Durante los días 10-13 de julio de 2023 tiene lugar en Donostia-San Sebastián (Spain) el 27th International Congress on Project Management and EngineeringAEIPRO 2023. Es una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes.
BRUN-IZQUIERDO, A.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2023). Optimización energética de tableros tipo losa pretensados aligerados mediante modelos Kriging. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).
El objetivo de este trabajo es desarrollar una metodología para optimizar la energía en la construcción de tableros losa pretensado aligerados. Se lleva a cabo un análisis de la sección transversal para determinar los parámetros de diseño a través de un estudio del estado del arte. A partir de ese análisis, se identifican las variables de diseño que mejorarán la eficiencia energética del tablero. La metodología se divide en dos fases: primero, se utiliza una técnica estadística llamada hipercubo latino para muestrear las variables del tablero y determinar una superficie de respuesta; y en segundo lugar, se optimiza la superficie de respuesta mediante un modelo de optimización basado en Kriging. Como resultado, se ha desarrollado una metodología que reduce el costo energético en la construcción de tableros losa pretensado aligerados. Las recomendaciones para mejorar la eficiencia energética incluyen emplear esbelteces elevadas (alrededor de 1/28), reducir el consumo de hormigón y armadura activa, y aumentar la cantidad de armadura pasiva.
HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Durability assessment and re-design of coastal concrete bridge through a non-destructive damage detection method.27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).
Los expertos y los gobiernos llevan tiempo centrándose en reducir los costes de reparación y mantenimiento de estructuras cruciales como los puentes mediante un mantenimiento y una reparación continuos. Este estudio explora la rentabilidad de dos métodos de predicción de daños mediante el método de densidad espectral de potencia (PSD) en comparación con el método convencional de detección de daños mediante el rediseño de diferentes espesores de recubrimiento de hormigón para un puente costero de hormigón armado. El estudio evalúa el impacto de los iones cloruro en la localización y extensión de los daños a lo largo de la vida útil del puente y compara los costes totales de mantenimiento y reparación. Los resultados muestran que, si bien el método PSD es eficaz para estructuras de hormigón con recubrimientos de hormigón bajos, el aumento del espesor del recubrimiento de hormigón puede dar lugar a mayores costes de reparación.
YEPES, V.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.J.; BLIGHT, T. (2023). Códigos abiertos basados en Python para la construcción de nomogramas y su aplicación en la ingeniería de proyectos.27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).
La Nomografía es una disciplina científica que se encarga de representar gráficamente fórmulas complejas mediante nomogramas, permitiendo el cálculo de tres o más variables matemáticas. Durante el siglo XX, esta técnica fue ampliamente utilizada en áreas como la ingeniería, medicina, electrónica, ciencias físicas, biológicas, etc. Sin embargo, con la llegada de las calculadoras y computadoras, la construcción de nuevos nomogramas y su enseñanza en la universidad disminuyeron. En los últimos años, la nomografía ha resurgido gracias a la ayuda de códigos de programación como PyNomo y Nomogen, basados en Python, que pueden generar un nomograma en cuestión de segundos, frente a las horas que antes requerían. En este trabajo se presentan estos códigos abiertos y algunos nomogramas generados con ellos, analizando su usabilidad, precisión y contribución a la relación entre las variables de las expresiones matemáticas. Finalmente, se destacan las posibilidades del uso de los nomogramas en la enseñanza e ingeniería de proyectos.
El Building Information Modelling (BIM) se está adoptando cada vez más en empresas privadas del sector de Arquitectura, Ingeniería, Construcción y Operación (AECO), y con ello surgen nuevas herramientas y funcionalidades. En el mercado español, los proyectos de reforma son cada vez más solicitados debido al envejecimiento del stock de viviendas y la necesidad de analizar la durabilidad de las estructuras existentes.
Este nuevo estudio presenta una herramienta integrada en BIM que permite evaluar el índice de durabilidad en elementos estructurales específicos a través de una inspección visual automatizada, lo que mejora la sostenibilidad del sector y determina el momento crítico para rehabilitar la estructura.
El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
Abstract:
As Building Information Modelling (BIM) is increasingly adopted through private businesses in the Architecture, Engineering, Construction, and Operation (AECO) Industries, new tools, procedures, and functionalities appear. In the last years, BIM has proven its advantages by providing benefits to professionals and guiding them towards a new horizon. Currently, the industry is changing in the Spanish market, and refurbishment projects are more demanded than construction projects involving the design of buildings from scratch. As Spanish housing stock grows older, durability and damage in existing structures need to be analyzed during the refurbishment project’s early stages. Structural durability is a critical factor in extending the life span of a building and improving the industry’s sustainability. This paper presents a tool integrated into BIM environments that can evaluate the durability index in a specific structural element based on data from a visual inspection. This automated analysis shows if any damage is caused by durability factors, such as steel rebar corrosion, and how much time is left until the damage is critical. This tool enables new functionality in BIM environments to control durability and determine when it is critical to rehabilitating the structure.
Referencia:
FERNÁNDEZ-MORA, V.; YEPES, V.; NAVARRO, I.J. (2022). Durability damage indicator in BIM environments. Proceedings of 3rd Valencia International Biennial of Research in Architecture. Changing priorities. 9-11 November 2022, Valencia, Spain. https://doi.org/10.4995/VIBRArch2022.2022.15191
Os paso, para su descarga, el artículo completo, pues está publicado en abierto.
Una noticia aparecida el 9 de diciembre de 2018 en El País con el siguiente titular “Fomento admite que hay 66 puentes con graves problemas de seguridad” abrió cierta inquietud en la opinión pública sobre la seguridad de nuestros puentes. Esta inquietud irrumpió el agosto pasado con el derrumbe de un puente en Génova (Italia). La pregunta que se hace el ciudadano de a pié es saber si cuando circula por carretera o por ferrocarril nuestras infraestructuras son lo suficientemente seguras. Además, este desasosiego se acentúa cuando, por una parte, la grave crisis económica que ha sufrido nuestro país ha reducido significativamente los presupuestos dedicados al mantenimiento de las infraestructuras y cuando, además, los datos que el Ministerio de Fomento dispone sobre el estado de los puentes, extraídos de su Sistema de Gestión de Puentes (SGP), no es suficientemente transparente, a diferencia de otros países, como Alemania. La que he denominado como “crisis de las infraestructuras“, en efecto, no es un problema solo de España, sino que afecta de forma generalizada a muchos países de nuestro entorno.
Pues bien, la noticia del 9 de diciembre nos decía que 66 puentes presentan graves problemas de seguridad. La justificación es que, tras la valoración de su estado por expertos, se calculan unos índices (extensión, gravedad y evolución) a los que se aplican algoritmos para obtener una clasificación final que va de 0 a 100. Esos 66 puentes obtenían más de 81 puntos, lo cual significa que presentan “patologías potencialmente graves que pueden afectar a su comportamiento resistente” y son objeto de un seguimiento especial. Teniendo en cuenta que el parque de las obras de paso en España son de casi 23000 puentes, ello supone que un 0,28% de ellos superan el umbral de los 81 puntos. Parecerían pocos puentes, pero bastaría el colapso de uno solo de ellos para que se pudiese reproducir una tragedia como la ocurrida en Génova este verano. Por tanto, no debemos restar importancia a estas cifras. De hecho, nuestro grupo de investigación, a través del proyecto DIMALIFE, está muy preocupado por investigar estos tema.
¿Significa esto que en España nuestros puentes no son seguros? En absoluto. No hay que alarmarse, pero hay que tomar medidas. Lo que le ocurre a cualquier infraestructura (puente, presa, puerto, túnel, hospital, etc.) es que todas ellas, sin excepción, presentan una disminución de sus prestaciones y funcionalidades que, pasado cierto umbral, hace que dejen de ser útiles, finalizando su vida útil. La vida de las infraestructuras se puede prolongar con un adecuado mantenimiento y acometiendo reparaciones, pero llega un momento que el coste de alargar la vida útil puede ser insostenible. Por tanto, los puentes “envejecen”.
Todo el mundo está de acuerdo en que los aviones deben someterse a exámenes periódicos y revisiones profundas, realizadas por expertos, que garanticen la seguridad en vuelo de estos aparatos. Asimismo, también resulta evidente que todas las personas deberíamos someternos a chequeos médicos periódicos para detectar a tiempo enfermedades que, sin una detección precoz, son inevitablemente mortales. Pues lo mismo le pasa a las infraestructuras, que deben acudir de vez en cuando al “médico de cabecera”, que si detecta algún problema grave, manda al paciente al “médico especialista” y éste, en caso necesario, opera al paciente o le somete al tratamiento correspondiente. Pues lo mismo le ocurre a los puentes, donde existen inspecciones básicas o rutinarias, inspecciones principales e inspecciones especiales. De ello ya hablamos en una entrada anterior. Siguiendo con la analogía médica, la “analítica” realizada a los puentes ha mostrado que su “colesterol” está por encima de 250. Ello no significa la muerte inmediata del paciente, pero sí que es necesario un cambio de hábitos (ejercicio físico, dieta alimentaria, etc.) o medicación para reducir dicho índice. En caso de no hacer nada, nuestro puente puede tener un “problema coronario” que puede acabar en un “ataque al corazón”. Por tanto, la buena noticia es que hemos detectado los problemas y ahora se trata de poner a nuestros puentes bajo un “tratamiento médico” estricto.
Para aclarar alguno de los conceptos sobre los que se ha basado la noticia de El País, voy a recoger aquí los aspectos básicos. Están basados en una monografía del Ministerio de Fomento denominada “Guía para la realización de inspecciones principales de obras de paso en la Red de Carreteras del Estado“. Tal y como indica la guía, para cada uno de los daños que existan en un determinado elemento de un puente, se recogen en campo los índices de extensión, gravedad y evolución (apartado 4.5.3). Con estos datos se obtiene, en primer lugar, un Índice de Deterioro para cada daño, que puede tomar un valor entre 0 y 100. Con todos los índices de los deterioros existentes en un puente, se puede valorar el estado de conservación con el Índice de Estado o Condición de la Estructura, que también tiene un valor entre 0 y 100. Existen también índices intermedios para valorar los elementos, componentes y zonas de la estructura, de esta forma se puede localizar rápidamente el origen de la causa de determinado índice en la condición de la estructura.
Los índices de deterioro se dividen en cinco intervalos, con los significados siguientes:
Índice entre 0 y 20: Deterioro sin consecuencias importantes “a priori”
Índice entre 21 y 40: Deterioro que puede tener una evolución patológica o reducir las condiciones de servicio o de durabilidad del elemento si no se repara en el tiempo adecuado.
Índice entre 41 y 60: Deterioro que indica una patología que supone una reducción de las condiciones de servicio o de la durabilidad del elemento.
Índice entre 61 y 80: Deterioro que se puede traducir en una modificación del comportamiento resistente o funcional.
Índice entre 81 y 100: Deterioro que compromete la seguridad del elemento.
De la misma forma, el Índice de Estado de la Estructura se divide en cinco intervalos:
Índice entre 0 y 20: Estructura sin patologías evidentes o con deterioros sin consecuencias relevantes para la durabilidad, condiciones de servicio o seguridad de la estructura.
Índice entre 21 y 40: Estructura con deterioros que pueden tener una evolución patológica que afecte a la durabilidad o a las condiciones de servicio de la estructura. Es conveniente seguir su evolución temporal para su determinación objetiva.
Índice entre 41 y 60: Estructura con deterioros que evidencian una patología que puede suponer una reducción de las condiciones de servicio o de la durabilidad de la estructura. Será necesario seguir la evolución de la patología en las posteriores inspecciones. Puede requerir una actuación a medio plazo para mejorar la durabilidad de la estructura.
Índice entre 61 y 80: Estructura con deterioros o patologías que se pueden traducir en una modificación del comportamiento resistente o una reducción importante de los niveles de servicio. Requiere una actuación a corto-medio plazo. En función de la naturaleza del daño puede requerir una inspección especial.
Índice entre 81 y 100: Estructura con deterioros o patologías que comprometen la seguridad del elemento/estructura. Requiere una inspección especial y una actuación urgente. En algunos casos puede ser necesario una limitación del uso.
Como vemos, los índices establecen pautas para que el gestor decida intervenir en una estructura, realizar estudios especiales, programar actuaciones a medio plazo o asignar presupuestos. Con todo, los inspectores tiene capacidad de ir más allá de esta cuantificación cuando detectan problemas o imponderables difíciles de cuantificar, como por ejemplo, el grado de “actualización” de la estructura a las normas vigentes.
La conclusión es clara. Al igual que los aviones requieren inspecciones periódicas minuciosas para garantizar la seguridad en el vuelo y las personas debemos realizar chequeos médicos periódicos, las infraestructuras (puentes, presas, túneles, puertos, hospitales, estadios de fútbol, etc.) deben someterse a inspecciones programadas y, sobre todo, se debe disponer de un presupuesto suficiente que garantice el mantenimiento y la rehabilitación si fuera necesario. Todo lo que no sea eso, será poner en riesgo no solo la seguridad de las personas, sino el estado de bienestar.
Durante el último congreso IALCCE, que tuvo lugar en Gante en octubre de 2018, tuve la oportunidad de escuchar la lección magistral (Fazlur R. Khan Lecture) del doctor Man-Chung Tang, denominada “Durability of bridges“. Fue una conferencia brillante, donde la gran experiencia y conocimiento de este gran ingeniero de puentes, dejó muy claros algunos conceptos de gran importancia.
El doctor Tang, nacido en Zhaoqing (China), en 1938, es el Presidente del Consejo de Administración y el Director Técnico de la firma T.Y. Lin International ubicada en San Francisco (Estados Unidos). Se trata de una empresa multinacional en el ámbito de las infraestructuras e ingeniería de todo tipo, que emplea a más de 2500 ingenieros, arquitectos y científicos. Además, recibió el premio Senior Award del IALCCE del 2018 (al igual que Tatiana García Segura recibió el Junior Award).
La lección magistral, tal y como la introduce el propio Congreso, se presentaba de la siguiente forma:
“In the past, life cycle cost of a bridge is usually defined as the sum of initial costs, operation costs, maintenance costs, rehabilitation costs and disposal costs. Today, we may add environmental costs and social costs to arrive at a more realistic “total life cycle cost”. But the total life cycle cost of a bridge by itself does not have much meaning unless we also know the service life of the bridge. The economic efficiency of the bridge is the total life cycle cost divided by the service life of the bridge. The main factor affecting the service life is the durability of the bridge.“
Lo que más me llamó la atención es la llamada internacional a que los puentes se diseñen para una vida útil de 300 años. Se trata de una opinión que suscribo plenamente y que se debería llevar lo antes posible a los foros correspondientes. Son muchos ya los problemas de durabilidad y los accidentes que presentan estas estructuras para no tomar esta valiente decisión. Para ello hay que entender lo que significa la gestión del puente a lo largo de su ciclo de vida.
En efecto, muchas normas e instrucciones prescriben actualmente para la mayoría de los puentes una vida útil de 100 años para los grandes puentes y de 75 años para el resto. En España, la vida útil nominal indicada en la Instrucción de Hormigón Estructural EHE-08 es de 100 años para puentes de longitud total igual o superior a 10 metros y otras estructuras de ingeniería civil de repercusión económica alta.
Durante su lección magistral, el doctor Tang diferenció claramente la vida de servicio (service life) de un puente de lo que sería la vida útil para la que fue diseñada la estructura (design life). La vida de servicio se considera como el tiempo durante el cual un puente se puede utilizar de forma segura, de acuerdo con los criterios de diseño establecidos. Sin embargo, cuando se proyecta un puente, es difícil saber a ciencia cierta cuánto tiempo realmente dicho puente podrá estar en servicio. La vida de servicio, por tanto, no tiene por qué coincidir con la vida útil de diseño puesto que es evidente que un puente se puede encontrar en perfectas condiciones el día posterior a la caducidad de su vida de servicio, y no por ello debe procederse a su demolición. También es posible que, antes de alcanzar el fin de su vida útil, el puente quede fuera de servicio por múltiples motivos.
Por otra parte, un puente es durable si su vida de servicio es suficientemente larga. Como un puente debe ser seguro, funcional, económico y tener una buena presencia, ello implica que un puente será durable si es durable en cuanto a su seguridad, funcionalidad, economía y buena presencia. Este concepto de durabilidad, como es fácil de entender, está asociado a la probabilidad de incumplimiento de alguna de las funciones señaladas.
Además, hoy día el concepto de sostenibilidad implica un cambio radical en la forma de proyectar, construir y mantener los puentes. Si los romanos fueron capaces de construir puentes que han durado más de dos mil años, hoy es inconcebible que se proyecten puentes para una vida útil de 100 años.
El doctor Tang, basándose en sus observaciones y experiencia, expuso claramente su propuesta de elevar a 300 años la vida útil en el proyecto de los puentes. Ello no incrementaría en exceso el coste del puente. Además, muchos de los materiales empleados pueden durar esos 300 años si se realiza un mantenimiento conveniente. Nuestro grupo de investigación ha comprobado cómo realizando una optimización multiobjetivo de un puente se puede incrementar su vida útil muy por encima de los 100 años con incrementos muy pequeños en los costes (García-Segura et al., 2017).
Habrá quien argumente que antes de lo que esperamos la tecnología cambiará tanto que no tenga sentido el aumentar la vida útil de los puentes (coches voladores, por ejemplo). Sin embargo, ya hemos visto que desde el punto de vista de la sostenibilidad de los recursos naturales, desde el punto de vista económico, y sobre todo, para tratar de evitar tragedias como las que se han vivido recientemente, está más que justificada la revisión de la vida útil de diseño de las infraestructuras (no solo puentes, sino viviendas, obras hidráulicas, carreteras, puertos, etc.).
Por tanto, suscribo plenamente la opinión bien argumentada del doctor Tang: la vida útil de los puentes debe modificarse en las normas e instrucciones para subirla a un mínimo de 300 años.
Referencias:
GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks.Structural and Multidisciplinary Optimization, 56(1):139-150.
La gran cantidad de obras marítimas que se realizan han obligado a realizar numerosos estudios sobre el comportamiento de los hormigones sometidos a la acción del agua del mar. El hormigón, como material heterogéneo que es, presenta propiedades que varían de las características de sus componentes, de sus cantidades, de la forma de poner dicho hormigón en obra, del curado y conservación, del medio donde va a estar trabajando, entre otras.
En efecto, el agua de mar provoca un proceso muy complejo sobre el hormigón en el que intervienen gran número de parámetros mecánicos, físicos, químicos, biológicos y atmosféricos. Sin embargo, la agresividad química de los componentes del agua marina sobre los productos de hidratación del cemento, en especial el hidróxido de magnesio (Mg(OH)2) y el sulfato cálcico (CaSO4), provocan expansiones debidas a la reacción álcali-árido, si hay árido reactivo, a la presión de cristalización de sales en el hormigón, a la acción del hielo en climas fríos, a la corrosión de las armaduras y a la erosión física debida al oleaje. Estas acciones aumentan la permeabilidad del hormigón, lo que retroalimenta el proceso. Son los iones sulfato del interior de la matriz los que reaccionan con el monosulfatoaluminato produciendo estringita, que es la responsable de la expansión y la rotura. Con todo, el agua de mar es menos agresiva para el hormigón que cada una de las soluciones que la componen individualmente debido a que el comportamiento expansivo asociado con formación de estringita está inhibido por la presencia de cloruros y facilita su solubilidad. Además, el CO2 disuelto en el agua carbonata gradualmente al hormigón, formando una capa superficial de carbonato cálcico que actúa como protector frente al ataque del hidróxido de magnesio y del sulfato cálcico los cuales terminan colmatando los poros restantes.
Lo anteriormente expuesto indica que, en un hormigón de razonable calidad, no suele ser un serio problema el ataque químico por el agua de mar. El parámetro esencial que determina el buen comportamiento de un hormigón es su compacidad y la morfología de sus poros. Por tanto, aunque el agua de mar podría considerarse como poco agresiva respecto de los hormigones, el ambiente marino, por sí mismo, resulta fuertemente agresivo. En efecto, el ataque químico del agua de mar depende de si el hormigón se encuentra sumergido total o parcialmente. Si está totalmente sumergido, tienen lugar fundamentalmente los procesos químicos. En la zona de oscilación, actúan los ataques químicos con otras acciones físicas como cristalizaciones de sales, heladas, etc. En la zona no sumergida, pero cercana al agua, ésta sube por capilaridad y arrastra sales que pueden cristalizar dando lugar a expansiones. Además, los cloruros del agua marina (MgCl2) solubilizan el hidróxido de calcio (Ca(OH)2) (portlandita) que se ha formado durante el fraguado y endurecimiento del cemento, formando cloruro de calcio e hidróxido de magnesio.
El tema se complica cuando tratamos con hormigón armado. Efectivamente, los cloruros (incluso los bromuros) presentes en el agua marina atacan a las armaduras. Los iones cloruro penetran por difusión por los poros del hormigón y llegan a las armaduras, donde forman un electrolito conductor que rompe su capa pasivante y se produce la oxidación llamada de “picadura”. Es por ello, que en las estructuras de hormigón armado situadas en ambiente marino, resulta fundamental respetar los recubrimientos recomendados para evitar la corrosión descrita.
Os dejo a continuación una guía técnica de IECA donde se describe con mayor detalle el comportamiento del hormigón en ambiente marino.
Un revestimiento constituye una barrera que impide el paso y el acceso de los agentes agresivos exteriores en el hormigón. Se trata de capas finas, de unas micras hasta 3 mm de espesor, de diferentes productos, que pueden ser pinturas o micromorteros de diferentes composiciones químicas. Los agentes agresivos de los que el revestimiento debe realizar una protección son, entre otros, los siguientes:
El agua, por lo que el revestimiento debe ser impermeable
Líquidos agresivos, por lo que el revestimiento debe ser resistente químicamente
Cloruros y otros iones, que normalmente vienen disueltos en agua
Dióxido de carbono, por lo que el revestimiento debe ser una barrera a dicho gas
Se utilizan como revestimiento productos diferentes según el tipo de protección que se quiera realizar. Los productos más habituales son las resinas epoxi, las resinas de brea-epoxi, las emulsiones bituminosas, las pinturas acrílicas, las impregnaciones de siloxanos, los micromorteros de cementos y los micromorteros de epoxi-cemento.
Resinas epoxi
La resina epoxi constituye un revestimiento formado por dos componentes termoendurecibles. Son muy interesantes como revestimiento del hormigón porque presentan una gran adherencia, buenas resistencias mecánicas, magnífica resistencia química, elevada impermeabilidad a líquidos y gases y una buena resistencia a la abrasión y a los golpes. Las resinas epoxi puras presentan las mejores características, pero debido a la dificultad existente en su aplicación por la elevada viscosidad, se emulsionan con agua o se disuelven con disolventes orgánicos.
Resinas de brea-epoxi
La unión de la brea -que es un producto dúctil y elástico-, con la resina epoxi -que presenta una excesiva rigidez-, produce un revestimiento de mayor flexibilidad y menor coste que la resina epoxi, si bien con unas características menores en cuanto a la resistencia química y mecánica. Así y todo, resulta un producto adecuado para determinados usos.
Pinturas bituminosas
Las emulsiones bituminosas se componen de betún asfáltico, agua y un agente emulsionante. Son pinturas que se pueden aplicar a brocha, rodillo o proyección mecánica. Estos productos se caracterizan por su gran impermeabilidad al agua, su facilidad de aplicación y colocación, su buen comportamiento en contacto con el terreno y su bajo coste.
Pinturas acrílicas
Se trata de resinas acrílicas emulsionadas en agua o con disolventes orgánicos a fin de mejorar su fluidez y aplicabilidad. Se trata de unas pinturas que se suelen utilizar para evitar la carbonatación del hormigón. Entre sus características principales destaca su excelente impermeabilidad tanto al agua, al dióxido de carbono y a los cloruros, su buen aspecto estético y su permeabilidad al vapor de agua.
Impregnaciones a base de siloxanos
Son impregnaciones que, sin llegar a formar una película continua, se introducen en los poros del hormigón e impiden la entrada de las gotas de agua al cambiar su tensión superficial. Este carácter hidrófugo hacen a estas impregnaciones adecuadas para proteger al hormigón de los ataques por cloruros, pues éstos viajan disueltos en el agua.
Micromorteros de cemento
Son mezclas de cemento, arena fina y resinas sintéticas (normalmente acrílicas). Forman un revestimiento de 2-3 mm impermeables y con una buena resistencia a la abrasión. Dejan una superficie muy cerrada y adecuada para una posterior aplicación de otra pintura de revestimiento. Son adecuados estos revestimientos para hormigones que puedan estar sumergidos de forma no permanente, incluso en entornos donde ataquen los cloruros.
Micromorteros de epoxi-cemento
Son como los anteriores, pero sustituyendo las resinas acrílicas por resinas epoxi. En este caso, además de aditivo, las resinas epoxi actúan como ligante junto al cemento. Ello permite una gran impermeabilidad y resistencia mecánica, y unas resistencias químicas aceptables. Para un ataque químico medio suele bastar una capa de 2 mm. Además, también son recomendables en combinación con posteriores aplicaciones de pinturas de resinas epoxi.
En posts anteriores ya hemos tratado el tema del dióxido de carbono y el hormigón, en especial cuando cuantificábamos la cantidad de CO₂ que se emite a la atmósfera con la fabricación del hormigón o bien cuando tratábamos sobre la durabilidad del hormigón. En este artículo vamos a realizar un pequeño análisis de las investigaciones relacionadas con la carbonatación del hormigón a lo largo del ciclo de vida de una estructura (Yepes, 2017).
Son pocos los estudios sobre el ciclo de vida de estructuras de hormigón que consideran la carbonatación. Si se ignora la absorción de CO₂, se pueden sobrestimar las emisiones en un 13-48%, dependiendo del tipo de cemento y la aplicación del hormigón reciclado durante la vida secundaria (Collins, 2010). Este proceso de carbonatación se denomina muchas veces recarbonatación, puesto que el producto final es el carbonato cálcico, que es químicamente el mismo componente que se utilizó como ingrediente primario para la fabricación del cemento. La carbonatación del hormigón se puede evaluar mediante modelos teóricos (Papadakis et al., 1991), modelos experimentales (Jiang et al., 2000) y modelos basados en la teoría de la difusión y en pruebas reales (Houst y Wittmann, 2002).
El coeficiente de carbonatación del hormigón depende de la porosidad y de la permeabilidad del recubrimiento de las armaduras, así como de las condiciones ambientales a las que esté expuesto (Bertolini et al., 2004). Cuando reducimos la relación agua/cemento, dificultamos la difusión de CO₂ en el hormigón. El hecho de que la velocidad de carbonatación sea mayor en hormigones protegidos de la intemperie se debe al bloqueo parcial de los poros por efecto de la lluvia en el exterior no protegido.
Si se comparan ambas condiciones se obtienen grandes diferencias, mostrándose la gran influencia que tiene la humedad en la carbonatación (Galán et al., 2010). La cantidad necesaria de CO₂ para bajar el pH hasta rangos casi neutros, en los que las armaduras dejan de estar protegidas, variará en función de la reserva alcalina que el cemento aporte al hormigón, la cual depende tanto del tipo como de la cantidad de cemento utilizado (Ho and Lewis, 1987; Kobayashi y Uno, 1989). Zornoza et al. (2009) señalaron que la capacidad del hormigón para fijar CO₂ es proporcional a la alcalinidad de la pasta de cemento. Otro factor muy importante es el recubrimiento del acero, pues cuanto mayor sea, más tiempo tardará el CO₂ en deteriorar la protección alcalina frente a la corrosión del acero. La EHE-08 (Fomento, 2008) calcula el coeficiente de carbonatación en función de la exposición a la lluvia, el aire ocluido, la resistencia del hormigón y el uso de adiciones.
Leber y Blakey (1956) estimaron los efectos de la carbonatación, suponiendo que todo el CO₂ absorbido reacciona con la cal para formar carbonato cálcico en morteros y en hormigón. La carbonatación del hormigón capta CO₂ y compensa las emisiones de otras etapas del ciclo de vida. El tipo de cemento y el uso de hormigón reciclado influyen significativamente en la captura de CO₂ (Collins, 2010). Flower y Sanjayan (2007) encontraron que la escoria de alto horno y la ceniza volante podrían reducir, respectivamente, las emisiones de CO₂ del hormigón en un 22% y entre un 13% y un 15% en mezclas de hormigón habituales.
Pade y Guimaraes (2007), Collins (2010) y Dodoo et al. (2009) consideraron los modelos predictivos de la primera ley de difusión de Fick para estimar la captura de CO₂. Esta captura depende del coeficiente de carbonatación, del tiempo, de la cantidad de cemento Portland por metro cúbico de hormigón, de la cantidad de contenido de CaO en el cemento Portland, de la proporción de CaO que puede ser carbonatada y de la superficie expuesta. Pade y Guimaraes (2007) analizaron la cantidad de hormigón que se recicla para uso secundario según el país y concluyeron que la trituración del hormigón tras su vida útil incrementa significativamente la carbonatación gracias a la mayor superficie expuesta. Aproximadamente dos tercios de las emisiones producidas en la calcinación para fabricar cemento se pueden capturar si se deja el hormigón triturado expuesto durante 30 años tras la finalización de su vida útil (Dodoo et al., 2009). De hecho, un 70% del CO₂ liberado en la producción de cemento se recapturaría por el hormigón endurecido en 100 años (Börjesson y Gustavsson, 2000).
La durabilidad del hormigón armado puede disminuirse significativamente por los procesos de degradación de origen ambiental o funcional (Angst et al., 2009; Guzmán et al., 2011). En consecuencia, la reducción de la vida útil provoca una mayor cantidad de emisiones anuales. Además, contemplar la durabilidad también es fundamental en un buen diseño conceptual, en la gestión de calidad en la construcción y en un buen plan de mantenimiento. Así, Aïtcin (2000) señaló la importancia de considerar no solo el coste de 1 m3 de hormigón, sino el coste de 1 MPa o 1 año del ciclo de vida de una estructura. La carbonatación puede ayudar a reducir las emisiones totales de CO₂ asociadas a la producción de hormigón. Sin embargo, este fenómeno hace perder la capa protectora alcalina que protege de la corrosión y, por tanto, determina la durabiliad de la estructura.
García-Segura et al. (2014) estudiaron el ciclo de vida de las emisiones de gases de efecto invernadero del hormigón elaborado con cemento con adiciones. Se evaluó la carbonatación durante la vida útil y tras la demolición, considerando que el óxido de calcio que no carbonate durante la etapa de uso lo puede hacer después de la demolición. Encontraron que la carbonatación durante la etapa de uso disminuye las emisiones totales en un 22% respecto a los hormigones con cemento Portland. Además, y esto es muy importante, el hormigón reciclado triturado y expuesto a la atmósfera garantiza una carbonatación completa y una enorme reducción de las emisiones de CO₂.
Referencias:
Aïtcin, P.C. (2000). Cements of yesterday and today. Cement and Concrete Research, 30(9), 1349–1359.
Angst, U.; Elsener, B.; Larsen, C.K.; Vennesland, Ø. (2009). Critical chloride content in reinforced concrete — A review. Cement and Concrete Research, 39(12), 1122–1138.
Bertolini, L.; Elsener, B.; Pedeferri, P.; Polder, R.B. (2004). Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair. Weinheim: Wiley-VCH.
Börjesson, P.; Gustavsson, L. (2000). Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives. Energy Policy, 28(9), 575–588.
Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. The International Journal of Life Cycle Assessment, 15(6), 549–556.
Dodoo, A.; Gustavsson, L.; Sathre, R. (2009). Carbon implications of end-of-life management of building materials. Resources, Conservation and Recycling, 53(5), 276–286.
Flower, D.J.M.; Sanjayan, J.G. (2007). Green house gas emissions due to concrete manufacture. The International Journal of Life Cycle Assessment, 12(5), 282–288.
Fomento, M. (2008). EHE-08: Code on structural concrete. Madrid, Spain: Ministerio de Fomento.
Galán, I.; Andrade, C.; Mora, P.; Sanjuan, M.A. (2010). Sequestration of CO2 by concrete carbonation. Environmental Science & Technology, 44(8), 3181–6.
García-Segura, T.; Yepes, V.; Alcalá, J. (2014). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1), 3–12.
Guzmán, S.; Gálvez, J.C.; Sancho, J.M. (2011). Cover cracking of reinforced concrete due to rebar corrosion induced by chloride penetration. Cement and Concrete Research, 41(8), 893–902.
Ho, D.; Lewis, R. (1987). Carbonation of concrete and its prediction. Cement and Concrete Research, 17(3), 489-504.
Houst, Y.F.; Wittmann, F. H. (2002). Depth profiles of carbonates formed during natural carbonation. Cement and Concrete Research, 32(12), 1923–1930.
Jiang, L.; Lin, B.; Cai, Y. (2000). A model for predicting carbonation of high-volume fly ash concrete. Cement and Concrete Research, 30(5), 699–702.
Kobayashi, K.; Uno, Y. (1989). Influence of alkali on carbonation of concrete, part I. Preliminary tests with mortar specimens. Cement and Concrete Research, 19(5), 821-826.
Leber, I.; Blakely, F.A. (1956). Some effects of carbon dioxide on mortars and concrete. Journal of American Concrete Institute, 53(9), 295–308.
Pade, C.; Guimaraes, M. (2007). The CO2 uptake of concrete in a 100 year perspective. Cement and Concrete Research, 37(9), 1348–1356.
Papadakis, V.G.; Vayenas, C.G.; Fardis, M.N. (1991). Fundamental Modeling and Experimental Investigation of Concrete Carbonation. ACI Materials Journal, 88(4), 363–373.
Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.
Zornoza, E.; Payá, J.; Monzó, J.; Borrachero, M.V.; Garcés, P. (2009). The carbonation of OPC mortars partially substituted with spent fluid catalytic catalyst (FC3R) and its influence on their mechanical properties. Construction and Building Materials, 23(3), 1323–1328.
A punto de terminar el proyecto de investigación BRIDLIFE, a continuación se exponen algunas conclusiones de interés fruto de dicho proyecto y de la tesis doctoral y publicaciones de la profesora Tatiana García Segura. Son pequeñas “píldoras” de conocimiento que pueden ser de interés para proyectistas e investigadores relacionados con los puentes, el hormigón, la sostenibilidad y la optimización. Son las siguientes:
A pesar de la reducción de durabilidad por carbonatación y la menor captura de CO2, los cementos con adiciones resultan beneficiosos desde el punto de vista ambiental [1].
Mientras el uso del hormigón reciclado como árido afecta a las propiedades del hormigón y requiere en muchos casos un incremento en el contenido de cemento, la reutilización del hormigón como material granular de relleno permite una completa carbonatación del hormigón que reduce las emisiones de CO2 [1].
Se puede mejorar la seguridad estructural de los puentes en cajón con un pequeño incremento de coste siempre que se escojan las variables adecuadas [2]. Este incremento de coste no es constante para todos los niveles de seguridad. Se pueden establecer diferentes puntos, a partir de los cuales resulta más caro mejorar la seguridad estructural [2].
No se aconseja aumentar el espesor de la losa superior para mejorar la seguridad de los puentes en cajón, ya que ello conlleva un aumento de peso innecesario [2]. Sin embargo, el espesor de las alas en el arranque es un aspecto clave para mejorar la flexión transversal [2].
A pesar de que se ha considerado la inclinación del alma como variable de optimización, su valor óptimo apenas difiere para distintos valores de seguridad. Esto se debe a que tanto el canto como el ancho de inclinación del alma aumentan en paralelo para mejorar la seguridad estructural [2].
El uso de hormigón de alta resistencia en puentes no muestra ventajas económicas a corto plazo, pues las restricciones de servicio y armadura mínima no permiten reducir el canto y la cantidad de armadura [2]. Sin embargo, el hormigón de alta resistencia retrasa el inicio de la corrosión [3] y mejora el rendimiento estructural una vez se ha iniciado la corrosión [4]. Si se diseñan estructuras con hormigones de alta resistencia se consiguen mejores resultados durante el ciclo de vida que con diseños que tienen mayores recubrimientos, a pesar de tener el mismo inicio de corrosión [4].
Los diseños que tienen una mayor durabilidad tienen un mayor coste inicial pero un menor coste de ciclo de vida [4].
Los resultados muestran que tanto la optimización del coste como de las emisiones de CO2 reducen el consumo de material. Por tanto, la optimización del coste es una buena estrategia para conseguir estructuras más ecológicas [2,5,6].
Para gestionar el mantenimiento de las estructuras de forma sostenible se debe tener en cuenta tanto el coste y las emisiones de reparación, como el impacto que produce el desvío de tráfico sobre los usuarios de la vía [4].
La optimización del mantenimiento indica que no se debe optimizar cada superficie por separado, sino que se debe coordinar el mantenimiento de todas las superficies para reducir el coste y las emisiones que ocasiona el desvío del tráfico [4].
Referencias:
[1] T. García-Segura, V. Yepes, J. Alcalá, Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability, Int. J. Life Cycle Assess. 19 (2014) 3–12. doi:10.1007/s11367-013-0614-0.
[2] T. García-Segura, V. Yepes, Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety, Eng. Struct. 125 (2016) 325–336. doi:10.1016/j.engstruct.2016.07.012.
[3] T. García-Segura, V. Yepes, D.M. Frangopol, Multi-objective design of post-tensioned concrete road bridges using artificial neural networks, Struct. Multidiscip. Optim. 56 (2017) 139–150. doi:10.1007/s00158-017-1653-0.
[4] T. García-Segura, V. Yepes, D.M. Frangopol, D.Y. Yang, Lifetime reliability-based optimization of post-tensioned box-girder bridges, Eng. Struct. 145 (2017) 381–391. doi:10.1016/j.engstruct.2017.05.013.
[5] T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López, Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges, Eng. Struct. 92 (2015) 112–122. doi:10.1016/j.engstruct.2015.03.015.
[6] J.V. Martí, T. García-Segura, V. Yepes, Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy, J. Clean. Prod. 120 (2016) 231–240. doi:10.1016/j.jclepro.2016.02.024.
Nos acaban de publicar en línea en la revista Structural and Multidisciplinary Optimization (revista indexada en JCR en el primer cuartil) un trabajo de investigación en el que utilizamos las redes neuronales artificiales junto para el diseño multiobjetivo de puentes postesados de carreteras. Os paso a continuación el resumen y el enlace al artículo por si os resulta de interés. El enlace del artículo es el siguiente: http://link.springer.com/article/10.1007%2Fs00158-017-1653-0
Referencia:
García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, doi:10.1007/s00158-017-1653-0
Abstract:
In order to minimize the total expected cost, bridges have to be designed for safety and durability. This paper considers the cost, the safety, and the corrosion initiation time to design post-tensioned concrete box-girder road bridges. The deck is modeled by finite elements based on problem variables such as the cross-section geometry, the concrete grade, and the reinforcing and post-tensioning steel. An integrated multi-objective harmony search with artificial neural networks (ANNs) is proposed to reduce the high computing time required for the finite-element analysis and the increment in conflicting objectives. ANNs are trained through the results of previous bridge performance evaluations. Then, ANNs are used to evaluate the constraints and provide a direction towards the Pareto front. Finally, exact methods actualize and improve the Pareto set. The results show that the harmony search parameters should be progressively changed in a diversification-intensification strategy. This methodology provides trade-off solutions that are the cheapest ones for the safety and durability levels considered. Therefore, it is possible to choose an alternative that can be easily adjusted to each need.
Durante la vida de servicio los edificios se deterioran y llegan a la obsolescencia, debido entre otras causas a los efectos del clima, la utilización y el desgaste (Esteve, 2015). El deterioro empieza en el mismo momento en el que termina su construcción. El mantenimiento y las reparaciones garantizan la prolongación de la vida útil, logrando evitar el deterioro y, finalmente, su destrucción. Por tanto, la vida útil está estrechamente ligada al mantenimiento de una edificación.
El British Standars Institute define el mantenimiento de un edificio como “el trabajo acometido para mantener, restaurar o mejorar cada parte del edificio, sus servicios y sus alrededores, con las normas actualmente aceptadas, y para sostener la utilidad y el valor del edificio”. En definitiva, el mantenimiento es el conjunto de operaciones y cuidados necesarios para que los edificios e instalaciones puedan seguir funcionando adecuadamente.
Los edificios pueden fallar por numerosas razones: fallos de diseño, fallos de construcción, fallos de mantenimiento, fallos de materiales o fallos de utilización. Aunque los fallos de mantenimiento, se pueden descomponer en dos partes:
Mantenimiento que ha sido llevado a cabo incorrectamente.
No se ha realizado ningún mantenimiento durante toda la vida del edificio. Éste último es el más común.
En un estudio llevado a cabo en Hong Kong en el año 2000 por Lam (2009), se reveló que aproximadamente el 40% de los fallos de mantenimiento estaban relacionados con el diseño, el 30% estaban relacionados con la construcción o instalación y el 30% restante estaban relacionados con la gestión del mantenimiento.
Investigaciones como la de Chew et al. (2004) y Flores-Colen y J. Brito (2010) establecen que el proceso inevitable de deterioro se puede controlar y que la vida de servicio de los edificios puede extenderse si se mantienen adecuadamente. Las estrategias de mantenimiento son esenciales para controlar las primeras fases de degradación y para prevenir el fallo de los elementos del edificio. Además, la selección de las estrategias apropiadas y con mejor relación efectividad-coste pueden minimizar la disminución en el rendimiento de los edificios durante su ciclo de vida completo.
Para poder realizar adecuadamente la planificación de las tareas de mantenimiento, es necesario disponer de información fiable sobre la vida de servicio de los componentes de edificación. Si la durabilidad de los materiales se conoce, se puede identificar el intervalo de tiempo necesario para el mantenimiento y reparación de los componentes de las edificaciones. Según Straub (2011), faltan referencias fiables sobre la vida de servicio de los productos de construcción.
Por último, los costes de mantenimiento representan la mayor parte del coste total en la vida completa de un edificio. Según Griffin (1993), el coste inicial, correspondiente al diseño y construcción, podría representar únicamente alrededor del 25% del coste total, mientras que los costes de mantenimiento y operación supondrían del 50% al 80% del coste durante su vida de servicio.
Referencias:
Chew, M. Y. L., Tan, S. S., & Kang, K. H. (2004). Building maintainability – review of state of the art. Journal of Architectural Engineering, 10(3), 80-87.
Esteve, V.F. (2015). Estado del arte de los factores que afectan a la durabilidad de las edificaciones. Trabajo Fin de Máster. Máster en planificación y gestión de la ingeniería civil. Universitat Politècnica de València.
Flores-Colen, I., & De Brito, J. (2010). A systematic approach for maintenance budgeting of buildings faades based on predictive and preventive strategies. Construction and Building Materials, 24(9), 1718-1729.
Griffin, J. J. (1993). Life cycle cost analysis: A decision aid. Blackie Academic & Professional, London.
Lam, K. C. (2000). Quality assurance in management of building services maintenance. Building Services Engineering Department, The Hong Kong Polytechnic Univ.
Straub, A. (2011). To a new dutch service life database of building products. COBRA 2011 – Proceedings of RICS Construction and Property Conference, 135-145.