Docencia e inteligencia artificial: nuevas estrategias para educadores

La educación está experimentando una transformación sin precedentes gracias a los avances en inteligencia artificial (IA). La integración de la IA en el ámbito educativo ha traído consigo oportunidades y desafíos que requieren una adaptación rápida por parte de los docentes y los sistemas de enseñanza.

Esta revolución tecnológica ha dado lugar a la automatización de tareas administrativas, la personalización del aprendizaje, la optimización de evaluaciones y el desarrollo de nuevas metodologías de enseñanza que mejoran la eficiencia del aula. Sin embargo, su implementación también genera preocupaciones relacionadas con la equidad, la privacidad de los datos y la ética en la educación.

Este informe explora en profundidad cómo los docentes pueden aprovechar la IA para mejorar sus prácticas pedagógicas y hacer frente a los desafíos emergentes. Se proporcionarán ejemplos detallados, herramientas específicas y estrategias que permitirán a los educadores integrar esta tecnología de manera efectiva y responsable en sus aulas.

1. Inteligencia artificial generativa y su aplicación en la docencia

1.1. Definición y características

La inteligencia artificial generativa es una rama avanzada de la IA que emplea redes neuronales profundas para crear contenido original en formato de texto, imágenes, audio y vídeo. Este tipo de IA puede proporcionar respuestas personalizadas y adaptadas a distintos contextos de aprendizaje, lo que la convierte en una herramienta muy útil en el ámbito educativo.

Algunos ejemplos notables de IA generativa son ChatGPT, que puede generar respuestas detalladas en múltiples idiomas; DALL-E, que crea imágenes a partir de descripciones textuales, y Bard AI, que ofrece información en tiempo real a partir de consultas específicas.

El uso de estas herramientas en la docencia permite mejorar la interacción con los estudiantes, proporcionar materiales personalizados y fomentar un aprendizaje más dinámico. Además, la IA generativa puede ayudar en la corrección de textos, la generación de pruebas automatizadas y la creación de contenidos visuales para reforzar los conceptos enseñados en el aula.

1.2. Aplicaciones en el aula

Las aplicaciones de la inteligencia artificial (IA) generativa en la enseñanza son diversas y pueden utilizarse en diferentes áreas del conocimiento. Entre las más destacadas se encuentran:

  • Creación de material didáctico: la IA permite generar rápidamente presentaciones, resúmenes y documentos de apoyo para los estudiantes. Herramientas como Canva AI o Tome AI facilitan la producción de diapositivas atractivas con contenido relevante.
  • Automatización de respuestas: los docentes pueden utilizar chatbots educativos como PersonalChat para responder de manera inmediata a las dudas recurrentes de los estudiantes.
  • Evaluaciones y retroalimentación: plataformas como Gradescope permiten corregir exámenes de manera automatizada, lo que reduce la carga de trabajo de los docentes y asegura una evaluación más objetiva.
  • Generación de contenido multimedia: con herramientas como Runway AI y Pictory, los docentes pueden crear vídeos educativos personalizados y mejorar la experiencia de aprendizaje.

Un ejemplo concreto de su aplicación es el uso de ChatGPT en universidades para ayudar a los estudiantes en la redacción de ensayos, proporcionando estructuras sugeridas y correcciones gramaticales detalladas. Esto no solo mejora la calidad de los trabajos académicos, sino que también fomenta la autonomía y la autoevaluación de los estudiantes.

2. Personalización del aprendizaje y evaluación con IA

2.1. Aprendizaje adaptativo

Uno de los mayores beneficios de la inteligencia artificial (IA) en la educación es su capacidad para personalizar el aprendizaje en función del nivel y el ritmo de cada estudiante. Gracias al análisis de datos, los algoritmos de IA pueden identificar fortalezas y debilidades de los alumnos y ajustar los contenidos educativos en tiempo real para optimizar su rendimiento académico.

Algunas plataformas que utilizan este enfoque son:

  • Khan Academy con IA ofrece ejercicios personalizados según el nivel de conocimiento del estudiante.
  • Duolingo AI: adapta la dificultad de los ejercicios de idiomas en función del progreso del usuario.
  • Carnegie Learning ofrece tutorías de matemáticas con IA, que adaptan las preguntas al rendimiento del estudiante.

Este enfoque permite que los estudiantes reciban una educación más centrada en sus necesidades individuales, lo que reduce las brechas de aprendizaje y mejora la retención del conocimiento.

2.2. Evaluación automatizada

Otro aspecto crucial de la IA en la educación es la optimización del proceso de evaluación. Tradicionalmente, corregir exámenes y tareas supone un gran esfuerzo para los docentes. Gracias a herramientas como Gradescope y ZipGrade, ahora es posible evaluar pruebas de manera instantánea, proporcionar retroalimentación detallada y reducir el margen de error.

Además de la corrección automatizada, la IA puede utilizarse para analizar el rendimiento de los estudiantes a lo largo del tiempo y predecir posibles dificultades académicas. Por ejemplo, la plataforma Edsight AI recopila datos sobre las respuestas de los alumnos y genera informes personalizados con recomendaciones para mejorar su rendimiento.

A pesar de sus ventajas, la evaluación automatizada debe complementarse con métodos tradicionales para garantizar una comprensión profunda de los conceptos por parte de los estudiantes y evitar depender exclusivamente de algoritmos para medir los conocimientos.

3. Desafíos y consideraciones éticas

3.1. Sesgo en los algoritmos

Uno de los principales desafíos de la IA en la educación es la presencia de sesgos en los modelos de aprendizaje. Dado que las IA se entrenan con grandes volúmenes de datos históricos, pueden reflejar prejuicios existentes en la sociedad, lo que podría afectar negativamente a la equidad de la enseñanza.

Para minimizar estos riesgos, es fundamental que los docentes supervisen el contenido generado por IA y utilicen diversas fuentes para contrastar la información. Además, se recomienda fomentar el pensamiento crítico entre los estudiantes para que evalúen la veracidad y la imparcialidad de los datos proporcionados por estos sistemas.

3.2. Privacidad y seguridad de datos

El uso de la IA en la educación implica la recopilación y el análisis de grandes volúmenes de datos sobre los estudiantes. Para proteger su privacidad, es crucial que las instituciones educativas implementen regulaciones estrictas sobre el almacenamiento y uso de la información personal.

Algunas estrategias recomendadas son:

  • Utilización de plataformas con altos estándares de seguridad, como Microsoft Copilot y Google AI Education.
  • Concienciar sobre la importancia de la privacidad y enseñar a los estudiantes a gestionar sus datos de forma segura en entornos digitales.
  • Cumplimiento de normativas de protección de datos, como el Reglamento General de Protección de Datos (RGPD) en Europa.

Conclusiones

La inteligencia artificial está revolucionando la educación, ya que ofrece nuevas posibilidades para mejorar la enseñanza y el aprendizaje. Sin embargo, su implementación debe realizarse de manera responsable, garantizando el papel central del docente y promoviendo el uso ético de la tecnología.

Para maximizar sus beneficios, es esencial que los educadores se mantengan actualizados sobre las últimas tendencias en IA y adopten herramientas que complementen sus metodologías de enseñanza. La combinación de innovación tecnológica con estrategias pedagógicas efectivas transformará la educación y preparará a los estudiantes para los desafíos del futuro.

Os dejo un documento de la Universidad de Burgos que profundiza en el tema. Espero que os resulte de interés.

Descargar (PDF, 10.69MB)

Modelos subrogados para optimizar el coste de pasos superiores pretensados

Acaban de publicar nuestro artículo en la revista Infrastructures, indexada en el JCR. El estudio presenta una metodología de optimización de costes para puentes losa aligerados postesados mediante metamodelos, en la que se destaca la aplicación del modelo Kriging en combinación con algoritmos heurísticos.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València.  A continuación, explicamos brevemente el contenido del artículo que podéis descargar gratuitamente.

La investigación se centra en un puente de tres vanos con luces de 24, 34 y 28 m, y optimiza el diseño estructural para reducir costes sin comprometer los criterios de servicio y seguridad. Se identifica una reducción del 6,54 % en los costes en comparación con enfoques tradicionales, lograda principalmente mediante la disminución del uso de hormigón en un 14,8 % y del pretensado en un 11,25 %.

El trabajo también evalúa distintas técnicas predictivas, como redes neuronales y funciones de base radial, y determina que las redes neuronales presentan el menor error de predicción, aunque requieren varias ejecuciones para garantizar estabilidad. En contraste, el modelo Kriging permite identificar óptimos locales con alta precisión. La metodología propuesta proporciona una estrategia eficiente para la toma de decisiones en ingeniería estructural, que promueve diseños de puentes más rentables sin comprometer el rendimiento estructural.

Figura. Paso superior en la autovía A-7, en Cocentaina (Alicante)

Los resultados indican que la optimización mediante modelos subrogados permite reducir significativamente los costes de diseño de pasos superiores pretensados. La estrategia adoptada optimiza variables como la profundidad de la losa, la geometría de la base y la resistencia del hormigón, y respeta las restricciones impuestas por los estados límite de servicio, que son los últimos según el Eurocódigo 2. Se observa que la metodología basada en kriging y la optimización heurística proporciona resultados prácticos con menor esfuerzo computacional en comparación con la optimización directa de todas las variables estructurales.

El modelo Kriging optimizado mediante Simulated Annealing identificó una configuración de losa con una profundidad de 1,30 m y una base de 3,15 m como la solución más rentable. Esta configuración se corrobora mediante la predicción de redes neuronales, lo que muestra coherencia en la localización del óptimo. En comparación con estudios previos, los resultados indican que la metodología utilizada en este trabajo permite obtener ahorros significativos sin necesidad de analizar exhaustivamente cada alternativa estructural.

A partir de los hallazgos obtenidos, se sugiere explorar la integración de métodos de optimización multiobjetivo que tengan en cuenta no solo el coste, sino también el impacto ambiental y los costes de mantenimiento a lo largo del ciclo de vida del puente. La inclusión de criterios de sostenibilidad podría mejorar la eficiencia global del diseño estructural y su capacidad de adaptación a normativas futuras.

Otra línea de investigación relevante consiste en aplicar modelos subrogados en el diseño de otros tipos de estructuras, como puentes de vigas o marcos de hormigón armado, para evaluar su viabilidad en distintas configuraciones estructurales. Además, el desarrollo de modelos predictivos más sofisticados, que integren aprendizaje automático y simulaciones de alta fidelidad, podría optimizar aún más los diseños propuestos.

Por último, se recomienda estudiar el impacto de la variabilidad de los materiales y las condiciones de carga en la optimización del diseño. La incorporación de análisis probabilísticos mejoraría la fiabilidad de las soluciones obtenidas, ya que se obtendrían diseños estructurales más robustos y seguros.

Referencia:

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

Descargar (PDF, 1.95MB)

Aprendizaje supervisado en ingeniería civil

En un artículo anterior hablamos del aprendizaje no supervisado aplicado a la ingeniería civil. La otra rama del aprendizaje automático (machine learning) es el aprendizaje supervisado. Se trata de un enfoque que utiliza conjuntos de datos de entrada y sus correspondientes respuestas para entrenar modelos capaces de realizar predicciones sobre datos nuevos. Este método es particularmente útil en contextos donde se dispone de información previa sobre la variable que se desea predecir, lo que permite establecer relaciones y patrones en los datos.

El aprendizaje supervisado emerge como una herramienta muy poderosa en el campo de la ingeniería civil, ya que facilita la toma de decisiones y la optimización de procesos mediante el análisis de datos. Este enfoque se basa en el uso de algoritmos que aprenden a partir de un conjunto de datos etiquetados, lo que les permite realizar predicciones sobre nuevos datos. A continuación, se presentan algunas aplicaciones y beneficios del aprendizaje supervisado en este campo.

Técnicas de aprendizaje supervisado

Las técnicas de aprendizaje supervisado se dividen en dos categorías principales: clasificación y regresión. La clasificación se centra en predecir respuestas discretas, es decir, en asignar una etiqueta a un conjunto de datos. Por ejemplo, en el ámbito del correo electrónico, se puede clasificar un mensaje como genuino o spam. Este tipo de modelos se aplica en diversas áreas, como la imagenología médica, donde se pueden clasificar tumores en diferentes categorías de tamaño, o en el reconocimiento de voz, donde se identifican comandos específicos. La clasificación se basa en la capacidad de los modelos para categorizar datos en grupos definidos, lo que resulta esencial en aplicaciones como la evaluación crediticia, donde se determina la solvencia de una persona.

Por el contrario, la regresión se ocupa de predecir respuestas continuas, lo que implica estimar valores en un rango numérico. Por ejemplo, se puede utilizar la regresión para prever cambios en la temperatura o fluctuaciones en la demanda eléctrica. Este enfoque es aplicable en contextos como la previsión de precios de acciones, donde se busca anticipar el comportamiento del mercado, o en el reconocimiento de escritura a mano, donde se traduce la entrada manual en texto digital. La elección entre clasificación y regresión depende de la naturaleza de los datos y de la pregunta específica que se desea responder.

Selección del algoritmo adecuado.

La selección de un algoritmo de aprendizaje automático es un proceso que requiere un enfoque metódico, ya que hay que encontrar el equilibrio entre diversas características de los algoritmos. Entre estas características se encuentran la velocidad de entrenamiento, el uso de memoria, la precisión predictiva en nuevos datos y la transparencia o interpretabilidad del modelo. La velocidad de entrenamiento se refiere al tiempo que un algoritmo necesita para aprender de los datos, mientras que el uso de memoria se relaciona con la cantidad de recursos computacionales que requiere. La precisión predictiva es crucial, ya que determina la capacidad del modelo para generalizar a datos no vistos. Por último, la interpretabilidad se refiere a la facilidad con la que se pueden entender las decisiones del modelo, lo que es especialmente relevante en aplicaciones donde la confianza en el modelo es esencial.

El uso de conjuntos de datos de entrenamiento más grandes generalmente permite que los modelos generalicen mejor en datos nuevos, lo que se traduce en una mayor precisión en las predicciones. Sin embargo, la selección del algoritmo también puede depender del contexto específico y de las características de los datos disponibles.

Clasificación binaria y multicategoría

Al abordar un problema de clasificación, es fundamental determinar si se trata de un problema binario o multicategórico. En un problema de clasificación binaria, cada instancia se clasifica en una de las dos clases, como ocurre cuando se identifica la autenticidad de los correos electrónicos o su clasificación como spam. Este tipo de clasificación es más sencillo y, por lo general, se puede resolver con algoritmos diseñados específicamente para este propósito. En contraste, un problema de clasificación multicategórica implica más de dos clases, como clasificar imágenes de animales en perros, gatos u otros. Los problemas multicategóricos suelen ser más complejos, ya que requieren modelos más sofisticados que puedan manejar la diversidad de clases y sus interacciones.

Es importante señalar que algunos algoritmos, como la regresión logística, están diseñados específicamente para problemas de clasificación binaria y tienden a ser más eficientes durante el entrenamiento. Sin embargo, existen técnicas que permiten adaptar algoritmos de clasificación binaria para abordar problemas multicategóricos, lo que amplía su aplicabilidad.

Algoritmos de clasificación comunes

Existen diversos varios algoritmos de clasificación ampliamente utilizados en el campo del aprendizaje supervisado.

  • La regresión logística es uno de los métodos más comunes, ya que permite predecir la probabilidad de que una respuesta binaria pertenezca a una de las dos clases. Este algoritmo es valorado por su simplicidad y se emplea frecuentemente como punto de partida en problemas de clasificación binaria. Su capacidad para ofrecer una interpretación clara de los resultados lo convierte en una herramienta muy valiosa en diversas aplicaciones.
  • El algoritmo k-vecinos más cercanos (kNN) clasifica objetos basándose en las clases de sus vecinos más cercanos, utilizando métricas de distancia como la euclidiana o la de Manhattan. Este enfoque es intuitivo y fácil de implementar, aunque puede resultar costoso en términos de cálculo en conjuntos de datos grandes.
  • El soporte vectorial (SVM) es otro algoritmo destacado que clasifica datos al encontrar un límite de decisión lineal que separe las clases. En situaciones en las que los datos no son linealmente separables, se puede aplicar una transformación de kernel para facilitar la clasificación. Este método es especialmente útil en contextos de alta dimensionalidad, donde la complejidad de los datos puede dificultar la clasificación.
  • Las redes neuronales, inspiradas en la estructura del cerebro humano, son útiles para modelar sistemas altamente no lineales. Estas redes se entrenan ajustando las conexiones entre neuronas, lo que permite que el modelo aprenda patrones complejos en los datos. Aunque su interpretación puede ser más complicada, su capacidad para capturar relaciones no lineales las hace valiosas en diversas aplicaciones.
  • El clasificador Naïve Bayes se basa en la suposición de que la presencia de una característica en una clase no depende de la presencia de otras características. Este enfoque permite clasificar nuevos datos en función de la probabilidad máxima de pertenencia a una clase, lo que resulta útil en contextos en los que se requiere una clasificación rápida y eficiente.
  • El análisis discriminante clasifica los datos mediante combinaciones lineales de características, asumiendo que los diferentes conjuntos de datos tienen distribuciones gaussianas. Este método es apreciado por su simplicidad y facilidad de interpretación.
  • Los árboles de decisión permiten predecir respuestas basándose en decisiones tomadas en un árbol estructurado, donde cada rama representa una condición de decisión. Este enfoque es intuitivo y fácil de interpretar, por lo que es una opción popular en diversas aplicaciones.

Algoritmos de regresión comunes

Los algoritmos de regresión son esenciales para predecir valores continuos.

  • La regresión lineal es una técnica que describe una variable de respuesta continua como una función lineal de una o más variables predictoras. Este modelo es fácil de interpretar y se utiliza frecuentemente como referencia para modelos más complejos. Su simplicidad y eficacia en contextos lineales lo convierten en una opción inicial para el análisis de datos.
  • La regresión no lineal se utiliza cuando los datos presentan tendencias no lineales significativas. Este enfoque permite modelar relaciones más complejas que no pueden ser capturadas por modelos lineales, lo que resulta útil en contextos donde las variables interactúan de manera no lineal.
  • El modelo de regresión de procesos gaussianos es un enfoque no paramétrico que se utiliza para predecir valores continuos y es común en el análisis espacial. Este método es especialmente valioso en contextos donde se requiere interpolación y se trabaja con datos que presentan incertidumbre.
  • La regresión SVM, similar a su contraparte de clasificación, busca un modelo que se desvíe de los datos medidos en la menor cantidad posible. Este enfoque es útil en contextos de alta dimensionalidad, donde se espera que haya un gran número de variables predictoras.
  • El modelo lineal generalizado se utiliza cuando las variables de respuesta tienen distribuciones no normales, lo que permite abordar una variedad de situaciones en las que no se cumplen los supuestos de la regresión lineal.
  • Los árboles de regresión son una adaptación de los árboles de decisión que permiten predecir respuestas continuas, por lo que son útiles en contextos donde se requiere una interpretación clara y rápida.

Mejora de modelos

La mejora de un modelo implica aumentar su precisión y capacidad predictiva, así como prevenir el sobreajuste, que ocurre cuando un modelo se ajusta demasiado a los datos de entrenamiento y pierde capacidad de generalización. Este proceso incluye la ingeniería de características, que abarca la selección y transformación de variables, y la optimización de hiperparámetros, que busca identificar el conjunto de parámetros que mejor se ajustan al modelo.

  • La selección de características es un aspecto crítico en el aprendizaje supervisado, especialmente en conjuntos de datos de alta dimensión. Este proceso permite identificar las variables más relevantes para la predicción, lo que no solo mejora la precisión del modelo, sino que también reduce el tiempo de entrenamiento y la complejidad del mismo. Entre las técnicas de selección de características se encuentran la regresión por pasos, que implica agregar o eliminar características de manera secuencial, y la regularización, que utiliza estimadores de reducción para eliminar características redundantes.
  • La transformación de características es otra estrategia importante que busca mejorar la representación de los datos. Técnicas como el análisis de componentes principales (PCA) permiten realizar transformaciones lineales en los datos, que capturan la mayor parte de la varianza en un número reducido de componentes. Esto resulta útil en contextos donde se trabaja con datos de alta dimensionalidad, ya que facilita la visualización y el análisis.
  • La optimización de hiperparámetros es un proceso iterativo que busca encontrar los valores óptimos para los parámetros del modelo. Este proceso puede llevarse a cabo mediante métodos como la optimización bayesiana, la búsqueda en cuadrícula y la optimización basada en gradientes. Un modelo bien ajustado puede superar a un modelo complejo que no ha sido optimizado adecuadamente, lo que subraya la importancia de este proceso en el desarrollo de modelos efectivos.

Aplicaciones del aprendizaje supervisado en ingeniería civil

  • Predicción de fallos estructurales: los modelos de aprendizaje supervisado se utilizan para predecir fallos en estructuras como puentes y edificios. Al analizar datos históricos de inspecciones y condiciones ambientales, es posible identificar patrones que indiquen un posible fallo estructural. Esto permite a los ingenieros realizar mantenimientos preventivos y mejorar la seguridad de las infraestructuras.
  • Optimización de recursos en construcción: en la planificación de proyectos, el aprendizaje supervisado optimiza el uso de recursos como, por ejemplo, materiales y mano de obra. Al predecir la demanda de recursos en función de variables como el clima y la evolución del proyecto, es posible reducir costes y mejorar la eficiencia.
  • Análisis de riesgos: los modelos de aprendizaje supervisado son útiles para evaluar riesgos en proyectos de ingeniería civil. Al analizar datos sobre desastres naturales, como inundaciones y terremotos, se pueden identificar zonas vulnerables y desarrollar estrategias de mitigación eficaces.
  • Control de infraestructuras: la incorporación de sensores en infraestructuras permite la recolección de datos en tiempo real. Los algoritmos de aprendizaje supervisado pueden analizar estos datos para detectar anomalías y prever el mantenimiento necesario, lo que contribuye a la sostenibilidad y durabilidad de las estructuras.

Por tanto, el aprendizaje supervisado se está consolidando como una herramienta esencial en ingeniería civil, ya que ofrece soluciones innovadoras para predecir, optimizar y controlar infraestructuras. Su capacidad para analizar grandes volúmenes de datos y ofrecer información valiosa está transformando la forma en que se gestionan los proyectos en este ámbito.

Os dejo un mapa mental acerca del aprendizaje supervisado.

También os dejo unos vídeos al respecto. Espero que os sean de interés.

Referencias

  1. Garcia, J., Villavicencio, G., Altimiras, F., Crawford, B., Soto, R., Minatogawa, V., Franco, M., Martínez-Muñoz, D., & Yepes, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction142, 104532.
  2. Kaveh, A. (2024). Applications of artificial neural networks and machine learning in civil engineering. Studies in computational intelligence1168, 472.
  3. Khallaf, R., & Khallaf, M. (2021). Classification and analysis of deep learning applications in construction: A systematic literature review. Automation in construction129, 103760.
  4. Mostofi, F., & Toğan, V. (2023). A data-driven recommendation system for construction safety risk assessment. Journal of Construction Engineering and Management149(12), 04023139.
  5. Naderpour, H., Mirrashid, M., & Parsa, P. (2021). Failure mode prediction of reinforced concrete columns using machine learning methods. Engineering Structures248, 113263.
  6. Reich, Y. (1997). Machine learning techniques for civil engineering problems. Computer‐Aided Civil and Infrastructure Engineering12(4), 295-310.
  7. Thai, H. T. (2022). Machine learning for structural engineering: A state-of-the-art review. In Structures (Vol. 38, pp. 448-491). Elsevier.

Descargar (PDF, 1.52MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Gemelo digital para la gestión predictiva de infraestructuras civiles

El artículo presenta un marco conceptual para el desarrollo de gemelos digitales aplicados a estructuras de ingeniería civil que combina modelos basados en la física con técnicas avanzadas de aprendizaje profundo. Se propone una integración dinámica entre el sistema físico y su representación digital mediante redes bayesianas dinámicas, lo que permite la toma de decisiones informada y la optimización continua. Entre las contribuciones destacadas, se encuentra la implementación de modelos de aprendizaje profundo para diagnosticar el estado estructural en tiempo real a partir de datos de sensores. Además, el enfoque incluye un proceso de aprendizaje previo fuera de línea para optimizar las políticas de mantenimiento.

La investigación presenta casos de estudio que validan la viabilidad del marco propuesto: una viga en voladizo en forma de L y un puente ferroviario. En estos ejemplos, se demuestra la capacidad del sistema para predecir el deterioro estructural y sugerir las acciones de mantenimiento adecuadas. El uso de modelos de orden reducido permite gestionar el coste computacional de manera eficiente y garantizar la aplicabilidad práctica del enfoque.

Introducción

La gestión eficiente de estructuras de ingeniería civil, como puentes, edificios y otras infraestructuras críticas, es un desafío constante debido al envejecimiento, el uso intensivo y los cambios en las condiciones ambientales. Un mantenimiento inadecuado puede provocar fallos catastróficos con consecuencias sociales, económicas y medioambientales significativas. En este contexto, los gemelos digitales han emergido como una tecnología prometedora para mejorar la supervisión, el mantenimiento y la toma de decisiones.

Un gemelo digital es una réplica virtual de un activo físico que se actualiza continuamente con datos obtenidos de sensores instalados en el activo real. Esto permite simular su comportamiento, predecir su evolución y planificar intervenciones de manera óptima. El concepto se ha explorado ampliamente en sectores como el aeroespacial y el manufacturero, pero su aplicación en el ámbito de la ingeniería civil es relativamente reciente.

En el campo de los gemelos digitales para ingeniería civil, las investigaciones previas han abordado diferentes aspectos del monitoreo estructural, como la detección de daños mediante métodos de análisis modal y la integración de técnicas avanzadas de procesamiento de señales. Se han utilizado modelos físicos basados en elementos finitos para representar el comportamiento estructural y técnicas de aprendizaje automático para detectar y clasificar anomalías. Sin embargo, la mayoría de estos enfoques tienen limitaciones relacionadas con la precisión de las predicciones y la gestión de la incertidumbre en condiciones operativas variables.

Un enfoque emergente consiste en integrar modelos probabilísticos, como las redes bayesianas, con técnicas de aprendizaje profundo. Esto permite incorporar la variabilidad y la incertidumbre inherentes a los datos estructurales. No obstante, aún es necesario mejorar la capacidad de realizar predicciones precisas de manera continua en tiempo real.

Teniendo en cuenta las limitaciones identificadas en los trabajos previos, este estudio busca responder a la siguiente pregunta de investigación: ¿cómo se puede desarrollar un marco de gemelo digital que combine modelos físicos y aprendizaje profundo para mejorar la predicción y la toma de decisiones en el mantenimiento de estructuras de ingeniería civil, teniendo en cuenta la incertidumbre y la variabilidad operativa?

El artículo examina un enfoque innovador basado en modelos físicos y técnicas de aprendizaje profundo, y propone un sistema de toma de decisiones apoyado en redes bayesianas dinámicas. Este marco permite una interacción continua entre el activo físico y su representación digital, lo que mejora significativamente los procesos de mantenimiento preventivo y correctivo.

Gemelos digitales predictivos para estructuras de ingeniería civil: abstracción gráfica del flujo de información de extremo a extremo habilitada por el modelo gráfico probabilístico (Torzoni et al., 2024)

Metodología

La metodología propuesta combina modelos matemáticos basados en la física y técnicas de aprendizaje profundo para crear un gemelo digital capaz de gestionar estructuras de ingeniería civil. El enfoque consta de tres fases principales:

  1. Modelo numérico basado en la física:
    • Se emplean modelos de elementos finitos para representar el comportamiento estructural bajo diferentes condiciones operativas y de daño.
    • Los modelos son simplificados mediante técnicas de reducción de orden, utilizando descomposición en bases propias (POD), para hacer viable el análisis computacional en tiempo real.
  2. Asimilación de datos mediante aprendizaje profundo:
    • Los datos estructurales recopilados por sensores se procesan mediante redes neuronales profundas.
    • Un modelo de clasificación identifica la ubicación y severidad del daño, mientras que un modelo de regresión cuantifica la magnitud del deterioro.
  3. Toma de decisiones basada en redes bayesianas dinámicas:
    • Los resultados se integran en un modelo probabilístico que permite la predicción de estados futuros y la planificación de intervenciones de mantenimiento.
    • El sistema optimiza decisiones considerando incertidumbres operativas y costos asociados a las acciones de mantenimiento.

Resultados

Los resultados obtenidos evidencian que el gemelo digital propuesto puede rastrear con precisión la evolución del estado estructural y generar recomendaciones de mantenimiento en tiempo real. La precisión global alcanzada en la clasificación de estados digitales fue del 93,61 %, lo que destaca su capacidad para manejar datos ruidosos y condiciones operativas variables. Sin embargo, se observaron algunas limitaciones en la detección de daños en regiones alejadas de los sensores, lo que subraya la necesidad de mejorar la sensibilidad de los dispositivos de monitorización.

Otro aspecto relevante es la capacidad de predicción del sistema. Las simulaciones muestran que el gemelo digital puede prever de manera efectiva el deterioro futuro, lo que permite planificar de manera proactiva las intervenciones. Esto supone una mejora significativa con respecto a los enfoques tradicionales de mantenimiento reactivo.

Desde un punto de vista metodológico, la integración de modelos probabilísticos y aprendizaje profundo proporciona una solución robusta y adaptable a diferentes estructuras. No obstante, el éxito del sistema depende en gran medida de la calidad y la cantidad de datos disponibles para el entrenamiento inicial.

El estudio responde a la pregunta de investigación mediante la implementación exitosa de un marco de gemelo digital que combina modelos físicos y aprendizaje profundo. El sistema propuesto gestiona la incertidumbre mediante redes bayesianas dinámicas y mejora la toma de decisiones en mantenimiento al proporcionar predicciones precisas y recomendaciones basadas en datos en tiempo real. Los experimentos confirmaron su capacidad para gestionar estructuras complejas, lo que demuestra una mejora tangible en comparación con los enfoques tradicionales.

Conclusiones y recomendaciones

En conclusión, el desarrollo de un gemelo digital que integre modelos físicos y técnicas de aprendizaje profundo supone un avance significativo en la gestión de infraestructuras críticas. La metodología propuesta permite realizar un seguimiento continuo, realizar predicciones proactivas y tomar decisiones informadas.

El trabajo plantea varias líneas de investigación para el futuro:

  1. Mejora de los modelos predictivos: Explorar técnicas avanzadas de aprendizaje automático para aumentar la precisión y reducir el sesgo en la estimación de estados estructurales.
  2. Optimización de redes de sensores: Investigar configuraciones óptimas de sensores para mejorar la cobertura y sensibilidad del monitoreo.
  3. Aplicaciones a gran escala: Desarrollar estudios de caso adicionales que incluyan estructuras complejas como puentes de gran envergadura y edificios multifuncionales.
  4. Integración con tecnologías emergentes: Incorporar técnicas de computación en el borde y redes 5G para facilitar la transmisión y procesamiento de datos en tiempo real.
  5. Estudio de costos y beneficios: Evaluar la relación costo-beneficio del sistema para su implementación en proyectos reales, considerando factores económicos y de sostenibilidad.

Estos pasos permitirán ampliar la aplicabilidad del sistema y mejorar su eficiencia en el mantenimiento de infraestructuras críticas. En resumen, el artículo establece una base sólida para el desarrollo de gemelos digitales en ingeniería civil, al proponer un enfoque integral y avanzado desde el punto de vista técnico que combina modelos físicos y aprendizaje automático. Las investigaciones futuras deben centrarse en ampliar su ámbito de aplicación y mejorar su rendimiento en contextos operativos complejos.

Referencia:

Torzoni, M., Tezzele, M., Mariani, S., Manzoni, A., & Willcox, K. E. (2024). A digital twin framework for civil engineering structuresComputer Methods in Applied Mechanics and Engineering418, 116584.

Os dejo el artículo completo, pues se encuentra en abierto:

Descargar (PDF, 1.95MB)

¿Cuál es el mejor algoritmo para optimizar un problema? “No free lunch”

Figura 1. Desgraciadamente, no existe la comida gratis. https://medium.com/@LeonFedden/the-no-free-lunch-theorem-62ae2c3ed10c

Después de años impartiendo docencia en asignaturas relacionadas con la optimización heurística de estructuras de hormigón, y tras muchos artículos científicos publicados y más donde he sido revisor de artículos de otros grupos de investigación, siempre se plantea la misma pregunta: De todos los algoritmos que utilizamos para optimizar, ¿cuál es el mejor? ¿Por qué dice en su artículo que su algoritmo es el mejor para este problema? ¿Por qué no nos ponemos de acuerdo?

Para resolver esta cuestión, dos investigadores norteamericanos, David Wolpert y William Macready, publicaron un artículo en 1997 donde establecieron un teorema denominado “No free lunch“, que traducido sería algo así como “no hay comida gratis”. Dicho teorema establece que, por cada par de algoritmos de búsqueda, hay tantos problemas en el que el primer algoritmo es mejor que el segundo como problemas en el que el segundo algoritmo es mejor que el primero.

Este teorema revolucionó la forma de entender el rendimiento de los algoritmos. Incluso una búsqueda aleatoria en el espacio de soluciones podría dar mejores resultados que cualquier algoritmo de búsqueda. La conclusión es que no existe un algoritmo que sea universalmente mejor que los demás, pues siempre habrá casos donde funcione peor que otros, lo cual significa que todos ellos se comportarán igual de bien (o de mal) en promedio.

De hecho, se podría decir que un experto en algoritmos genéticos podría diseñar un algoritmo genético más eficiente que, por ejemplo, un recocido simulado, y viceversa. Aquí el arte y la experiencia en un problema y en una familia de algoritmos determinados, suele ser decisivo. En la Figura 2 se puede ver cómo un algoritmo muy especializado, que conoce bien el problema, puede mejorar su rendimiento, pero pierde la generalidad de poder usarse en cualquier tipo de problema de optimización que no sea para el que se diseñó.

Figura 2. El uso del conocimiento del problema puede mejorar el rendimiento, a costa de la generalidad. https://medium.com/@LeonFedden/the-no-free-lunch-theorem-62ae2c3ed10c

¿Qué consecuencias obtenemos de este teorema? Lo primero, una gran decepción, pues hay que abandonar la idea del algoritmo inteligente capaz de optimizar cualquier problema. Lo segundo, que es necesario incorporar en el algoritmo cierto conocimiento específico del problema, lo cual equivale a una “carrera armamentística” para cada problema de optimización. Se escriben y escribirán miles de artículos científicos donde un investigador demuestre que su algoritmo es mejor que otro para un determinado problema.

Una forma de resolver este asunto de incorporar conocimiento específico del problema es el uso de la inteligencia artificial en ayuda de las metaheurísticas. Nuestro grupo de investigación está abriendo puertas en este sentido, incorporando “deep learning” en el diseño de los algoritmos (Yepes et al., 2020; García et al., 2020a; 2020b), o bien redes neuronales (García-Segura et al., 2017). Incluso, en este momento, me encuentro como editor de un número especial de la revista Mathematics (primer decil del JCR) denominado: “Deep Learning and Hybrid-Metaheuristics: Novel Engineering Applications”, al cual os invito a enviar vuestros trabajos de investigación.

Si nos centramos en un tipo de problema determinado, por ejemplo, la optimización de estructuras (puentes, pórticos de edificación, muros, etc.), el teorema nos indica que necesitamos gente formada y creativa para optimizar el problema concreto al que nos enfrentamos. Es por ello que no existen programas comerciales eficientes capaces de adaptarse a cualquier estructura para optimizarla. Tampoco son eficientes las herramientas generales “tools” que ofrecen algunos programas como Matlab para su uso inmediato e indiscriminado.

Por tanto, no se podrá elegir entre dos algoritmos solo basándose en lo bien que trabajaron anteriormente en un problema determinado, pues en el siguiente problema pueden optimizar de forma deficiente. Por tanto, se exige conocimiento intrínseco de cada problema para optimizarlo. Es por ello que, por ejemplo, un experto matemático o informático no puede, sin más, dedicarse a optimizar puentes atirantados.

Referencias:

GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020a). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics,  8(4), 555.

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020b). The buttressed  walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics,  8(6):862.

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150.

WOLPERT, D.H.; MACREADY, W.G. (1997). No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary Computation, 1(1):67-82.

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767.

A continuación os dejo el artículo original “No Free Lunch Theorems for Optimization”. Se ha convertido en un clásico en optimización heurística.

Descargar (PDF, 698KB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La revolución de la digitalización en la ingeniería civil

En una entrada anterior que denominé “La ingeniería de caminos en el siglo XXI, ¿quo vadis?, puse de manifiesto la incertidumbre que suponía la desaparición de la titulación de ingeniero de caminos, canales y puertos con motivo de la reestructuración de las enseñanzas universitarias en grado y máster. Las preguntas que dejaban en el aire adquirían un tinte dramático cuando se contextualizaban en una situación de profunda crisis económica, especialmente fuerte en el sector de la construcción.

Otra reflexión sobre el futuro de la profesión la dejé en la entrada “¿Qué entendemos por “Smart Construction”? ¿Una nueva moda?“. Allí dejé constancia de las modas que igual que aparecen, desaparecen, pero que suponen cambios sustanciales en una profesión como la de ingeniero civil. Allí expresé mi esperanza de que el término de “construcción inteligente” tuviera algo más de recorrido y pudiera suponer un punto de inflexión en nuestro sector. Este término presenta, como no podía ser de otra forma, numerosas interpretaciones y tantas más aplicaciones. Es un concepto que se asocia al diseño digital, a las tecnologías de la información y de la comunicación, la inteligencia artificial, al BIM, al Lean Construction, la prefabricación, los drones, la robotización y automatización, a la innovación y a la sostenibilidad, entre otros muchos conceptos. Entre estos conceptos, uno que me interesa especialmente es la asociación con el de los nuevos métodos constructivos (término que incluye nuevos productos y nuevos procedimientos constructivos). Su objetivo es mejorar la eficiencia del negocio, la calidad, la satisfacción del cliente, el desempeño medioambiental, la sostenibilidad y la previsibilidad de los plazos de entrega. Por lo tanto, los métodos modernos de construcción son algo más que un enfoque particular en el producto. Involucran a la gente a buscar mejoras, a través de mejores procesos, en la entrega y ejecución de la construcción.

Al hilo de estas reflexiones, me ha gustado especialmente el vídeo ganador del concurso de la Asociación de Ingenieros de Caminos, Canales y Puertos, ingeniería en 200 segundos, que presenta Juan Antonio Martínez Ortega, y que trata del impacto de la digitalización en la ingeniería civil. Atento al “diablillo de Laplace“. ¡Enhorabuena para Juan Antonio!

 

¿Qué es y para qué sirve una red neuronal artificial?

Parece que hoy día, al igual que hace algunos milenios, la profesión de “oráculo” es una de las más demandadas, especialmente cuando se afrontan tiempos difíciles y el ser humano pretende predecir qué va a pasar para tomar la decisión correcta. Una de las profesiones de más futuro, según algunos, es la relacionada con “Big Data“. Pues bien, este post trata de introducir, de forma muy somera, una herramienta que es extraordinariamente potente para predecir relaciones fuertemente no lineales de grandes volúmenes de datos. También es una herramienta que, mal empleada, nos engaña. Todo empezó cuando nuestro Premio Nobel Santiago Ramón y Cajal empezó a describir nuestro sistema nervioso.
Las redes de neuronas artificiales (denominadas habitualmente como RNA o en inglés como: “ANN”) son un paradigma de aprendizaje y procesamiento automático inspirado en la forma en que funciona el sistema nervioso de los animales. Se trata de un sistema de interconexión de neuronas que colaboran entre sí para producir un estímulo de salida. En inteligencia artificial es frecuente referirse a ellas como redes de neuronas o redes neuronales. Forman parte de los denominados “Sistemas Inteligentes“, dentro de la rama de la Inteligencia Artificial.

Nuestro grupo de investigación ha publicado algunos artículos empleando esta herramienta en el ámbito del hormigón:

  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. DOI:1007/s00158-017-1653-0
  • MARTÍ-VARGAS, J.R.; FERRI, F.J.; YEPES, V. (2013). Prediction of the transfer length of prestressing strands with neural networks. Computers and Concrete, 12(2):187-209. DOI: http://dx.doi.org/10.12989/cac.2013.12.2.187.

Un tutorial muy interesante sobre este tema es: http://www.gc.ssr.upm.es/inves/neural/ann2/anntutorial.html , así como el siguiente: http://sabia.tic.udc.es/mgestal/cv/RNAtutorial/index.html

¿Queréis usar una red neural on-line? Os paso el siguiente enlace: http://playground.tensorflow.org/

Os dejo también unos cuantos vídeos que os pueden ampliar información sobre el tema. Espero que os gusten.

Este programa de Redes creo que puede ampliar algo más la filosofía subyacente del aprendizaje y la inteligencia:

También dejo una presentación de clase sobre el tema:

GDE Error: Error retrieving file - if necessary turn off error checking (404:Not Found)

Tesis doctoral: Modelos predictivos de las características prestacionales de hormigones fabricados en condiciones industriales

2016-06-03 11.35.53Ayer 3 de junio de 2016 tuvo lugar la defensa de la tesis doctoral de D. Ferran Navarro Ferrer denominada “Modelos predictivos de las características prestacionales de hormigones fabricados en condiciones industriales”, dirigida por  Víctor Yepes Piqueras. La tesis recibió la calificación de “Sobresaliente Cum Laude” por unanimidad. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

En la actualidad el hormigón es el material más empleado en la construcción debido a su moldeabilidad, a su capacidad de resistir esfuerzos de compresión y a su economía. Las prestaciones del hormigón dependen de su composición, de las condiciones de curado y del método y condiciones de mezclado. Las especificaciones básicas del hormigón demandadas por el peticionario al fabricante son la resistencia a compresión y la consistencia, que indica la trabajabilidad del mismo. Esta tesis es una contribución al conocimiento y la investigación de la influencia de diferentes parámetros en la resistencia a compresión y la consistencia del hormigón fabricado en condiciones industriales y la elaboración de modelos predictivos de dichas características prestacionales.

La mayor parte de los hormigones que se emplean en construcción se fabrican en centrales de hormigón preparado o en centrales de obra, y se corresponden con hormigones de resistencia entre 25 y 30 N=mm2, consistencia blanda o fluida, colocación mediante vertido o bombeo y compactación mediante vibración. Las condiciones de producción de hormigones en planta se ven afectadas por los condicionantes del proceso industrial y del negocio en sí, siendo controlada la cantidad de agua existente en la mezcla indirectamente.

2016-06-02 18.45.05En este trabajo se presenta una extensa base de datos construida con miles de resultados de ensayos de resistencia a compresión y consistencia realizados sobre hormigones fabricados en la misma planta y con diferentes dosificaciones, tipos de cemento y aditivos. Se tienen en consideración otros aspectos como la inclusión de fibras, la temperatura ambiente y del hormigón o la hora de realización de las probetas. Se crea una segunda base de datos de ensayos realizados en un periodo de tiempo corto con el mismo cemento y aditivo y teniendo en cuenta la relación agua/cemento exacta. Además, se ha realizado la conveniente caracterización de los materiales constituyentes de los hormigones ensayados.

Para analizar la influencia de los diferentes parámetros y factores tecnológicos y ambientales en la resistencia a compresión, en la evolución de la misma con el tiempo y en la consistencia del hormigón, se ha utilizado primeramente estadística clásica, concretamente análisis de regresión lineal múltiple, análisis de varianza (ANOVA) y análisis multivariante. También se ha verificado el ajuste de los datos experimentales a modelos existentes en la bibliografía y a nuevos modelos de comportamiento propuestos.

Finalmente se han elaborado redes neuronales artificiales para predecir la resistencia a compresión o la consistencia de un hormigón en función de diversas variables de entrada, al igual que para la obtención de modelos de comportamiento. Los resultados obtenidos mediante la aplicación de redes neuronales artificiales han sido más eficientes y mejores que los obtenidos mediante métodos estadísticos.

 

 

Métodos no convencionales de investigación basados en la inteligencia artificial

El pasado mes de octubre tuve la ocasión de impartir un seminario en la Universidad Católica de Chile denominado “Métodos de investigación no convencionales basados en la inteligencia artificial”. Os paso la presentación que hice. Espero que os guste.

Descargar (PDF, 2.26MB)