Resumen: Las pequeñas y medianas empresas constructoras se caracterizan por estructuras organizativas muy enfocadas en el control. Como consecuencia de ello, los empleados se centran en las actividades del día a día, con poco tiempo o motivación para generar ideas creativas. Normalmente, las mejoras tecnológicas en estas empresas surgen como resultado de la resolución de los problemas que surgen el la propia obra. Sin embargo, esta situación está cambiando. Algunas administraciones públicas españolas ya consideran la innovación como un valor añadido a la hora de adjudicar una obra; por tanto, las grandes empresas han visto rentable sistematizar sus esfuerzos en innovación. Esta actitud también está afectando a las pequeñas y medianas empresas, que empiezan a modificar su actitud hacia la innovación para mantener la competitividad. La implantación de un sistema de mejora de la innovación y de gestión del conocimiento puede ser la solución para superar esta desventaja. En el presente artículo se analiza la implantación de un sistema de gestión de la innovación realizada por una empresa constructora de tamaño medio durante un periodo de 9 años. El sistema se basa en un conjunto de procesos orientados a generar proyectos de innovación que permitan al contratista documentar la innovación, no sólo con fines internos relacionados con la gestión del conocimiento, sino también para conseguir objetivos externos asociados con la obtención de mejores resultados en las adjudicaciones públicas. Estos procesos son los siguientes: (1) vigilancia tecnológica, (2) creatividad, (3) planificación y ejecución de proyectos de innovación, (4) transferencia tecnológica, y (5) protección de resultados. El último paso es la retroalimentación de todo el proceso a través de la evaluación de los resultados finales. La implantación de un sistema de innovación se asegura en una organización a través de la capacitación del personal, la participación de las partes interesadas y el fomento de la cultura de la innovación.
Palabras clave: Construcción, innovación, gestión, proceso, sistema.
Yepes, V., Pellicer, E., Alarcón, L., and Correa, C. (2015). “Creative Innovation in Spanish Construction Firms.” J. Prof. Issues Eng. Educ. Pract. , 10.1061/(ASCE)EI.1943-5541.0000251 , 04015006.
Una curva de valor es una forma de representar gráficamente la dinámica competitiva del mercado actual, pero no centrándose en datos como la cuota de mercado o posición relativa, sino en la percepción del valor que aporta cada player desde el punto de vista del cliente. W. Cham Kim y René Mauborgne definen un nuevo concepto: competir en nichos de mercado en los que no hay competencia (los llamados océanos azules), a través de la modificación de la curva de valor de la empresa. La pregunta clave consiste en ¿cómo abrir y capturar un océano azul de espacio sin competencia en el mercado?
La curva de valor es una herramienta que nos permite una propuesta realmente innovadora y diferenciadora. Nos ayuda a aumentar el valor del producto para que sea atractivo para los clientes.
Esta curva se compone de dos ejes:
El eje horizontal refleja la gama de variables en las cuales invierte la industria y alrededor de las cuales gira la competencia. Responde a la pregunta ¿qué aspectos valora el cliente?
En el eje vertical se refleja el nivel de lo que se ofrece a los compradores en lo relacionado con todas las variables clave de la competencia. Una puntuación elevada significa que una compañía ofrece más a los compradores y, por consiguiente, invierte más en la variable en cuestión. Responde a la pregunta, ¿qué nivel de valor obtiene de cada competidor?
Os dejo un Polimedia donde el profesor Jordi Joan Mauri Castello nos explica este concepto. Espero que os sea útil.
La demanda de energía renovable a nivel mundial se incrementa con la conciencia medioambiental. La energía eólica es una energía renovable que se está implantando fuertemente a nivel mundial. Se estima que la energía contenida en los vientos es aproximadamente el 2% del total de la energía solar que alcanza la tierra, lo que supone casi dos billones de toneladas equivalentes de petróleo al año (200 veces mayor de la que consumen todos los países del planeta), aunque en la práctica solamente podría ser utilizada una parte muy pequeña de esa cifra, por su aleatoriedad y dispersión, del orden del 5%. Según “The World Wind Energy Association”, la capacidad mundial eólica instalada alcanzó un nivel sin precedentes de más de 318 GW a finales de 2013, de los cuales aproximadamente 35 GW se añadieron en 2013, el nivel más alto registrado hasta la fecha. La energía eólica contribuye en cerca de un 4% en satisfacer la demanda de energía eléctrica mundial. Un total de 103 países están utilizando este tipo de energía desde el punto de vista comercial y se espera que la capacidad de generación de energía eólica pueda aumentar hasta 700 GW en el horizonte del año 2020. En España, la contribución de la eólica a la demanda eléctrica en el año 2010 representó el 16% del total y su objetivo es aumentar ese porcentaje en un futuro. Una sola turbina puede abastecer de electricidad a 500 hogares. Recientemente Huang y McElroy (2015) han realizado una revisión de las perspectivas de este tipo de energía en relación al cambio climático.
El aerogenerador se compone de tres partes: torre, rotor y álabes. En el generador eléctrico es donde se transforma el movimiento mecánico del rotor en energía eléctrica. Suele ser un generador asíncrono o de inducción, con una potencia máxima entre 500 y 1500 kW. Están diseñados generalmente para rendir al máximo a velocidades alrededor de 15 m/s. En el caso de vientos más fuertes es necesario gastar parte del exceso de la energía del viento para evitar daños en el aerogenerador. En consecuencia todos los aerogeneradores están diseñados con algún tipo de control de potencia. Los componentes de un aerogenerador están diseñados para durar 20 años. Esto significa que tendrán que resistir más de 120.000 horas de funcionamiento, a menudo bajo condiciones climáticas adversas (Gálvez, 2005). Respecto a las torres eólicas, se distinguen las “onshore”, instaladas en tierra, normalmente en grandes llanos o zonas elevadas y las “offshore”, cuya localización es dentro del mar, en zonas próximas a la costa.
Los aerogeneradores operan bajo regímenes de carga muy exigentes (Burton et al., 2001), cuyos efectos podrían disminuir la integridad estructural y llevar a costes de mantenimiento y reparación que podrían ser inaceptables. Rebelo et al (2014) abordan el estudio comparativo relativo la influencia del aumento de altura en el diseño estructural y los resultados de diferentes soluciones estructurales de un aerogenerador. Sus conclusiones son que el uso de secciones tubulares de acero y conexiones de brida son adecuadas para torres de hasta 80 m, mientras que las conexiones de fricción son mejores para torres más altas. En cuanto a las torres de hormigón, éstas dejan de ser competitivas por encima de 100 m de altura, especialmente por las dimensiones necesarias de la cimentación ante riesgo sísmico, que pueden incrementar el volumen de hormigón en cimientos hasta un 75%. Sin embargo, según refiere Lofty (2012), la prefabricación de la torre con hormigón es de gran interés a partir de los 75 m de altura. La fuerza vertical que actúa sobre la cimentación se debe fundamentalmente al peso propio de la torre, la góndola y las palas del rotor, incluso cierta fuera vertical provocada por el viento. Sin embargo, son preponderantes las fuerzas horizontales provocadas por el viento, generando un gran momento flector en la base debido a la gran altura de la torre. La torre suele ser prefabricada, en forma troncocónica, conectándose a la cimentación a través de una interfaz que suele ser un tubo de acero de grandes dimensiones insertado en el hormigón de la cimentación, aunque existen múltiples variantes en estos conectores.
Una de las partes fundamentales de un aerogenerador es la forma en que la torre se sujeta al terreno. La selección del tipo de cimiento dependerá fundamentalmente de la ubicación del aerogenerador y las condiciones del terreno. Según la European Wind Energy Association (2013), la cimentación supone aproximadamente el 6,5% del coste total para proyectos onshore y el 34% para proyectos offshore, lo que justifica una optimización de este tipo de estructuras (Horgan, 2013). Hoy en día, construimos la mayoría de las turbinas eólicas en tierra en suelos firmes y rígidos, pero probablemente las futuras torres eólicas se construirán sobre suelos con propiedades menos favorables. El cálculo de la cimentación depende de las cargas producidas por el rotor eólico en diferentes condiciones de operación, por esto la tecnología del aerogenerador juega un papel fundamental. La forma más habitual de cimentar un aerogenerador es una zapata de hormigón (Hassanzadeh, 2012). Tal y como indica Svensson (2010), las cimentaciones sobre losas de hormigón podrían dejar de ser adecuadas, pues grandes dimensiones provocan asientos diferenciales inaceptables. La altura de las torres puede variar mucho, entre 40 y 130 m. Cuanta más alta sea la torre, mayor velocidad de viento, y por tanto, mayor generación de energía.
Las torres de aerogeneradores se localizan en áreas con buenas condiciones de viento pero que, en numerosas ocasiones, se encuentran en terrenos inhóspitos o con malas condiciones de acceso, lo cual dificulta la ejecución de las cimentaciones de estas estructuras. Para anclar estas torres normalmente se utilizan los métodos: cimentaciones o zapatas que sujetan la estructura al terreno mediante gravedad, o bien mediante anclajes realizados sobre terrenos competentes. Se busca garantizar la estabilidad de la estructura y asegurar una transmisión de cargas al terreno con la adecuada intensidad para que este no colapse. En numerosas ocasiones los terrenos no permiten dicho anclaje, por lo que es habitual el uso de zapatas masivas realizadas con hormigón armado. No obstante, las geometrías empleadas en planta son muy diversas. Se utilizan soluciones con planta poligonal, circular e incluso cruciforme, siendo esta ultima un caso muy aislado. Herrando (2012) ha comprobado cómo para un aerogenerador tipo de 100 m de altura y 3,5MW de potencia, la cimentación superficial con geometría en planta circular es la que mejores resultados ofrece a nivel estructural y económico.
Las ventajas de la prefabricación son evidentes, reduciéndose incluso la cantidad de material necesario respecto a cimentaciones ejecutadas “in situ”. La prefabricación reduce los problemas de hormigonado in situ de grandes volúmenes, que no sólo generan problemas importantes cuando los accesos se encuentran alejados de las plantas de fabricación de hormigón e incrementan considerablemente el calor de hidratación en el fraguado del hormigón, sino que las temperaturas extremas pueden reducir el número de días de trabajo efectivo. Además, teniendo en cuenta que la vida útil de un aerogenerador puede ser de 20 a 25 años, la prefabricación facilita la fase de desmantelamiento de las instalaciones. Se han generado en el mercado cimentaciones alternativas donde una parte o la totalidad de la cimentación se realizan con piezas prefabricadas. Así, algunas patentes europeas y americanas, como por ejemplo, DK200100030 (2001) y WO2004101898A2 (2004), han desarrollado soluciones de cimentación prefabricadas para el caso de pequeñas instalaciones, no quedando claro que alguna de estas soluciones se hayan construido realmente (Nilsson, 2012). Empresas como Gestamp Hybrid Towers ofrecen diseños de cimentaciones prefabricadas para torres en forma de T invertida que pretende ofrecer eficiencia y ductilidad a la solución. La empresa burgalesa ARTEPREF patentó también una cimentación prefabricada para este tipo de torres. Además, estas soluciones suelen unir las piezas prefabricadas mediante hormigón fresco. Por tanto, el elemento clave en el diseño de este tipo de cimentaciones son la forma con la que se resuelven las juntas para convertir las piezas en un conjunto monolítico y también la conexión o “brida” de la torre con la cimentación (Hassanzadeh, 2012). Bellmer (2010) advierte de que gran parte de los problemas de durabilidad de los aerogeneradores se deben a un mal diseño de la cimentación. Currie et al (2013) presentan una solución para monitorizar las cimentaciones de estas torres. Eneland y Mallberg (2013) advierten de la gran dificultad que existe en diseñar un método de cálculo para las juntas de las piezas prefabricadas de este tipo de cimentaciones. Asimismo, una de las claves es la justificación de la viabilidad económica de los elementos frente a las cimentaciones ejecutadas “in situ”.
Referencias:
BURTON, T.; SHARPE, S.; JENKINS, N.; BOSSANYI, E. (2001). Wind Energy Handbook. Wiley, Chichester, UK, pp. 211–219.
BELLMER, H. (2010). Probleme im Bereich Stahlturm – Fundament, 3rd Technical Conference – Towers and Foundations for Wind Energy Converters, HAUS DER TECHNIK, Essen, Germany.
CURRIE, M.; SAAFI, M.; TACHTATZIS, C.; QUALI, F. (2013). Structural health monitoring for wind turbine foundations. Proceedings of the Institution of Civil Engineers, Paper 1200008.
DK200100030 (2001). Stjernefundament med elementer til foundering af tårne. Patent
ENELAND, E.; MALLBERG, L. (2013). Prefabricated foundation for wind power plants. A conceptual design study. Thesis in the Master’s Programme Structural Engineering and Building Technology, Chalmers University of Technology, Sweden.
GÁLVEZ, R. (2005). Diseño y cálculo preliminar de la torre de un aerogenerador. Proyecto Fin de Carrera, Universidad Carlos III de Madrid, Departamento de Mecánica de Medios Continuos y Teoría de Estructuras.
HASSANZADEH, M. (2012). Cracks in onshore wind power foundations. Causes and consequences. Stockholm: Elforsk (Elforsk Rapport, 11.56).
HERRANDO, V. (2012). Optimización del diseño de la cimentación para un aerogenerador de gran altura. Trabajo Fin de Carrera, Universitat Politècnica de Calalunya.
HORGAN, C. (2013). Using energy payback time to optimise onshore and offshore wind turbine foundations. Renewable Energy, 53:287-298.
HUANG, J.; McELROY, M.B. (2015). A 32-year perspective on the origin of wind energy in a warming climate. Renewable Energy, 77:482-492.
LOFTY, I. (2012). Prestressed concrete wind turbine supporting system. Master’s Dissertation, University of Nebraska, USA.
NILSON, M. (2012). Prefabricated foundations with cell reinforcement for land-based wind turbines. . Stockholm: Elforsk (Elforsk Rapport, 13:06).
REBELO, C.; MOURA, A.; GERVÁSIO, H.; VELJKOVIC, M.; SIMOES DA SILVA, L. (2014). Comparative life cycle assessment of tubular wind towers and foundations – Part 1: Structural design. Engineering Structures, 74:283-291.
SVENSSON, H. (2010). Design of foundations for wind turbines. Master’s Dissertation, Department of Construction Sciences, Lund University, Sweden.
Resulta difícil elegir 10 libros interesantes sobre ingeniería. Seguro que nos dejaremos alguno, por eso serán más de 10 los que proponga a continuación. La elección es sesgada: son volúmenes que han caído en mis manos y que he devorado con gusto. No son libros de teoría de la ingeniería, sino de temas relacionados con ella (historia, estética, anécdotas, personajes, etc.). Son ese tipo de libros que te gusta leer en vacaciones, en tu tiempo de ocio, y que sólo les gusta a los ingenieros de vocación. La lista seguro que la iremos ampliando, no son 10, sino que serán los que sean. Tampoco están puestos en orden de preferencia.
Los 10 libros de arquitectura, de Marco Lucio Vitruvio, puede ser un buen inicio para todo un clásico. Lo ponemos en primer lugar simplemente por ser un clásico. Muchas de las enseñanzas permanecen vigentes.
También resulta un clásico el “Razón y ser de los tipos estructurales” de Eduardo Torroja. Ningún ingeniero debería de dejar de leer esta obra, de una sencillez realmente compleja, donde los conceptos básicos se destilan de forma maestra.
Una de mis lecturas preferidas en mi época de estudiante, y que he releído varias veces, es “Puentes y sus constructores”, de Steinman y Watson. Si bien se centra en los grandes puentes americanos, la epopeya de su historia y sus constructores es apasionante.
Y si de arte estructural queremos tener las ideas claras, no hay que olvidar “La torre y el puente”, de David P. Billington.
Resulta interesante también la biografía que José Antonio Fernández Ordóñez hace sobre Eugène Freyssinet. No sólo resulta de interés la figura del biografiado, sino de su autor, JAFO.
Ya que estamos con José Antonio Fernández Ordoñez, la edición de José Ramón Vera “Pensar la ingeniería” es una buena antología sobre los textos de JAFO.
Otra obra de interés, para no olvidar los orígenes de nuestra profesión, es el texto de Fernando Sáenz Ridruejo sobre “Los ingenieros de caminos”.
“La obra de ingeniería como obra de arte” recoge las ideas de Javier Manterola respecto a lo que debe ser una estructura. En tiempos confusos como los actuales, resulta un buen referente.
También resulta de interés la visión de Miguel Aguiló en su obra “Forma y tipo en el arte de construir puentes”.
“La ingeniería es humana”, de Henry Petroski expone de forma sencilla y amena la importancia del fallo en el éxito del diseño. Una lección de humildad.
Siempre que intentamos hacer algo nunca nos sale “exactamente” igual. Por ejemplo, si corremos 100 m lisos y tuviésemos un cronómetro que nos midiera hasta 100 decimales, sería muy improbable que hiciésemos dos series en igual tiempo. Este concepto universal de la variabilidad es muy importante en los procesos productivos y en la calidad. Demos un pequeño repaso al concepto.
El enemigo de todo proceso es la variación, siendo la variabilidad inevitable. Cuando se fabrica un producto o se presta un servicio, es materialmente imposible que dos resultados sean exactamente iguales. Ello se debe a múltiples motivos, más o menos evitables. Por un lado existen múltiples causas comunes, aleatorias y no controlables que hacen que el resultado cambie siguiendo habitualmente una distribución de probabilidad normal. Se dice que dicho proceso se encuentra bajo control estadístico, siendo éste el enfoque que sobre el concepto de calidad propugna Deming y que vimos en un artículo anterior. Por otra parte, existen unas pocas causas asignables, que ocurren de forma fortuita y que podemos detectarlas y corregirlas. Ocurren de forma errática y, afortunadamente se solucionan fácilmente. Las causas comunes son difíciles de erradicar porque precisan de un cambio del proceso, de la máquina o del sistema que produce los resultados, siendo ese cambio una responsabilidad de la gerencia. Kaouru Ishikawa decía que el 85% de los problemas en un proceso son responsabilidad de la gerencia, siendo mal recibido dicho comentario por parte de la alta dirección de las empresas.
Para aclarar y entender estos conceptos, os dejo un Polimedia explicativo, de poco más de siete minutos, que espero os guste.
En los trabajos ejecutados en zanjas se producen frecuentemente accidentes graves o mortales debidos al desprendimiento de tierras. Podemos considerar, con carácter general, peligrosa toda excavación que, en terrenos corrientes, alcance una profundidad de 0,80 m y 1,30 m en terrenos consistentes.
El Colegio Oficial de Aparejadores y Arquitectos Técnicos de Madrid nos ofrece el siguiente documento (enlace) donde se definen las líneas generales de las medidas de seguridad y procedimientos de trabajo, que garanticen la seguridad de los trabajadores que tienen que llevar a cabo labores en el interior de zanjas y pozos, haciendo hincapié en los sistemas de entibación, como garantes de la estabilidad de las paredes de la excavación. Otro documento de interés es el NTP 278: Zanjas: prevención del desprendimiento de tierras, del Instituto Nacional de Seguridad e Higiene en el Trabajo.
Os dejo un vídeo que grabé para mis estudiantes donde hago una introducción a las entibaciones.
A continuación os presento un vídeo del profesor José Ramón Ruiz, de la UPV, donde se explican los conceptos básicos de las entibaciones y las diferencias entre entibaciones cuajadas, entibaciones semicuajadas y entibaciones ligeras.
En este vídeo podemos ver alguna de las recomendaciones más importantes relacionadas con la seguridad en la ejecución de zanjas y entibaciones.
Igual os sorprende este vídeo sobre entibaciones realizado de forma original.
Lucio del Valle y Arana (1815-1874) fue ingeniero de caminos y arquitecto, de los más influyentes de su época. Dedicó su vida a las obras públicas destacando la carretera Madrid-Valencia por las Cabrillas, el Canal de Isabel II, la gran reforma de la Puerta del Sol o los faros metálicos del delta del Ebro, aunque sus días los acabó como Director de la Escuela de Ingenieros de Caminos.
Este artículo lo vamos a dedicar a la carretera de Valencia a Madrid por las cuestas de Contreras, en particular al puente sobre el Cabriel. El denominado camino de las Cabrillas tenía fama por lo intransitable y peligroso a causa de bandoleros, si bien era paso obligado entre Valencia y Castilla. A estos trabajos dedicó D. Lucio 10 años, desde finales de 1840, recién terminada la carrera. Solucionó el proyecto del trazado con pendientes no superiores al 5% de inclinación, con una anchura viaria mínima de 13 m, apto para el tránsito de carruajes, para lo cual tuvo que realizar un trazado zigzagueante que se extendía varios kilómetros en la provincia de Cuenca.
El problema era salvar la garganta del río Cabriel, de 159 m de anchura y unos 50 m de profundidad, para lo cual pensó inicialmente en un puente colgante. Sin embargo, el proyecto final fue una obra de sillería situada en un punto más bajo. Influyó en la decisión la posibilidad de abaratar costes al contar con 1200 presidiarios para su construcción. Su construcción empezó en 1846 y terminó en 1851. El puente actual, apodado por el propio D. Lucio como el “ciempiés”, debido a sus numerosos pilares a modo de patas y su ligereza, pues su espesor no supera los 2,5 m. Tiene una longitud de 86,80 m, una anchura de 6,40 m en el tramo central y 8,90 m en los dos tramos de acceso, y consta de siete arcos de medio punto de 28 m de altura máxima, teniendo el arco central 16,7 m de luz y los tres arcos de cada lado 8 m. No obstante, la envergadura del arco principal y la relación ancho de pila/luz del arco, de 1/2,5, son dimensiones que fueron superadas anteriormente por muchos puentes romanos, como el de Alcántara, construido casi dos mil años antes. Según Javier Manterola (2015), este puente, junto con el puente de piedra de Logroño (1882) suponen anacronismos en una época donde el hierro y el acero ya se habían impuesto, revolucionando la forma de construir los puentes, y el cemento Portland y el hormigón están apareciendo. Solo Seyourné, con su enorme habilidad y talento, prologó el anacronismo de los puentes de piedra hasta 1911, con el puente de los Catalanes, en Toulouse.
El aspecto actual del puente se mantiene desde la década de 1930, con la obra original del XIX y las mejoras efectuadas por el Circuito Nacional de Firmes Especiales (carretera asfaltada y peraltada, con el vallado en algunos tramos). Ello se debe a que el tráfico se desvió, primero por la parte alta del embalse, y luego por el actual viaducto de Contreras. Una lápida en mármol en el puente nos recuerda: “D. LUCIO DEL VALLE, INGENIERO DE CAMINOS, CANALES Y PUERTOS, PROYECTÓ Y DIRIGIÓ ESTA CARRETERA Y TODAS SUS OBRAS DESDE 1841 A 1851”.
El ingeniero militar francés Charles-Augustin de Coulomb (1776) fue el primero en estudiar el problema de las presiones laterales del terreno y estructuras de retención. Este autor introduce una simplificación importante para calcular el empuje: se limitó a usar la teoría de equilibrio que considera que una cuña de terreno en rotura imitada por el trasdós y por un plano que pasa por el pie del muro como un cuerpo en movimiento para determinar la presión lateral limitante. La presión limitante horizontal en fallo en extensión o compresión se determinan a partir de Ka y Kp respectivamente. Se supone que la superficie de deslizamiento es plana, el drenaje del muro funciona bien y que no hay presiones intersticiales en el terreno. Aunque con simplificaciones, esta teoría permite calcular problemas en los cuales el paramento no es vertical y la superficie de relleno tiene cualquier forma.
Para que se pueda estudiar de forma cualitativa el efecto del empuje, se aporta un Laboratorio Virtual. El objetivo de este objeto de aprendizaje consiste en entender cómo varía el empuje activo horizontal sobre un muro aplicando la teoría de Coulomb. Éste coeficiente varía en función del ángulo de rozamiento interno del terreno, del ángulo de rozamiento de terreno y muro, y de la inclinación del muro. Supondremos un relleno horizontal sobre el muro.
Coulomb C.A., (1776). Essai sur une application des regles des maximis et minimis a quelques problemes de statique relatifs a l’architecture. Memoires de l’Academie Royale pres Divers Savants, Vol. 7
El puente primigenio de San Pablo se construyó entre 1538 y 1589 por orden del canónigo Juan del Pozo para comunicar el Convento de San Pablo y el casco urbano de Cuenca, a su paso por el río Huécar. Elefante de cinco patas, como le llamó Pío Baroja, este puente era de piedra con cinco arcos apoyados sobre cuatro pilares, de los que aún quedan algunos restos. Tantos años para construir dicho puente explica la cantidad de maestros que pasaron por la dirección de sus obras como Francisco de Luna, Andrés de Vandelvira, Juan Gutiérrez de la Hoceja, también a Juan de Palacios, seguido de Hernando de Palacios y, finalmente, Juan de Meril. Sin embargo, el hundimiento progresivo de las pilas fue provocando la rotura sucesiva de arcos. El puente de piedra se viene abajo en 1786, en la parte más próxima a la catedral y, aunque en 1788 fue reparado por el arquitecto Mateo López, no se logró impedir el desmoronamiento del segundo arco. Su último episodio, en 1895, llevó a tomar la decisión de su total demolición.
Pasaron los años y fue el Obispo Wenceslao Sangüesa y el Seminario Conciliar de San Julián los que toman la decisión de poner los fondos para construir un nuevo puente San Pablo. El actual nuevo puente es metálico y de madera. Empezaron sus obras en 1902, proyectadas por el ingeniero de caminos valenciano José María Fuster y Tomás, y erigido por George H. Bartle, cuya fundición, también valenciana, contaba con gran renombre por aquella época, quedando inaugurado el 19 de abril de 1903. El puente presenta 60 m de longitud, elevado 40 m y apoyado en los pilares de arranque de sillería del puente anterior y, en el centro, en un puntal de hierro. Parte del patrimonio de la ciudad de Cuenca, es uno de los mejores lugares desde los cuales observar las Casas Colgadas.
Os dejo un vídeo de Florián Yubero sobre el puente.
Se entiende por suelo al seudosólido formado por un conjunto de partículas sólidas que forman una estructura en cuyo seno existen huecos ocupados por agua y aire en proporciones variables. El “peso específico de un suelo“, como relación entre el peso y su volumen, es un valor dependiente de la humedad, de los huecos de aire y del peso específico de las partículas sólidas. Para evitar confusiones, las determinaciones de los ensayos de laboratorio facilitan por un lado el “peso específico seco” y por otro la humedad. Fijémonos que este término es diferente de la “densidad del suelo“, que establece una relación entre la masa y el volumen. También suele utilizarse un valor adimensional denominado, “peso especifico relativo”, definido como el cociente entre el peso específico del suelo y el peso específico del agua a una temperatura determinada. Los valores típicos de gravedades específicas para los sólidos del suelo son entre 2.65 y 2.72. En la figura que sigue se observan los componentes de un suelo, con las notaciones sobre sus pesos y volúmenes, lo cual permite definir parámetros que caracterizan el estado físico de dicho suelo.
Estos conceptos son básicos y muy conocidos para el alumno de un curso de geotecnia en un grado de ingeniería civil. Sin embargo, para facilitar el proceso de aprendizaje os facilito a continuación un enlace a un pequeño laboratorio virtual donde el alumno puede comprobar por sí mismo cómo varía el peso específico seco en función de la humedad y del peso específico de las partículas sólidas. Las instrucciones son muy sencillas: se debe seleccionar el rango máximo para la humedad y el contenido de huecos de aire, en tanto por cien, con valores comprendidos entre 0 y 100; además se seleccionará el peso específico de las partículas sólidas en kN/m3. No se admiten valores negativos.