Traílla remolcada

Figura. Traílla remolcable. Imagen: V. Yepes

La traílla remolcada consiste en una caja montada sobre dos ejes con neumáticos; un eje portador en la parte posterior y un eje, con timón de remolque y dirección, en la parte delantera. Se remolca normalmente por medio de un tractor de orugas. El chasis puede llevar en la parte de atrás un tampón de empuje con miras a la utilización de un empujador. Son adecuadas para distancias cortas. Se fabrican hasta de 24 m3 de capacidad, aunque están siendo sustituidas por las mototraíllas. Presentan un mayor esfuerzo de tiro, debido a una buena tracción incluso en pistas de mal estado. Salvo algún caso excepcional, hoy solo se utilizan en trabajos de poca envergadura o de tipo agrícola. En la figura puede verse una traílla remolcada por un tractor agrícola usada en la redistribución de arena en las playas.

Os dejo a continuación un par de vídeos que ilustran bien el modo de trabajo de estas máquinas. En el primer vídeo se puede ver una máquina utilizada en movimiento de tierras, mientras que en el segundo se ve un trabajo de tipo agrícola.

 

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mototraílla de doble tracción

Figura 1. Mototraílla de doble motor

En una entrada anterior ya se comentaron aspectos básicos de las mototraíllas (scrapers, en inglés). Son máquinas utilizadas para la excavación, carga, transporte, descarga y nivelación de materiales de consistencia media tales como tierras, arena, arcilla, rocas disgregadas, zahorras, etc. Consisten en una caja abierta con dispositivo de descenso, corte, ascenso y descarga de tierras. Dicha cuchilla va cortando el terreno, llenándose la caja al avanzar la máquina. En esta ocasión vamos a describir de forma breve la mototraílla de doble tracción.

Las mototraíllas de doble tracción poseen dos motores, uno delantero y otro posterior, y por tanto tienen tracción en los dos ejes. Son más potentes que las convencionales, pudiendo trabajar en terrenos más compactos. y con mayores pendientes. Suelen tener una relación capacidad/potencia de 35 l/CV y una relación peso/potencia de 120 kg/CV. Estas máquinas se complementan, en ocasiones, con un segunda mototraílla dispuesta en tándem con la primera, trabajando en pareja y reciben entonces el nombre de mototraíllas de empuje y arrastre (push-pull): presentan en la parte delantera un plato de empuje y un dispositivo de enganche con accionamiento desde la cabina, en la parte posterior dispone de un tope y un gancho fijo. La delantera se llena mediante el empuje de la trasera y cuando está cargada, baja la trasera el gancho y la caja siendo remolcada por la delantera. Cuando está cargada la trasera, emite una señal acústica, se desengancha y la delantera deja de tirar. Desde este momento las traíllas funcionan de forma independiente hasta que se repite el ciclo de carga. Sus distancias de acarreo óptimas se sitúan entre 150-200 m. y 1.600 m.

Figura 2. Equipo de mototraíllas de empuje y arrastre. https://www.cat.com

Os dejo ahora algunos vídeos relacionados con el trabajo de estas máquinas. Espero que os sean de interés.

En estos vídeos se aclara mejor el trabajo de las mototraíllas de empuje y arrastre.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Coeficiente de esponjamiento en movimiento de tierras

Figura 1. Retroexcavadora

Uno de los problemas habituales, pero fáciles de resolver en el cálculo de costes y producciones de los movimientos de tierras es no tener en cuenta los cambios de volumen que experimenta el terreno cuando se excava, transporta y compacta. A continuación os voy a contar algunos de estos conceptos.

El “peso específico de un suelo“, como relación entre el peso y su volumen, es un valor dependiente de la humedad, de los huecos de aire y del peso específico de las partículas sólidas. Para evitar confusiones, las determinaciones de los ensayos de laboratorio facilitan por un lado el “peso específico seco” y por otro la humedad. Fijémonos que este término es diferente de la “densidad del suelo“, que establece una relación entre la masa y el volumen. Por tanto, en las siguientes definiciones, aunque hablemos de densidad, en propiedad deberíamos hablar de peso específico. Sin embargo, a efectos prácticos no hay problemas en los cálculos (uso de kilogramos-masa frente a kilogramos-fuerza o Newtons en el Sistema Internacional).

La densidad de un terreno, esto es, la masa por unidad de volumen, es una característica dependiente del estado del suelo o de las rocas. Los componentes sólidos del terreno, su ordenación, humedad, grado de compactación, índice de huecos, granulometría, son rasgos que alteran la densidad de un terreno, siendo por tanto necesario, referir en cada momento, qué tipo de densidad estamos tratando.

Se denomina densidad aparente a la masa de una porción de terreno por unidad de volumen. Dicha masa estaría constituida por las partículas sólidas más el agua.

Se define densidad en banco o “in situ” dB a la densidad aparente del terreno en su estado natural, antes de su extracción. El movimiento de tierras va a provocar, mediante acciones mecánicas sobre los terrenos, una reordenación de sus elementos integrantes, y por tanto, una variación de dicha densidad aparente, bien sea aumentando el volumen de los mismos (excavación), o bien disminuyéndolos (compactación). Si no existieran incrementos o disminuciones de humedad durante la manipulación del terreno, se mantendría constante el producto del volumen por la densidad aparente, es decir, la masa de la porción del terreno considerado.

Figura 2. Esponjamiento y factores de conversión

La excavación de un material va a provocar un aumento de volumen, y por tanto una disminución de su densidad aparente, que llamaremos densidad del material suelto dL. Esta circunstancia debe ser considerada en los cálculos de producción tanto de excavación como de transporte. Se denomina factor de esponjamiento FW -también llamado “Factor Volumétrico de Conversión FVC”, al cociente entre los volúmenes aparentes en banco y del material suelto. Dicho factor, es evidentemente, menor a la unidad. También se denomina en la bibliografía Factor de Conversión de Esponjamiento (F.C.E.).

donde,

FW = Factor de esponjamiento.

VB = Volumen que ocupa el material en banco.

VL = Volumen que ocupa el material suelto.

Si os interesa, podéis consultar una entrada previa donde os dejé un Laboratorio virtual para el cálculo del peso específico de un suelo.

Otra relación sería el porcentaje de esponjamiento SW, que expresaría el tanto por ciento entre el incremento de volumen y el del material en banco. Ambos conceptos se podrían referir a las densidades aparentes en banco y suelta, siempre que no hubiese variación de humedad en la manipulación, al no variar la masa total.

donde,

SW = Porcentaje de esponjamiento.

VB = Volumen que ocupa el material en banco.

VL = Volumen que ocupa el material suelto.

 

De la Tabla 1 pueden tomarse valores característicos de peso específico en banco y factor volumétrico de conversión, aconsejándose la determinación real para casos donde precisemos afinar mediciones o productividades.

MATERIAL   gB (t/m3) FW
CALIZA 2,61 0,59
ARCILLA estado natural 2,02 0,83
seca 1,84 0,81
húmeda 2,08 0,80
ARCILLA Y GRAVA seca 1,66 0,86
húmeda 1,84 0,84
ROCA ALTERADA 75% Roca-25% Tierra 2,79 0,70
50% Roca-50% Tierra 2,28 0,75
25% Roca-75% Tierra 1,06 0,80
TIERRA seca 1,90 0,80
húmeda 2,02 0,79
barro 1,54 0,81
GRANITO FRAGMENTADO 2,73 0,61
GRAVA natural 2,17 0,89
seca de 6 a 50 mm. 1,90 0,89
húmeda de 6 a 50 mm. 2,26 0,89
ARENA Y ARCILLA 2,02 0,79
YESO FRAGMENTADO 3,17 0,57
ARENISCA 2,52 0,60
ARENA seca 1,60 0,89
húmeda 1,90 0,89
empapada 2,08 0,89
TIERRA Y GRAVA seca 1,93 0,89
húmeda 2,23 0,91
TIERRA VEGETAL 1,37 0,69

Tabla 1.- Peso específico en banco y factor de esponjamiento para distintos materiales.

La compactación consiste en someter al terreno a esfuerzos de compresión que produzcan movimientos de sus partículas, de modo que le lleven a posiciones de mayor compacidad. Ello, evidentemente, comporta una disminución del volumen aparente del material. Se denominará factor de compresibilidad FC a la relación entre el volumen del material compactado y en banco.

donde,

FC = Factor de compresibilidad.

VC = Volumen que ocupa el material compactado.

VB = Volumen que ocupa el material en banco.

Otro tipo de definiciones usadas para expresar la relación entre los componentes de un terreno, serían las siguientes:

  • Contenido de humedad, : relación entre la masa del agua y de los sólidos.
  • Grado de saturación, Sr: relación entre el volumen de agua y el volumen de huecos.
  • Índice de poros, e: relación entre el volumen de huecos y el volumen de sólidos.
  • Porosidad, n: volumen de huecos referida a la totalidad del volumen.

Os dejo un vídeo donde se explican estos conceptos. Espero que os sea útil.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Plantas desarenadoras para la reutilización de los fluidos estabilizadores

Figura 1. Desarenador de lodos. ttps://maquinariacimentaciones.wordpress.com

En artículos anteriores hemos descrito los fluidos estabilizadores de excavaciones. Dentro de este uso, la estabilización de excavaciones de muros pantalla esta ampliamente difundida en España. Los fluidos bentoníticos se utilizan también habitualmente para estabilizar las paredes de la excavación de pilotes excavados de cierto diámetro e incluso en los de pequeño diámetro en competencia con las entibaciones recuperables. También se usan en estos fluidos de perforación en la Perforación Horizontal Dirigida. En cualquier caso, uno de los problemas a resolver es separar las partículas de la excavación del fluido para que pueda ser reutilizado. Para ello se describe a continuación brevemente el funcionamiento de una planta desarenadora.

La misión de las plantas desarenadoras es la de separar las partículas de suelo (sólidos) que se encuentran en suspensión en los fluidos estabilizadores. Son necesarias para la reutilización de los lodos (circuito de recirculación). Además de en cimentaciones profundas se utilizan también en plantas de tratamiento de áridos, obras de túneles, etc.

El contenido de arena y otras partículas en suspensión en los lodos minerales debe ser inferior al 4% del volumen antes de volver a verterlo en la excavación. En el caso de polímeros este porcentaje debe ser inferior al 1%. Antes del hormigonado se permite máximo hasta el 10%.

Figura 2. Salida de sólidos de una desarenadora (Bauer)

Se pueden distinguir en el mercado dos tipos de desarenadoras; aquellas por las que el fluido a limpiar pasa una única vez por un hidrociclón y las que pasan dos. El de simple ciclonado está recomendado para terrenos poco arenosos o con arenas poco finas; en este caso, los lodos solo pasan una vez por el ciclón tras pasar por una o varias fases de criba con el objeto de eliminar el material de mayor tamaño. El desarenador de doble ciclonado es más eficaz, pues presentan una mayor capacidad de regeneración del fluido, siendo necesario para terrenos arenosos o con muchas arenas finas, incluso limos; normalmente tras pasar a través del ciclón principal pasan por una serie de hidrociclones más pequeños.

Figura 3. Esquema de la recirculación de fluidos (Caltrans)

 

En la Figura 4 se muestra el esquema de una desarenadora con un solo paso a través del ciclón, en el que se distinguen los siguientes elementos:

(1) Motores para las cribas vibratorias.

(2) Criba de gruesos que realiza funciones de “precribado”, retiene partículas > 5mm.

(3) Tanque de almacenamiento del material procedente de la criba de gruesos.

(4) Bomba de alimentación del ciclón a 2-3 bar.

(5) Hidrociclón;.

(6) Salida de sólidos del hidrociclón.

(7) Cribas separadoras del agua del material grueso procedente del hidrociclón.

(8) Salida superior del hidrociclón, con el fluido “limpio”.

(9) Depósito de regulación

(10) Control automático de nivel.

Figura 4. Esquema de funcionamiento de una desarenadora (Bauer)

El rendimiento de una desarenadora se mide en m3/h de fluido estabilizador regenerado. Para determinar la eficiencia se mide a través del punto de corte o “cut point”, que es el d50, que mide el menor tamaño de partícula en suspensión que al menos el 50% puede ser separado del fluido. Se mide en 1/1000 mm o micras.

Referencia:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Palas cargadoras

pala cargadoraLa norma ISO 6165:2012 define como cargadora a la máquina autopropulsada sobre ruedas o cadenas con un equipo montado en la parte frontal cuya función principal es la operación de carga (utilizando una cuchara), con la que carga o excava mediante el movimiento de la máquina hacia delante. Por tanto, aparte de la cuchara frontal, su estructura soporte y un sistema de brazos articulados capaz de cargar y excavar mediante su desplazamiento y el movimiento de sus brazos, y de elevar, transportar y descargar materiales.

Son máquinas diseñadas para la excavación, carga y pequeño transporte de material. Se denominan genéricamente palas cargadoras, aunque otros nombres podrían ser la de pala tractora o cargadora frontal. Se trata de un tractor al que se le acopla una cuchara que se llena por empuje de la máquina sobre el terreno, dotada de un dispositivo de elevación y otro de volteo para manipular las tierras. Estas máquinas tienen como funciones principales las de cargar en las unidades de transporte materiales sueltos o la alimentación de tolvas, acopiar productos, efectuar operaciones de excavación en terrenos no muy duros o compactos, elevación y manejo de cargas y acarreos a distancias pequeñas de materiales (no más de 30 o 50 m. si no se quiere bajar rápidamente su producción). Atendiendo a su sistema de desplazamiento se dividen en palas cargadoras sobre neumáticos y sobre orugas.

Como una imagen vale más que mil palabras, os dejo unos vídeos para que veáis cómo trabaja esta máquina. En este vídeo podemos ver un Volvo L350F cargando.

Referencias:AENOR (2012). UNE-EN ISO 6165 “Maquinaria para movimiento de tierras. Tipos básicos. Identificación, términos y definiciones”.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tractor sobre ruedas: el turnadozer

Figura 1. Turnadozer Caterpillar 824

El turnadozer es un tractor montado sobre neumáticos. A diferencia de los tractores montados sobre orugas, los buldóceres (bulldozers, en inglés), los turnadozers transmiten mayor presión específica sobre el terreno (0,35 MPa). Presentan una tracción de hasta 82 t, necesitan tracción a las cuatro ruedas y son más veloces que los buldóceres (hasta 60 km/h), por lo que presentarían cierta ventaja en el desplazamiento de tierras a mayores distancias (aunque entraría en competencia con las cargadoras). Sin embargo, no son aconsejables en terrenos rocosos por el desgaste y los cortes de neumáticos. Es por ello que no son muy frecuentes en las obras. En una de mis primeras obras tuve la ocasión de utilizar uno de ellos, debido a exigencias de uso del parque de maquinaria de la empresa, pero se usaba principalmente para labores auxiliares de limpieza de la zona de carga y en el mantenimiento de pistas y caminos de obra.

Un vídeo antiguo sobre esta máquina, que espero os guste.

Aquí tenéis otro vídeo ilustrativo:

En este otro podemos ver un turnadozer con múltiples ejes de ruedas.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Apertura de zanja en la instalación de tuberías

Figura 1. Zanjadora. https://riusa.net/alquiler-de-zanjadoras-en-cantabria/

Las zanjas constituyen excavaciones abiertas y asentadas en el terreno, accesibles a los operarios, y realizadas con medios manuales o mecánicos. La excavación debe hacerse con sumo cuidado para que la alteración de las características mecánicas del suelo sea la mínima inevitable. Su anchura no suele ser mayor a 2 m ni su profundidad superior a 7 m, en cuyo caso se consideraría la excavación un vaciado.

La apertura de una zanja tiene dos fases: una de excavación y otra de entibación, pudiendo presentarse o no esta última en función de las características del terreno, y el tiempo estimado en el que la zanja va a estar abierta. Cuando la excavación de la zanja se realice por medios mecánicos, además, será necesario que el terreno admita talud en corte vertical para esa profundidad y que la separación entre el tajo de la máquina y la entibación no sea mayor de vez y media la profundidad de la zanja en ese punto. Los productos de excavación de la zanja, aprovechables para su relleno posterior, se podrán depositar en caballeros situados a un solo lado de la zanja, y a una separación del borde de la misma de un mínimo de 0,60 m. De emplearse entibación, distancias entre 0,50 y 0,90 m suelen ser suficientes para facilitar la circulación del personal de montaje y reducir la posibilidad de caída de piedras sobre la tubería.

Si bien las zanjas pueden abrirse manualmente, hoy en día la excavación se realiza con maquinaria, fundamentalmente con palas retroexcavadoras de tipo universal y con zanjadoras, máquinas diseñadas exclusivamente para excavar zanjas (Figura 1). De algunos de estos tipos ya hemos hablado en entradas anteriores: zanjadora de brazo inclinable, zanjadora de ruedas de cangilones, incluso cortadora de disco con picas para zanjas estrechas. Estas máquinas proporcionan buenos rendimientos, siempre que se den las condiciones adecuadas. Así, las zanjadoras, cuyos rendimientos son realmente elevados, presentan el inconveniente de que para su utilización es preciso que el terreno sea adecuado, es decir, cuando es tierra franca o terreno de tránsito y no hay demasiados obstáculos. Las retroexcavadoras, aunque obtienen menores rendimientos que las zanjadoras, se pueden utilizar en terrenos más variados, permitiendo su utilización en la carga, descarga y colocación de los tubos y superando mejor los obstáculos del terreno. En las ciudades, generalmente no se presentan los problemas anteriores, pero aparece el problema de la gran cantidad de conducciones en el subsuelo correspondientes a distintos servicios. Ello implica excavar manualmente las zonas de cruce con la zanja y utilizar maquinaria en el resto de zonas.

La anchura mínima del fondo de la zanja depende del espacio que necesitan los operarios para colocar los tubos, por lo que se considera una anchura mínima de 0,60 m. En los puntos donde deba colocarse una junta, se realizan unos ensanchamientos de la zanja cuyas dimensiones dependen del tipo de junta y de la manipulación necesaria para su montaje. La norma UNE-EN 1610 indica el ancho mínimo de la zanja en función del diámetro nominal de la tubería (Tabla 1) y de la profundidad de zanja (Tabla 2).

Figura 2. Espacio de trabajo mínimo. UNE-EN 1610.

La calidad del fondo de la zanja es fundamental para la buena conservación de las canalizaciones, puesto que la presencia en ella de zonas de distinta dureza hace que la tubería no quede en buenas condiciones de sustentación. Por lo anterior, es conveniente no efectuar nunca excavación de más, así como limpiar el fondo de piedras, realizando el refino final cuidadosamente. Por otra parte, si aparecen materiales de rigidez excesiva, como rocas o cimentaciones en desuso, se deberá excavar por debajo de la rasante y realizar un relleno posterior de unos 10-15 cm perfectamente compactado. Además, no se recomienda utilizar como relleno materiales con alto contenido de componentes orgánicos, ni instalar las tuberías en suelos orgánicos sin tomar precauciones especiales (empleo de geotextiles, etc.)

La profundidad de la zanja debe indicarse en el proyecto, pero en cualquier caso, y habida cuenta tanto del efecto de las cargas del tráfico como de las posibles heladas, la separación entre la generatriz superior del tubo y la superficie del terreno debe de tener un valor mínimo de 0,60 m.

En general, se evitará la entrada de aguas superficiales a las excavaciones, achicándolas lo antes posible cuando se produzcan, y adoptando las soluciones previstas para el saneamiento de las profundas. Debe intentarse que la zanja esté abierta el menor tiempo posible para evitar los peligros de desprendimientos, inundaciones y meteorización del terreno, así como las posibles alteraciones que puede sufrir la tubería ya montada debido a los agentes atmosféricos. Es por ello que es conveniente establecer un programa de ejecución que coordine, por tramos de longitud adecuada, las fases de apertura de zanja, montaje y terraplén. Si fuera preciso mantener la zanja abierta durante algún tiempo, es conveniente, para evitar la meteorización, dejar por lo menos 0,20 m sin excavar, realizando esta excavación poco antes del montaje.

La estabilidad de las paredes de la zanja puede conseguirse dándoles el talud adecuado, pero en algunos casos en que esto no es posible, bien por el coste económico de la excavación, bien por la imposibilidad física de espacio, es preciso la entibación. Las zanjas son especialmente peligrosas para los operarios, por lo que, como regla general, no se debe excavar sin entibación una profundidad mayor a 1,20 m. Si se entiba, la zanja se realiza con paredes verticales, debiendo ser la entibación tanto más compleja cuanto mayor sea la inestabilidad del terreno. Hay que tener presente que existe una altura crítica de una excavación sin entibación. Se realizará la excavación por franjas horizontales de altura no mayor a la separación entre codales más 30 cm, que se entibará a medida que se excava. Además, debe tenerse en cuenta en el diseño de la entibación, que se debe permitir la colocación y el montaje de la tubería. Por último, indicar que mientras se efectúe la consolidación definitiva de las paredes y fondo de la excavación, se conservarán las contenciones, apuntalamientos y apeos realizados para la sujeción de las construcciones y/o terrenos adyacentes, así como de vallas y/o cerramientos.

Os dejo algunos vídeos sobre la excavación de zanjas. Espero que os sean de interés.

Referencias:

AENOR (2000). UNE-EN 805. Abastecimiento de agua. Especificaciones para redes exteriores a los edificios y sus componentes. 

AENOR (2016). UNE-EN 1610. Construcción y ensayos de desagües y redes de alcantarillado.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Fluidos bentoníticos como estabilizador de excavaciones

Central de tratamiento de lodos. Imagen de Catalana de Perforacions

La bentonita es el nombre con el que se denominan a ciertos tipos de arcillas que poseen propiedades tixotrópicas cuando se mezclan con el agua. Debe su nombre a su descubrimiento cerca de Fort Benton, en los Estados Unidos en el siglo XIX. Las bentonitas comerciales son silicatos de aluminio hidratados y contienen fundamentalmente el mineral montmorillonita. El nombre de este tipo de arcilla se debe a su descubrimiento en cerca de Montmorillon, en Francia. Hoy día se utilizan distintas clases de bentonita tanto en ingeniería civil como en edificación, pudiendo variar sensiblemente sus propiedades en función de su origen.

Uno de los usos más frecuentes de la bentonita es como fluido estabilizador de excavaciones, donde compite con los fluidos a base de polímeros, fundamentalmente en la ejecución de pilotes. Dentro de este uso, la estabilización de excavaciones de muros pantalla esta ampliamente difundida en España. Los fluidos bentoníticos se utilizan también habitualmente para estabilizar las paredes de la excavación de pilotes excavados de cierto diámetro e incluso en los de pequeño diámetro en competencia con las entibaciones recuperables. En esta aplicación el fluido bentonítico debe se capaz de formar una barrera o bizcocho (cake) en las paredes de la excavación a fin de impedir la pérdida de fluido en el terreno, creando una capa contra la que puede actuar la presión del fluido para contrarrestar las presiones externas del terreno o las aguas freáticas. Otro uso habitual, del cual ya hemos hablado en una entrada anterior, es como fluido de perforación en la Perforación Horizontal Dirigida. También se usa la bentonita en la creación de barreras húmedas en el terreno para contener el agua de zonas contaminadas. Son las pantallas plásticas (Cutter Soil Mixing). En esta aplicación se suele mezclar con cemento u otros materiales a fin de crear un slurry que permanece en estado fluido durante varias horas antes de adquirir mayor consistencia y funcionar como barrera. En ciertas ocasiones se suele introducir una membrana flexible en la barrera. Por último, los fluidos bentoníticos también se utilizan para la contención del frente de excavación en túneles, delate de las tuneladoras y para el transporte de los restos excavados hacia las unidades desarenadoras situadas en la parte posterior del convoy.

Sin embargo, las propiedades de las bentonitas varían y, por tanto, no todas sirven para todos los usos. Por ejemplo, la propiedad de resistencia del estado de gel es importante si el fluido bentonítico esta en reposo y debe ser capaz de contener sólidos en suspensión, y no es por el contrario importante si el fluido es agitado continuamente en un sistema con recirculación. Las propiedades de las bentonitas deben considerarse antes de usar un tipo determinado para una aplicación específica. Independientemente de estas variaciones en cuanto a sus característica, las bentonitas deben cumplir los siguientes requisitos y funciones:

    1. Mantener los frentes de la excavación aportando presión hidrostática a las paredes de la misma.
    2. Mantenerse dentro de la excavación sin fluir hacia el suelo colindante.
    3. Mantener en suspensión los detritus procedentes de la excavación.
    4. Permitir ser desplazados con facilidad y limpiamente por el hormigón, sin una afección significativa a la adherencia armadura-hormigón.
    5. Debe ser posible su limpieza de sólidos en suspensión mediante el bombeo y paso por desarenadoras para su reutilización posterior.
    6. Ser bombeables con facilidad.

En general, las tres primeras propiedades requieren un producto denso y las tres últimas un producto muy fluido. Hay por tanto un conflicto que debe ser resuelto en cada caso antes de la puesta en obra del fluido estabilizador.

En el vídeo que sigue se puede observar la elaboración de bentonita para su uso en un muro pantalla.

En este otro, podéis ver su uso en un pilote.

En el vídeo que os dejo a continuación se profundiza en el uso de los lodos como fluido de perforación. Espero que os sea de utilidad.

Referencias:

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Excavación de túneles con excavadoras y martillos hidráulicos pesados

Martillo hidráulico rompedor. Cortesía de Promove

Tanto las excavadoras con cuchara frontal o las retroexcavadoras, junto con los martillos hidráulicos, se emplean profusamente en labores de saneo y desescombro en los procedimientos convencionales de excavación de túneles; sin embargo, llegan a constituir un procedimiento constructivo por sí mismo en los siguientes casos:

  • Excavadoras: se utilizan en rocas blandas, con resistencia a compresión inferior a 5 MPa, en general.
  • Martillos hidráulicos pesados: se montan sobre retroexcavadoras convencionales y llegan a incluir utensilios especiales, como brazos telescópicos, que facilitan el acceso a todas las partes del frente. Siempre se requiere la utilización de palas cargadoras para la retirada del escombro.
https://pixabay.com/es/excavadora-demolici%C3%B3n-equipo-pesado-1859/

Los martillos hidráulicos realizan un ataque puntual en la que la energía se genera mediante motores elétricos o diesel y se transmite a través de un circuito hidráulico a la herramiento “puntero” situada en el extremo articulado de la máquina. La roca se quebranta mediante la energía de impacto generada y el material rocoso excavado se desprende en forma de pequeños bloques o esquirlas. Estos martillos suelen emplearse en los siguientes casos:

  • Macizos rocosos de matriz dura fuertemente plegados o fracturados (RQD < 25-30).
  • Macizos rocosos con fracturación media (RQD < 50) y matriz dura (resistencia a compresión < 100 MPa)

La excavación con estos medios es posible por encima de los condicionantes indicados, si bien el rendimiento es muy bajo; no obstante, circunstancias especiales llegan a requerir su utilización en macizos rocosos de calidad media a alta, como por ejemplo para reducir vibraciones. Así, varios túneles de la Autopista de las Flores, en San Remo (Italia), han sido construidos de esta forma para no afectar a los invernaderos de flores que se asientan en las laderas de los accidentes orográficos salvados por los túneles.

Os dejo varios vídeos sobre el tema.  En este primero podemos ver una excavadora hidráulica HITACHI 460 con un martillo de 5 toneladas durante la excavación de un túnel.

En este otro, vemos cómo se utiliza una retroexcavadora en el túnel del Rañadoiro.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Métodos y equipos de excavación en túnel. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.835. Valencia.

Normas de seguridad durante la excavación de una pantalla

http://www.estructurasmaqueda.com

La excavación de un muro pantalla suele realizarse con una cuchara bivalva acoplada a una retroexcavadora. La profundidad de la excavación es variable y los taludes se estabilizan con bentonita, que se va añadiendo según va avanzando la excavación., por lo que hay que tener relacionado el caudal de aportación de bentonita con la velocidad de avance de la excavadora.

La tubería desde la instalación de la bentonita hasta la excavación es de acoplamiento rápido y están en contacto mediante un código de señales acústicas. La profundidad de la excavación se controla por medio de una cadena media, una vez que la excavación está a cota. Hay que esperar 20 o 30 minutos para la sedimentación, pasado este tiempo se procede a la limpieza del fondo quedando lista la excavación para recibir la ferralla. Los productos de la excavación se retiran a vertedero con camiones.

Normas de seguridad:

  • Antes de posicionar la máquina se habrá vallado el entorno quedando aislada la zona de trabajo, de forma que impida el paso de personas ajenas.
  • El itinerario de los camiones debe estar indicado de forma clara y concreta.
  • Se estudiará el emplazamiento de las máquinas observando detenidamente el radio de acción en todas las posiciones, muy especialmente algura de pluma, contrapesos y movimientos de la cuchara. esta operación la hará el encargado del tajo y el maquinista.
  • Los servicios habrán sido desviados y perfectamente señalizados los próximos a la excavación.
  • El maquinista revisará diariamente los cables, ganchos, perrillos, contrapesos, los principales elementos de la cuchara (bielas, cuñero, dientes, patín guía, etc.), poniendo en conocimiento de su jefe los defectos que haya encontrado o parando los trabajos ante el menor obstáculo imprevisto.
  • Se hará el mantenimiento a las máquinas que indique los respectivos manuales de entretenimiento.
  • La cuchara no se guiará con las manos para emboquillarla entre los muretes guías, esta ocupación (si hay que hacerla) se hará por medio de alargaderas que impida la aproximación del ayudante al borde de la excavación.
  • La conducción de la bentonita de tubos será de acoplamiento rápido y buena estanqueidad.
  • El operador de la instalación de bentonita estará protegido contra el polvo que desprende el abastecimiento de la tolva.
  • La bomba de extracción de lodos, estará sujeta a puntos fijos o móviles del exterior de forma que pueda ser fácilmente recuperada del fondo de la zanja.
  • La toma de corriente de la bomba de lodos y demás herramientas eléctricas estará protegida por disyuntor diferencial de alta sensibilidad y puesta a tierra de los cuadros.
  • La línea de alimentación desde el cuadro general, que estará normalmente en la instalación de bentonita, hasta los cuadro de obra será aérea y sustentada por poste de madera.
  • En la instalación de esta línea se prestará la máxima atención a los gálibos en los puntos de cruce y posicionamiento de las máquinas excavadoras, si no está enterrada.
  • Se estudiará con los vecinos las salidas y entradas a sus inmuebles y negocios durante la ejecución de la excavación.
  • El personal que trabaje en la excavación y en las proximidades usará además de la ropa de trabajo, botas de goma y guantes.
  • No se dejará, bajo ningún concepto, excavación o hueco alguno sin tapar con mallazo o proteger con barandillas rígidas colocadas a 0,90 m de altura.
  • Los conductores de los camiones usarán el casco cuando abandonen la cabina de su vehículo.
  • Las cajas de los camiones irán provistas de sus correspondientes trampillas para evitar pérdidas de carga durante el transporte.
  • El vertedero estará acondicionado y los conductores advertidos del peligro que supone levantar el volteo en terreno mal nivelado o que pueda ceder por exceso de humedad.
  • Está prohibido circular con el volteo levantado.

A continuación os dejo algunos vídeos ilustrativos de esta fase del procedimiento constructivo de un muro pantalla.

https://www.youtube.com/watch?v=x4GPQME5Upk

https://www.youtube.com/watch?v=BwLCIauvu4g

Referencia:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.