3-5 m en algunos casos concretos que requerirían un estudio en detalle, incluso la entibación.

Además, la norma NTE-CCT impone otra serie de restricciones a la hora de ejecutar un batache. Así, la berma superior del espaldón B deberá ser mayor a la mitad de la anchura E del batache; la distancia de la parte inferior del espaldón al paramento vertical A deberá ser mayor que su altura HE; además, la anchura del espaldón NE, deberá ser mayor a A.

Figura 2. Esquema de batache, con las condiciones impuestas por NTE-CCT

Un aspecto de obra de gran interés es hacer coincidir el ancho E del batache con las dimensiones de las placas de encofrado. Sin embargo, la excavación deberá ser algo superior a la dimensión del elemento hormigonado, pues se debe permitir la presencia de las esperas de las armaduras horizontales. El exceso puede estimarse en unos 60 cm en cada lado, con un mínimo de 20-30 cm si se opta por doblar las armaduras. Por tanto, un batache de 2 m puede irse a unos 3 m, lo cual puede poner en riesgo la estabilidad de un terreno de baja cohesión durante la construcción (Cano et al., 2020).

El aspecto más importante de la excavación por bataches es el orden de ejecución, puesto que la excavación se realiza por tramos alternados para que el sostenimiento sea viable, buscando el efecto arco del terreno entre los espaldones para evitar el derrumbe. Hay que tener en cuenta que, una vez descubiertos los bataches, deben cubrirse por los muros lo más rápidamente posible, como mucho al día siguiente del descubrimiento del batache. Un posible orden de ejecución de los tramos podría ser el descrito en las Figuras 3 y 4. En primer lugar se excavaría el batache A, ejecutándose dicho tramo de muro. A continuación se procede de la misma forma con el tramo B, y por último, con el C. Hay que tener en cuenta que la excavación mediante bataches normalmente se encofra a una sola cara el muro, dejando la otra sobre el terreno.

Figura 3. El proceso de ejecución de los muros que sostienen un vaciado empieza con el replanteo de los bataches A, B y C.

 

Figura 4. Posteriormente empieza la excavación con los bataches A, debiéndose terminar completamente el muro de dicho tramo. Luego siguen los bataches B y C.

En la Figura 5 se observa el encofrado a una cara del muro de sótano y el ferrallado de un batache. Corresponde a la ejecución de un aparcamiento subterráneo.

Figura 5. Ferrallado de un batache en aparcamiento. http://www.parkingvejer.com/index.php?page=hitos.php&lang=#prettyPhoto/62/

Os dejo un vídeo que explica el procedimiento constructivo de muros mediante excavación por bataches. Espero que os sea útil.

En este otro vídeo, de Marcelo Pardo, también se explica el procedimiento constructivo de un muro de contención por la técnica de bataches.

A continuación os dejo las normas NTE-ADZ y NTE-CCT para su consulta.

Descargar (PDF, 1.14MB)

Descargar (PDF, 199KB)

Referencias:

CANO, M.; PASTOR, J.L.; MIRANDA, T.; TOMÁS, R. (2020). Procedimiento constructivo de muros de sótano mediante bataches con juntas de conexión. Estudio del ancho óptimo de excavación en suelos mixtos. Informes de la Construcción, 72:558. http://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/6008/7299

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.