Constructividad, constructibilidad, constructabilidad, ¿todo lo mismo?

Figura 1. Capacidad de influir en el coste durante el proceso proyecto-construcción (Serpell, 2002)

Todo el mundo está de acuerdo en que la industria de la construcción es un motor del desarrollo económico, ya que permite crear infraestructuras y viviendas que sostienen las actividades económicas. Sin embargo, para ello se requieren recursos intensivos, tanto públicos como privados, que en muchas ocasiones no se utilizan de forma efectiva. Se trata de un sector con un amplio margen de mejora en cuanto a productividad se refiere y que, por el momento y con carácter general, no aprovecha todas las oportunidades que brinda el desarrollo tecnológico.

Todos los agentes que participan en la industria de la construcción, desde proyectistas hasta suministradores de materiales y equipos, se ven abocados a utilizar de forma efectiva y eficiente todos los recursos a su alcance para mejorar la productividad y los resultados empresariales. Ello supone no solo emplear bien los recursos disponibles, sino también alcanzarlos con el fin de cumplir con los objetivos empresariales, que pasan por satisfacer las necesidades de los clientes en cuanto a calidad, costes y plazos.

En la Figura 1 se puede observar cómo, en el proceso proyecto-construcción, las primeras fases son las que presentan mayor capacidad de influencia en el coste final de un proyecto (Serpell, 2002). Sobre este asunto ya hablamos en un artículo anterior: La “Ley de los Cincos» de Sitter. Las estadísticas europeas señalan (ver Calavera, 1995) que el proyecto es el responsable del 35-45% de los problemas en construcción. A este respecto, Sitter (véase Rostman, 1992) ha introducido la llamada “Ley de los Cincos”, postulando que un dólar gastado en fase de diseño y construcción elimina costes de 5 dólares en mantenimiento preventivo, 25 dólares en labores de reparación y 125 en rehabilitación.

Por tanto, mejorar el diseño de un proyecto constructivo es clave, no solo para conseguir satisfacer los requerimientos del cliente, sino para mejorar los resultados de todos los agentes involucrados en el proceso proyecto-construcción. Sobre este aspecto, la bibliografía de origen anglosajón habla de Constructability o Buildability, que se ha traducido al español como «constructabilidad» o «constructibilidad», incluso «constructividad». Sin embargo, son palabras que no las recoge la Real Academia Española de la Lengua. Simplificando, podríamos hablar de que una obra puede construirse de forma más o menos fácil y efectiva. Ello va a depender de muchos factores, pero uno de los más importantes va a ser el propio proyecto constructivo. Por cierto, no vamos a utilizar aquí el concepto de “coeficiente de constructibilidad”, que en el ámbito del urbanismo, se refiere a un número que fija el máximo de superficie posible a construir en un ámbito determinado.

En la Figura 2 he elaborado un mapa conceptual para aclarar las ideas. Como puede verse, tanto la constructividad como la constructibilidad tienen como objetivo último satisfacer las necesidades del cliente en cuanto a calidad, costes, plazos, estética, etc., además de cumplir con otro tipo de objetivos relativos al contexto (requerimientos ambientales, sociales, legales, etc.), de forma que los agentes involucrados en la construcción sean capaces de mejorar sus resultados empresariales. Sin embargo, el enfoque de ambos conceptos es diferente. Veamos con algo de detalle las diferencias.

 

Figura 2. Mapa conceptual sobre constructividad y constructibilidad. Elaboración propia.

La constructividad define el grado con el cual un proyecto facilita el uso eficiente de los recursos para facilitar su construcción, satisfaciendo tanto los requerimientos del cliente como otros asociados al proyecto. Como se puede ver, se trata de un concepto directamente ligado a la fase del proyecto, y, por tanto, depende fuertemente del equipo encargado del diseño.

Por otra parte, la constructibilidad es un concepto relacionado con la gestión que involucra a todas las etapas del proyecto y que, en consecuencia, depende tanto de los proyectistas, de los gestores del proyecto y de los constructores. Aunque se trata de un concepto también relacionado con las etapas del diseño del proyecto, la diferencia estriba en la incorporación de personal en esta etapa preliminar de personal con experiencia y conocimiento en construcción con el fin de mejorar la aptitud constructiva de una obra.

Quizá un ejemplo sea clarificador. Supongamos un equipo de arquitectura que está proyectando un edificio complejo, como un hospital. Este equipo, con mayor o menor experiencia en obra, tratará de diseñar un edificio que se pueda construir. El proyecto se licitará y una empresa constructora se encargará de su ejecución. Resulta evidente que, en función de los problemas surgidos durante la obra, el proyecto podrá modificarse para adaptarse a problemas que no quedaron resueltos en él o a cambios no previstos durante la ejecución. Se trata de un ejemplo en el que los proyectistas han incorporado, en la medida de lo posible, aspectos relacionados con la constructividad.

Por otra parte, podría darse el caso de un concurso de proyecto y construcción, en el que el adjudicatario participara, a su riesgo, en el proceso de proyecto y construcción. En este caso, es muy probable que al equipo redactor del proyecto se incorporaran personas con amplia experiencia en la ejecución de este tipo de proyectos. Por ejemplo, jefes de obra o de producción de la empresa que hubiesen realizado proyectos similares podrían aportar conocimientos para mejorar el proyecto y hacer que fuera fácilmente construible con los medios disponibles de la propia empresa. En este caso, nos referimos a una gestión del proyecto en la que se incorporan aspectos relacionados con la constructibilidad.

Para terminar, tenemos ejemplos claros de la diferencia entre estos dos conceptos en los proyectos que nuestros estudiantes elaboran durante sus estudios, por ejemplo, en el Grado de Ingeniería Civil o en el Máster en Ingeniería de Caminos, Canales y Puertos (donde imparto docencia). Un alumno brillante puede desarrollar un proyecto formalmente correcto, pero es muy habitual encontrar detalles mal resueltos porque son difíciles de construir. No se debe a que haya aplicado mal sus conocimientos, sino a la falta de experiencia en obra que le impide plasmar en el proyecto soluciones que faciliten la construcción. Desgraciadamente, este problema se repite en numerosas empresas de proyectos, donde la falta de experiencia de los proyectistas en la ejecución de la obra supone problemas que ya se comentaron anteriormente cuando hablábamos de la regla de Sitter. La consecuencia de todo ello es clara: la importancia de que los proyectistas tengan experiencia dilatada en la ejecución de obra. La segunda derivada también es clara: los profesores de escuelas técnicas que forman a futuros ingenieros o arquitectos deberían tener cierta experiencia en obra real. Es hora de equilibrar la importancia de la investigación y la experiencia en el mundo real a la hora de evaluar el perfil de los profesores que se dedican a formar a los futuros técnicos. Pero ese es otro tema.

Os dejo algún vídeo al respecto para ampliar conceptos.

Referencias:

CALAVERA, J. (1995). Proyectar y controlar proyectos. Revista de Obras Públicas num. 3.346. Madrid, septiembre.

PELLICER, E., CATALÁ, J., SANZ, A.(2002). La administración pública y el proceso proyecto-construcción. Actas del VI Congreso Internacional de Ingeniería de Proyectos, Departamento de Proyectos de Ingeniería de la Universidad Politécnica de Cataluña y AEIPRO, Barcelona, página 35.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

SERPELL, A. (2002). Administración de operaciones de construcción. Alfaomega, 292 pp.

ROSTMAN, S. (1992). Tecnología moderna de durabilidad. Cuadernos Intemac, 5.

YEPES, V. (1998). La calidad económica. Qualitas Hodie, 44: 90-92.

YEPES, V. (2003). Sistemas de gestión de la calidad y del medio ambiente en las instalaciones náuticas de recreo. Curso Práctico de Dirección de Instalaciones Náuticas de Recreo. Ed. Universidad de Alicante. Murcia, pp. 219-244.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V.; PELLICER, E. (2003). ISO 10006 “Guidelines to quality in project management” application to construction. VII International Congress on Project Engineering. 10 pp. ISBN: 84-9769-037-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Entrevista sobre la investigación en optimización y toma de decisiones en puentes e infraestructuras viarias

Con motivo de mi visita a la Pontificia Universidad Católica de Valparaíso (Chile), me hicieron una entrevista sobre el trabajo realizado por nuestro grupo de investigación en la Universitat Politècnica de València.

Dicha entrevista la podéis encontrar en el siguiente enlace: http://icc.pucv.cl/noticias/investigador-de-la-universitat-politecnica-de-valencia-realiza-conferencia-sobre-optimizacion-y-toma-de-decisiones-en-puentes-e-infraestructuras-viarias

 

Desde mi blog agradezco tanto a la Escuela de Ingeniería en Construcción, como a la Escuela de Ingeniería Informática la invitación realizada, y en especial al profesor Matías Andrés Valenzuela Saavedra. Os paso a continuación un resumen de dicha entrevista y el reportaje fotográfico.

NOTICIAS

INVESTIGADOR DE LA UNIVERSITAT POLITÈCNICA DE VALÈNCIA REALIZA CONFERENCIA SOBRE OPTIMIZACIÓN Y TOMA DE DECISIONES EN PUENTES E INFRAESTRUCTURAS VIARIAS

  • Víctor Yepes Piqueras es Doctor Ingeniero de Caminos, Canales y Puertos; catedrático de Universidad en el área de Ingeniería de la Construcción, y fue invitado por las Escuelas de Ingeniería Informática e Ingeniería en Construcción a dictar estas conferencias.

Tanto en Valparaíso, como en Santiago, el ingeniero Dr. Víctor Yepes fue invitado a dictar la Charla “Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”.

La primera actividad se llevó a cabo el miércoles 22 en el Aula Mayor del Edificio IBC de la Facultad de Ingeniería, mientras que en Santiago se efectuó el jueves 23 en el Centro de Estudios Avanzados y Extensión PUCV, asistiendo en ambas jornadas, un gran número de participantes, entre quienes se encontraban estudiantes, profesionales de la industria, académicos e investigadores.

“Gracias a la invitación de la PUCV, he tenido la oportunidad para venir a mostrar y explicar las líneas de investigación que en la Universitat Politècnica de València, en particular, desde la Escuela de Ingeniería de Caminos, Canales y Puertos, estamos haciendo en lo que se refiere a la optimización de infraestructuras, específicamente, de puentes”, refiere el Dr. Yepes en relación con su visita.

Durante sus conferencias, el académico centró sus presentaciones en la investigación que lleva realizando por más de 10 años, y cuyo objetivo es apoyar a las administraciones públicas, y sobre todo, a los profesionales que se dedican al diseño de puentes y este tipo de infraestructura, para que sean capaces de acertar en las decisiones que tienen que tomar a la hora del diseño.

“No estamos hablando solo de hacer puentes o carreteras más económicas, sino también que estas supongan un mínimo impacto ambiental y que, además, supongan un impacto social favorable, lo cual es algo que no se ha estudiado mucho hasta ahora y que creo que es una de las novedades que estamos aportando al mundo de la investigación”, señaló sobre la materia.

Por otra parte, señaló la importancia que reviste difundir estas líneas de investigación, puesto “es muy posible que existan líneas conjuntas de colaboración, y podamos aunar las cosas que estamos haciendo nosotros desde España, con otras que desde luego son muy importantes, y están desarrollando en esta Universidad”.

Además de dichas conferencias, el Dr. Yepes complementó su visita con una agenda de reuniones con académicos de la PUCV, profesionales y representantes del Ministerio de Obras Públicas.

 

 

Ensanchadoras de la base de pilotes: el balde de quijadas

Figura 1. Balde de quijadas con articulación en la base y con articulación superior

En suelos suficientemente coherentes se puede ensanchar la base de la perforación, a fin de aumentar la capacidad de transmitir resistencia por punta, mediante una herramienta especial denominada balde de campana o de quijadas. Este útil puede ser de dos tipos: con articulación en la base o con articulación superior.

El ensanche del fondo de la excavación (acampanamiento o underreaming) tiene forma troncocónica. Como criterio general, la altura del ensanchamiento debe ser mayor que el diámetro del pilote y la anchura menor que tres veces el diámetro.

Figura 2. Herramienta para ensanchamiento de la punta del pilote

 

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Problema de selección de una cimentación. Desarrollo del pensamiento crítico

http://cimentacioneslevante.es/muros-pantalla/

Desde el proceso de Bolonia, muchos cambios ha habido en nuestras universidades y planes de estudios. Uno de ellos es la necesidad de desarrollar y evaluar las competencias del título correspondiente a través de cada una de las asignaturas y comprobar que se adquieren los resultados de aprendizaje. De este tema ya hemos hablado varias veces. Hoy os traigo un problema que me sirve para evaluar, a través de una rúbrica, la competencia transversalPensamiento Crítico” en la asignatura de Procedimientos de Construcción II, del grado de Ingeniería Civil de la Universitat Politècnica de València. Espero que os sea de interés.

También os dejo una presentación que hice en un congreso docente donde explico cómo realizamos esta evaluación.

ENUNCIADO:

Se quiere construir un edificio de 30 plantas de altura más seis sótanos (altura de 3,00 m cada sótano) en una ciudad de 500.000 habitantes. El solar se encuentra entre dos medianerías, y tiene una superficie rectangular de 20 x 35 m, siendo las medianerías los lados de 20 m. Existe la posibilidad de utilizar un solar anejo para ejecutar la obra, de 44 x 35 m. Hay acceso directo tanto al solar donde se va a realizar el edificio como al solar disponible, según se observa en la Figura 1. El clima es atlántico, con lluvias abundantes, con temperaturas que se supone oscilan entre 5 y 25 °C, y se tienen 10 horas de luz de media durante la construcción de la cimentación.

Figura 1. Esquema de la situación del solar del edificio, del solar disponible y de los edificios construidos

Se ha efectuado un sondeo y se ha determinado un corte del terreno que se muestra en la Figura 2. Se observa que el nivel freático se encuentra a 3,50 m de la superficie. Existe un sustrato duro de areniscas de 4,00 m de espesor situado entre dos capas de limos arcillosos con trazas de arenas y gravas. A 22 m de profundidad existe una capa de calizas sanas, de al menos 15 m de potencia. Los primeros 2,20 m son un relleno antrópico donde existen tocones de árboles, basura y una mezcla de limos arcillosos y gravas.

Figura 2. Esquema básico del corte geológico

La solución a proyectar debe conjugar la posibilidad técnica de ejecución, el impacto ambiental y social sobre el entorno (contaminación, ruidos, vibraciones, etc.), la facilidad constructiva y la viabilidad económica, Use los datos del enunciado que considere importantes y, en el caso de necesitar datos, razone adecuadamente el uso de información adicional.

Preguntas de grupo:

  1. Indique qué tipo de cimentación sería la más conveniente.
  2. Razone dos procesos constructivos que podrían ser aplicados y cuál de los dos cree que será más eficaz. La respuesta debe ser de consenso entre los miembros del grupo.
  3. Define los principales pasos en la construcción de dichas cimentaciones.
  4. Descarte, justificando las razones, al menos tres procesos constructivos de cimentación que no sean aplicables a este caso.
  5. Indique si ha tenido que consultar otras fuentes para la elección de la tipología y el proceso constructivo (en dicho caso indicar cuál), o ha sido suficiente con el temario de la asignatura.

 

Preguntas individuales:

  1. Critique los dos procesos constructivos de la pregunta 2, indicando si está de acuerdo con lo consensuado por el grupo. Se valorará especialmente su opinión crítica, personal, justificada y si hay diversidad de opiniones entre los miembros del grupo.
  2. Realice una crítica sobre el ejercicio 1, indicando aquellas cosas con las que está de acuerdo con el grupo o no. Se valorará la justificación crítica de la respuesta.
  3. Indique los cinco riesgos para las personas más importantes que supone el procedimiento constructivo elegido y qué medidas preventivas debería utilizar.

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2018). Correspondencia jerárquica entre las competencias y los resultados de aprendizaje. El caso de “Procedimientos de Construcción”. Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2018, Valencia, pp. 1-15. ISSN 2603-5863

GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Valoración de las herramientas y metodologías activas en el Grado en Ingeniería de Obras Públicas. Congreso Nacional de Innovación Educativa y de Docencia en Red IN-RED 2017, Valencia, 13 y 14 de julio de 2017, 9 pp.

GARCÍA-SEGURA, T.; YEPES, V.; MOLINA-MORENO, F.; MARTÍ, V. (2017). Assessment of transverse and specific competences in civil engineering studies: ‘Critical thinking’. 11th annual International Technology, Education and Development Conference (INTED 2017), Valencia, 6th, 7th and 8th of March, 2017, pp. 3683-3692. ISBN: 978-84-617-8491-2

MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Assessment of the argumentative ability in innovation management of civil engineering studies. 11th annual International Technology, Education and Development Conference (INTED 2017), Valencia, 6th, 7th and 8th of March, 2017, pp. 3904-3913. ISBN: 978-84-617-8491-2

YEPES, V.; MARTÍ, J.V.; MOLINA-MORENO, F. (2017). Transverse competence ‘critical thinking’ in civil engineering graduate studies: preliminary assessment. 11th annual International Technology, Education and Development Conference (INTED 2017), Valencia, 6th, 7th and 8th of March, 2017, pp. 2639-2649. ISBN: 978-84-617-8491-2

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2016). Desarrollo y evaluación de la competencia transversal “pensamiento crítico” en el grado de ingeniería civil. Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2016, Valencia, pp. 1-14. ISBN: 978-84-9048-541-5.

MARTÍ, J.V.; YEPES, V. (2016). Valoración de la competencia transversal “Pensamiento crítico” por los alumnos de GIOP (2015). XIV Jornadas de Redes de Investigación en Docencia Universitaria 2016

MARTÍ, J.V.; YEPES, V. (2016). Evaluación de la competencia transversal “pensamiento crítico” en el grado de ingeniería civil. XIV Jornadas de Redes de Investigación en Docencia Universitaria 2016

YEPES, V.; SEGADO, S.; PELLICER, E.; TORRES-MACHÍ, C. (2016). Acquisition of competences in a Master Degree in Construction Management. 10th International Technology, Education and Development Conference (INTED 2016), March, Valencia, pp. 718-727. ISBN: 978-84-608-5617-7.

MARTÍ, J.V.; YEPES, V. (2015). Pensamiento crítico como competencia transversal en el grado de Ingeniería de Obras Públicas: valoración previa. Congreso In-Red 2015, Universitat Politècncia de València, pp. 1-12. ISBN: 978-84-9048-396-1. Doi:: http://dx.doi.org/10.4995/INRED2015.2015.1560 (link)

JIMÉNEZ, J.; SEGADO, S.; YEPES, V.; PELLICER, E. (2015). Students’ guide as a reference for a common case study in a master degree in construction management. 9th International Technology, Education and Development Conference INTED 2015, Madrid, 2nd-4th of March, 2015,  pp. 4850-4857. ISBN: 978-84-606-5763-7.

YEPES, V.; MARTÍ, J.V. (2015). Competencia transversal ‘pensamiento crítico’ en el grado de ingeniería civil: valoración previa. XIII Jornadas de Redes de Investigación en Docencia Universitaria, Alicante, 2 y 3 de julio,  pp. 2944-2952. ISBN: 978-84-606-8636-1. (link)

YEPES, V.; MARTÍ, J.V. (2015). La competencia transversal de comunicación efectiva en estudios de máster en el ámbito de la ingeniería civil y la construcción. Congreso In-Red 2015, Universitat Politècncia de València, pp. 1-14. ISBN: 978-84-9048-396-1. Doi:: http://dx.doi.org/10.4995/INRED2015.2015.1540 (link)

JIMÉNEZ, J.; SEGADO, S.; PELLICER, E.; YEPES, V. (2014). Strategic evaluation of a M.Sc. degree in construction management: a faculty vs. students comparison. 8th International Technology, Education and Development Conference, INTED 2014, Valencia (Spain), 10-12 March, pp. 1974-1984. ISBN: 978-84-616-8412-0  (link)

YEPES, V. (2014). El uso del blog y las redes sociales en la asignatura de Procedimientos de Construcción. Jornadas de Innovación Educativa y Docencia en Red IN-RED 2014. 15-16 de julio, Valencia, pp. 1-9. ISBN: 978-84-90482711.

SEGADO, S.; YEPES, V.; CATALÁ, J.; PELLICER, E. (2014). A portfolio approach to a M.Sc. degree in construction management using a common project. 8th International Technology, Education and Development Conference, INTED 2014, Valencia (Spain),  10-12 March,  pp. 2020-2029. ISBN: 978-84-616-8412-0 (link)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Descabezado de muro pantalla

Figura 1. Descabezado con martillo rompedor manejado desde una retroexcavadora. http://www.generadordeprecios.info

Se define como descabezado la operación por la cual se retira el hormigón contaminado, o de inferior calidad, o el exceso de la cabeza del muro-pantalla por encima del nivel de coronación previsto. Se trata de un procedimiento similar al descabezado de pilotes, tema que ya tratamos en un artículo anterior. A continuación vamos a describir brevemente los procedimientos usuales de descabezado de muros pantalla (Figura 1).

Son varias las razones por las que tenemos que descabezar un muro pantalla. En primer lugar, puede ocurrir que hayamos rellenado a una cota superior a la teórica, pero lo más habitual es que el hormigón de la parte superior de las pantallas esté contaminado con los lodos de perforación o con el propio terreno, por lo que debe sanearse. Se debe realizar el descabezado del hormigón hasta el nivel de coronación usando equipos y métodos que no dañen al hormigón, la armadura o cualquier instrumentación instalada en los paneles. En particular, es importante respetar las armaduras del muro pantalla para que solapen con la viga de coronación. En ocasiones se utilizan equipos mecánicos pesados que pueden ocasionar un riesgo de fisuración extensiva, por lo que, en ocasiones, se debe restringir el tipo y tamaño de la máquina empleada.

Cuando sea posible, se puede descabezar por encima del nivel de coronación antes de que el hormigón haya fraguado. Sin embargo, se debe hacer el descabezado final hasta el nivel de coronación solo después de que el hormigón haya alcanzado la suficiente resistencia.

Una de las preguntas habituales es saber qué distancia hay que descabezar. La respuesta fácil es que la Dirección Facultativa, en función de la contaminación de la parte superior de la pantalla, es quien debería determinar la magnitud requerida. En una conversación técnica mantenida con Luis Miguel Salazar (PONTEM), me comentó que la norma NTE-CCP, que trata sobre pantallas, se determina lo siguiente: “la cota final de hormigonado rebasará a la teórica en al menos 30 cm. Este exceso, en su mayor parte contaminado por el lodo, será demolido antes de construir la viga de atado de los paneles. Si la cota teórica coincide con la coronación de muretes se deberá hacer rebosar el hormigón hasta comprobar que no está contaminado”. Por tanto, ya tenemos una cota mínima: al menos 30 cm, pero la recomendación es comprobar la profundidad en la que el hormigón se encuentre contaminado.

Una de las formas habituales de descabezar el muro-pantalla es de forma manual con ayuda de martillos picadores. En la Figura 2 se puede ver esta operación. Se trata de un procedimiento que presenta poco rendimiento y que puede resultar penoso para los operarios. Es por ello que, en caso de descabezar grandes volúmenes, es preferible desde el punto de vista económico y de rendimiento el uso de medios más mecanizados. Por ejemplo, en la Figura 3 se observa un martillo rompedor manejado desde del brazo de una retroexcavadora.

Figura 2. Descabezado de la pantalla con martillos picadores manuales. Cortesía: Geocisa

 

Figura 3. Descabezado de muro pantalla mediante martillo rompedor. http://www.gestionaobras.com/muros-pantalla-torremalilla/

El descabezado de muros pantalla mediante herramientas hidráulicas presenta ventajas respecto al empleo de martillos rompedores: una mayor productividad, mínimo daño sobre el propio muro pantalla, la posibilidad de dejar la armadura intacta, no hay grietas por debajo del nivel de corte, bajos costes de operación y alta eficiencia.

Se puede realizar el descabezamiento de muros pantalla mediante un quebrantador hidráulico, de forma similar a los pilotes (ver Figura 4). Se trata de un cilindro quebrantador que funciona con el principio de cuña. Existen quebrantadores que pueden manejarse por un solo operario con una fuerza de quebrantación superior a las 4000 kN. El trabajo es silencioso, sin polvo ni vibraciones, de peso ligero y apto para utilizarse en espacios cerrados o de difícil acceso.

Figura 4. Descabezamiento de un pilote mediante quebrantador hidráulico. http://www.taladraxa.com/servicios/quebrantado/descabezado-de-pilote.html

También existen herramientas accionadas mediante gatos hidráulicos que permiten un descabezado limpio y preciso de la cabeza del muro-pantalla, tal y como podemos observar en las Figuras 5 y 6.

Figura 5. Descabezado de muro pantalla mediante gatos hidráulicos. http://geojuanjo.blogspot.com/2011/05/descabezando-muros-pantalla.html

 

Figura 6. Descabezador hidráulico de muros pantalla. https://www.pilebreaker.com/wall-breaker

Otra de las opciones es emplear unas mandíbulas hidráulicas que, literalmente, “se comen” el hormigón, rompiéndolo (Figura 7).

Figura 7. Descabezado de muros pantallas mediante mandíbulas. http://coynsa.com/derribos/demolicion-de-pantallas-de-hormigon-armado-en-macropozo/

También se pueden utilizar otros procedimientos como la hidrodemolición (ya se escribió sobre ello en un artículo sobre descabezado de pilotes) o bien se puede utilizar el fresado para el descabezado. Las Figuras 8 y 9 muestras dos tipos de máquinas que realizan un fresado de la cara interior del muro-pantalla. Sin embargo, la misma herramienta sirve para el descabezado, tal y como se puede ver en el vídeo que sigue.

Figura 8. Fresado de muro pantalla. http://www.retasur.com/servicios/fresado-de-pantallas-de-hormigon/

 

Figura 9. Fresado de muro pantalla. http://www.comportiz.com/fresado-de-muro-de-pantalla.html

 

 

Referencias:

ORDEN de 8 marzo 1983, Norma Tecnológica de la Edificación NTE-CCP, «Cimentaciones, Contenciones, Pantallas». BOE 16 abril 1983, núm. 91, pág. 10529.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

STARSOL: Pilotes con hélice continua mejorada

Figura 1. Pilotes Starsol. http://www.soletanche-bachy.com.ar

Dentro de los pilotes de extracción de barrena continua podemos distinguir un procedimiento mejorado denominado STARSOL. Se trata de un sistema desarrollado por el grupo francés SOTELANCHE-BACHY, al cual pertenece la empresa española RODIO, por lo que también se llama este procedimiento Rodiostar/Starsol. Con este sistema se resuelven dos problemas que tenían procedimientos anteriores: la perforación de capas duras y la ejecución y control de la calidad del hormigonado. La perforación en capas duras se realiza mediante un motor de gran potencia, con un par de 90000 N·m, incorporando un útil de corte bajo el eje de la hélice, con lo que puede atravesar o empotrase en terrenos de 35 a 50 N/mm² de resistencia a rotura. Ello hace innecesario el uso de trépano. Tampoco se necesitan lodos ni camisa porque el hormigonado se efectúa a través del tubo interno, que funciona a modo de Tremie. El mayor problema es que las armaduras deben introducirse después del hormigonado, aunque este problema se podría resolver definitivamente con hormigones armados con fibras de acero. Los diámetros habituales de este tipo de pilotes se encuentran entre 0,40 y 1,00 m, con una profundidad máxima normal de 30 m. La potencia total instalada ronda los 250 kVA.

Los elementos principales del equipo son los siguientes:

  • Grúa dotada de grupo hidráulico
  • Mástil guía
  • Cabeza de rotación hidráulica
  • Manguera de introducción del hormigón al tubo interior
  • Barrena continua alrededor del tubo exterior
  • Tubo central con desplazamiento por el interior del tubo exterior
  • Sistema de gatos que permite el desplazamiento vertical del tubo central hasta 1,50 m
  • Útil de limpieza

En la Figura 2 se muestran las fases constructivas del método. El procedimiento comienza con la perforación mediante rotación de la barrena. Una vez llega a la profundidad requerida, se para la rotación, se levanta el conjunto y se comienza a bombear hormigón a presión. La distancia entre las bases de la barrena y del tubo sumergido es de 1,50 m. Por último, una vez hormigonado el pilote, se coloca la armadura, incluso con vibradores si fuera necesario. La armadura se puede introducir con este método fácilmente hasta 15 m, aunque el mejor registro de 17 m se consiguió en 1988.

La diferencia entre el procedimiento STARSOL y los pilotes de barrena continua convencionales es que en los primeros el hormigón se bombea a presión (de al menos 0,1 MPa, lo que asegura un excelente contacto en cualquier terreno), de forma que dicha presión y el volumen de hormigón se encuentran controlados. Esto garantiza que el primer hormigón vertido es el único que ha estado en contacto con el terreno y el único que puede estar contaminado. En el caso de los pilotes de barrena continua clásica, el hormigón se vierte a través del tubo central de la barrena y directamente sobre el anterior, mientras que en el sistema STARSOL, se realiza mediante un tubo telescópico introducido por dicha barrena hueca, el cual puede quedar introducido hasta 1,0 m por debajo de la lámina libre de hormigón, de ahí la mayor presión de bombeo y la gran ventaja con respecto al CPI-8 convencional; pues se evita la posibilidad de cortes en el hormigón.

Figura 2. Esquema del proceso de ejecución del pilote STARSOL

A continuación os dejo algunos vídeos explicativos que creo de interés.

Referencias:

GARCÍA-VALCARCE, A.; SACRISTÁN, J.A.; GONZÁLEZ, P.; HERNÁNDEZ, R.J.; PASCUAL, R.; SÁNCHEZ-OSTIZ, A.; IRIGOYEN, D. (2003). Manual de edificación. Mecánica de los terrenos y cimentaciones. Editorial CIE Dossat 2000, 710 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistemas de entibación con cajones de blindaje o escudos

Figura 1. Detalle de cajones de blindaje Robust BOX. Fuente: www.atenko.com

Se utilizan los escudos o cajones de blindaje cuando se busca no solo un sostenimiento del terreno, sino una buena protección a los trabajadores. Se trata de dos paneles unidos por codales de longitud regulable (Figura 1). La longitud de la plancha oscila entre los 2,00 y 6,00 m. Además, no es apta para entibar con presencia transversal de servicios.

Los blindajes se ensamblan en obra, fuera de la zanja, con anchuras regulables en función de la zanja. Cuando se trata de zanjas profundas, se colocan unos blindajes encima de otros, unidos mediante guías. Los cajones de blindajes se pueden emplear hasta 4 m de profundidad, incluso en terrenos no cohesivos. A mayor profundidad los cajones se extraen con dificultad, pues se originan grandes esfuerzos sobre los codales y pueden aparecer descompensaciones del terreno totalmente desaconsejables. A partir de ahí, y hasta 6 m, deberían utilizarse cámaras con tablestacas.

Se distinguen dos tipos de sistemas de colocación de cajones de entibación: el método de descenso directo y el método de descenso escalonado.

El método de descenso directo, también llamado método de ajuste, consiste en introducir la entibación hasta el fondo en la zanja ya excavada. Esto es posible con paredes estables, verticales y con una excavación que presente la misma anchura que la entibación (ver Figura 2). El espacio entre la cara exterior del blindaje y el frente de excavación debe ser el mínimo posible, debiéndose rellenar para evitar los movimientos laterales del cajón. Estos escudos se montan en obra con una simple retroexcavadora o con una grúa pequeña.

Figura 2. Montaje del sistema de entibación con cajones de blindaje mediante descenso directo. Fuente: http://www.iguazuri.com/catalogos/entibacion_general.pdf

El método de descenso escalonado, también llamado de “corte y bajada”, se utiliza para la colocación de cajones provistos de bordes cortantes. Consiste en empujar cada panel con la cuchara de una pala excavadora a uno y otro lado de la entibación, alternando el descenso con la excavación y retirada del suelo. El avance en el descenso no debe exceder 0,50 m del borde inferior de la plancha.

En el siguiente vídeo se muestra cómo se monta el sistema mediante el método de “corte y bajada”.

Referencias:

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Problemas con la perforación o la hinca de pilotes ante información confusa del terreno

Reconocimiento geotécnico. https://www.arqhys.com/construccion/reconocimiento-geotecnico.html

En algunos artículos anteriores hemos descrito algunos procedimientos constructivos de los distintos tipos de pilotes. También se han comentado en artículos anteriores algunas técnicas relacionadas con los informes geotécnicos.

Podéis consultar el siguiente documento realizado por Juan Herrera y Jorge Castilla, de la UPM: “Utilización de técnicas de sondeos en estudios geotécnicos“: http://oa.upm.es/10517/1/20120316_Utilizacion-tecnicas-sondeos-geotecnicos.pdf

 

Sin embargo, aquí quiero resaltar algunos casos concretos donde los informes geotécnicos pueden confundir al constructor y llevarlo a errores durante la perforación o hinca de los pilotes (Rodríguez Ortiz, 1982):

  1. Capas delgadas de arenisca floja o vetas de arena cementadas. Las coronas de sondeo las traspasan y disgregan, confundiéndose con arenas. Las barrenas que perforan los pilotes son de diámetro mayor y no tienen potencia suficiente para romper estas capas, con lo que se hace necesario un trépano. En el caso de hinca, se suele dar rechazo al llegar a estas capas, deteniéndose la hinca, lo que supone un riesgo de punzonamiento bajo las cargas de trabajo.
  2. Las vetas carbonatadas y costras, de naturaleza evaporítica y de espesores variables, con elevadas resistencias. Los sondeos a rotación disgregan las gravas presentes, otras veces se sacan testigos rocosos que se confunden con gravas o bolos calcáreos. Son errores de apreciación que, unido a la difícil correlación entre los cortes geotécnicos, provocan que pasen desapercibidas estas vetas y causen problemas en la hinca y en la perforación.
  3. Las vetas silicatadas se confunden con los cantos de sílex. Son capas de extraordinaria dureza que hace difícil la penetración de los pilotes, incluso con espesores de pocos centímetros.
  4. Bloques erráticos u obstáculos de tamaño similar al diámetro del pilote. Pueden dificultar enormemente el hincado o la perforación.
  5. Confusión entre roca sana y alterada en el apoyo del pilote, que puede magnificar o infravalorar la capacidad portante prevista.
  6. Evaluación de la resistencia de una capa rocosa para predecir si la excavación debe realizarse con trépano, tricono o elementos de corte rotativo.
  7. La estructura del substrato rocoso debe caracterizarse geológicamente y con reconocimientos puntuales para determinar si las fracturas impiden la perforación rotativa para un determinado diámetro.
  8. Los sondeos pueden interpretar una estabilidad de las paredes diferente a la perforación del pilote, pues los diámetros son diferentes. Si el terreno lo permite, se prefieren los sondeos helicoidales, pues se aproximan mejor a las condiciones de perforación del pilote.
  9. La permeabilidad del terreno y la presencia de capas granulares abiertas pueden impedir la perforación con lodos, debiéndose recurrir a la entubación. Un sondeo convencional puede pasar por alto este aspecto, salvo que se hagan pruebas de bombeo o permeabilidad.

Referencias:

RODRÍGUEZ ORTIZ, J.M. (1982). Reconocimientos del terreno para pilotajes, en ROMANA, M. (Ed.): Apuntes sobre pilotes. Universidad Politécnica de Valencia.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pilotes prefabricados de hormigón armado hincados

Figura 1. Hinca de pilotes prefabricados. Cortesía de Rodio

Los pilotes prefabricados de hormigón constituyen una técnica de cimentación profunda enmarcada en los pilotes de desplazamiento. Este tipo de pilotes pueden fabricarse de hormigón armado o pretensado.

Los pilotes prefabricados de hormigón armado suelen de sección cuadrada, de dimensiones habituales entre 200 y 400 mm de lado, aunque también los hay de sección rectangular, circular o poligonal. A veces, incluso pueden ser huecos para poder introducir algún tipo de canalización como las instalaciones de geotermia. Por sus dimensiones reducidas se utilizan para cargas y longitudes moderadas, como en obras de edificación. Se confeccionan con hormigones de resistencia característica mayor a 40 MPa. Las armaduras longitudinales son de, al menos, 12 mm de diámetro, disponiéndose como mínimo una barra en cada vértice. Las armaduras transversales serán, de al menos 6 mm de diámetro, duplicándose la cuantía en al menos una longitud de 3 veces el diámetro del pilote. Se comportan bien por fuste en arenas, gravas y arcillas. La durabilidad es buena, pero en ambientes agresivos se deben proteger las armaduras de la corrosión con cementos especiales o revestimientos.

Los prefabricados presentan ventajas como el curado al vapor, la disminución de almacenaje en obra, los mayores rendimientos y la calidad, entre otros. Ello permite cargas de trabajo de 10 – 12,5 MPa, lo que disminuye la sección para igual capacidad portante. Son habituales secciones de 25×25 cm y 30×30 cm para capacidades que van de 600 a 1000 kN.

Con longitudes largas, se realizan empalmes entre las piezas de hormigón, de un máximo usual de 12 m por razones de transporte. Las juntas de empalme suelen ser objeto de patente y pueden ser mecánicas (tipo machihembrado), por anclaje mediante resinas epoxi, mediante forros de acero o soldados en piezas metálicas dejadas en los extremos. Además, se debe cuidar la manipulación del pilote desde el vehículo de transporte hasta el lugar de hinca.

La hinca de estos pilotes se suele ejecutar mediante equipos de caída libre, con una maza entre 50 y 110 kN que se eleva mediante equipos de accionamiento hidráulico. La maza golpea constantemente la cabeza del pilote hasta su rechazo, que se produce cuando, tras un determinado número de golpes, el pilote no desciende un determinado número de centímetros. En ese momento, se supone una capacidad resistente tanto por rozamiento por fuste como por su trabajo en punta. No obstante, en suelos arcillosos, debe comprobarse el rechazo alcanzado, transcurrido un periodo mínimo de 24 horas.

La protección de la punta del pilote frente a la hinca es un detalle que no se debe olvidar. Para ello suele añadirse una pieza metálica cónica o piramidal, o bien un azuche metálico específico, como puede verse en la Figura 1, que permite también la fijación del pilote en un sustrato rocoso. Se trata de azuche especial denominado punta de Oslo. En la Figura 3 se observa la protección de la cabeza del pilote frente a la hinca.

Figura 2. Detalle de azuche de acero en pilote de prefabricado de hormigón (Rodio Kronsa). Fuente: http://www.fontdarquitectura.com/productos/cimentaciones/pilotes/588
Figura 3. Detalle del anillo de protección del pilote frente al golpeo. Imagen: I. Serrano (www.desdeelmurete.com)

Una vez el pilote se hinca hasta el rechazo, la parte libre del pilote queda a distintas alturas. Ahora se debe limpiar y eliminar el hormigón de la cabeza que pueda haber quedado resentido por el golpeo de la maza y no reúna las características mecánicas necesarias y para dejar unas esperas para unir el pilote al encepado.

A continuación os dejo un vídeo explicativo que, entre otros, explica este tipo de pilote prefabricado. Espero que os sea de interés.

Os dejo un vídeo sobre el procedimiento constructivo de hinca de estos pilotes prefabricados.

Referencias:

FERNÁNDEZ-TADEO, C. (2018). ¿Cómo comprobar que los pilotes prefabricados hincados tienen la resistencia suficiente?. Interempresas.net

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Zapata continua bajo muro

Figura 1. Detalle de zapata corrida bajo muro. Imagen: V. Yepes

La zapata continua o corrida bajo muro presenta una gran longitud comparada con las otras dimensiones (ver Figuras 1 y 2). Suele usarse como base de muros portantes y cimentación de elementos lineales. Se busca la homogeneidad en los asientos y la reducción de las tensiones en el terreno frente a una solución por zapatas aisladas. Además, presenta una mayor facilidad constructiva.

Figura 2. Zapata corrida bajo muro

La cimentación superficial corrida para muros portantes, aunque puede ser de mampostería (Figura 43) o de hormigón en masa, u hoy en día se construyen de hormigón armado (Figura 3). El canto mínimo en el borde es de 40 cm en zapatas de hormigón en masa y 30 cm si son de hormigón armado. En época calurosa se disponen juntas de hormigonado separadas 16 m si el clima es seco, y de 20 m si es húmedo. En época fría, dichas distancias serán de 20 y 24 m, respectivamente. No debe olvidarse nunca el llamado hormigón de limpieza, que tiene como objetivos evitar la desecación del hormigón estructural durante su vertido, así como una posible contaminación de este durante las primeras horas de su hormigonado. Suelen bastar unos 10 cm de este hormigón antes de empezar el ferrallado de la cimentación.

Figura 3. Zapata corrida de mampostería para muros portantes. Fuente: http://www.aguascalientes.gob.mx/

Os dejo a continuación un vídeo donde podréis ver el procedimiento constructivo de un muro de hormigón con su correspondiente zapata. Como curiosidad podéis ver que no se cumplen las medidas de seguridad en algunos casos, así como errores en la ejecución. Podéis hacer una lista.

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.