Vigas híbridas de acero: la apuesta sostenible que transforma costos y rendimiento en la construcción

Un artículo reciente publicado en el Journal of Constructional Steel Research, liderado por los investigadores Agustín Terreros-Bedoya, Iván Negrín, Ignacio Payá-Zaforteza y Víctor Yepes de la Universitat Politècnica de València, explora en profundidad el uso de vigas híbridas de acero como una alternativa innovadora y sostenible a las vigas tradicionales de acero homogéneo.

Estas vigas híbridas, que combinan diferentes tipos de acero de distintas resistencias en sus componentes (alas y alma), han demostrado tener un gran potencial para optimizar el uso de materiales en la construcción, mejorar la eficiencia estructural y reducir costes y el impacto ambiental.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Vigas híbridas: concepto y ventajas

El estudio parte de la necesidad de encontrar soluciones estructurales que no solo cumplan con altos estándares de rendimiento, sino que también sean sostenibles. En una viga híbrida, el acero de alta resistencia se utiliza en las alas, donde se requiere mayor capacidad de resistencia a esfuerzos, mientras que el alma se construye con un acero de resistencia media, lo que reduce el peso y el coste del material sin comprometer su resistencia general. Este diseño permite que la viga absorba cargas significativas y redistribuya los esfuerzos de forma más eficiente que una viga homogénea, con lo que se logra una estructura más liviana y económica.

Metodología y análisis

La investigación analiza 128 publicaciones previas sobre el tema, utilizando un análisis de correspondencia simple para identificar patrones y relaciones entre variables de diseño, como la resistencia de las alas y el alma, las condiciones de carga y los métodos de cálculo. Mediante esta metodología, los autores logran sistematizar el conocimiento existente sobre el tema y destacan los enfoques de diseño más eficaces. Este análisis también identificó los «ratios híbridos» ideales, es decir, la proporción óptima entre la resistencia del acero en el alma y en las alas para maximizar el rendimiento de la viga. Un hallazgo clave es que los ratios híbridos entre 1,3 y 1,6 suelen proporcionar un equilibrio óptimo entre resistencia y economía de material.

Sostenibilidad y beneficios económicos

Además del rendimiento estructural, el estudio subraya las ventajas ambientales de las vigas híbridas. Al reducir el peso de las estructuras, disminuyen los costes de transporte, instalación y consumo de materiales, lo cual se traduce en una reducción significativa de las emisiones de CO₂. Los investigadores destacan que esta estrategia de construcción está en consonancia con los objetivos de la Unión Europea de reducir la huella de carbono de la industria de la construcción y lograr la neutralidad climática para 2050. Desde el punto de vista económico, la reducción de peso y material también representa unos costes de fabricación y montaje menores, lo que incrementa la viabilidad de estas soluciones en proyectos a gran escala.

Desafíos y áreas futuras de investigación

El estudio identifica varios desafíos que deben abordarse para implementar las vigas híbridas de manera efectiva en proyectos reales. Uno de los retos más importantes es la limitada cantidad de estudios experimentales en condiciones de carga combinada (flexión y cortante) y de pandeo, que son comunes en estructuras complejas como puentes y edificios de gran altura. Los autores recomiendan llevar a cabo investigaciones adicionales para desarrollar métodos de diseño que integren estas variables y permitan un mejor rendimiento bajo cargas extremas.

Otra área prometedora es la implementación de algoritmos de optimización y técnicas de inteligencia artificial para mejorar el diseño y el análisis de estas vigas. Estos métodos pueden ayudar a identificar configuraciones de material y geometría que maximicen la eficiencia estructural y minimicen el impacto ambiental. También sugieren explorar la combinación de acero de alta resistencia con otros materiales, como el hormigón, para crear estructuras híbridas aún más optimizadas.

Implicaciones para la industria de la construcción

Este estudio contribuye significativamente al conocimiento de las vigas híbridas de acero, ya que propone un marco de referencia que puede transformar la forma en que se diseñan y construyen las infraestructuras. A medida que se intensifica la presión para construir de forma más eficiente y respetuosa con el medioambiente, las vigas híbridas se perfilan como una solución viable que permite aprovechar al máximo las propiedades de los materiales, a la vez que se reducen los costes y la huella de carbono de las construcciones. Por tanto, la investigación de Terreros-Bedoya y su equipo proporciona una base sólida para que ingenieros y constructores consideren esta tecnología en futuros proyectos, impulsando un desarrollo urbano más sostenible y económico.

Referencia:

TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.

Dejo a continuación el artículo completo, pues está publicado en abierto.

Descargar (PDF, 4.42MB)

Optimización del diseño de vigas híbridas de acero

Acaban de publicarnos un artículo en el Journal of Constructional Steel Research, revista indexada en el JCR. Este artículo implementa la optimización del diseño estructural para mejorar los índices económicos de las vigas híbridas de acero soldadas. El problema de optimización está formulado de manera que permita el uso de configuraciones híbridas, es decir, diferentes tipos de acero en el alma y en las alas. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Las contribuciones de este trabajo son las siguientes:

  • El artículo propone una metodología para la optimización del diseño estructural de vigas híbridas de acero soldadas con el fin de mejorar sus índices económicos.
  • El problema de optimización se formula para permitir el uso de configuraciones híbridas, que pueden incluir diferentes tipos de acero en las almas y en las alas.
  • El documento incluye once calidades de acero como variables de optimización, y el costo de fabricación se formula como una función objetivo, que incluye otras siete actividades, como la soldadura o la pintura.
  • Los resultados muestran que el diseño optimizado proporciona soluciones hasta un 50% más económicas que los métodos de diseño tradicionales.
  • El documento sugiere ciertos conceptos que destacan las propiedades mecánicas para comparar las soluciones óptimas para cada estudio de caso, que pueden servir como recomendaciones de diseño para proyectos futuros que incluyan este elemento estructural.
  • El artículo establece líneas de investigación futuras sobre este tema, basándose en los vacíos de la investigación y en los prometedores resultados obtenidos.

Abstract:

This paper implements structural design optimization to improve the economic indexes of welded steel plate girders. The optimization problem is formulated in a way that allows the use of hybrid configurations, i.e., different types of steel in the flanges and web. Besides the cross-sectional dimensions, eleven steel grades are included as optimization variables. In addition to weight and material cost, the manufacturing cost is formulated as an optimization objective, which includes seven other activities, such as welding or painting. The geometrically double symmetric I-girder design subjected to a uniform transverse load is carried out through the Eurocode 3 rules. Nine case studies are implemented by varying the girder span and load values. The results show significant differences depending on the optimization objective, especially between weight and cost optimization. On the other hand, optimization-assisted design provides solutions up to 50% more economical than traditional design methods. Hybrid-optimized configurations can also improve these indexes by about 10% compared to their homogeneous counterpart, demonstrating the applicability of this novel practice. Certain concepts highlighting mechanical properties are proposed to compare the optimal solutions for each case study. These concepts can serve as design recommendations for future projects that include this structural element. Finally, based on the research gaps and the promising results obtained, future lines of research on this topic are established.

Keywords:

Hybrid steel girder; Structural optimization; Hybrid ratio; Biogeography-based optimization

Reference:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Design optimization of welded steel plate girders configured as a hybrid structure. Journal of Constructional Steel Research, 211:108131. DOI:10.1016/j.jcsr.2023.108131

Al tratarse de un artículo publicado en abierto, os dejo el mismo para su descarga. Espero que os sea de interés.

Descargar (PDF, 4.16MB)

Tesis doctoral: Optimal deep learning assisted design of socially and environmentally efficient steel concrete composite bridges under constrained budgets

Hoy 19 de julio de 2023 ha tenido lugar la defensa de la tesis doctoral de D. David Martínez Muñoz titulada “Optimal deep learning assisted design of socially and environmentally efficient steel concrete composite bridges under constrained budgets“, dirigida por Víctor Yepes Piqueras y José V. Martí Albiñana. La tesis recibió la máxima calificación de sobresaliente “cum laude” y presenta la mención internacional. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

El diseño de infraestructuras está fuertemente influido por la búsqueda de soluciones que tengan en cuenta el impacto en la economía, el medio ambiente y la sociedad. Estos criterios están muy relacionados con la definición de sostenibilidad que hizo la Comisión Brundtland en 1987. Este hito supuso un reto para técnicos, científicos y legisladores. Este reto consistía en generar métodos, criterios, herramientas y normativas que permitieran incluir el concepto de sostenibilidad en el desarrollo y diseño de nuevas infraestructuras. Desde entonces, se han producido pequeños avances en la búsqueda de la sostenibilidad, pero se necesitan más a corto plazo. Como plan de acción, las Naciones Unidas establecieron los Objetivos de Desarrollo Sostenible, fijando el año 2030 como meta para alcanzarlos. Dentro de estos objetivos, las infraestructuras se postulan como un punto crítico. Tradicionalmente, se han desarrollado métodos para obtener diseños óptimos desde el punto de vista del impacto económico. Sin embargo, aunque en los últimos tiempos se ha avanzado en la aplicación y utilización de métodos de análisis del ciclo de vida completo, aún falta un consenso claro, especialmente en el pilar social de la sostenibilidad. Dado que la sostenibilidad engloba diferentes criterios, que en principio no van necesariamente de la mano, el problema de la búsqueda de la sostenibilidad se plantea no solo como un problema de optimización, sino también como un problema de toma de decisiones multi-criterio.

El objetivo principal de esta tesis doctoral es proponer diferentes metodologías para la obtención de diseños óptimos que introduzcan los pilares de la sostenibilidad en el diseño de puentes mixtos acero-hormigón. Como problema estructural representativo se sugiere un puente viga en cajón de tres vanos mixto. Dada la complejidad de la estructura, en la que intervienen 34 variables discretas, la optimización con métodos matemáticos resulta inabordable. Por ello, se recomienda el uso de algoritmos metaheurísticos. Esta complejidad también se traduce en un alto coste computacional para el modelo, por lo que se implementa un modelo de redes neuronales profundas que permite la validación del diseño sin necesidad de computación. Dada la naturaleza discreta del problema, se proponen técnicas de discretización para adaptar los algoritmos al problema de optimización estructural. Además, para mejorar las soluciones obtenidas a partir de estos algoritmos discretos, se introducen métodos de hibridación basados en la técnica K-means y operadores de mutación en función del tipo de algoritmo. Los algoritmos utilizados se clasifican en dos ramas. La primera son los basados en trayectorias como el Simulated Annealing, Threshold Accepting y el Algoritmo del Solterón. Por otra parte, se emplean algoritmos de inteligencia de enjambre como Jaya, Sine Cosine Algorithm y Cuckoo Search. La metodología de Análisis del Ciclo de Vida definida en la norma ISO 14040 se usa para evaluar el impacto social y medioambiental de los diseños propuestos. La aplicación de esta metodología permite evaluar el impacto y compararlo con otros diseños. La evaluación mono-objetivo de los diferentes criterios lleva a la conclusión de que la optimización de costes está asociada a una reducción del impacto medioambiental y social de la estructura. Sin embargo, la optimización de los criterios medioambientales y sociales no reduce necesariamente los costes. Por ello, para realizar una optimización multi-objetivo y encontrar una solución de compromiso, se implementa una técnica basada en la Teoría de Juegos, recomendando una estrategia de juego cooperativo. La técnica multi-criterio empleada es la Teoría de la Entropía para asignar pesos a los criterios para la función objetivo agregada. Los criterios considerados son los tres pilares de la sostenibilidad y la facilidad constructiva de la losa superior. Aplicando esta técnica se obtiene un diseño óptimo relativo a los tres pilares de la sostenibilidad y a partir del cual se mejora la facilidad constructiva.

Referencias:

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2023). Hybrid swarm intelligence optimization methods for low-embodied energy steel-concrete composite bridges. Mathematics, 11(1):140. DOI:10.3390/math11010140

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm. Structural and Multidisciplinary Optimization, 65:312. DOI:10.1007/s00158-022-03393-9

GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. DOI:10.1016/j.autcon.2022.104532

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Discrete swarm intelligence optimization algorithms applied to steel-concrete composite bridges. Engineering Structures, 266:114607. DOI:10.1016/j.engstruct.2022.114607

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

NAVARRO, I.J.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; REMPLING, R.; YEPES, V. (2020). Life cycle sustainability assessment for multi-criteria decision making in bridge design: A review. Journal of Civil Engineering and Management, 26(7):690-704. DOI:10.3846/jcem.2020.13599.

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Advances in Civil Engineering, 2020:8823370. DOI:10.1155/2020/8823370

PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265

YEPES, V.; DASÍ-GIL, M.; MARTÍNEZ-MUÑOZ, D.; LÓPEZ-DESFILÍS, V.J.; MARTÍ, J.V. (2019). Heuristic techniques for the design of steel-concrete composite pedestrian bridges. Applied Sciences, 9(16), 3253; DOI:10.3390/app9163253

Seguridad estructural, los estados límites y los métodos semiprobabilísticos

El concepto de seguridad de una estructura en cumplir un conjunto de funciones para las que ha sido proyectada es un término relacionado con el grado de certeza o fiabilidad de que no alcance un conjunto de estados no deseables que todavía no han acontecido.

La seguridad se representa por consiguiente como un aspecto antagónico al aspecto económico del dimensionamiento: una estructura proyectada para un coste pequeño puede resultar poco segura y, por el contrario, una estructura proyectada para ser muy segura puede resultar antieconómica. La solución debe quedar en un término adecuado.

El concepto de seguridad en una estructura se refiere a su capacidad para cumplir con las funciones previstas, garantizando un nivel de fiabilidad que evite la ocurrencia de estados no deseados. La seguridad se contrapone al aspecto económico del diseño: una estructura económica puede ser menos segura, mientras que una estructura altamente segura puede resultar costosa. Por lo tanto, es necesario encontrar un equilibrio adecuado entre ambos aspectos.

El objetivo principal del Proyecto de Ingeniería Estructural consiste en garantizar que la estructura cumpla satisfactoriamente con su función original. El mantenimiento de esta funcionalidad a lo largo de su vida útil depende de diversos factores o parámetros que tradicionalmente se han considerado como cantidades deterministas.

Sin embargo, evaluar la seguridad en ingeniería es complicado debido a varios factores. En primer lugar, los accidentes pueden ocurrir por causas no relacionadas con los cálculos realizados, como erosiones o modelos inadecuados. Además, tratar el problema de forma aleatoria puede llevar a considerar la probabilidad como medida universal e invariable de seguridad. Sin embargo, la probabilidad solo es significativa en relación con un conjunto coherente de conocimientos, como los estados de falla no ocurridos, difíciles de definir. Además, existen incertidumbres que no pueden ser objetivamente cuantificadas mediante probabilidades. Por lo tanto, las probabilidades solo pueden ser definidas dentro de un contexto específico y los cálculos de probabilidad son meramente convencionales. Además, si bien medir el margen de seguridad a través de una magnitud física puede ser útil en un problema particular, no todas las magnitudes son adecuadas en todos los casos generales. Por ejemplo, las tensiones no son una magnitud adecuada para el estudio del equilibrio estático, y evaluar el margen de seguridad basándose en las tensiones puede ser incorrecto en problemas no lineales.

En el contexto de la Teoría de la Fiabilidad Estructural, Armen Der Kiureghian presenta los siguientes tipos de incertidumbres. En primer lugar, están las incertidumbres físicas, que surgen debido a la inherente variabilidad de las magnitudes físicas involucradas en el problema, como dimensiones, propiedades del material, cargas y resistencia. En segundo lugar, encontramos las incertidumbres estadísticas, que se originan a partir de los modelos probabilísticos utilizados para caracterizar las Variables Básicas del problema. Estas incertidumbres se deben a las aproximaciones necesarias para seleccionar las Funciones de Distribución y estimar sus parámetros, debido a la falta de información disponible. En tercer lugar, se presentan las incertidumbres del modelo, que son generadas por las hipótesis simplificativas realizadas en los modelos matemáticos empleados para describir la respuesta de un sistema estructural. Estas simplificaciones incluyen aspectos como la homogeneidad, el comportamiento elástico o elastoplástico, las pequeñas deformaciones y las condiciones de contorno. Aunque la variabilidad de los dos últimos tipos de incertidumbres puede reducirse a través del estudio e investigación, las incertidumbres físicas del primer tipo son inevitables.

En el pasado, las construcciones se basaban en métodos empíricos, confiando en la experiencia y la intuición del constructor para garantizar la seguridad. Sin embargo, en la actualidad, la experiencia debe complementarse con los resultados obtenidos, ya que la rápida evolución técnica puede presentar situaciones no experimentadas previamente. Con el surgimiento de la construcción metálica en el siglo XIX y el enfoque en la Resistencia de Materiales, se introdujo el método de tensiones admisibles. Este método implica un enfoque determinista en las variables utilizadas, donde la seguridad se basa en el margen establecido por las tensiones admisibles. Estas tensiones se obtienen mediante el cociente entre la resistencia del material y un coeficiente de seguridad, mientras que las cargas variables se establecen de manera empírica y arbitraria.

El desarrollo de la Teoría de la Elasticidad permitió aplicar este método en la construcción de hormigón armado, pero presenta desafíos. Cuando el comportamiento no es lineal debido a los materiales o la geometría de la estructura, las tensiones admisibles no reflejan el margen real de seguridad. Además, el comportamiento del hormigón y el acero dificulta definir el fallo en términos de tensiones. No se consideran los efectos de la adaptación plástica del hormigón, donde la tensión en un punto no determina la confiabilidad estructural si hay una fase de adaptación plástica que redistribuye los esfuerzos. Además, no se distinguen los diferentes tipos de acciones cuya influencia en la seguridad es distinta. No obstante, este método ha sido utilizado con profusión durante la primera mitad del siglo XX.

La Teoría de la Fiabilidad, que inicialmente se aplicaba a procesos industriales de producción en serie, se adaptó en 1960 al campo de la Ingeniería Estructural. El objetivo era desarrollar métodos que permitieran determinar los niveles de seguridad de los Sistemas Estructurales, mediante un enfoque racional de las incertidumbres presentes en ellos. Desde entonces, esta área de investigación ha experimentado un notable impulso, y los fundamentos teóricos desarrollados han dejado de ser exclusivamente un tema de investigación académica para convertirse en un conjunto de metodologías con una amplia gama de aplicaciones prácticas.

No obstante, los avances tecnológicos y los métodos de análisis han permitido realizar estudios de seguridad más precisos en las estructuras mediante la incorporación de modelos estadísticos y de probabilidad en los cálculos. Desde los primeros intentos, como el de Max Mayer en 1926, numerosos autores han contribuido al desarrollo del enfoque probabilístico y a su aplicación práctica. Para emplear la probabilidad en los cálculos, es necesario definir un conjunto coherente de eventos no deseados, denominados “estados límite”. Estos estados límite representan condiciones en las que una estructura o uno de sus elementos deja de cumplir su función de manera inmediata o progresiva. La seguridad se caracteriza por la probabilidad o conjunto de probabilidades de que los estados límite no sean superados. Al elegir la probabilidad de ocurrencia de un estado límite como medida convencional de la seguridad, es necesario establecer los valores aplicables en la práctica.

A primera vista, podría parecer que el uso de probabilidades resuelve por completo el problema de medir la seguridad. Sin embargo, su implementación enfrenta dos dificultades. Por un lado, están los datos que no se pueden cuantificar de manera probabilística debido a su naturaleza. Por otro lado, resulta prácticamente imposible conocer con precisión la probabilidad real de alcanzar un estado límite. Estas limitaciones dificultan la aplicación práctica de las probabilidades en la evaluación de la seguridad.

La seguridad puede tratarse en tres niveles, según el grado de simplificación en el abordaje del problema:

  • Nivel 3: Utiliza el cálculo de probabilidades sin restricciones en la representación de las incertidumbres.
  • Nivel 2: Representa las acciones, resistencias de materiales y secciones mediante distribuciones conocidas o asumidas, definidas por su tipo, media y desviación típica. La fiabilidad se expresa con el “índice de seguridad” (β).
  • Nivel 1: Establece niveles de fiabilidad estructural aplicando factores parciales de seguridad a valores nominales preestablecidos de las variables fundamentales.

Los métodos de nivel 2 y 3 emplean probabilidades que están vinculadas a hipótesis apriorísticas sobre las distribuciones de los datos.

En cambio, el método de nivel 1, conocido como método semiprobabilístico, considera solo ciertos elementos que se pueden cuantificar de manera probabilística, mientras que las demás incertidumbres se abordan mediante factores empíricos que poseen un significado físico específico. Este método es el más simple y ampliamente reconocido en la actualidad.

Os paso un vídeo explicativo sobre conceptos de fiabilidad estructural de Juan Carlos López Agüí, que espero os sea de interés.

Referencias:

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Características de la construcción mixta de hormigón y acero

El Puente Juan Bravo en Madrid. http://www.dobooku.com/2017/10/el-puente-juan-bravo-en-madrid/

Una pieza mixta esencialmente consta de tres elementos principales:

        • Sección de hormigón: puede contener o no armadura pasiva y/o activa.
        • Sección metálica.
        • Elementos de conexión, también conocidos como conectores.

Gracias a la colaboración entre el hormigón y el acero, la sección mixta experimenta una deformación conjunta, controlando así cualquier deslizamiento relativo entre ambos materiales mediante los conectores.

Todas aquellas acciones diferenciales entre hormigón y acero generan esfuerzos internos y de corte en la interfase que pueden ser significativos y que hay que considerar en proyecto. Algunos de los factores a considerar son la retracción del hormigón, la fluencia, los efectos térmicos, la acción del pretensado, entre otros. Es fundamental analizar y comprobar la estructura frente a los estados límites de servicio.

Desde un punto de vista estructural, la construcción mixta presenta las siguientes características principales:

  • Reducción del espesor en dinteles, especialmente notable en luces más amplias. Esto se debe a la mayor rigidez y resistencia última proporcionada por la sección parcial de hormigón en comparación con una solución completamente metálica. Además, la zona traccionada también es más rígida en comparación con soluciones de hormigón armado y pretensado. En el caso de edificios, esto implica una menor altura de los pisos, lo que se traduce en ahorro de materiales y de instalaciones.
  • Mayor esbeltez de los soportes, lo que incrementa el espacio libre y mejora las condiciones estéticas de la estructura.
  • El aumento de rigidez mejora la capacidad de deformación y respuesta de la estructura frente a cargas dinámicas.

Desde el punto de vista constructivo, las estructuras mixtas ofrece una amplia variedad de tipologías, basadas en los materiales que la componen. Estos tipos constructivos pueden adaptarse según las necesidades prácticas de la ejecución. Algunas opciones a considerar son las siguientes:

  • Secciones de hormigón: se pueden utilizar secciones de hormigón in situ o prefabricadas, que pueden ser de hormigón en masa, armado o pretensado. También es posible emplear hormigón ligero.
  • Secciones metálicas: se pueden emplear perfiles, chapas o tubos metálicos. Estas secciones pueden ser atornilladas o soldadas, y pueden presentarse en formas de alma llena, en celosía o aligeradas. También es posible el uso de secciones metálicas pretensadas. Dichas secciones metálicas pueden estar completamente expuestas o parcial o totalmente empotradas en el hormigón.
  • Conexiones: las conexiones entre los elementos pueden ser parciales o totales. Además, pueden realizarse antes o después del endurecimiento del hormigón, así como antes o después del pretensado del hormigón o del acero.

En la construcción mixta, el proceso constructivo adquiere una importancia destacada, tanto desde el punto de vista analítico-estructural como desde la perspectiva económica. Esto se debe a la existencia de una amplia variedad de cargas previas a las sobrecargas de uso, lo que implica consideraciones adicionales tanto en el análisis estructural como en el aspecto económico.

En las referencias os podéis descargar, gratuitamente, un estado del arte reciente sobre este tipo de estructuras mixtas aplicadas a puentes. Creo que os puede resultar de utilidad. También os dejo un par de vídeos introductorios a las estructuras mixtas que espero os sean de interés.

Referencias:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Advances in Civil Engineering, 2020:8823370. DOI:10.1155/2020/8823370

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ventajas y nuevos horizontes de las estructuras armadas híbridas de acero

Acaban de publicarnos un artículo en el Journal of Constructional Steel Research, revista indexada en el JCR. Este artículo proporciona una revisión exhaustiva del estado actual del conocimiento sobre las vigas de acero híbridas, que son una alternativa innovadora y sostenible a los elementos de acero homogéneos tradicionales. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Las vigas de acero híbridas son una excelente alternativa a los elementos de acero homogéneos tradicionales, pues pueden utilizar al máximo su capacidad para hacer frente a los esfuerzos de flexión y cortante. La investigación en este campo ha ido en aumento y se han desarrollado varios métodos de diseño eficientes. Sin embargo, todavía hay algunas lagunas en la investigación que deben abordarse, como su consideración en diferentes estándares y su aplicación en estructuras de vigas complejas.

Las contribuciones de este artículo son las siguientes:

  1. Proporcionar una revisión exhaustiva del estado actual del conocimiento sobre las vigas de acero híbridas.
  2. Identificar los métodos de diseño y las proporciones híbridas recomendadas para lograr el mejor rendimiento.
  3. Analizar 128 publicaciones y extraer información sobre cinco variables categóricas que reflejan la situación actual de los elementos híbridos.
  4. Realizar un análisis estadístico basado en un análisis de correspondencia simple para identificar las relaciones subyacentes entre las variables.
  5. Destacar las investigaciones más relevantes hasta la fecha y proponiendo varias líneas de investigación prometedoras para abordar las brechas de investigación en este campo.

Abstract:

Although it is still common practice to use homogeneous steel girders (same yield strength in the flanges and web), implementing hybrid configurations seems to be an excellent alternative to improve the performance and sustainability of this type of structural element. Therefore, this paper comprehensively reviews the current knowledge of hybrid steel girders. The objective is to improve our understanding of this innovative and sustainable alternative to traditional homogeneous steel elements, focusing on updating the theoretical basis for future design projects. The study analyzes 128 publications, from which information is extracted on five categorical variables, reflecting the current situation of hybrid elements. In addition to studying each variable separately and highlighting the most relevant research to date, a more in-depth statistical analysis is performed. It is based on simple correspondence analysis, which allows for identifying the underlying relationships among the variables. Results summarize the design methods implemented to calculate these structures. Furthermore, the recommended hybrid ratios to achieve the best performance are presented. However, it is found that there are gaps in the research. Consequently, several promising lines of investigation are proposed.

Keywords:

State-of-the-art; Hybrid girder; Hybrid ratio; Yield strength; High-strength steel

Reference:

TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.

Al tratarse de un artículo publicado en abierto, os dejo el mismo para su descarga. Espero que os sea de interés.

Descargar (PDF, 4.22MB)

Los distintivos de calidad en el Código Estructural

https://www.mitma.gob.es/organos-colegiados/comision-permanente-del-hormigon/cph/reconocimiento-de-distintivos

El distintivo de calidad oficialmente reconocido (DCOR) fue una posibilidad que se introdujo en la derogada Instrucción de Hormigón Estructural EHE-08 como una certificación de la calidad del hormigón que asegurase una mayor normalización del producto y que permitiese reducir los controles de calidad de la obra.

En el Código Estructural, DCOR se recoge en numerosos artículos. Veamos los más relevantes:

  • Art. 4.2.2 Condiciones técnicas del proyecto, se establece que “a la vista de las posibles mayores garantías técnicas y de trazabilidad que pueden estar asociadas a los distintivos de calidad, el autor del proyecto valorará la inclusión, en el correspondiente pliego de prescripciones técnicas particulares, de la exigencia de emplear materiales, productos y procesos que dispongan de un distintivo de calidad oficialmente reconocido“.
  • Art. 4.2.3 Condiciones técnicas en la ejecución, se refuerza esta posibilidad, pues “la dirección facultativa valorará la conveniencia de exigir productos y procesos que dispongan de un distintivo de calidad oficialmente reconocido“. En el Art. 18 Garantía de la conformidad de productos y procesos de ejecución, distintivos de calidad, una de las formas por las que se pueden garantizar los productos y procesos es “mediante la posesión de un distintivo de calidad oficialmente reconocido (DCOR) concedido a un organismo de certificación acreditado conforme al Reglamento (CE) N.º 765/2008 del Parlamento Europeo y del Consejo, de 9 de julio“; además, el Código permite ciertas consideraciones especiales en la recepción de los productos y procesos con DCOR que no requieran el marcado CE.
  • Art. 21.1 Control documental de los suministros, se incide en el certificado final del suministro del producto suministrado cuando dispongan DCOR. En ese caso, si presentan una garantía superior, debe efectuarse un control documental específico, para lo que “los suministradores entregarán al constructor, quien los facilitará a la dirección facultativa, los certificados que avalen que los productos que se suministrarán están en posesión de un distintivo de calidad oficialmente reconocido vigente“.
  • Art. 22.2 Control de la ejecución mediante inspección de los procesos, en el caso de que un proceso de ejecución de la estructura se encuentre en posesión de un DCOR, “la dirección facultativa podrá eximir de la realización de las inspecciones externas“.

El DCOR es de carácter voluntario y puede estar oficialmente reconocido por la Subdirección General de Normativa y Estudios Técnicos del Ministerio de Transportes, Movilidad y Agenda Urbana u otro órgano directivo con competencias en el ámbito de la edificación o de la obra pública y perteneciente a la Administración Pública de cualquier Estado miembro de la Unión Europea, de Turquía o de cualquiera de los Estados firmantes del Acuerdo sobre el Espacio Económico Europeo.

Sin embargo, es importante resaltar que en los productos con marcado CE, los DCOR no podrán certificar la conformidad con las prestaciones declaradas en lo que respecta a las características esenciales cubiertas por la norma armonizada, ni tampoco con las prestaciones de ninguna característica esencial relacionada con los requisitos básicos incluidos en el anexo I del Reglamento (EU) 305/2011, de 9 de marzo de 2011.

A continuación hemos representado en un mapa conceptual las características relevantes del DCOR (Figura 2).

 

Figura 1. Distintivo de calidad oficialmente reconocido (DCOR). Imagen: V. Yepes.

Os dejo a continuación el Artículo 18 del Código Estructural para su consulta.

Artículo 18. Garantía de la conformidad de productos y procesos de ejecución, distintivos de calidad.

La ejecución de la estructura se llevará a cabo según el proyecto y las modificaciones autorizadas y documentadas por la dirección facultativa. Durante la ejecución de la estructura se elaborará la documentación que reglamentariamente sea exigible y en ella se incluirá, sin perjuicio de lo que establezcan otras reglamentaciones, la documentación a la que hace referencia el Anejo 4 de este Código.

En todas las actividades ligadas al control de recepción, podrá estar presente un representante del agente responsable de la actividad o producto controlado (autor del proyecto, suministrador de hormigón, suministrador de las armaduras elaboradas,
suministrador de los elementos prefabricados, constructor, etc.). En el caso de la toma de muestras, cada representante se quedará con copia del acta correspondiente. Cuando se produzca cualquier incidencia en la recepción derivada de resultados de ensayo no conformes, el suministrador y en su caso, el constructor, tendrá derecho a recibir una copia del correspondiente informe del laboratorio y que deberá ser facilitada por la dirección facultativa.

La conformidad de los productos y de los procesos de ejecución respecto a las exigencias básicas definidas por este Código, requiere que satisfagan con un nivel de garantía suficiente un conjunto de especificaciones.

De forma voluntaria, los productos y los procesos pueden disponer de las garantías necesarias para que se cumplan los requisitos mínimos contemplados en este Código, mediante la incorporación de sistemas (como por ejemplo, los distintivos de calidad) que
avalen, a través de las correspondientes auditorías, inspecciones y ensayos, que sus sistemas de calidad y sus controles de producción, cumplen las exigencias requeridas para la concesión de tales sistemas. Dichos sistemas deberán ser coherentes con las consideraciones especiales contempladas en este Código, con el fin de que el índice de fiabilidad de la estructura sea al menos el mismo, independientemente de los materiales que utilice.

A los efectos de este Código, dichas garantías pueden demostrarse por cualquiera de los siguientes procedimientos:

a) mediante la posesión de un distintivo de calidad oficialmente reconocido (DCOR) concedido a un organismo de certificación acreditado conforme al Reglamento (CE) N.º 765/2008 del Parlamento Europeo y del Consejo, de 9 de julio,
b) en el caso de productos fabricados en la propia obra o de procesos ejecutados en la misma, mediante un sistema equivalente validado y supervisado bajo la responsabilidad de la dirección facultativa, que asegure que el índice de fiabilidad de la estructura es al menos el mismo.

Este Código contempla la aplicación de ciertas consideraciones especiales en la recepción para aquellos productos y procesos que presenten las garantías necesarias para su cumplimiento mediante cualquiera de los dos procedimientos mencionados en el párrafo anterior.

El control de recepción tendrá en cuenta las garantías asociadas a la posesión de un distintivo, siempre que este cumpla unas determinadas condiciones. Así, tanto en el caso de los procesos de ejecución, como en el de los productos que no requieran el marcado CE según el Reglamento (UE) N.º 305/2011, de 9 de marzo de 2011, este Código permite aplicar unas consideraciones especiales en su recepción, cuando ostenten un distintivo de calidad de carácter voluntario que esté oficialmente reconocido por la Subdirección General de Normativa y Estudios Técnicos del Ministerio de Transportes, Movilidad y Agenda Urbana u otro órgano directivo con competencias en el ámbito de la edificación o de la obra pública y perteneciente a la Administración Pública de cualquier Estado miembro de la Unión Europea, de Turquía o de cualquiera de los Estados firmantes del Acuerdo sobre el Espacio Económico Europeo.

Lo dispuesto en el párrafo anterior será también de aplicación a los productos de construcción fabricados o comercializados legalmente en un Estado que tenga un acuerdo de asociación aduanera con la Unión Europea, cuando ese acuerdo reconozca a esos productos el mismo tratamiento que a los fabricados o comercializados en un Estado miembro de la Unión Europea.

De acuerdo al apartado 4.1, en el caso de los productos con marcado CE, los distintivos de calidad oficialmente reconocidos no podrán certificar la conformidad con las prestaciones declaradas en lo que respecta a las características esenciales cubiertas por la norma armonizada, ni tampoco con las prestaciones de ninguna característica esencial relacionada con los requisitos básicos incluidos en el anexo I del Reglamento (EU) 305/2011, de 9 de marzo de 2011.

18.1 Procedimiento de reconocimiento oficial de distintivos de calidad.

El reconocimiento oficial del distintivo se desarrollará conforme al procedimiento que establezca la Administración reconocedora de cualquier Estado miembro de la Unión Europea, de Turquía o de cualquier Estado de la Asociación Europea de Libre Comercio
signatario del Acuerdo sobre el Espacio Económico Europeo.

En el caso de los reconocimientos de distintivos por parte del Ministerio de Transportes, Movilidad y Agenda Urbana, se aplicará el siguiente procedimiento.

Estarán legitimados para presentar las solicitudes de reconocimiento oficial de un distintivo de calidad, los organismos de certificación acreditados conforme a los apartados de este Código que le sean de aplicación y a la norma UNE-EN ISO/IEC 17065 según el Reglamento (CE) N.º 765/2008, del Parlamento Europeo y del Consejo de 9 de julio, por el que se establecen los requisitos de acreditación y vigilancia del mercado relativos a la comercialización de productos.

Las solicitudes deberán acompañarse de al menos la siguiente documentación:

a) Memoria explicativa y justificativa de la solicitud.
b) Reglamento regulador del distintivo en donde se definan las garantías particulares, procedimiento de concesión, régimen de funcionamiento, requisitos técnicos y reglas para la toma de decisiones. En cualquier caso, dicho reglamento incluirá la declaración explícita del cumplimiento del contenido de este Código.
c) Cualquier otra documentación que la Administración reconocedora establezca o considere necesaria en relación al ámbito de certificación en el que se desarrolle el distintivo.

La Administración reconocedora podrá recabar los informes o dictámenes de los expertos por ella designados, en función de las características de la certificación cuyo reconocimiento se solicita.

Para mayor difusión y comodidad en el acceso de la información por parte de los usuarios, cualquier Administración reconocedora de las contempladas en los párrafos anteriores para el reconocimiento oficial de un distintivo de calidad, podrá solicitar la publicación de los distintivos por ellas reconocidas en las páginas web de las Comisiones Permanentes que proponen este Código, creadas a tal efecto.

Si la resolución de la Administración reconocedora fuese desfavorable al reconocimiento, la finalización del procedimiento se produciría con la comunicación al solicitante.

La enmienda o retirada del reconocimiento oficial del distintivo podrá ser realizada a instancia o de parte, para lo cual se iniciará el procedimiento mediante la oportuna solicitud y se regirá conforme a los mismos trámites que para su reconocimiento.

La Administración reconocedora vigilará la correcta aplicación de los distintivos, por lo que podrá participar en todas aquellas actividades que se consideren relevantes para el correcto funcionamiento del distintivo así como asistir a las inspecciones que realicen los servicios de inspección correspondientes a las instalaciones que ostenten el distintivo de calidad, para verificar la correcta actuación de estos en la supervisión de las características técnicas de los productos y la adecuación del control interno sobre su producción.

Si se detectase alguna anomalía en estos procedimientos, la Autoridad reconocedora podrá incoar un expediente y podrá suspender el reconocimiento, comunicando previamente la propuesta de retirada al solicitante con el objeto de que pueda formular alegaciones. La validez del reconocimiento quedará condicionada durante el período de validez, al mantenimiento de las condiciones que los motivan.

18.2 Distintivos de calidad concedidos por entidades de certificación en otros Estados.

No será necesaria la declaración explícita requerida en el punto b) del apartado 18.1, si una entidad de certificación de otro Estado miembro de la Unión Europea, de Turquía o de cualquiera de los Estados firmantes del Acuerdo sobre el Espacio Económico Europeo, evalúa la conformidad respecto a cualquier norma o reglamento que, manteniendo al menos las garantías necesarias para verificar un nivel similar de calidad del producto o proceso y de sus características técnicas, demuestre que se cumplen los requisitos de seguridad estructural contemplados en este Código.

También resulta de interés recoger el comentario que se hace al respecto de este artículo:

“En el caso de los productos o procesos (como por ejemplo, el hormigón) que presentan un nivel de garantía adicional de acuerdo con el articulado y se fabrican o desarrollan, según el caso, a partir de otros productos (como por ejemplo, cementos) susceptibles de estar también en posesión de distintivos de calidad, la utilización de estos permite una mejora en la trazabilidad global y facilita la consecucion de los niveles adicionales de garantía en los productos finales.

En el caso de que se realicen ensayos o comprobaciones experimentales sobre cualquier producto o proceso que esté en posesión de un distintivo oficialmente reconocido y de los resultados de ensayos realizados pueda confirmarse una no conformidad del producto respecto a lo establecido en este Código, la dirección facultativa notificará dicha circunstancia al Organismo emisor del distintivo y a la Administración que hubiera efectuado el reconocimiento”.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La calidad en el Código Estructural

La aparición del Código Estructural, aprobado por el Real Decreto 470/2021, de 29 de junio, supone ciertas novedades en el ámbito de la construcción de nuestro país. Independientemente de la pertinencia de esta nueva norma en un momento donde deberíamos converger rápidamente hacia los Eurocódigos, lo cierto es que permite integrar en un solo documento los aspectos relacionados con el hormigón estructural, el acero y las estructuras mixtas. En este nuevo contexto, vamos a revisar de forma somera cómo se trata la calidad de las estructuras. Para ello tengamos en cuenta que el Código Estructural presenta cuatro títulos: Bases generales, Estructuras de hormigón, Estructuras de Acero y Estructuras mixtas; además de 32 Anejos, un total de 1789 páginas del Boletín Oficial del Estado.

La palabra “calidad” aparece en el nuevo código un total de 458 veces, frente a las 213 apariciones que tuvo en la anterior Instrucción de Hormigón Estructural (EHE-08). Este aumento se debe a la inclusión de las estructuras de acero y mixtas en el nuevo código. No obstante, conviene recordar que el concepto de calidad no se circunscribe exclusivamente a lo que se entiende como “control de calidad”, ya sea de recepción o de proceso, sino que va más allá, incluyendo aspectos relacionados con el aseguramiento de la calidad de las organizaciones. Con todo, si entendemos como calidad el enfoque técnico de Crosby como el cumplimiento de las especificaciones de un producto o servicio, entonces todo el Código sería objeto del concepto de calidad. Es por ello que vamos a restringir la perspectiva a aquellos aspectos al que la nueva norma se refiere cuando aparece el término calidad en su articulado.

Una lectura en diagonal del Código ya nos indica que hay una gran dispersión de los conceptos relacionados con la calidad. Nos encontramos aspectos relacionados con exigencias de calidad medioambiental en la ejecución mezclados con otros relacionados con las condiciones de suministro, las garantías de calidad y el control de la recepción. Se intercalan aspectos relacionados con la responsabilidad en la gestión de la calidad con otros relacionados con el control. Resulta evidente la confusión de conceptos como “gestión de la calidad”, “garantía de la calidad” o “control de la calidad” a lo largo del texto. Hubiera sido interesante aclarar estos conceptos en el Capítulo 5 Bases generales para la gestión de la calidad de las estructuras. De todas formas, la Tabla 17.1 nos ilumina con cierto orden, al menos, en lo relacionado con la conformidad en el control del proyecto, de los productos, de la ejecución de la estructura y de la estructura terminada.

Tabla 17.1 Definición de tipos de conformidad

Sin entrar en más detalles, sí que se detecta un cambio en el control de calidad de la ejecución respecto a la EHE-08. Mejora la trazabilidad, modifica las condiciones de fabricación y armoniza diversas nomenclaturas españolas a las europeas. Estos cambios afectan a los propios lotes, los lotes de ensayos de resistencia, las unidades de inspección y su frecuencia, etc. Los cambios tratan de diferenciar mejor los elementos estructurales y sistemas constructivos. Destaca asimismo la diferencia de los puentes respecto al resto de estructuras y una atención especial a las estructuras de baja complejidad. Cabe destacar el Anejo 4 Documentación de suministro y control de los productos recibidos directamente en obra, que explica muy claramente toda la documentación para los productos recepcionados en obra antes, durante y al finalizar su suministro.

Por otra parte, se sustituyen las menciones a la Directiva 89/106/CEE del Consejo, de 21 de diciembre de 1988, relativas a la aproximación de las disposiciones legales, reglamentarias y administrativas de los Estados miembros sobre los productos de construcción, que se contenían en la reglamentación vigente, por las del Reglamento (UE) nº 305/2011 del Parlamento Europeo y del Consejo, de 9 de marzo de 2011, por el que se establecen condiciones armonizadas para la comercialización de productos de construcción y se deroga la Directiva 89/106/CEE del Consejo. También desaparece el concepto de idoneidad al uso de los productos con marcado CE y se sustituye por la presunción de veracidad de la declaración de prestaciones del producto por parte del fabricante. La declaración de prestaciones deberá cumplir las especificaciones del citado Reglamento (UE) nº 305/2011.

Resulta también de interés el refuerzo que hace el Código respecto a las consideraciones que deben aplicarse para los productos controlados en fábrica, entre los que se encuentran los prefabricados, con el añadido de la existencia de un organismo certificador externo que lo valide. Asimismo, se avanza en la posibilidad de que el fabricante pueda obtener de forma voluntaria un Distintivo de Calidad Oficialmente Reconocido (DCOR) que implique el cumplimiento de una serie de requisitos adicionales a los que establecen las normas armonizadas. Ello permite ventajas que ya venían de la EHE-08, entre las que destacan la máxima reducción posible de los coeficientes de seguridad de los materiales, hasta 1,35 en hormigón y hasta 1,10 en acero. Esto es de gran interés, por ejemplo, para prefabricados de hormigón certificados con un DCOR, siempre que se cumplan además otra serie de consideraciones.

Otro aspecto destacable es la estrecha relación que existe entre este nuevo Código Estructural y el Real Decreto 163/19, por el que se aprueba la Instrucción Técnica para la realización del control de producción de los hormigones fabricados en central, de forma que existe ahora una correcta correlación entre la producción y la puesta en obra del hormigón.

Os dejo a continuación una mapa conceptual, que utilizo yo en mis clases, y que simplifica de alguna forma los aspectos relacionados con la calidad de las estructuras.

Control de ejecución de las estructuras. Elaboración: V. Yepes

Os dejo un vídeo que os he grabado al respecto.

También os dejo unos vídeos explicativos del Colegio de Ingenieros Técnicos de Obras Públicas de Aragón sobre el tratamiento de la calidad en el nuevo Código Estructural. Espero que os sean de utilidad.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.;

¿Qué factores afectan en mayor medida a la resistencia a la fatiga en los aceros?

Figura 1. Curva S-N representativa. https://es.wikipedia.org/wiki/Fatiga_de_materiales

Los esfuerzos cíclicos o repetitivos sobre componentes metálicos, y en especial en el acero, provocan roturas a tensiones mucho menores que aquellas que se podían esperar al aplicar un único esfuerzo estático. Este tipo de fallos se conocen como fallos por fatiga. La historia de la fatiga en los materiales viene ligada al desarrollo de la máquina de vapor de Watt, inicio de la Revolución Industrial.

Para conocer el comportamiento de los metales a la fatiga, se somete una probeta a esfuerzos cíclicos hasta rotura y se representa dicho ensayo en una curva SN, también llamada curva de Wöhler. En dicha curva S es la tensión y N el logaritmo del número de ciclos hasta la rotura. En estas curvas (Figura 1), en determinados metales como el acero, la curva S-N se estabiliza a partir de un valor de tensión determinado. A este límite se denomina límite de fatiga o resistencia a la fatiga y se alcanza para valores de N entre 106 y 1010 ciclos.

Muchas aleaciones férreas presentan un límite de fatiga de, aproximadamente, la mitad de su resistencia a tracción, mientras que aleaciones no férreas como las de aluminio, suele decirse que no presentan límite de fatiga y su resistencia a la fatiga es del orden de un tercio de la resistencia a tracción.

Sin embargo, lo que ahora nos interesa es conocer qué factores son los que más afectan a la resistencia a la fatiga de los metales, y en particular, de los aceros. Es evidente que la composición química del metal influye, pero hay otros factores que hay que tener muy en cuenta:

  • Concentración de tensiones: Las entallas, orificios, hendiduras o cambios bruscos en la sección transversal disminuyen fuertemente la resistencia a la fatiga. Se deben realizar diseños que eviten esta concentración de tensiones.
  • Rugosidad superficial: Un acabado liso del acabado superficial de la probeta incrementa la resistencia a la fatiga. Contrariamente, las superficies rugosas provocan concentración de tensiones.
  • Estado superficial: La mayor parte de los fallos por fatiga se originan en la superficie del metal, por lo que tratamientos de endurecimiento superficial, que endurecen la superficie, mejoran la resistencia a fatiga. En cambio, la descarbonatación, que ablanda la superficie de un acero tratado térmicamente, disminuye dicha resistencia.
  • Medio ambiente: Un ambiente corrosivo acelera la velocidad en la que se propaga la fisura por fatiga. A este fenómeno se le denomina corrosión por fatiga.

Os dejo a continuación un vídeo donde se muestra un ensayo a fatiga del acero.

En este otro vídeo se explica el ensayo a fatiga.

Os dejo a continuación una publicación de ITEA (Instituto Técnico de la Estructura en Acero) que trata del diseño para la fatiga.

Descargar (PDF, 6.17MB)

Referencias:

SMITH, W.F. (2004). Ciencia e Ingeniería de Materiales. 3ª edición, McGraw Hill, 570 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Las dificultades asociadas a las vigas Vierendeel y su rotura frágil

Jules Arthur Vierendeel (1852-1940). https://es.wikipedia.org/wiki/Jules_Arthur_Vierendeel

Los entramados en bastidor, también llamados Vierendeel, surgieron de la patente de 1897 de una viga reticulada que lleva el nombre de su creador, el ingeniero belga Jules Arthur Vierendeel (1852-1940). La viga Vierendeel tiene una forma de celosía ortogonal que presenta la ventaja de prescindir de las tradicionales diagonales. Esta característica obliga a rigidizar fuertemente los nudos, estando sometidas sus barras a esfuerzos flectores y cortantes, además de los esfuerzos axiles. La tipología de la estructura presenta ventajas como la de permitir el paso a su través, ya sea de personas o de conducciones, facilitando también la colocación de carpinterías en edificación.

En el caso de los puentes, los de este tipo se hicieron muy populares en el primer tercio del siglo XX, existiendo un buen número de ejemplos en Bélgica y en el antiguo Congo Belga. El primer puente de estas características se construyó en Avelgem, Bélgica, en 1902. En España, por ejemplo, tenemos un ejemplo en Riera de Caldas, terminado en 1933.

 

Vigas Vierendeel en el teatro Alla Scala de Milán. https://www.e-zigurat.com/blog/es/ejemplos-estructurales-aplicacion-vigas-vierendeel/
Puente Hafe vu Léck. https://es.wikipedia.org/wiki/Puente_Vierendeel

Sin embargo, esta tipología no está exenta de dificultades relacionada con la tenacidad del acero y la mecánica de fractura. Un ejemplo es el colapso del puente Vierendeel de Hasselt, sobre el canal Alberto, en Bélgica, en 1938. Este desastre ocurrió con una temperatura de -20ºC. Se trataba de un puente metálico soldado donde, al desaparecer las diagonales de la celosía, se debía reforzar los cordones y montantes. Pero lo más importante, la ejecución de los nudos soldados requiere de una delicadeza y cuidado máximos. En efecto, estos nudos soldados fueron el origen de sonados desastres como el descrito debido a que con las bajas temperaturas del invierno y con cierta sobrecarga, se produce con cierta facilidad la rotura frágil del acero si no se concibe y ejecuta los innumerables detalles asociados a la soldadura.

Otra dificultad añadida es su deformabilidad frente a otras tipologías de celosías trianguladas. Por ejemplo, para una pasarela de 60 m, la flecha de una viga Vierendeel es unas 10 veces mayor que el resto. Aproximadamente del orden de Luz/100, mientras que en las celosías son menores que Luz/1000.

Sin embargo, hoy día existe cierta tendencia en arquitectura en utilizar este tipo de estructura sin informar claramente sobre las dificultades de esta tipología, muy tentadora, como nos comenta Javier Rui-Wamba en su libro “Teoría unificada de estructuras y cimientos. Una mirada transversal“.

Os dejo a continuación un vídeo sobre la construcción con vigas Vierendeel en el Centro Cultural Nestor Kirchner, en Buenos Aires (Argentina).

En este otro vídeo, donde unos estudiantes rompen un modelo reducido de viga Vierendeel, vemos la gran deformabilidad de esta estructura.

Un ejemplo arquitectónico singular fue la construcción de las Torres Gemelas, donde se recurrió a la viga Vierendeel y a un sistema invertido de estructura.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.