Requerimientos en la ejecución de los barrenos

Perforacion barrenosLa perforación realizada en una voladura, consiste en la operación de llevar a cabo varias penetraciones cilíndricas en la superficie del macizo a volar, llamadas barrenos que tendrán una distribución y un ángulo de inclinación diseñados con el fin de producir el arranque, fragmentación y desplazamiento de parte del macizo rocoso. Estos barrenos alojarán las cargas explosivas que se detonarán con una secuencia de disparo diseñada para obtener un tamaño de piedra medio o fragmentación óptimos con mínimas proyecciones y vibraciones.

La correcta ejecución de los barrenos, sea cual sea el sistema de perforación empleado, se caracteriza fundamentalmente por los siguientes factores:

  • El diámetro del barreno
  • La longitud o profundidad del barreno
  • La desviación de la perforación
  • La estabilidad del barreno

 

Continue reading “Requerimientos en la ejecución de los barrenos”

Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability

Esta es la versión post-print de autor. La publicación se encuentra en: https://riunet.upv.es/handle/10251/49057, siendo el Copyright de Springer Verlag (Germany).

El artículo debe ser citado de la siguiente forma:

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1):3-12. DOI 10.1007/s11367-013-0614-0

Descargar (PDF, 413KB)

CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy

Esta es la versión post-print de autor. La publicación se encuentra en: https://riunet.upv.es/handle/10251/28631, siendo el Copyright de la American Society of Civil Engineers.

El artículo debe ser citado de la siguiente forma:

Yepes, V.; Gonzalez-Vidosa, F.; Alcalá, J.; Villalba, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls Based on a VNSThreshold Acceptance Strategy. JOURNAL OF COMPUTING IN CIVIL ENGINEERING. 26(3):378-386. doi:10.1061/(ASCE)CP.1943-5487.0000140.

Descargar (PDF, 468KB)

Method for Planning Graduate Programs in Construction Management

Esta es la versión post-print de autor. La publicación se encuentra en: http://dx.doi.org/10.1016/j.autcon.2014.10.013, siendo el Copyright de la American Society of Civil Engineers.

El artículo debe ser citado de la siguiente forma:

Pellicer, E.; Yepes, V.; Ortega, AJ. (2013). Method for Planning Graduate Programs in Construction Management. Journal of Professional Issues in Engineering Education and Practice. 139(1):33-41. doi:10.1061/(ASCE)EI.1943-
5541.0000120.

Descargar (PDF, 804KB)

 

Fabricación del cemento

El cemento es un conglomerante formado a partir de una mezcla de caliza y arcilla calcinadas y posteriormente molidas, que tiene la propiedad de endurecerse al contacto con el agua. Mezclado con agregados pétreos (grava y arena) y agua, crea una mezcla uniforme, maleable y plástica que fragua y se endurece, adquiriendo consistencia pétrea, denominada hormigón.

Las fases para su fabricación son las siguientes:

  1. Fragmentado y molido. En esta primera fase, la piedra calcárea y la arcilla se fragmentan y se muelen hasta quedar reducidas a polvo.
  2. Dosificación y mezcla. En una gran cuba o cisterna se mezclan las cantidades exactas de cada material y se amasan hasta obtener la textura adecuada.
  3. Cocción. Se efectúa en un horno giratorio en forma de cilindro de hasta 100 m de largo. El material recorre lentamente el tubo y se cuece a una temperatura de 1.300 a 1.500 °C. De él sale en forma de pequeñas bolas; es lo que se llama clínker.
  4. Molido del clínker. El clínker que hemos obtenido se muele hasta que se convierte en un polvo finísimo, que recibe el nombre de cemento.
  5. Almacenamiento y empaquetamiento. El cemento se almacena en silos. Después se empaqueta en sacos de 50 kg, listo para su comercialización y para ser utilizado.
Esquema del proceso de fabricación del cemento Portland, mostrando los posibles puntos de control de calidad, en los cuales el productor extrae muestras.

Sin embargo, para entender mejor este proceso, dejo unos cuantos vídeos explicativos que espero resulten de vuestro interés.

Continue reading “Fabricación del cemento”

Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm

Esta es la versión post-print de autor. La publicación se encuentra en: http://dx.doi.org/10.1016/j.autcon.2014.10.013, siendo el Copyright de Elsevier.

El artículo debe ser citado de la siguiente forma:

Yepes, V.; Martí, JV.; García-Segura, T. (2015). Cost and CO2 emission optimization of precast prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction. 49:123-134. doi:10.1016/j.autcon.2014.10.013.

Descargar (PDF, 1.04MB)

La ingeniería del valor en la construcción

BBA027La ingeniería del valor “value engineering” constituye una metodología para resolver problemas, identificar y eliminar costos inútiles de un producto, al mismo tiempo que mejora los requerimientos funcionales y de calidad. Se trata de aumentar el valor de los productos para suministrarlos a los precios más bajos posibles. Su objetivo es satisfacer los requisitos de rendimiento del producto y las necesidades del cliente con el menor coste posible. En un proyecto de construcción ello implica un estudio cuidadoso de los costes, de la disponibilidad de los materiales, de los métodos constructivos, de los costes de transportes, de las limitaciones o restricciones, de la planificación y organización de la obra o de los análisis de costes/beneficio.

Los conceptos manejados en la ingeniería del valor se emplean, de una u otra forma, en el trabajo realizado por los proyectistas, ya sean arquitectos o ingenieros. En efecto, los proyectistas que no consideran la máxima economía en la selección y uso de los métodos y los materiales de construcción, simplemente no están realizando su trabajo. El análisis del valor de un producto, servicio o proceso es más efectivo cuando se hace en la etapa inicial, donde es posible influir en el diseño, reduciendo costes y mejorando sus prestaciones. Algunos beneficios que pueden obtenerse es la reducción del coste del ciclo de vida, la mejora de la calidad, la reducción de los impactos ambientales, etc.

Sin embargo, es el constructor el que más partido puede sacar a la ingeniería del valor. Así, si bien el proyectista ha decidido los materiales y procedimientos constructivos que mejor pueden adecuarse a la obra tras un análisis de las condiciones medias del mercado, es el constructor el que conoce perfectamente sus equipos, medios humanos y condiciones para hacer frente a la obra. De hecho, en algunas licitaciones de obra pública se valoran las mejoras que puede aportar el licitador en costes, en procedimientos constructivos, etc., de forma que no merme la calidad ni la funcionalidad de la obra.

La metodología de la ingeniería del valor comprende los siguientes aspectos:

Identificar los principales elementos de un producto, servicio o proyecto.

  • Analizar las funciones que realizan los elementos del proyecto.
  • Desarrollar diseños alternativos para ejecutar esas funciones.
  • Evaluar las alternativas.
  • Asignar costes a las alternativas.
  • Desarrollar las alternativas prometedoras.

El constructor puede aplicar dicha metodología en la mejora de los procedimientos constructivos, lo cual puede aportar reducciones significativas en los costes del proyecto. Esta reducción de costes puede beneficiar al promotor de la obra que, si facilita la transparencia y la libre competencia entre las empresas constructoras, puede adjudicar la obra a aquel que presente costes más bajos.

Os dejo algún vídeo sobre el tema.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

Perforación a percusión con cable

Sondeo a percusión con cable.

La perforación a percusión con cable se basa en el golpeteo con una pesada herramienta de corte (trépano) que se eleva con un cable y que cae por gravedad, fragmentando el suelo. Resulta evidente, por tanto, que los sondeos realizados por esta máquina deben ser verticales.

Este sistema empezó a utilizarse en China en el 4000 A.C., consistiendo en un balancín que se contrapesaba con un grupo de hombres que efectuaban el tiro en un extremo de una cuerda mientras que de otra colgaba la sarta de perforación construida con cañas de bambú.

Su ámbito de aplicación se centra en terrenos de dureza media a baja o bien en aquellos otros duros que sean frágiles. Sin embargo, se encuentran contraindicados en terrenos detríticos no cohesionados, muy duros, abrasivos y plásticos.

La frecuencia de golpeo se encuentra en el entorno de 40 a 50 impactos/minuto, en función de los parámetros mecánicos del suelo perforado. Con ello se consiguen unos rendimientos medios de 2 a 4 m/día en materiales duros y de 10 a 20 m/día en materiales blandos. La percusión se consigue mediante un movimiento de balancín y manivela proporcionado por la máquina. La altura de caída del trépano dependerá de la dureza del terreno y de la profundidad del fondo de perforación. En máquinas normales, esta altura oscila entre 20 y 60 cm.

La perforación comienza hincando un tramo de tubería, generalmente de longitud inferior a 2 m y con un diámetro mayor al diámetro a perforar (700-800 mm), de forma que sirva de guía inicial al trépano. La entubación sólo es necesaria en casos de inestabilidad del terreno, en cuyo caso se entuban tuberías auxiliares recuperables aprovechando la percusión.

Con este sistema de perforación se hace necesario el uso de agua para facilitar la recogida del detritus formado. Este suelo fragmentado mezclado con agua forma un lodo viscoso que se recoge periódicamente mediante una válvula o cuchara de limpieza que se introduce cuando se detiene el golpeteo.

Estas cucharas consisten en una tubería terminada en su parte inferior en una válvula, que puede ser plana o de dardo. La plana, también llamada de charnela o de chapeta, hace mejor la limpieza del sondeo. La de dardo o lanza se usa fundamentalmente en pruebas de caudal. Continue reading “Perforación a percusión con cable”

Muros construidos mediante la técnica del tapial

Sección vertical y horizontal del encofrado de un muro de tapial. Wikipedia.

Se denomina tapia a un muro macizo construido apisonando tierra arcillosa húmeda dentro de un molde de madera. Se trata de de una técnica milenaria empleada con profusión en la Península Ibérica, tanto en la arquitectura monumental –baste recordar el complejo de la Alhambra de Granada- como popular, aunque llegó a desaparecer casi por completo en España a mediados del siglo XX.  Sin embargo, a mediados de los años ochenta del siglo pasado comienza a renacer el interés por esta técnica.

Se utiliza el material del propio lugar, generalmente tierra -minimizando el coste de adquisición y transporte de materiales- que se conforma por apisonado dentro de una cajonera denominada tapial. Una vez colocado el tapial sobre el cimiento, se vierte el barro en su interior y se prensa. Antiguamente se vertía la tierra con espuertas que se elevaban con la ayuda de una polea sujeta al tapial. Cuando esta formado el muro, la cajonera se retira y se deja secar al aire libre. La tapia puede conformar enteramente el muro o bien quedar entre pilares de otros materiales.

El tapial tiene un excelente comportamiento térmico por su bajo índice de conductividad calórica, cálido en invierno y fresco en verano,  siendo un buen aislante acústico, sobre todo cuando el acabado es rugoso (reducción de unos 50-60 decibelios para un muro de 40 cm , para una frecuencia de 500 Hz). También es resistente al desgaste y punzonamiento, como se puede comprobar en las reformas de casas antiguas. Con el fuego, este material mejora su dureza, pues se convierte en ladrillo cocido. Continue reading “Muros construidos mediante la técnica del tapial”

¿Qué es el diferencial? ¿Para qué se utiliza en la maquinaria de construcción?

Vista de un diferencial. Wikipedia

Un diferencial es el elemento mecánico que permite compensar las diferencias en la velocidad de giro de las ruedas exteriores e interiores de un vehículo, según éste se encuentre tomando una curva hacia un lado o hacia el otro. Permite, por tanto, la transmisión de par a distintas revoluciones a ambas ruedas simultáneamente. Sus inventores fueron los chinos, que hace ya 3.000 años ya utilizaban un mecanismo diferencial en sus carros. Gracias al diferencial la conducción es más predecible, los neumáticos se gastan menos y no hay tensiones extra en chasis y ejes, así que, en definitiva, tenemos una conducción más segura.

El diferencial consta de engranajes dispuestos en forma de “U” en el eje. Cuando ambas ruedas recorren el mismo camino, por ir el vehículo en línea recta, el engranaje se mantiene en situación neutra. Sin embargo, en una curva los engranajes se desplazan ligeramente, compensando con ello las diferentes velocidades de giro de las ruedas.

http://www.tecnerife.com

Continue reading “¿Qué es el diferencial? ¿Para qué se utiliza en la maquinaria de construcción?”