Trascendencia del proyecto de investigación HYDELIFE en su ámbito temático

Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En un artículo anterior detallamos los antecedentes y la motivación del proyecto de investigación HYDELIFE. Ahora vamos a explicar la relevancia de la propuesta, que se centra tanto en la utilización de una metodología emergente y novedosa en el ámbito de las estructuras, como es la hibridación de las metaheurísticas con la inteligencia artificial, en especial con el aprendizaje profundo (Deep Learning, DL), como en el objeto de estudio, que es la construcción industrializada modular, tanto en edificación, como en puentes mixtos de hormigón y acero y en estructuras híbridas de acero. Justificamos a continuación la importancia de esta propuesta.

La Inteligencia Artificial (IA) se ha usado en estas últimas décadas de forma intensiva en las investigaciones relacionadas con la ingeniería civil, especialmente en el ámbito de las estructuras y las infraestructuras (Taffese et al., 2017). Sin embargo, los métodos más recientes como el reconocimiento de patrones (Pattern Recognition, PR), el aprendizaje automático (Machine Learning, ML) y el aprendizaje profundo (DL) son métodos emergentes en este ámbito de la ingeniería (Salehi et al., 2018). Éstas técnicas emergentes tienen la capacidad de aprender complicadas interrelaciones entre los parámetros y las variables, y así permiten resolver una diversidad de problemas que son difíciles, o no son posibles, de resolver con los métodos tradicionales. Son capaces de descubrir información oculta, no trivial, sobre el rendimiento de una estructura al aprender la influencia de diversos mecanismos de daño o degradación y los datos recogidos de los sensores. Además, ML y DL tienen una elevada potencialidad en el dominio de la mecánica computacional, como, por ejemplo, para optimizar los procesos en el método de elementos finitos para mejorar la eficiencia de los cálculos.

La optimización de las estructuras constituye un campo científico donde se ha trabajado intensamente en las últimas décadas (Afzal et al., 2020). Debido a que los problemas reales requieren un número elevado de variables, la resolución exacta del problema de optimización asociado es inabordable. Se trata de problemas NP-hard, de elevada complejidad computacional, que requiere de metaheurísticas para llegar a soluciones satisfactorias en tiempos de cálculo razonables. La idea es aprovechar la inmensa cantidad de datos generados por el elevado número de iteraciones que requiere la optimización estructural mediante metaheurísticas. Es el campo ideal para la inteligencia artificial, pues permite extraer información para acelerar y afinar la búsqueda de la solución óptima. Un ejemplo de este tipo es nuestro trabajo (García-Segura et al., 2017a) de optimización multiobjetivo de puentes cajón, donde una red neuronal aprendía de los datos intermedios de la búsqueda y luego predecía con una extraordinaria exactitud el cálculo del puente, sin necesidad de calcularlo. Ello permitía reducir considerablemente el tiempo final de computación. Sin embargo, este tipo de aplicación es muy sencilla, pues solo ha reducido el tiempo de cálculo (cada comprobación completa de un puente por el método de los elementos finitos es mucho más lenta que una predicción con una red neuronal). HYDELIFE trata de dar un paso más allá. Se pretende que la metaheurística sea capaz de aprender de los datos recogidos utilizando la inteligencia artificial para ser mucho más efectiva, y no solo más rápida.

Concretando, la propuesta se centra en el aprendizaje profundo (DL) que, dentro del ML, utiliza algoritmos más sofisticados, construidos a partir del principio de las redes neuronales. El foco metodológico del proyecto es la exploración de la integración específica del DL en las metaheurísticas con el objeto de mejorar la calidad de las soluciones o los tiempos de convergencia cuando se trata de optimizar estructuras. Nuestro grupo ha tenido ocasión de comprobar la eficacia de este hibridaje en estructuras sencillas, como son los muros de contrafuertes (García et al., 2020a, 2020b; Yepes et al., 2020). Además, hemos lanzado al respecto un número especial en la revista Mathematics (indexada en el primer decil del JCR) denominado “Deep learning and hybrid-metaheuristics: novel engineering applications“ (https://www.mdpi.com/journal/mathematics/special_issues/Deep_Learning_Hybrid-Metaheuristics_Novel_Engineering_Applications).

Modern methods of construction. https://www.lancashirebusinessview.co.uk/latest-news-and-features/let-s-talk-modern-methods-of-construction

En cuanto al objeto del proyecto, la construcción industrializada modular, tanto en edificación, como en puentes mixtos de hormigón y acero y en estructuras híbridas de acero, su justificación deriva de su importancia creciente y los huecos en la investigación encontrados. En efecto, la construcción modular y la prefabricación son técnicas ya veteranas desde que en 1936 Eugène Freyssinet construyera el primer puente de hormigón pretensado del mundo, en el que las vigas y tableros eran prefabricados. Sin embargo, la auténtica revolución que supone la IA, las tecnologías BIM y los retos de la sostenibilidad están cambiando radicalmente este concepto y lo está llevando a una nueva dimensión. La reciente norma UNE 127050:2020 trata de los sistemas constructivos industrializados para edificios construidos a partir de elementos prefabricados de hormigón, así como de los requisitos de comportamiento, fabricación, instalación y verificación. Los métodos modernos de construcción (Modern Methods of Construction, MMC), o como algunos llaman “construcción inteligente”, constituyen alternativas a la construcción tradicional. Es un término que cubre una amplia gama de tecnologías basada en la fabricación modular, ya sea “in situ” o “off-site”, que está revolucionando la forma de construir de forma más rápida, rentable y eficiente. Un ejemplo no muy lejano ha sido la construcción de dos hospitales de campaña en Wuhan (China) en solo 12 días debido a la crisis sanitaria. Países como Suecia y Japón lideran la construcción MMC. En Suecia, casi la mitad de las viviendas de nueva construcción utilizan este método, llegando al 80% en el caso de viviendas unifamiliares. Japón, es el país donde se construye mayor número de viviendas nuevas con este método, aunque no llegan al 20% del total. La construcción MMC permite un ahorro de tiempo de hasta el 50%, permite el uso de materiales sostenibles, reduciéndose el desperdicio. La construcción en fábrica permite tolerancias estrictas, la reducción de los errores, promueve la seguridad, no estando los materiales a la intemperie durante la construcción. Además, permite el uso de materiales durables, que mejoran el aislamiento acústico, la protección contra incendios y la eficiencia energética. Sin embargo, en algunos países el uso de las MMC presenta costes más elevados que la construcción tradicional. Otras barreras son la falta de mano de obra especializada, la escasez de suministros o la regulación existente (Rahman, 2014). Con todo, la actual crisis del Covid-19 puede acelerar los cambios necesarios. De todos modos, los métodos MMC constituyen un producto diferente al del mercado de la construcción tradicional. La construcción modular, al tratarse de un producto alternativo, en lugar de competir, complementará el mercado tradicional. El objetivo es aumentar la productividad de los recursos disponibles mejorando la calidad, la eficiencia empresarial, la satisfacción del cliente, el rendimiento ambiental, el índice de sostenibilidad y el control de los plazos de entrega. Nuestro grupo de investigación (Sánchez-Garrido y Yepes, 2020) ha empezado a aplicar técnicas analíticas de toma de decisiones multicriterio (MCDM) y análisis del ciclo de vida, comparando la construcción tradicional de una vivienda unifamiliar con dos alternativas basadas en MMC. Propusimos un índice de sostenibilidad, que incluye atributos tangibles e intangibles, así como factores de incertidumbre y riesgos, que permite a los promotores priorizar soluciones que aseguren la sostenibilidad económica, social y medioambiental. HYDELIFE pretende profundizar en esta vía con la optimización multiobjetivo híbrida de este tipo de construcción modular.


Constructalia – ArcelorMittal. Puente mixto Wirkowice: El primer puente de carretera en Europa con vigas de acero autopatinable Arcorox® 460 – Constructalia

Otro de los huecos detectados por nuestro grupo en este ámbito son los puentes mixtos (Martínez-Muñoz et al., 2020). El análisis del estado del arte indica que la investigación se ha centrado en el diseño preliminar de puentes con un enfoque principalmente económico (Yepes et al., 2019) sin abordar la optimización multiobjetivo social y ambiental de su ciclo de vida completo que permitan aplicar técnicas de decisión desde el diseño. mientras que a nivel mundial la preocupación se dirige a la búsqueda de soluciones sostenibles. También se ha detectado un vacío en los puentes ejecutados con vigas armadas híbridas. En este tipo de estructuras se utilizan diferentes límites elásticos de acero en las chapas de alas y alma para disminuir el espesor de las chapas de mayor límite elástico, lo cual supone una reducción de peso por unidad de longitud de la sección transversal (Chacón, 2014). Sin embargo, la reducción del espesor puede acarrear la disminución de la capacidad de la sección ante otros fenómenos, como es el caso de la inestabilidad. Se debe garantizar un buen comportamiento de las vigas a cortante, estudiando su inestabilidad, a cargas concentradas y a pandeo lateral. Por tanto, nos encontramos ante un caso de optimización de gran interés donde, además, no se ha abordado hasta ahora su optimización completa a lo largo de su ciclo de vida. Asimismo, en nuestro equipo de investigación se ha desarrollado una patente sobre vigas en cajón mixtas (Alcalá y Navarro, 2020) que permiten resolver el problema de las vigas descolgadas en forjados de elementos prefabricados y que consiste en un cajón metálico que formará parte de un sistema de forjados slim-floor. HYDELIFE aplicará la metodología híbrida antes descrita para cubrir este vacío en el ámbito de la investigación de las estructuras.

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

Referencias:

AFZAL, M.; LIU, Y.H.; CHENG, J.C.P.; GAN, V.J.L. (2020). Reinforced concrete structural design optimization: A critical review. J. Clean. Prod., 260:120623.

ALCALÁ, J.; NAVARRO, F. (2020). Viga en cajón mixta acero-hormigón. Patente P202030530, 4 junio 2020.

CHACÓN, R. (2014). Vigas armadas híbridas de acero. Estado del conocimiento. Revista Ciencia e Ingeniería, 35(2):95-102.

GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020a). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics, 8(4), 555.

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020b). The buttressed walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics, 8(6), 862.

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017a). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Struct. Multidiscip. Optim., 56(1):139-150.

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Adv. Civ. Eng., 2020, 8823370.

RAHMAN, M.M. (2014). Barriers of implementing modern methods of construction. J. Manage. Eng., 30(1):69-77.

SALEHI, H.; BURGUEÑO, R. (2018). Emerging artificial intelligence methods in structural engineering. Eng. Struct., 171:170-189.

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. J. Clean. Prod., 258: 120556.

TAFFESE, W.Z.; SISTONEN, E. (2017). Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions. Autom. Constr., 77:1-14.

YEPES, V.; DASÍ-GIL, M.; MARTÍNEZ-MUÑOZ, D.; LÓPEZ-DESFILÍS, V.J.; MARTÍ, J.V. (2019). Heuristic techniques for the design of steel-concrete composite pedestrian bridges. App. Sci., 9(16), 3253.

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Antecedentes y motivación del proyecto de investigación HYDELIFE (2021-2023)

Laboratorio de materiales del Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

El proyecto HYDELIFE aborda directamente el reto de la sostenibilidad social y medioambiental de las estructuras a lo largo de su ciclo de vida, desde el proyecto hasta la demolición. Para ello se propone una metodología híbrida emergente entre el aprendizaje profundo (Deep Learning, DL) procedente de la inteligencia artificial (IA), metamodelos y metaheurísticas de optimización multiobjetivo y técnicas de toma de decisión multicriterio. El foco del proyecto se centra en el diseño robusto y resiliente aplicado a la construcción industrializada modular, tanto en edificación, como en puentes mixtos de hormigón y acero y en estructuras híbridas de acero. El proyecto se apoya en los avances realizados en los proyectos de investigación anteriores (HORSOST, BRIDLIFE y DIMALIFE), donde se desarrollaron metodologías que se aplicaron a puentes e infraestructuras viarias, pero con una propuesta metodológica y un foco de atención innovador respecto a los anteriores. El proyecto se orienta hacia el objetivo 9 de desarrollo sostenible (ODS): construir infraestructuras resilientes, promover la industrialización sostenible y fomentar la innovación. También se alinea con la Estrategia Nacional de Inteligencia Artificial-ENIA (Gobierno de España, 2020). A continuación, se justifica la propuesta en función de los antecedentes y el estado actual.

La sostenibilidad económica y el desarrollo social de la mayoría de los países dependen, entre otros, del comportamiento fiable y duradero de sus infraestructuras (Frangopol, 2011). La construcción y el mantenimiento de las infraestructuras influyen en la actividad económica, el crecimiento y el empleo. Sin embargo, estas actividades impactan significativamente en el medio ambiente, presentan efectos irreversibles y pueden comprometer el futuro de la sociedad. El gran reto, por tanto, será disponer de infraestructuras capaces de maximizar su beneficio social sin comprometer su sostenibilidad (Aguado et al., 2012).

Por otra parte, el envejecimiento de las infraestructuras, la mayor demanda en su desempeño (aumento de tráfico, por ejemplo) o los riesgos naturales extremos como los terremotos, huracanes o inundaciones afectan al rendimiento previsto de estas infraestructuras (Biondini y Frangopol, 2016). Esto constituye una auténtica bomba de relojería (Thurlby, 2013) que, junto al reto de la reducción de los impactos ambientales, son razones más que suficientes para mejorar el mantenimiento de nuestros puentes. Hoy día los gestores de las infraestructuras tienen ante sí un reto importante consistente en mantenerlas en un estado aceptable con presupuestos muy limitados. Si a ello añadimos la profunda crisis financiera y sanitaria que ha afectado la economía de nuestro país y que ha provocado el declive de la actividad constructora, el panorama se complica. Las infraestructuras que se crearon con una financiación a largo plazo presentan actualmente déficits de conservación y es posible que las generaciones futuras tengan que hacer un esfuerzo adicional para actualizar los requisitos de seguridad y funcionalidad a su nivel de servicio previsto. Esta situación puede provocar una alarma social puntual, sobre todo con la interrupción de grandes vías de comunicación debidas a un excesivo deterioro. Un estudio sobre “Necesidades de Inversión en Conservación 2019-2020” de la Asociación Española de Carreteras, centrado en los firmes y la señalización, estima que el deterioro del patrimonio viario presenta un déficit acumulado de 7.500 millones de euros. Sin embargo, este problema es común a otros países desarrollados. En el año 2019, 47000 puentes del total de los puentes en Estados Unidos, (más del 20% del total) presentan deficiencias estructurales (American Road & Transportation Builders Association, 2019); en Reino Unido, más de 3000 puentes estaban por debajo de los estándares y requerían reparación (RAC Foundation, 2019). Además, el problema pasa a ser grave cuando una parte significativa del parque de infraestructuras se encuentra cercano al final de su vida útil. Y lo que aún es peor, cuando existen riesgos de alto impacto y de baja probabilidad que pueden afectar gravemente a las infraestructuras. Estos son buenos argumentos para aumentar la vida útil de los puentes. Se trata de una verdadera crisis en las infraestructuras. El reto social consistirá en aplicar unos presupuestos muy restrictivos que minimicen los impactos ambientales y los riesgos a las personas, y que la gestión sea socialmente sostenible dentro de una política de conservación del patrimonio, incluyendo la dimensión de género. Por lo tanto, nos encontramos antes un problema de optimización muy complejo, con muchas restricciones y sometido a grandes incertidumbres, lo cual representa un reto científico importante, pues no se presta fácilmente a la exploración con los instrumentos analíticos y de previsión tradicionales.

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

Referencias:

  • AGUADO, A. et al. (2012). Sustainability Assessment of Concrete Structures within the Spanish Structural Concrete Code. J Constr Eng Manage ASCE, 138(2):268-276.
  • AMERICAN ROAD & TRANSPORTATION BUILDERS ASSOCIATION (2019). 2019 Bridge Report. https://artbabridgereport.org/
  • BIONDINI, F., FRANGOPOL, D. M. (2016). Life-Cycle of Deteriorating Structural Systems under Uncertainty: Review. J Struct Eng ASCE, 142(9), F4016001.
  • FRANGOPOL, D. M. (2011). Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges. Struct Infrast Eng, 7(6), 389-413.
  • GOBIERNO DE ESPAÑA (2020). Estrategia Nacional de Inteligencia Artificial. https://www.lamoncloa.gob.es/presidente/actividades/Documents/2020/021220-ENIA.pdf
  • RAC Foundation. (2019). Bridge maintenance table – GB local authorities. https://www.racfoundation.org/media-centre/bridge-maintenance-backlog-grows
  • THURLBY, R. (2013). Managing the asset time bomb: a system dynamics approach. Proc. Inst. Civ. Eng. – Forensic Engineering, 166(3):134-142.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Análisis del ciclo de vida de puentes usando matemática difusa bayesiana

Acaban de publicarnos un artículo en la revista científica Applied Sciences (indexada en el JCR, Q2) un artículo que trata sobre el análisis del ciclo de vida de puentes usando redes bayesianas y matemática difusa. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En la actualidad, reducir el impacto de la industria de la construcción en el medio ambiente es la clave para lograr un desarrollo sostenible. Son muchos los que utilizan software para evaluar el impacto ambiental de los puentes. Sin embargo, debido a la complejidad y discreción de los factores medioambientales de la industria de la construcción, es difícil actualizarlos y determinarlos rápidamente, y se da el fenómeno de la pérdida de datos en las bases de datos. La mayoría de los datos perdidos se optimizan mediante la simulación de Monte Carlo, lo que reduce en gran medida la fiabilidad y precisión de los resultados de la investigación. Este trabajo utiliza la teoría matemática difusa avanzada bayesiana para resolver este problema. En la investigación, se establece una evaluación de matemática difusa bayesiana y un modelo de discriminación prioritaria de sensibilidad de varios niveles, y se definen los pesos y los grados de pertenencia de los factores de influencia para lograr una cobertura completa de los factores de influencia. Con el apoyo de la modelización teórica, se evalúan exhaustivamente todos los factores de influencia de las etapas del ciclo de vida de la estructura del puente. Los resultados muestran que la fabricación de materiales, el mantenimiento y el funcionamiento del puente siguen produciendo contaminación ambiental; la fuente principal de las emisiones supera el 53% del total de las emisiones. El factor de impacto efectivo alcanza el 3,01. Al final del artículo, se estableció un modelo de sensibilidad de “big data“. Optimizando con estas técnicas, las emisiones contaminantes del tráfico se redujeron en 330 toneladas. Se confirma la eficacia y la practicidad del modelo de evaluación integral de la metodología propuesta para tratar los factores inciertos en la evaluación del desarrollo sostenible en el caso de los puentes. Los resultados de la investigación contribuye a alcanzar los objetivos de desarrollo sostenible en la industria de la construcción.

El artículo se ha publicado en abierto, y se puede descargar en el siguiente enlace: https://www.mdpi.com/2076-3417/11/11/4916

ABSTRACT:

At present, reducing the impact of the construction industry on the environment is the key to achieving sustainable development. Countries all over the world are using software systems for bridge environmental impact assessment. However, due to the complexity and discreteness of environmental factors in the construction industry, they are difficult to update and determine quickly, and there is a phenomenon of data missing in the database. Most of the lost data are optimized by Monte Carlo simulation, which greatly reduces the reliability and accuracy of the research results. This paper uses Bayesian advanced fuzzy mathematics theory to solve this problem. In the research, a Bayesian fuzzy mathematics evaluation and a multi-level sensitivity priority discrimination model are established, and the weights and membership degrees of influencing factors were defined to achieve comprehensive coverage of influencing factors. With the support of theoretical modelling, software analysis and fuzzy mathematics theory are used to comprehensively evaluate all the influencing factors of the five influencing stages in the entire life cycle of the bridge structure. The results show that the material manufacturing, maintenance, and operation of the bridge still produce environmental pollution; the main source of the emissions exceeds 53% of the total emissions. The effective impact factor reaches 3.01. At the end of the article, a big data sensitivity model was established. Through big data innovation and optimization analysis, traffic pollution emissions were reduced by 330 tonnes. Modeling of the comprehensive research model; application; clearly confirms the effectiveness and practicality of the Bayesian network fuzzy number comprehensive evaluation model in dealing with uncertain factors in the evaluation of the sustainable development of the construction industry. The research results have made important contributions to the realization of the sustainable development goals of the construction industry.

Keywords:

Construction industry; environmental; impact factor; analysis; contribution

Reference:

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

Descargar (PDF, 5MB)

 

Herramienta asistida por ordenador para optimizar puentes de forma automática

En el diseño de puentes, es necesario modelar muchas variables como los materiales, las dimensiones de la sección transversal, las armaduras de refuerzo y el pretensado para evaluar el rendimiento estructural. Se pretende aumentar la eficiencia y satisfacer los estados límite últimos y de servicio impuestos por el código estructural. En este trabajo se presenta una herramienta informática para analizar los puentes de carretera de vigas continuas de sección en cajón de hormigón postesado para minimizar el coste y proporcionar las variables óptimas de diseño. El programa comprende seis módulos para realizar el proceso de optimización, el análisis por elementos finitos y la verificación de los estados límite. La metodología se define y se aplica a un caso práctico. Un algoritmo de búsqueda de armonía (HS) optimiza 33 variables que definen un puente de tres vanos situado en una región costera. Sin embargo, el mismo procedimiento podría aplicarse para optimizar cualquier estructura. Esta herramienta permite definir los parámetros fijos y las variables optimizadas por el algoritmo heurístico. Además el resultado proporciona reglas útiles para guiar a los ingenieros en el diseño de puentes de carretera de sección en cajón.

Referencia:

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2017). Computer-support tool to optimize bridges automatically. International Journal of Computational Methods and Experimental Measurements, 5(2):171-178.

Descargar (PDF, 141KB)

 

 

 

Aplicación de la metodología de la superficie de respuesta en un curso de postgrado de optimización

Este trabajo describe la introducción de la metodología de superficie de respuesta en un curso de postgrado. Este caso se realiza en la asignatura de “Modelos predictivos y de optimización de estructuras de hormigón“. Esta asignatura se enmarca en el Plan de Estudios del Máster Universitario en Ingeniería del Hormigón. Los estudiantes aprenden aquí conceptos como la optimización de estructuras mediante algoritmos heurísticos, la toma de decisiones multicriterio, técnicas de diseño de experimentos y metamodelos como la superficie de respuesta para obtener resultados óptimos. En este caso de estudio, el objetivo es obtener una solución óptima de un muro de hormigón armado, utilizando las emisiones de CO2 como función objetivo para reducir su impacto. Para aplicar esta metodología, los estudiantes aprovechan programas comerciales. Por un lado, para realizar el análisis estadístico que permita obtener la superficie de respuesta se utiliza Minitab. Por otro lado, los estudiantes comprueban la resistencia de la estructura utilizando el software de cálculo estructural Cype. Como resultado de esta metodología se consigue que los estudiantes alcancen un mejor nivel en competencias transversales, como el diseño y el proyecto, el pensamiento crítico, el análisis y la resolución de problemas o el uso de software específico. En este trabajo se presentan futuros estudios de investigación relacionados con el uso de técnicas de optimización de estructuras por parte de los estudiantes aplicando otras técnicas de optimización diferentes.

Referencia:

YEPES, V.; MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V. (2021). Application of the response surface methodology in a postgraduate optimization course. 15th annual International Technology, Education and Development Conference (INTED 2021), 8th-9th March, 2021, pp. 869-878, Valencia, Spain. ISBN: 978-84-09-27666-0

Descargar (PDF, 232KB)

 

 

ESRA, un software educativo para introducir a los estudiantes de ingeniería civil en la programación de proyectos estocástica

https://www.piqsels.com/es/public-domain-photo-sucqz

Las técnicas clásicas de programación son herramientas comúnmente empleadas en las escuelas de ingeniería civil de todo el mundo para la enseñanza de la planificación y gestión de proyectos. Técnicas como el método del camino crítico (CPM), el método del diagrama de precedencias (PDM), el diagrama de Gantt o la técnica de evaluación y revisión de programas (PERT) presentan la ventaja de su sencillez, facilidad de comprensión y que se implementan en los programas informáticos de gestión de proyectos más aceptados, como Ms Project o Primavera P6. Sin embargo, estas técnicas de programación presentan importantes limitaciones a la hora de tratar la incertidumbre inherente a la gestión de proyectos de construcción. Por un lado, el enfoque determinista del CPM para el aprendizaje de la planificación del proyecto reduce la sensibilidad y la comprensión de los factores que alteran y desafían significativamente el éxito de un proyecto, y por otro lado, el CPM no es capaz de gestionar la incertidumbre. y desafían el éxito de un proyecto, mientras que, por otro lado, el PERT muestra unas capacidades demasiado limitadas en modelización de la incertidumbre y subestima la desviación estándar de la duración del proyecto.

El Análisis de Riesgo de Programación (SRA) es un método estocástico idóneo para promover que los estudiantes empiecen a gestionar proyectos de forma más eficaz y eficiente. En este trabajo, empleamos un software educativo de SRA (ESRA) para ayudar a los estudiantes a entender el supuesto subyacente de la programación estocástica, así como para hacer explícitas las ventajas de la programación estocástica en comparación con los métodos clásicos como CPM o PERT. ESRA permite modelar tanto la incertidumbre en la duración de las actividades, como la relación entre estas incertidumbres, ampliando la gama de problemas de planificación, que los estudiantes pueden ahora evaluar. Esta investigación se llevó a cabo en cuatro etapas a través de un taller. En primer lugar, se introdujeron los fundamentos teóricos de la simulación de Montecarlo, el método en el que se basan la mayoría de los métodos de evaluación de la incertidumbre. En segundo lugar, los estudiantes emplearon el ESRA para ver cómo funciona este método. En tercer lugar, los alumnos trabajaron en torno a un caso práctico de gestión de proyectos de construcción y analizaron los resultados, comparando los de la evaluación estocástica con los de la evaluación determinista. Por último, se les pidió que respondieran a un cuestionario en el que debían abordar la toma de decisiones en el mundo real en relación con la programación de proyectos que requería tener en cuenta las incertidumbres del proyecto.

Referencia:

SALAS, J.; SIERRA, L.; YEPES, V. (2021). ESRA, an educational software for introducing stochastic scheduling to civil engineering students. 15th annual International Technology, Education and Development Conference (INTED 2021), 8th-9th March, 2021, pp. 5788-5798, Valencia, Spain. ISBN: 978-84-09-27666-0

Descargar (PDF, 694KB)

 

 

 

Constructibilidad para la optimización en BIM y gemelos híbridos digitales

En otros artículos anteriores ya hemos hablado de la computación cuántica y los gemelos híbridos digitales en ingeniería civil y edificación. Ahora os paso una comunicación que hicimos en el EAAE-ARCC International Conference que se celebró en Valencia el verano pasado, organizado por la Universitat Politècnica de València.

La introducción de los estándares de Lean Construction en la industria de la construcción ha cambiado la forma en que los profesionales abordan los problemas. El BIM y los gemelos digitales híbridos son nuevas tecnologías que mejoran la eficiencia de los procedimientos del sector. Los algoritmos de optimización se utilizan a menudo en combinación con estas técnicas para mejorar el resultado en varios puntos de la fase de diseño, incluyendo el proyecto estructural. La optimización puede realizarse utilizando diferentes criterios, como la economía, la sostenibilidad, el consumo de energía o la constructibilidad o una combinación entre ellos. Aunque existen fórmulas exactas para cuantificar algunos de estos criterios, no existe una universal para cuantificar la constructibilidad. En este artículo, establecemos los puntos clave para crear un criterio de constructibilidad para cada proyecto estructural y explorar su eficiencia. La forma de cuantificar la constructibilidad depende del diseño estructural y del elemento a optimizar y como no existe una fórmula exacta para cuantificarla se han definido los diferentes factores que influyen en ella y se han explorado sus combinaciones para un determinado problema estructural: la optimización de una viga de hormigón. Con ello, se consigue cuantificar la facilidad para construir un determinado proyecto estructural y reducir el tiempo de construcción y el coste de las cuadrillas y crear una forma de mejorar el diseño estructural. Este método expuesto puede ampliarse luego a diferentes elementos estructurales.

Referencia:

FERNÁNDEZ-MORA, V.; YEPES, V. (2020). Constructability criterion for structural optimization in BIM and Hybrid Digital Twins. EAAE-ARCC International Conference, June, 10-13, Valencia, 8 pp. DOI: http://dx.doi.org/10.4995/EAAE-ARCC-IC-2020.2020.XXXX

Descargar (PDF, 368KB)

Optimización energética de muros de contrafuertes

Acaban de publicarnos un artículo en la revista científica Applied Sciences (indexada en el JCR, Q2) un artículo que trata sobre el uso de distintas técnicas heurísticas para optimizar una pasarela de sección mixta hormigón-acero. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La importancia de la construcción en el consumo de recursos naturales está llevando a los profesionales del diseño estructural a crear diseños de estructuras más eficientes que reduzcan tanto las emisiones como la energía consumida. En este trabajo se presenta un proceso automatizado para obtener diseños óptimos energéticos de muros de contrafuertes. Se consideraron dos funciones objetivo para comparar la diferencia entre una optimización de costes y una optimización de energía incorporada. Para alcanzar el mejor diseño para cada criterio de optimización, se ajustaron los parámetros del algoritmo. Este estudio utilizó un algoritmo híbrido de optimización simulada para obtener los valores de la geometría, las resistencias del hormigón y las cantidades de hormigón y materiales. La relación entre todas las variables geométricas y la altura del muro se obtuvo ajustando las funciones lineales y parabólicas. Se encontró que la optimización de los costes y de la energía están vinculados. Una reducción de costes de 1 euro lleva asociada una reducción del consumo energético de 4,54 kWh. Para conseguir un diseño de baja energía, se recomienda reducir la distancia entre los contrafuertes con respecto a la optimización económica. Esta disminución permite reducir los refuerzos necesarios para resistir la flexión del alzado. La diferencia entre los resultados de las variables geométricas de la cimentación para los dos objetivos de optimización apenas revela variaciones entre ellos. Este trabajo proporciona a los técnicos algunas reglas prácticas de diseño óptimo. Además, compara los diseños obtenidos mediante estos dos objetivos de optimización con las recomendaciones de diseño tradicionales.

El artículo se ha publicado en abierto, y se puede descargar en el siguiente enlace: https://www.mdpi.com/2076-3417/11/4/1800

ABSTRACT:

The importance of construction in the consumption of natural resources is leading structural design professionals to create more efficient structure designs that reduce emissions as well as the energy consumed. This paper presents an automated process to obtain low embodied energy buttressed earth-retaining wall optimum designs. Two objective functions were considered to compare the difference between a cost optimization and an embodied energy optimization. To reach the best design for every optimization criterion, a tuning of the algorithm parameters was carried out. This study used a hybrid simulated optimization algorithm to obtain the values of the geometry, the concrete resistances, and the amounts of concrete and materials to obtain an optimum buttressed earth-retaining wall low embodied energy design. The relation between all the geometric variables and the wall height was obtained by adjusting the linear and parabolic functions. A relationship was found between the two optimization criteria, and it can be concluded that cost and energy optimization are linked. This allows us to state that a cost reduction of €1 has an associated energy consumption reduction of 4.54 kWh. To achieve a low embodied energy design, it is recommended to reduce the distance between buttresses with respect to economic optimization. This decrease allows a reduction in the reinforcing steel needed to resist stem bending. The difference between the results of the geometric variables of the foundation for the two-optimization objectives reveals hardly any variation between them. This work gives technicians some rules to get optimum cost and embodied energy design. Furthermore, it compares designs obtained through these two optimization objectives with traditional design recommendations.

Keywords:

Heuristic optimization; energy savings; sustainable construction; buttressed earth-retaining walls

Reference:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

Descargar (PDF, 1.02MB)

Discretización de metaheurísticas continuas a través de un operador KNN

Acaban de publicarnos un artículo en la revista Mathematics,  revista indexada en el primer cuartil del JCR. En este caso hemos abordado la binarización de metaheurísticas continuas. Se trata de una estrategia muy útil para el caso de la optimización de estructuras, puesto que éstas suelen presentar variables discretas para favoreces su constructabilidad. El trabajo entra dentro de la estrecha colaboración internacional de nuestro grupo de investigación, en este caso, con investigaciones chilenos.

En este trabajo se propone un operador de perturbación que utiliza la técnica de k-vecinos más cercanos, y se estudia con el objetivo de mejorar las propiedades de diversificación e intensificación de los algoritmos metaheurísticos en su versión binaria. Se diseñan operadores aleatorios para estudiar la contribución del operador de perturbación. Para verificar la propuesta, se estudian grandes instancias del conocido problema de cobertura de conjuntos. Se utilizan gráficos de caja, gráficos de convergencia y la prueba estadística de Wilcoxon para determinar la contribución del operador. Además, se realiza una comparación con técnicas metaheurísticas que utilizan mecanismos generales de binarización como las funciones de transferencia o el db-scan como métodos de binarización. Los resultados obtenidos indican que el operador de perturbación KNN mejora significativamente los resultados.

ABSTRACT:

The optimization methods and, in particular, metaheuristics must be constantly improved to reduce execution times, improve the results, and thus be able to address broader instances. In particular, addressing combinatorial optimization problems is critical in the areas of operational research and engineering. In this work, a perturbation operator is proposed which uses the k-nearest neighbors technique, and this is studied with the aim of improving the diversification and intensification properties of metaheuristic algorithms in their binary version. Random operators are designed to study the contribution of the perturbation operator. To verify the proposal, large instances of the well-known set covering problem are studied. Box plots, convergence charts, and the Wilcoxon statistical test are used to determine the operator contribution. Furthermore, a comparison is made using metaheuristic techniques that use general binarization mechanisms such as transfer functions or db-scan as binarization methods. The results obtained indicate that the KNN perturbation operator improves significantly the results.

KEYWORDS:

Combinatorial optimization; machine learning; KNN; metaheuristics; transfer functions

REFERENCE:

GARCÍA, J.; ASTORGA, G.; YEPES, V. (2021). An analysis of a KNN perturbation operator: an application to the binarization of continuous metaheuristics. Mathematics, 9(3):225. DOI:10.3390/math9030225.

Descargar (PDF, 1.02MB)

 

Octave: software libre equivalente a Matlab

En entradas anteriores os he dejado algunos consejos para utilizar Matlab.

Este software es muy potente para nuestros usos en ingeniería y dentro de nuestro grupo de investigación. Sin embargo, a veces me encuentro con algunos estudiantes o profesionales que me preguntan por alguna alternativa que pudiese servir con software libre.

Afortunadamente, Octave es una alternativa con un aspecto y unos comandos de uso iguales y que no presenta problemas de instalación. Se trata de un lenguaje interpretado de alto nivel. Lo puedes descargar desde su página oficial completamente gratis. Aquí tienes el enlace de descarga.

Pero además, puedes utilizar una versión en línea desde tu móvil en el caso de que no tengas a mano tu ordenador. Esta versión la tienes aquí: Octave online.

Os paso el siguiente vídeo de Marcelo Pardo que describe, de forma sencilla, cómo instalar Octave más el plugin de symbolic, que es muy útil.

También os dejo un enlace a su página web donde describe Octave, deja vídeos tutoriales y explica alguna de las aplicaciones, especialmente en el ámbito del hormigón armado y el análisis matricial: https://marcelopardo.com/octave/

Además, la Universidad Politécnica de Madrid ha elaborado un curso gratuito MOOC sobre “Matlab y Octave para ingenieros y científicos” que os puede ser de muchísima utilidad: https://www.youtube.com/watch?v=VF97VH8QIAo&list=PL8bSwVy8_IcNTBBRzsKyE8PojViLIJ4RA

Os dejo a continuación la presentación del curso: