Jules Arthur Vierendeel: trayectoria, contribuciones y legado en la ingeniería estructural

Jules Arthur Vierendeel (1852-1940). https://www.flickr.com/

Jules Arthur Vierendeel (Lovaina, Bélgica, 10 de abril de 1852 – Uccle, Bélgica, 8 de noviembre de 1940) fue un ingeniero civil belga cuya innovación en el diseño estructural, la viga reticulada sin diagonales que lleva su nombre, marcó un punto de inflexión en la teoría de estructuras. Su trayectoria combina una sólida formación académica, una destacada carrera profesional y una profunda influencia en el desarrollo de métodos analíticos avanzados.

Nacido con el apellido Meunier, lo cambió por el de Vierendeel tras el segundo matrimonio de su madre con Pierre Vierendeel. Pasó su infancia y juventud en Geraardsbergen y, en 1874, se licenció en ingeniería civil y de minas en la Universidad Católica de Lovaina. Inmediatamente después, inició su carrera como ingeniero en la empresa Nicaise et Delcuve, en La Louvière.

En 1876 alcanzó notoriedad al ganar el concurso para diseñar el Royal Circus de Bruselas, una de las estructuras metálicas más ambiciosas de la época en Bélgica. Su diseño, excepcionalmente liviano, provocó un amplio debate público, que puso de manifiesto su enfoque audaz en materia estructural.

En 1885 fue nombrado director del servicio técnico del Ministerio de Obras Públicas de Flandes Occidental, cargo que desempeñó hasta 1927. Ese mismo año comenzó a impartir clases en la Universidad Católica de Lovaina, donde fue profesor de Construcción, Resistencia de Materiales, Ingeniería Estructural e Historia de la Técnica. Su influencia académica perduró hasta su jubilación, momento en el que fue distinguido con el título de profesor emérito en 1935.

Entre sus contribuciones más significativas, destaca el desarrollo de la llamada viga Vierendeel, una viga reticulada sin diagonales concebida en 1895. Con motivo de la Exposición Universal de Bruselas de 1897, financió y construyó personalmente un puente experimental de 31,5 metros de luz, que sometió a cargas hasta su colapso con el objetivo de validar empíricamente sus cálculos estructurales. Este experimento no solo confirmó la viabilidad del diseño, sino que consolidó su aceptación tanto en Bélgica —donde fue ampliamente utilizado por los Ferrocarriles del Estado— como en el extranjero; el primer puente Vierendeel en Estados Unidos se construyó ya en el año 1900.

Puente Hafe vu Léck. https://es.wikipedia.org/wiki/Puente_Vierendeel

El primer puente definitivo que empleó su sistema fue el puente de Waterhoek, construido en 1902 sobre el río Escalda, en la localidad de Avelgem. Esta estructura alcanzó relevancia cultural al ser mencionada en la novela De teleurgang van den Waterhoek, de Stijn Streuvels.

La viga Vierendeel planteó importantes desafíos teóricos, especialmente en una época en la que predominaban los métodos analíticos aplicables a estructuras trianguladas. En 1912, la revista Der Eisenbau publicó un debate técnico sobre las ventajas y limitaciones del sistema, lo que estimuló el desarrollo de nuevos enfoques analíticos, como el método de desplazamientos. Su legado técnico sigue vigente en aplicaciones modernas como el puente Qian Lin Xi, en China (1989), o las vigas estructurales del edificio sede del Commerzbank, en Fráncfort (1996).

Vierendeel fue también un prolífico autor. Entre sus obras más relevantes se encuentran Cours de stabilité des constructions (1889), L’architecture du Fer et de l’Acier (1897), Théorie générale des poutres Vierendeel (1900), La construction architectureale en fonte, fer et acier (1901), Der Vierendeelträger im Brückenbau (1911), Einige Betrachtungen über das Wesen des Vierendeelträgers (1912) y Breves reseñas de historia de la técnica y Cálculo de estructuras metálicas. Su producción bibliográfica constituye una referencia esencial en la historia de la ingeniería estructural.

Arthur Vierendeel se retiró en 1927 y falleció trece años después, en 1940. Su legado permanece como testimonio del equilibrio entre audacia ingenieril, rigor analítico y visión académica.

Evaluación de sistemas de cerramiento en naves industriales de acero: impacto ambiental y estrategias de final de vida.

Acaban de publicar nuestro artículo en la revista Buildings, de la editorial Elsevier, indexada en el JCR. El trabajo se realiza un exhaustivo análisis comparativo, basado en la metodología de Análisis de Ciclo de Vida (LCA) «de la cuna a la tumba», de tres soluciones de cerramiento para naves industriales de acero (chapas de acero, combinación de acero y ladrillo de arcilla y combinación de acero y bloque de hormigón) bajo dos escenarios de fin de vida (vertedero y reciclaje). Partiendo de una unidad funcional de 500 m² de envolvente lateral y utilizando el método ReCiPe 2016 Midpoint en 18 categorías de impacto, se desglosan detalladamente los inventarios de materiales, factores de reposición, procesos de extracción y fabricación, así como las repercusiones de distintas rutas de gestión de residuos. El estudio identifica los puntos críticos en las fases preoperativa, operativa y postoperativa, cuantifica las ventajas ambientales del reciclaje frente al vertido y evidencia que, pese a la preponderancia del acero, los indicadores de toxicidad humana y ecotoxicidad superan ampliamente la huella de carbono en importancia relativa. Por último, se discuten las limitaciones, se destacan las conclusiones clave y se proponen líneas de actuación futuras para enriquecer la sostenibilidad en el diseño y la gestión de las naves industriales.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València, y es fruto de la colaboración internacional con investigadores de la Universidad Tecnológica Federal de Paraná (Universidade Tecnológica Federal do Paraná, UTFPR), de Brasil.

En el sector de la construcción existe una fuerte demanda de sustituir las técnicas tradicionales por sistemas más sostenibles que cuantifiquen y reduzcan sus impactos ambientales más allá de las simples emisiones de CO₂ o la energía incorporada. Sin embargo, son escasos los estudios comparativos de LCA en naves industriales de acero que contrasten diversas opciones de cerramiento y analicen simultáneamente distintos escenarios de fin de vida. Este trabajo compara tres sistemas de cerramiento en naves de acero (SW: paneles de acero, SClaW: acero + ladrillo de arcilla y SConW: acero + bloque de hormigón) bajo dos rutas de fin de vida (vertedero frente a reciclaje), evaluando su desempeño en 18 categorías de impacto del método ReCiPe 2016 Midpoint. El objetivo es determinar qué combinaciones de materiales y gestión de residuos ofrecen el menor impacto ambiental global y, en consecuencia, orientar futuras decisiones de diseño y gestión.

Siguiendo la norma ISO 14040/44, se define el alcance como el ciclo completo de vida de las naves (extracción de materias primas, producción, construcción, uso y fin de vida). La unidad funcional elegida es 500 m² de cerramiento lateral equivalente a la envolvente de dos muros completos de la nave (superficie total: 600 m², 30 m × 20 m × 5 m). Se excluyó el tratamiento de los residuos generados en la obra y en el mantenimiento por falta de datos fiables y para garantizar la comparabilidad entre los tres diseños.

Las naves comparten estructura de perfiles de acero (ASTM A36 y A572 Gr. 50) y techo de chapa trapezoidal galvanizada de 0,5 mm de espesor y una pendiente del 5 %. Los cerramientos varían únicamente:

  • SW: chapa de acero (2500,78 kg).
  • SClaW: chapa (1190,85 kg) + ladrillo de arcilla (17 503,33 kg) + mortero (10 860,95 kg).
  • SConW: chapa (1190,85 kg) + bloque de hormigón (51 102,57 kg) + mortero (11 235,08 kg).

Para la etapa de uso, se asumió una vida útil de la nave de 50 años y de 40 años para el cerramiento (ABNT NBR 15575), por lo que se calculó un factor de reposición RF = 50/(40−1) = 0,25. Es decir, durante la explotación se sustituyó el 25 % de los materiales del cerramiento.

Se empleó SimaPro 9.6.0.1 con la base de datos Ecoinvent 3.10 y el método ReCiPe 2016 Midpoint (perspectiva jerárquica), con el que se caracterizaron 18 categorías: desde el «potencial de calentamiento global» o GWP hasta la toxicidad humana y la ecotoxicidad (terrestre, dulce y marina), pasando por la eutrofización, el agotamiento de recursos y el consumo de agua. El análisis abarca las fases preoperacional, operativa (incluido el RF) y postoperativa (vertederos inertes/sanitarios según la norma CONAMA 307/2002 frente a rutas de reciclaje).

Resultados: fases preoperativa y operativa

  • SW presenta los mayores impactos en seis categorías clave (eutrofización, ecotoxicidad y toxicidad humana), debido a la extracción y procesamiento intensivos del acero, con liberación de metales pesados y compuestos que elevan la eutrofización de las aguas continentales, la eutrofización marina, la ecotoxicidad terrestre, la ecotoxicidad de las aguas continentales, la eutrofización marina y la toxicidad carcinógena humana.
  • SClaW es el más perjudicial en otras seis categorías (escasez de recursos fósiles, escasez de recursos minerales, GWP, formación de partículas finas, radiación ionizante y toxicidad no carcinógena humana) debido al alto consumo de combustibles fósiles y materias primas en la cocción de ladrillos.
  • SConW lidera las 6 categorías restantes (ozonación, ozonización humana y terrestre, acidificación terrestre, consumo de agua, uso del suelo), atribuibles a la producción de cemento y hormigón (SO₂, NO_x, consumo de áridos y agua).

El impacto operativo equivale a un 25 % del preoperacional en todas las categorías, debido al RF uniforme, por lo que se suma directamente para el análisis conjunto.

Resultados: fase postoperativa

  • En el Escenario 1 (vertedero), SW arroja los mayores impactos en GWP, escasez de recursos fósiles, toxicidad y consumo de agua al verter acero (100 % reciclable) en un vertedero sanitario, lo que aumenta la demanda de material virgen y las emisiones asociadas.
  • En el Escenario 2 (reciclaje), todos los impactos se reducen drásticamente para los tres proyectos; la magnitud de esta reducción es mayor en SW debido a su alta proporción de acero, lo que penaliza severamente su perfil ambiental en el vertedero.

Este contraste evidencia que la estrategia de gestión de residuos (vertedero frente a reciclaje) tiene un efecto igual o más importante que la elección del material de cerramiento.

Resultados: ciclo de vida completo y comparativa cuantitativa.

En el ciclo de vida completo bajo el escenario 2, el SW + reciclaje obtiene el mejor desempeño ambiental en 9 de las 18 categorías. Por ejemplo, en GWP registra 7 823,752 kg CO₂ eq, con el SClaW al 98,34 % y el SConW al 72,66 % de ese valor; en Ozone Depletion es 0,00126 kg CFC11 eq (SClaW al 78,62 %, SConW al 176,45 %); en Ionizing Radiation registra 221,576 kBq Co-60 eq (33,85 % y −4,54 % respectivamente).

En contraste, el SW + vertedero es la peor alternativa en siete categorías (ecotoxicidad terrestre y acuática, carcinogenicidad y eutrofización), lo que subraya el impacto negativo de no reciclar el acero.

La normalización revela que las categorías de ecotoxicidad (terrestre, dulce y marina) y toxicidad no carcinógena para los humanos dominan el impacto total, superando ampliamente a la de GWP. Esto indica que existen riesgos locales y laborales por exposición a contaminantes pesados y compuestos tóxicos, que a menudo quedan fuera de los debates centrados únicamente en el cambio climático.

Discusión de los resultados

  • La opción más favorable en la mitad de las categorías ambientales evaluadas es la elección de chapas de acero reciclables, combinada con un programa de reciclaje efectivo.
  • El estudio demuestra la relevancia de ampliar el alcance de los indicadores más allá del CO₂, ya que categorías como la ecotoxicidad y la toxicidad humana pueden ser hasta 20 veces más significativas en términos normalizados.
  • La disposición de materiales reciclables (acero, ladrillo, hormigón) en vertederos supone un «punto caliente» que puede anular parcialmente las ventajas de un diseño ligero o materialmente eficiente.

Limitaciones y futuras líneas de investigación

Los autores reconocen que el estudio presenta varias limitaciones derivadas del ámbito de los datos y del alcance metodológico. En primer lugar, se ha excluido del inventario la generación de residuos durante las fases de construcción y mantenimiento, debido a la falta de datos fiables y específicos para proyectos de naves industriales. Además, la dependencia de procesos y materiales modelados en la base de datos genérica Ecoinvent, sin tener en cuenta los inventarios locales brasileños, puede afectar a la representatividad regional de los resultados y sesgar las conclusiones. Por último, el análisis se ha centrado exclusivamente en indicadores ambientales, dejando fuera las dimensiones económica y social, como los costes de ciclo de vida y el impacto social, así como aspectos operativos clave, como el confort térmico y la eficiencia energética durante el uso de las naves.

Para superar estas limitaciones y enriquecer la sostenibilidad de futuros estudios, se proponen una serie de recomendaciones. En primer lugar, se sugiere incorporar inventarios primarios locales que reflejen de manera más precisa los procesos y materiales de cada región, especialmente en contextos como el brasileño. En segundo lugar, se debe ampliar el abanico de sistemas constructivos analizados, incluyendo soluciones con aislantes y materiales híbridos que puedan ofrecer mejores prestaciones ambientales. En tercer lugar, se debe avanzar hacia un análisis integrado de costes y aspectos sociales mediante una metodología LCSA (Life Cycle Sustainability Assessment), que combine las dimensiones económica, ambiental y social. Por último, se debe evaluar el rendimiento en uso de las naves y relacionar los resultados de la LCA ambiental con parámetros de eficiencia energética y confort térmico para ofrecer una visión más completa del ciclo de vida del edificio.

Referencia:

VITORIO JUNIOR, P.C.; YEPES, V.; ONETTA, F.; KRIPKA, M. (2025). Comparative Life Cycle Assessment of Warehouse Construction Systems under Distinct End-of-Life Scenarios. Buildings, 15(9), 1445. DOI:10.3390/buildings15091445

Como el artículo está publicado en abierto, lo dejo para su descarga.

Descargar (PDF, 2.18MB)

 

Durabilidad de las estructuras de acero

https://estructuramex.com/que-provoca-la-oxidacion-en-las-estructuras-metalicas/

La durabilidad de las estructuras de acero depende de factores como la calidad del material, el diseño estructural, las medidas de protección contra la corrosión y el mantenimiento planificado. Una estrategia efectiva en cada una de estas áreas permite alcanzar la vida útil deseada, minimizar el deterioro y reducir la necesidad de intervenciones costosas.

Factores que afectan a la durabilidad del acero

La exposición ambiental es una de las principales causas del deterioro del acero estructural. La agresividad del medio se clasifica en diferentes niveles, desde ambientes de corrosividad muy baja (C1) hasta ambientes de corrosividad muy alta (C5). En zonas con alta humedad, presencia de iones cloruro, exposición constante a la lluvia o a contaminantes industriales con alto contenido en SO₃, la velocidad de corrosión aumenta, por lo que es necesario adoptar medidas adicionales para proteger la estructura.

Las uniones estructurales pueden constituir puntos de alta vulnerabilidad si no se diseñan y ejecutan adecuadamente. Las soldaduras deben estar libres de fisuras, cráteres y proyecciones, ya que estas imperfecciones dificultan la adherencia de los sistemas de protección superficial. En uniones atornilladas, los pernos, las tuercas y las arandelas deben tener la misma durabilidad que el resto de la estructura para evitar deterioros diferenciales y la formación de pares galvánicos entre metales de diferente potencial electroquímico.

Diseño estructural y estrategias para mejorar la durabilidad

El diseño debe evitar configuraciones que favorezcan la acumulación de agua o suciedad, ya que estas condiciones pueden acelerar la corrosión. Para ello, se recomienda evitar superficies horizontales expuestas y secciones abiertas en la parte superior de los elementos estructurales, ya que pueden retener humedad. Además, las cavidades y huecos deben eliminarse o diseñarse de manera que permitan un drenaje eficiente. En el caso de elementos con interiores accesibles, deben incorporarse sistemas adecuados de ventilación y drenaje, mientras que los interiores inaccesibles deben sellarse completamente mediante soldaduras continuas para evitar la entrada de humedad.

Las uniones estructurales deben recibir especial atención en lo que a protección se refiere. En elementos soldados, se recomienda que la intersección entre refuerzos y elementos principales sea continua para permitir la correcta aplicación de recubrimientos. En el caso de entallas en almas o refuerzos, se deben disponer radios mínimos de 50 mm para facilitar la aplicación de los sistemas de protección.

Selección de materiales y protección contra la corrosión

En entornos agresivos, se pueden emplear aceros con resistencia mejorada a la corrosión atmosférica, aceros inoxidables o aceros galvanizados en caliente. En el caso de los aceros resistentes a la corrosión atmosférica, su uso sin recubrimiento de pintura está limitado a ambientes que no presenten una exposición significativa a iones cloruro. En estos casos, el espesor nominal de los elementos expuestos al ambiente exterior debe incrementarse en 1 mm. Para superficies interiores de secciones cerradas e inaccesibles se requiere la aplicación de un sistema de protección adecuado o un sobreespesor adicional.

La protección superficial es uno de los métodos más utilizados para garantizar la durabilidad de los elementos de acero. Al seleccionar el sistema de protección, se debe tener en cuenta el grado de preparación de la superficie, el tipo de imprimación, el número y el espesor de las capas de recubrimiento y la frecuencia de reposición durante la vida útil de la estructura. En función de la agresividad ambiental, los espesores de recubrimiento y la durabilidad del sistema deben ajustarse para proporcionar la protección requerida.

En algunas condiciones, el sobreespesor puede utilizarse como alternativa a los recubrimientos superficiales. Para ambientes de corrosividad alta (C4) o muy alta (C5), se recomienda un sobreespesor de 1,5 mm por cada 30 años de vida útil prevista, mientras que en ambientes de corrosividad media (C3) este valor se reduce a 1 mm. En ambientes de baja corrosividad (C2), el sobreespesor mínimo es de 0,5 mm, y en ambientes de corrosividad muy baja (C1) no es necesario aumentar el espesor. En elementos inaccesibles de puentes metálicos, el espesor total de las secciones cerradas no debe ser inferior a 8 mm.

La protección catódica es otra opción para reducir la corrosión en estructuras de acero, especialmente en entornos con exposición prolongada a la humedad o ambientes marinos. Este sistema requiere un diseño detallado y un plan de mantenimiento que garantice su efectividad a largo plazo. El proyecto debe justificar técnicamente la aplicación de la protección catódica y definir los procedimientos de instalación y seguimiento conforme a la norma UNE-EN ISO 12499.

Mantenimiento y conservación

El mantenimiento de las estructuras de acero es una parte esencial de la estrategia de durabilidad. Los sistemas de protección superficial deben reemplazarse periódicamente, ya que su vida útil suele ser inferior a la de la estructura. Para facilitar estas intervenciones, es necesario que las estructuras cuenten con accesos adecuados a las zonas cerradas. En los cajones metálicos, por ejemplo, las aberturas deben ser lo suficientemente amplias para permitir el paso de personal y equipos de mantenimiento. Se recomienda que las dimensiones mínimas sean de 500 x 700 mm en accesos rectangulares u ovales y de 600 mm de diámetro en accesos circulares.

Conclusión

La durabilidad de los elementos de acero en estructuras civiles depende de una combinación de factores, como el diseño estructural, la selección de materiales, la aplicación de sistemas de protección adecuados y un mantenimiento planificado. La implementación de estrategias de prevención permite garantizar el buen funcionamiento de la estructura a lo largo de su vida útil, reducir la necesidad de intervenciones correctivas y asegurar su seguridad y funcionalidad en diferentes condiciones de exposición.

A continuación, podéis ver algunos vídeos al respecto.

Os dejo a continuación el capítulo 19 del Código Estructural para que lo consultéis.

Descargar (PDF, 317KB)


Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estructuras híbridas de acero

Viga armada de acero. https://www.renedometal.es/vigas-armadas-la-rioja/

El desarrollo de estructuras de acero ha sido un pilar fundamental en la ingeniería civil desde el siglo XIX. Obras emblemáticas como el puente de Brooklyn y la torre Eiffel son ejemplos tempranos de su aplicación con éxito. La evolución tecnológica ha dado lugar al desarrollo de conceptos avanzados como las vigas híbridas de acero, que permiten un mejor aprovechamiento del material y reducen los costes de manera significativa. Las vigas híbridas de acero son una solución avanzada en el ámbito de la construcción que permite optimizar el uso de materiales, reducir costes y mejorar la eficiencia estructural. Estas vigas combinan diferentes tipos de acero en sus componentes para maximizar la resistencia y minimizar el peso, por lo que constituyen una alternativa eficaz a las vigas homogéneas tradicionales.

Históricamente, han dominado el mercado las vigas de acero convencionales, en las que tanto el alma como las alas tienen la misma resistencia a la fluencia. Sin embargo, esta configuración puede llevar a un uso ineficiente del material, ya que las alas soportan la mayor parte de las tensiones de flexión. La incorporación de diferentes resistencias en las partes de la viga es una solución innovadora para optimizar el empleo del acero.

El concepto de viga híbrida implica el uso de acero de alta resistencia en las alas, donde se producen tensiones de tracción y compresión máximas, y de acero de resistencia moderada en el alma, que soporta tensiones menores. Esta configuración permite reducir el peso total de la viga, disminuir costes y mejorar la sostenibilidad mediante una utilización más eficiente de los recursos.

La investigación sobre vigas híbridas ha seguido tres enfoques principales: estudios experimentales, simulaciones computacionales y revisiones bibliográficas. Los ensayos experimentales evalúan el comportamiento estructural bajo diversas condiciones de carga. Las simulaciones computacionales permiten modelar situaciones complejas mediante el método de elementos finitos. Las revisiones bibliográficas consolidan el conocimiento existente y permiten identificar lagunas en la investigación.

Las estructuras híbridas son objeto de nuestros proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. En las referencias se encuentran tres de los artículos publicados al respecto, los cuales se pueden descargar por estar publicados en abierto. Además, ya publicamos varias entradas sobre estos trabajos hace unos meses.

En un artículo anterior (Terreros-Bezoya et al., 2023), ya hicimos referencia a un estudio del estado del arte al respecto. En dicha investigación se revisaron 128 publicaciones sobre diseño de vigas y se utilizó un análisis de correspondencia para identificar patrones en variables como la resistencia de alas y alma, las condiciones de carga y los métodos de cálculo. Se sistematiza el conocimiento existente y se destacan enfoques de diseño eficaces. Se identifican ratios híbridos ideales, con un equilibrio entre resistencia y economía de material, que oscilan entre 1,3 y 1,6. Además, el estudio destaca las ventajas ambientales y económicas de las vigas híbridas, ya que al reducir el peso de las estructuras, disminuyen los costes de transporte, instalación y materiales, y, por tanto, las emisiones de CO₂. Esta estrategia se alinea con los objetivos de la Unión Europea para lograr la neutralidad climática en 2050 y mejora la viabilidad de proyectos a gran escala al reducir los costes de fabricación y montaje.

Estudios recientes han demostrado que las vigas híbridas son superiores en términos de resistencia y eficiencia económica. Ensayos experimentales muestran que pueden soportar cargas hasta un 40% mayores que las vigas convencionales debido a su capacidad para distribuir tensiones de manera más efectiva. Además, su uso puede reducir los costos de construcción en un 20%, considerando ahorros en materiales, transporte e instalación.

En términos de distribución geográfica, la investigación sobre vigas híbridas está dominada por Estados Unidos, China y Europa, con un crecimiento notable en Asia debido a su desarrollo infraestructural. Los estudios se centran en tres áreas principales: comportamiento estructural, desarrollo de metodologías de diseño y optimización económica.

Las investigaciones sobre flexión pura revelan que una resistencia a la fluencia de 300 MPa en el alma y 500 MPa en las alas mejora significativamente el rendimiento estructural. En términos de corte puro, se ha logrado mejorar la resistencia en un 25% mediante el desarrollo de campos de tensión diagonales. La interacción flexión-corte permite incrementar la resistencia última hasta un 30% al diseñar refuerzos de ala y distribuciones de carga adecuadas.

El trabajo de Negrín et al. (2023) presenta una metodología para optimizar el diseño de vigas híbridas de acero soldado y, por tanto, mejorar su coste. Se formula un problema de optimización que permite configuraciones híbridas con diferentes tipos de acero y se considera el coste de fabricación como función objetivo. Los resultados indican que el diseño optimizado puede ser hasta un 50 % más económico que los métodos tradicionales. Además, se sugieren métodos para comparar soluciones óptimas y se establecen líneas de investigación futuras basadas en los resultados obtenidos.

El estudio de Negrín et al. (2024) destaca los beneficios económicos de las vigas de acero híbridas transversal-longitudinalmente (TLH), mostrando una reducción de costos de fabricación superior al 50% en comparación con diseños tradicionales. Se identifican configuraciones TLH como más eficaces para elementos grandes, con recomendaciones para puntos de transición y configuraciones de materiales según niveles de tensión. Además, la metodología propuesta promueve un diseño sostenible, optimizando elementos TLH para mejorar aspectos económicos y ambientales, lo que sugiere futuras investigaciones en comportamiento estructural y sostenibilidad.

Sin embargo, persisten desafíos en áreas como la soldadura y la fabricación. La unión de materiales con diferentes propiedades requiere técnicas especializadas y electrodos adecuados para garantizar la integridad estructural. Además, los estándares de diseño actuales deben actualizarse para reflejar las características específicas de las vigas híbridas y proporcionar directrices más detalladas para su aplicación.

En conclusión, las vigas híbridas de acero ofrecen una combinación única de resistencia, sostenibilidad y economía. Los avances en fabricación, en métodos computacionales y en el análisis del ciclo de vida continúan impulsando su desarrollo. La colaboración entre instituciones académicas, la industria y los organismos reguladores será esencial para su adopción generalizada. La actualización de los códigos de diseño y la estandarización de los procesos de fabricación mejorarán su competitividad en proyectos de infraestructura a gran escala.

Referencias:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2024). Optimized Transverse-Longitudinal Hybrid Construction for Sustainable Design of Welded Steel Plate Girders. Advances in Civil Engineering, 2024:5561712. DOI:10.1155/2024/5561712.

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Design optimization of welded steel plate girders configured as a hybrid structure. Journal of Constructional Steel Research, 211:108131. DOI:10.1016/j.jcsr.2023.108131

TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Vigas híbridas de acero: la apuesta sostenible que transforma costos y rendimiento en la construcción

Un artículo reciente publicado en el Journal of Constructional Steel Research, liderado por los investigadores Agustín Terreros-Bedoya, Iván Negrín, Ignacio Payá-Zaforteza y Víctor Yepes de la Universitat Politècnica de València, explora en profundidad el uso de vigas híbridas de acero como una alternativa innovadora y sostenible a las vigas tradicionales de acero homogéneo.

Estas vigas híbridas, que combinan diferentes tipos de acero de distintas resistencias en sus componentes (alas y alma), han demostrado tener un gran potencial para optimizar el uso de materiales en la construcción, mejorar la eficiencia estructural y reducir costes y el impacto ambiental.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Vigas híbridas: concepto y ventajas

El estudio parte de la necesidad de encontrar soluciones estructurales que no solo cumplan con altos estándares de rendimiento, sino que también sean sostenibles. En una viga híbrida, el acero de alta resistencia se utiliza en las alas, donde se requiere mayor capacidad de resistencia a esfuerzos, mientras que el alma se construye con un acero de resistencia media, lo que reduce el peso y el coste del material sin comprometer su resistencia general. Este diseño permite que la viga absorba cargas significativas y redistribuya los esfuerzos de forma más eficiente que una viga homogénea, con lo que se logra una estructura más liviana y económica.

Metodología y análisis

La investigación analiza 128 publicaciones previas sobre el tema, utilizando un análisis de correspondencia simple para identificar patrones y relaciones entre variables de diseño, como la resistencia de las alas y el alma, las condiciones de carga y los métodos de cálculo. Mediante esta metodología, los autores logran sistematizar el conocimiento existente sobre el tema y destacan los enfoques de diseño más eficaces. Este análisis también identificó los «ratios híbridos» ideales, es decir, la proporción óptima entre la resistencia del acero en el alma y en las alas para maximizar el rendimiento de la viga. Un hallazgo clave es que los ratios híbridos entre 1,3 y 1,6 suelen proporcionar un equilibrio óptimo entre resistencia y economía de material.

Sostenibilidad y beneficios económicos

Además del rendimiento estructural, el estudio subraya las ventajas ambientales de las vigas híbridas. Al reducir el peso de las estructuras, disminuyen los costes de transporte, instalación y consumo de materiales, lo cual se traduce en una reducción significativa de las emisiones de CO₂. Los investigadores destacan que esta estrategia de construcción está en consonancia con los objetivos de la Unión Europea de reducir la huella de carbono de la industria de la construcción y lograr la neutralidad climática para 2050. Desde el punto de vista económico, la reducción de peso y material también representa unos costes de fabricación y montaje menores, lo que incrementa la viabilidad de estas soluciones en proyectos a gran escala.

Desafíos y áreas futuras de investigación

El estudio identifica varios desafíos que deben abordarse para implementar las vigas híbridas de manera efectiva en proyectos reales. Uno de los retos más importantes es la limitada cantidad de estudios experimentales en condiciones de carga combinada (flexión y cortante) y de pandeo, que son comunes en estructuras complejas como puentes y edificios de gran altura. Los autores recomiendan llevar a cabo investigaciones adicionales para desarrollar métodos de diseño que integren estas variables y permitan un mejor rendimiento bajo cargas extremas.

Otra área prometedora es la implementación de algoritmos de optimización y técnicas de inteligencia artificial para mejorar el diseño y el análisis de estas vigas. Estos métodos pueden ayudar a identificar configuraciones de material y geometría que maximicen la eficiencia estructural y minimicen el impacto ambiental. También sugieren explorar la combinación de acero de alta resistencia con otros materiales, como el hormigón, para crear estructuras híbridas aún más optimizadas.

Implicaciones para la industria de la construcción

Este estudio contribuye significativamente al conocimiento de las vigas híbridas de acero, ya que propone un marco de referencia que puede transformar la forma en que se diseñan y construyen las infraestructuras. A medida que se intensifica la presión para construir de forma más eficiente y respetuosa con el medioambiente, las vigas híbridas se perfilan como una solución viable que permite aprovechar al máximo las propiedades de los materiales, a la vez que se reducen los costes y la huella de carbono de las construcciones. Por tanto, la investigación de Terreros-Bedoya y su equipo proporciona una base sólida para que ingenieros y constructores consideren esta tecnología en futuros proyectos, impulsando un desarrollo urbano más sostenible y económico.

Referencia:

TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.

Dejo a continuación el artículo completo, pues está publicado en abierto.

Descargar (PDF, 4.42MB)

Optimización del diseño de vigas híbridas de acero

Acaban de publicarnos un artículo en el Journal of Constructional Steel Research, revista indexada en el JCR. Este artículo implementa la optimización del diseño estructural para mejorar los índices económicos de las vigas híbridas de acero soldadas. El problema de optimización está formulado de manera que permita el uso de configuraciones híbridas, es decir, diferentes tipos de acero en el alma y en las alas. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Las contribuciones de este trabajo son las siguientes:

  • El artículo propone una metodología para la optimización del diseño estructural de vigas híbridas de acero soldadas con el fin de mejorar sus índices económicos.
  • El problema de optimización se formula para permitir el uso de configuraciones híbridas, que pueden incluir diferentes tipos de acero en las almas y en las alas.
  • El documento incluye once calidades de acero como variables de optimización, y el costo de fabricación se formula como una función objetivo, que incluye otras siete actividades, como la soldadura o la pintura.
  • Los resultados muestran que el diseño optimizado proporciona soluciones hasta un 50% más económicas que los métodos de diseño tradicionales.
  • El documento sugiere ciertos conceptos que destacan las propiedades mecánicas para comparar las soluciones óptimas para cada estudio de caso, que pueden servir como recomendaciones de diseño para proyectos futuros que incluyan este elemento estructural.
  • El artículo establece líneas de investigación futuras sobre este tema, basándose en los vacíos de la investigación y en los prometedores resultados obtenidos.

Abstract:

This paper implements structural design optimization to improve the economic indexes of welded steel plate girders. The optimization problem is formulated in a way that allows the use of hybrid configurations, i.e., different types of steel in the flanges and web. Besides the cross-sectional dimensions, eleven steel grades are included as optimization variables. In addition to weight and material cost, the manufacturing cost is formulated as an optimization objective, which includes seven other activities, such as welding or painting. The geometrically double symmetric I-girder design subjected to a uniform transverse load is carried out through the Eurocode 3 rules. Nine case studies are implemented by varying the girder span and load values. The results show significant differences depending on the optimization objective, especially between weight and cost optimization. On the other hand, optimization-assisted design provides solutions up to 50% more economical than traditional design methods. Hybrid-optimized configurations can also improve these indexes by about 10% compared to their homogeneous counterpart, demonstrating the applicability of this novel practice. Certain concepts highlighting mechanical properties are proposed to compare the optimal solutions for each case study. These concepts can serve as design recommendations for future projects that include this structural element. Finally, based on the research gaps and the promising results obtained, future lines of research on this topic are established.

Keywords:

Hybrid steel girder; Structural optimization; Hybrid ratio; Biogeography-based optimization

Reference:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Design optimization of welded steel plate girders configured as a hybrid structure. Journal of Constructional Steel Research, 211:108131. DOI:10.1016/j.jcsr.2023.108131

Al tratarse de un artículo publicado en abierto, os dejo el mismo para su descarga. Espero que os sea de interés.

Descargar (PDF, 4.16MB)

Tesis doctoral: Optimal deep learning assisted design of socially and environmentally efficient steel concrete composite bridges under constrained budgets

Hoy 19 de julio de 2023 ha tenido lugar la defensa de la tesis doctoral de D. David Martínez Muñoz titulada “Optimal deep learning assisted design of socially and environmentally efficient steel concrete composite bridges under constrained budgets“, dirigida por Víctor Yepes Piqueras y José V. Martí Albiñana. La tesis recibió la máxima calificación de sobresaliente “cum laude” y presenta la mención internacional. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

El diseño de infraestructuras está fuertemente influido por la búsqueda de soluciones que tengan en cuenta el impacto en la economía, el medio ambiente y la sociedad. Estos criterios están muy relacionados con la definición de sostenibilidad que hizo la Comisión Brundtland en 1987. Este hito supuso un reto para técnicos, científicos y legisladores. Este reto consistía en generar métodos, criterios, herramientas y normativas que permitieran incluir el concepto de sostenibilidad en el desarrollo y diseño de nuevas infraestructuras. Desde entonces, se han producido pequeños avances en la búsqueda de la sostenibilidad, pero se necesitan más a corto plazo. Como plan de acción, las Naciones Unidas establecieron los Objetivos de Desarrollo Sostenible, fijando el año 2030 como meta para alcanzarlos. Dentro de estos objetivos, las infraestructuras se postulan como un punto crítico. Tradicionalmente, se han desarrollado métodos para obtener diseños óptimos desde el punto de vista del impacto económico. Sin embargo, aunque en los últimos tiempos se ha avanzado en la aplicación y utilización de métodos de análisis del ciclo de vida completo, aún falta un consenso claro, especialmente en el pilar social de la sostenibilidad. Dado que la sostenibilidad engloba diferentes criterios, que en principio no van necesariamente de la mano, el problema de la búsqueda de la sostenibilidad se plantea no solo como un problema de optimización, sino también como un problema de toma de decisiones multi-criterio.

El objetivo principal de esta tesis doctoral es proponer diferentes metodologías para la obtención de diseños óptimos que introduzcan los pilares de la sostenibilidad en el diseño de puentes mixtos acero-hormigón. Como problema estructural representativo se sugiere un puente viga en cajón de tres vanos mixto. Dada la complejidad de la estructura, en la que intervienen 34 variables discretas, la optimización con métodos matemáticos resulta inabordable. Por ello, se recomienda el uso de algoritmos metaheurísticos. Esta complejidad también se traduce en un alto coste computacional para el modelo, por lo que se implementa un modelo de redes neuronales profundas que permite la validación del diseño sin necesidad de computación. Dada la naturaleza discreta del problema, se proponen técnicas de discretización para adaptar los algoritmos al problema de optimización estructural. Además, para mejorar las soluciones obtenidas a partir de estos algoritmos discretos, se introducen métodos de hibridación basados en la técnica K-means y operadores de mutación en función del tipo de algoritmo. Los algoritmos utilizados se clasifican en dos ramas. La primera son los basados en trayectorias como el Simulated Annealing, Threshold Accepting y el Algoritmo del Solterón. Por otra parte, se emplean algoritmos de inteligencia de enjambre como Jaya, Sine Cosine Algorithm y Cuckoo Search. La metodología de Análisis del Ciclo de Vida definida en la norma ISO 14040 se usa para evaluar el impacto social y medioambiental de los diseños propuestos. La aplicación de esta metodología permite evaluar el impacto y compararlo con otros diseños. La evaluación mono-objetivo de los diferentes criterios lleva a la conclusión de que la optimización de costes está asociada a una reducción del impacto medioambiental y social de la estructura. Sin embargo, la optimización de los criterios medioambientales y sociales no reduce necesariamente los costes. Por ello, para realizar una optimización multi-objetivo y encontrar una solución de compromiso, se implementa una técnica basada en la Teoría de Juegos, recomendando una estrategia de juego cooperativo. La técnica multi-criterio empleada es la Teoría de la Entropía para asignar pesos a los criterios para la función objetivo agregada. Los criterios considerados son los tres pilares de la sostenibilidad y la facilidad constructiva de la losa superior. Aplicando esta técnica se obtiene un diseño óptimo relativo a los tres pilares de la sostenibilidad y a partir del cual se mejora la facilidad constructiva.

Referencias:

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2023). Hybrid swarm intelligence optimization methods for low-embodied energy steel-concrete composite bridges. Mathematics, 11(1):140. DOI:10.3390/math11010140

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm. Structural and Multidisciplinary Optimization, 65:312. DOI:10.1007/s00158-022-03393-9

GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. DOI:10.1016/j.autcon.2022.104532

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Discrete swarm intelligence optimization algorithms applied to steel-concrete composite bridges. Engineering Structures, 266:114607. DOI:10.1016/j.engstruct.2022.114607

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

NAVARRO, I.J.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; REMPLING, R.; YEPES, V. (2020). Life cycle sustainability assessment for multi-criteria decision making in bridge design: A review. Journal of Civil Engineering and Management, 26(7):690-704. DOI:10.3846/jcem.2020.13599.

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Advances in Civil Engineering, 2020:8823370. DOI:10.1155/2020/8823370

PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265

YEPES, V.; DASÍ-GIL, M.; MARTÍNEZ-MUÑOZ, D.; LÓPEZ-DESFILÍS, V.J.; MARTÍ, J.V. (2019). Heuristic techniques for the design of steel-concrete composite pedestrian bridges. Applied Sciences, 9(16), 3253; DOI:10.3390/app9163253

Seguridad estructural, los estados límites y los métodos semiprobabilísticos

El concepto de seguridad de una estructura en cumplir un conjunto de funciones para las que ha sido proyectada es un término relacionado con el grado de certeza o fiabilidad de que no alcance un conjunto de estados no deseables que todavía no han acontecido.

La seguridad se representa por consiguiente como un aspecto antagónico al aspecto económico del dimensionamiento: una estructura proyectada para un coste pequeño puede resultar poco segura y, por el contrario, una estructura proyectada para ser muy segura puede resultar antieconómica. La solución debe quedar en un término adecuado.

El concepto de seguridad en una estructura se refiere a su capacidad para cumplir con las funciones previstas, garantizando un nivel de fiabilidad que evite la ocurrencia de estados no deseados. La seguridad se contrapone al aspecto económico del diseño: una estructura económica puede ser menos segura, mientras que una estructura altamente segura puede resultar costosa. Por lo tanto, es necesario encontrar un equilibrio adecuado entre ambos aspectos.

El objetivo principal del Proyecto de Ingeniería Estructural consiste en garantizar que la estructura cumpla satisfactoriamente con su función original. El mantenimiento de esta funcionalidad a lo largo de su vida útil depende de diversos factores o parámetros que tradicionalmente se han considerado como cantidades deterministas.

Sin embargo, evaluar la seguridad en ingeniería es complicado debido a varios factores. En primer lugar, los accidentes pueden ocurrir por causas no relacionadas con los cálculos realizados, como erosiones o modelos inadecuados. Además, tratar el problema de forma aleatoria puede llevar a considerar la probabilidad como medida universal e invariable de seguridad. Sin embargo, la probabilidad solo es significativa en relación con un conjunto coherente de conocimientos, como los estados de falla no ocurridos, difíciles de definir. Además, existen incertidumbres que no pueden ser objetivamente cuantificadas mediante probabilidades. Por lo tanto, las probabilidades solo pueden ser definidas dentro de un contexto específico y los cálculos de probabilidad son meramente convencionales. Además, si bien medir el margen de seguridad a través de una magnitud física puede ser útil en un problema particular, no todas las magnitudes son adecuadas en todos los casos generales. Por ejemplo, las tensiones no son una magnitud adecuada para el estudio del equilibrio estático, y evaluar el margen de seguridad basándose en las tensiones puede ser incorrecto en problemas no lineales.

En el contexto de la Teoría de la Fiabilidad Estructural, Armen Der Kiureghian presenta los siguientes tipos de incertidumbres. En primer lugar, están las incertidumbres físicas, que surgen debido a la inherente variabilidad de las magnitudes físicas involucradas en el problema, como dimensiones, propiedades del material, cargas y resistencia. En segundo lugar, encontramos las incertidumbres estadísticas, que se originan a partir de los modelos probabilísticos utilizados para caracterizar las Variables Básicas del problema. Estas incertidumbres se deben a las aproximaciones necesarias para seleccionar las Funciones de Distribución y estimar sus parámetros, debido a la falta de información disponible. En tercer lugar, se presentan las incertidumbres del modelo, que son generadas por las hipótesis simplificativas realizadas en los modelos matemáticos empleados para describir la respuesta de un sistema estructural. Estas simplificaciones incluyen aspectos como la homogeneidad, el comportamiento elástico o elastoplástico, las pequeñas deformaciones y las condiciones de contorno. Aunque la variabilidad de los dos últimos tipos de incertidumbres puede reducirse a través del estudio e investigación, las incertidumbres físicas del primer tipo son inevitables.

En el pasado, las construcciones se basaban en métodos empíricos, confiando en la experiencia y la intuición del constructor para garantizar la seguridad. Sin embargo, en la actualidad, la experiencia debe complementarse con los resultados obtenidos, ya que la rápida evolución técnica puede presentar situaciones no experimentadas previamente. Con el surgimiento de la construcción metálica en el siglo XIX y el enfoque en la Resistencia de Materiales, se introdujo el método de tensiones admisibles. Este método implica un enfoque determinista en las variables utilizadas, donde la seguridad se basa en el margen establecido por las tensiones admisibles. Estas tensiones se obtienen mediante el cociente entre la resistencia del material y un coeficiente de seguridad, mientras que las cargas variables se establecen de manera empírica y arbitraria.

El desarrollo de la Teoría de la Elasticidad permitió aplicar este método en la construcción de hormigón armado, pero presenta desafíos. Cuando el comportamiento no es lineal debido a los materiales o la geometría de la estructura, las tensiones admisibles no reflejan el margen real de seguridad. Además, el comportamiento del hormigón y el acero dificulta definir el fallo en términos de tensiones. No se consideran los efectos de la adaptación plástica del hormigón, donde la tensión en un punto no determina la confiabilidad estructural si hay una fase de adaptación plástica que redistribuye los esfuerzos. Además, no se distinguen los diferentes tipos de acciones cuya influencia en la seguridad es distinta. No obstante, este método ha sido utilizado con profusión durante la primera mitad del siglo XX.

La Teoría de la Fiabilidad, que inicialmente se aplicaba a procesos industriales de producción en serie, se adaptó en 1960 al campo de la Ingeniería Estructural. El objetivo era desarrollar métodos que permitieran determinar los niveles de seguridad de los Sistemas Estructurales, mediante un enfoque racional de las incertidumbres presentes en ellos. Desde entonces, esta área de investigación ha experimentado un notable impulso, y los fundamentos teóricos desarrollados han dejado de ser exclusivamente un tema de investigación académica para convertirse en un conjunto de metodologías con una amplia gama de aplicaciones prácticas.

No obstante, los avances tecnológicos y los métodos de análisis han permitido realizar estudios de seguridad más precisos en las estructuras mediante la incorporación de modelos estadísticos y de probabilidad en los cálculos. Desde los primeros intentos, como el de Max Mayer en 1926, numerosos autores han contribuido al desarrollo del enfoque probabilístico y a su aplicación práctica. Para emplear la probabilidad en los cálculos, es necesario definir un conjunto coherente de eventos no deseados, denominados “estados límite”. Estos estados límite representan condiciones en las que una estructura o uno de sus elementos deja de cumplir su función de manera inmediata o progresiva. La seguridad se caracteriza por la probabilidad o conjunto de probabilidades de que los estados límite no sean superados. Al elegir la probabilidad de ocurrencia de un estado límite como medida convencional de la seguridad, es necesario establecer los valores aplicables en la práctica.

A primera vista, podría parecer que el uso de probabilidades resuelve por completo el problema de medir la seguridad. Sin embargo, su implementación enfrenta dos dificultades. Por un lado, están los datos que no se pueden cuantificar de manera probabilística debido a su naturaleza. Por otro lado, resulta prácticamente imposible conocer con precisión la probabilidad real de alcanzar un estado límite. Estas limitaciones dificultan la aplicación práctica de las probabilidades en la evaluación de la seguridad.

La seguridad puede tratarse en tres niveles, según el grado de simplificación en el abordaje del problema:

  • Nivel 3: Utiliza el cálculo de probabilidades sin restricciones en la representación de las incertidumbres.
  • Nivel 2: Representa las acciones, resistencias de materiales y secciones mediante distribuciones conocidas o asumidas, definidas por su tipo, media y desviación típica. La fiabilidad se expresa con el “índice de seguridad” (β).
  • Nivel 1: Establece niveles de fiabilidad estructural aplicando factores parciales de seguridad a valores nominales preestablecidos de las variables fundamentales.

Los métodos de nivel 2 y 3 emplean probabilidades que están vinculadas a hipótesis apriorísticas sobre las distribuciones de los datos.

En cambio, el método de nivel 1, conocido como método semiprobabilístico, considera solo ciertos elementos que se pueden cuantificar de manera probabilística, mientras que las demás incertidumbres se abordan mediante factores empíricos que poseen un significado físico específico. Este método es el más simple y ampliamente reconocido en la actualidad.

Os paso un vídeo explicativo sobre conceptos de fiabilidad estructural de Juan Carlos López Agüí, que espero os sea de interés.

Referencias:

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Características de la construcción mixta de hormigón y acero

El Puente Juan Bravo en Madrid. http://www.dobooku.com/2017/10/el-puente-juan-bravo-en-madrid/

Una pieza mixta esencialmente consta de tres elementos principales:

        • Sección de hormigón: puede contener o no armadura pasiva y/o activa.
        • Sección metálica.
        • Elementos de conexión, también conocidos como conectores.

Gracias a la colaboración entre el hormigón y el acero, la sección mixta experimenta una deformación conjunta, controlando así cualquier deslizamiento relativo entre ambos materiales mediante los conectores.

Todas aquellas acciones diferenciales entre hormigón y acero generan esfuerzos internos y de corte en la interfase que pueden ser significativos y que hay que considerar en proyecto. Algunos de los factores a considerar son la retracción del hormigón, la fluencia, los efectos térmicos, la acción del pretensado, entre otros. Es fundamental analizar y comprobar la estructura frente a los estados límites de servicio.

Desde un punto de vista estructural, la construcción mixta presenta las siguientes características principales:

  • Reducción del espesor en dinteles, especialmente notable en luces más amplias. Esto se debe a la mayor rigidez y resistencia última proporcionada por la sección parcial de hormigón en comparación con una solución completamente metálica. Además, la zona traccionada también es más rígida en comparación con soluciones de hormigón armado y pretensado. En el caso de edificios, esto implica una menor altura de los pisos, lo que se traduce en ahorro de materiales y de instalaciones.
  • Mayor esbeltez de los soportes, lo que incrementa el espacio libre y mejora las condiciones estéticas de la estructura.
  • El aumento de rigidez mejora la capacidad de deformación y respuesta de la estructura frente a cargas dinámicas.

Desde el punto de vista constructivo, las estructuras mixtas ofrece una amplia variedad de tipologías, basadas en los materiales que la componen. Estos tipos constructivos pueden adaptarse según las necesidades prácticas de la ejecución. Algunas opciones a considerar son las siguientes:

  • Secciones de hormigón: se pueden utilizar secciones de hormigón in situ o prefabricadas, que pueden ser de hormigón en masa, armado o pretensado. También es posible emplear hormigón ligero.
  • Secciones metálicas: se pueden emplear perfiles, chapas o tubos metálicos. Estas secciones pueden ser atornilladas o soldadas, y pueden presentarse en formas de alma llena, en celosía o aligeradas. También es posible el uso de secciones metálicas pretensadas. Dichas secciones metálicas pueden estar completamente expuestas o parcial o totalmente empotradas en el hormigón.
  • Conexiones: las conexiones entre los elementos pueden ser parciales o totales. Además, pueden realizarse antes o después del endurecimiento del hormigón, así como antes o después del pretensado del hormigón o del acero.

En la construcción mixta, el proceso constructivo adquiere una importancia destacada, tanto desde el punto de vista analítico-estructural como desde la perspectiva económica. Esto se debe a la existencia de una amplia variedad de cargas previas a las sobrecargas de uso, lo que implica consideraciones adicionales tanto en el análisis estructural como en el aspecto económico.

En las referencias os podéis descargar, gratuitamente, un estado del arte reciente sobre este tipo de estructuras mixtas aplicadas a puentes. Creo que os puede resultar de utilidad. También os dejo un par de vídeos introductorios a las estructuras mixtas que espero os sean de interés.

Referencias:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Advances in Civil Engineering, 2020:8823370. DOI:10.1155/2020/8823370

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ventajas y nuevos horizontes de las estructuras armadas híbridas de acero

Acaban de publicarnos un artículo en el Journal of Constructional Steel Research, revista indexada en el JCR. Este artículo proporciona una revisión exhaustiva del estado actual del conocimiento sobre las vigas de acero híbridas, que son una alternativa innovadora y sostenible a los elementos de acero homogéneos tradicionales. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Las vigas de acero híbridas son una excelente alternativa a los elementos de acero homogéneos tradicionales, pues pueden utilizar al máximo su capacidad para hacer frente a los esfuerzos de flexión y cortante. La investigación en este campo ha ido en aumento y se han desarrollado varios métodos de diseño eficientes. Sin embargo, todavía hay algunas lagunas en la investigación que deben abordarse, como su consideración en diferentes estándares y su aplicación en estructuras de vigas complejas.

Las contribuciones de este artículo son las siguientes:

  1. Proporcionar una revisión exhaustiva del estado actual del conocimiento sobre las vigas de acero híbridas.
  2. Identificar los métodos de diseño y las proporciones híbridas recomendadas para lograr el mejor rendimiento.
  3. Analizar 128 publicaciones y extraer información sobre cinco variables categóricas que reflejan la situación actual de los elementos híbridos.
  4. Realizar un análisis estadístico basado en un análisis de correspondencia simple para identificar las relaciones subyacentes entre las variables.
  5. Destacar las investigaciones más relevantes hasta la fecha y proponiendo varias líneas de investigación prometedoras para abordar las brechas de investigación en este campo.

Abstract:

Although it is still common practice to use homogeneous steel girders (same yield strength in the flanges and web), implementing hybrid configurations seems to be an excellent alternative to improve the performance and sustainability of this type of structural element. Therefore, this paper comprehensively reviews the current knowledge of hybrid steel girders. The objective is to improve our understanding of this innovative and sustainable alternative to traditional homogeneous steel elements, focusing on updating the theoretical basis for future design projects. The study analyzes 128 publications, from which information is extracted on five categorical variables, reflecting the current situation of hybrid elements. In addition to studying each variable separately and highlighting the most relevant research to date, a more in-depth statistical analysis is performed. It is based on simple correspondence analysis, which allows for identifying the underlying relationships among the variables. Results summarize the design methods implemented to calculate these structures. Furthermore, the recommended hybrid ratios to achieve the best performance are presented. However, it is found that there are gaps in the research. Consequently, several promising lines of investigation are proposed.

Keywords:

State-of-the-art; Hybrid girder; Hybrid ratio; Yield strength; High-strength steel

Reference:

TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.

Al tratarse de un artículo publicado en abierto, os dejo el mismo para su descarga. Espero que os sea de interés.

Descargar (PDF, 4.22MB)