Optimización heurística mediante recocido simulado (simulated annealing)

El recocido simulado (simulated annealing, SA) es una técnica metaheurística estocástica potente diseñada para abordar problemas de optimización global en espacios de búsqueda grandes y complejos. Inspirado en el proceso de recocido de la metalurgia, el algoritmo explora ampliamente el espacio de soluciones a «temperaturas» elevadas y se centra gradualmente en las regiones más prometedoras a medida que la temperatura desciende. Su característica distintiva es la capacidad de aceptar soluciones peores con una probabilidad que disminuye con el tiempo, lo que le permite escapar de mínimos locales y evitar la convergencia prematura.

Este método es particularmente eficaz para problemas NP-hard, como el problema del viajante, la planificación de tareas y el diseño de circuitos, en los que los algoritmos exactos resultan inviables desde el punto de vista computacional. Aunque el SA no garantiza la obtención del óptimo global, produce soluciones de alta calidad en tiempos de cálculo prácticos de forma consistente. El éxito del algoritmo depende en gran medida del ajuste preciso de sus parámetros, como la temperatura inicial, el esquema de enfriamiento y la longitud de las iteraciones en cada nivel de temperatura. Su robustez y versatilidad lo han consolidado como una herramienta fundamental en campos tan diversos como la ingeniería estructural, la química molecular, el procesamiento de imágenes y la asignación de recursos.

Principios fundamentales y origen

El recocido simulado (SA), también conocido como templado simulado, recristalización simulada o enfriamiento simulado, es una técnica metaheurística que adapta un proceso físico al ámbito de la optimización.

  • Definición: El SA es un método estocástico de optimización global. Su estrategia se basa en la analogía con el recocido metalúrgico, proceso en el que un material se calienta y luego se enfría de forma controlada para alcanzar una estructura cristalina estable y de baja energía.
  • Mecanismo central: El algoritmo mejora las soluciones de forma iterativa. Acepta incondicionalmente las soluciones candidatas que son mejores que la actual y, con una probabilidad decreciente, también acepta movimientos que la empeoran. Esta aceptación controlada de transiciones «cuesta arriba» es clave para evitar quedar atrapado en óptimos locales y para permitir un cambio gradual de la exploración a la explotación del espacio de soluciones.
  • Origen: El SA fue desarrollado de forma independiente por Kirkpatrick, Gelatt y Vecchi (1983) y por Černý (1985). Su base teórica se encuentra en el algoritmo de Metropolis (1953), que se aplicó originalmente a la simulación de sistemas termodinámicos.

Mecanismo de funcionamiento y analogía termodinámica.

El SA establece un paralelismo directo entre la optimización y la termodinámica estadística, donde los conceptos se relacionan de la siguiente manera:

  • Función objetivo: corresponde a la energía de un sistema físico. El objetivo es minimizar dicha energía.
  • Solución óptima: representa una estructura cristalina de baja energía, que es un estado estable del sistema.
  • Temperatura (T): Es el parámetro que regula el comportamiento estocástico. A altas temperaturas, el sistema es más volátil y explora más; a bajas, se estabiliza.

El proceso de optimización se rige por el factor de Boltzmann, exp(-ΔE/T), donde ΔE es el cambio en la energía (valor de la función objetivo) de la nueva configuración y T es la temperatura actual.

El criterio de aceptación de una nueva solución s' a partir de una solución actual s sigue la regla de Metropolis:

  1. Si el cambio de energía ΔE = f(s') - f(s) es menor o igual a cero (ΔE ≤ 0), la nueva solución es mejor o igual, por lo que se acepta siempre.
  2. Si el cambio de energía es positivo (ΔE > 0), la nueva solución es peor. Se acepta con una probabilidad P = exp(-ΔE/T).

Esta probabilidad es alta a temperaturas elevadas, lo que fomenta la diversificación y la exploración global. A medida que T se acerca a cero, la probabilidad de aceptar malos movimientos disminuye drásticamente, haciendo que el algoritmo sea más selectivo y se comporte de manera “codiciosa” (greedy), intensificando la búsqueda en regiones prometedoras.

Componentes clave del algoritmo

El rendimiento del SA depende de la calibración precisa de su «esquema de enfriamiento». Sus componentes matemáticos y de procedimiento clave son los siguientes:

Componente Descripción
Temperatura inicial (T₀) Se elige un valor lo suficientemente alto como para asegurar una alta probabilidad de aceptación inicial, lo que permite una exploración amplia del espacio de soluciones. El método de Medina (2001) sugiere ajustarla para que la tasa de aceptación de soluciones de mayor coste se sitúe entre el 20% y el 40%.
Esquema de enfriamiento Define cómo disminuye la temperatura. El más común es el esquema geométrico: T(t+1) = α * Tt, donde α es un coeficiente de reducción típicamente en el rango de [0.8, 0.99]. Una refrigeración rápida corre el riesgo de atrapar la solución en estados metaestables, mientras que una lenta mejora la fiabilidad a un mayor coste computacional.
Longitud de la cadena de Markov Es el número de iteraciones que se ejecutan en cada nivel de temperatura. Debe ser lo suficientemente largo como para que el sistema alcance un estado de equilibrio a esa temperatura antes de seguir enfriando.
Criterio de parada Determina cuándo finaliza el algoritmo. Las condiciones comunes incluyen que la temperatura caiga por debajo de un umbral predefinido (p. ej., el 1% de la temperatura inicial) o que las mejoras en la solución se estabilicen.

Variantes y mejoras

Con el fin de mejorar la eficiencia y la adaptabilidad del SA, se han desarrollado diversas variantes y modificaciones.

  • Estrategia “Best-So-Far”: Mantiene en memoria la mejor solución encontrada hasta el momento, independientemente del estado actual de la búsqueda.
  • Esquemas de recalentamiento: Cuando el sistema se estanca en un óptimo local, la temperatura se incrementa temporalmente para promover una nueva fase de exploración (Dowsland, 1993).
  • Hibridación: Se integra el SA con otros métodos, como algoritmos genéticos, branch-and-bound o programación entera, para aprovechar sus fortalezas complementarias.
  • Implementaciones paralelas: Distribuyen los ensayos entre múltiples procesadores para mejorar la escalabilidad y la velocidad de convergencia.
  • Evaluaciones aproximadas de ΔE: Se utilizan en problemas de alta dimensionalidad para acelerar el cálculo.

Threshold Accepting (TA)

Una variante notable es el Threshold Accepting (TA), introducido por Dueck y Scheuer en 1990. Este método sustituye la regla de aceptación probabilística por una regla determinista: se acepta una solución subóptima si su empeoramiento es inferior a un umbral predefinido.

  • Se acepta una solución subóptima si su empeoramiento (degradación) es inferior a un umbral predefinido.
    Este umbral disminuye gradualmente durante la búsqueda, de forma análoga al esquema de enfriamiento del SA.

Estudios empíricos han demostrado que el TA puede tener un rendimiento comparable o incluso superior al del SA en problemas de planificación, programación y asignación de recursos (Lin et al., 1995).

Dominios de aplicación y ejemplos notables

El SA ha demostrado ser una herramienta versátil y fiable, especialmente para problemas NP-hard para los que no existen solucionadores específicos.

Dominio Aplicación específica y referencia
Enrutamiento Resolución del Problema del Viajante de Comercio (TSP) y sus variantes con restricciones de tiempo (Kirkpatrick et al., 1983).
Planificación Solución de problemas de job-shop scheduling mediante un equilibrio entre diversificación e intensificación (van Laarhoven et al., 1992).
Asignación de recursos Manejo de la complejidad del Problema de Asignación Cuadrática (QAP) en el diseño de instalaciones (Connolly, 1990).
Procesamiento de imágenes Métodos de relajación estocástica para resolver problemas de segmentación y restauración de imágenes (Geman y Geman, 1984).
Química molecular Herramienta estándar para la cristalografía macromolecular y el refinamiento conformacional (Brünger, 1992).
Ingeniería estructural – Diseño de puentes de hormigón pretensado (Martí et al., 2013).

– Optimización paramétrica de muros de contención (Yepes et al., 2008).

– Optimización del tamaño y la disposición de las estructuras de acero (Bresolin et al., 2022).

– Minimización de costes e impacto ambiental (CO₂) en el hormigón armado (Santoro y Kripka, 2020; Medeiros y Kripka, 2014).

– Diseño de estructuras marinas bajo incertidumbre (Toğan, 2012).

Factores críticos para el rendimiento.

El éxito en la aplicación del SA depende en gran medida de la formulación del problema:

  1. Representación del espacio de configuración: La forma en que se define matemáticamente el espacio de soluciones es fundamental.
  2. Definición de movimientos: Es esencial elegir un conjunto adecuado de «movimientos» o ajustes que permitan pasar de una solución a otra vecina. Las representaciones efectivas aseguran que las transiciones entre mínimos locales impliquen pequeñas diferencias de coste, lo que reduce las «barreras de energía».
  3. Función objetivo: Una función objetivo bien elegida puede modificar la distribución de los mínimos locales hacia valores de menor coste promedio, lo que aumenta la probabilidad de encontrar soluciones mejores.
  4. Manejo de restricciones: En los problemas con restricciones, la búsqueda puede limitarse a regiones factibles o pueden permitirse soluciones infactibles penalizándolas en la función objetivo. Este último enfoque puede simplificar la estructura de vecindad y suavizar la topología del paisaje de búsqueda, lo que mejora la convergencia.

Os dejo un vídeo que grabé hace unos años para explicar esta metaheurística. Espero que os sea de interés.

Referencias:

Bresolin, J. M., Pravia, Z. M., & Kripka, M. (2022). Discrete sizing and layout optimization of steel truss-framed structures with Simulated Annealing Algorithm. Steel and Composite Structures, 44(5), 603–617. https://doi.org/10.12989/scs.2022.44.5.603

Brünger, A. T. (1992). X-PLOR Version 3.1: A system for X-ray crystallography and NMR. Yale University Press.

Černý, V. (1985). Thermodynamical approach to the travelling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1), 41–51. https://doi.org/10.1007/BF00940812

Connolly, D. T. (1990). An improved annealing scheme for the QAP. European Journal of Operational Research, 46(1), 93–100. https://doi.org/10.1016/0377-2217(90)90301-Q

Dowsland, K. A. (1993). Simulated annealing. In C. R. Reeves (Ed.), Modern heuristic techniques for combinatorial problems (pp. 20–69). Wiley.

Dueck, G., & Scheuer, T. (1990). Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics, 90(1), 161–175. https://doi.org/10.1016/0021-9991(90)90201-B

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 721–741. https://doi.org/10.1109/TPAMI.1984.4767596

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671

Lin, C. K. Y., Haley, K. B., & Sparks, C. (1995). A comparative study of threshold accepting and simulated annealing algorithms in three scheduling problems. European Journal of Operational Research, 83(2), 330–346. https://doi.org/10.1016/0377-2217(95)00011-E

Martí, J. V., González-Vidosa, F., Yepes, V., & Alcalá, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48, 342–352. https://doi.org/10.1016/j.engstruct.2012.09.014

Medeiros, F., & Kripka, M. (2014). Optimization of reinforced concrete columns according to cost and CO₂ emissions. Engineering Structures, 59, 185–194. https://doi.org/10.1016/j.engstruct.2013.10.045

Medina, J. R. (2001). Estimation of incident and reflected waves using simulated annealing. Journal of Waterway, Port, Coastal and Ocean Engineering, 127(4), 213–221. https://doi.org/10.1061/(ASCE)0733-950X(2001)127:4(213)

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092. https://doi.org/10.1063/1.1699114

Santoro, J. F., & Kripka, M. (2020). Minimizing environmental impact in the design of reinforced concrete elements using simulated annealing. Computers and Concrete, 25(2), 111–118. https://doi.org/10.12989/cac.2020.25.2.111

Toğan, V. (2012). Optimization of monopod offshore tower under uncertainties with gradient-based and gradient-free optimization algorithms. Advances in Structural Engineering, 15(12), 2021–2032. https://doi.org/10.1260/1369-4332.15.12.2021

van Laarhoven, P. J. M., & Aarts, E. H. L. (1987). Simulated annealing: Theory and applications (Mathematics and Its Applications, Vol. 37). Springer. https://doi.org/10.1007/978-94-015-7744-1

van Laarhoven, P. J. M., Aarts, E. H. L., & Lenstra, J. K. (1992). Job shop scheduling by simulated annealing. Operations Research, 40(1), 113–125. https://doi.org/10.1287/opre.40.1.113

Yepes, V., Alcalá, J., Perea, C., & González-Vidosa, F. (2008). A parametric study of optimum earth retaining walls by simulated annealing. Engineering Structures, 30(3), 821–830. https://doi.org/10.1016/j.engstruct.2007.05.023

Yepes, V. (2026). Heuristic Optimization Using Simulated Annealing. In: Kulkarni, A.J., Mezura-Montes, E., Bonakdari, H. (eds) Encyclopedia of Engineering Optimization and Heuristics. Springer, Singapore. https://doi.org/10.1007/978-981-96-8165-5_48-1

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nueva colaboración internacional: estancia de investigación del profesor Élcio Cassimiro Alves

Profesores Víctor Yepes y Élcio C. Alves

Nuestro grupo de investigación se siente especialmente orgulloso y afortunado de recibir con regularidad a profesores de reconocido prestigio internacional que visitan la Universitat Politècnica de València para colaborar, investigar y compartir experiencias. En entradas anteriores ya he comentado estancias y visitas tan relevantes como la del profesor Dan M. Frangopol, la del profesor Gizo Parskhaladze, o la del profesor Moacir Kripka, todas ellas realizadas junto a nuestro grupo en el ICITECH.

En esta línea de colaboración internacional, la Universitat Politècnica de València (UPV) acoge durante diez meses la estancia de investigación del doctor Élcio Cassimiro Alves, ingeniero civil y profesor de la Universidad Federal de Espírito Santo (UFES, Brasil). Esta estancia, que se desarrolla entre enero y octubre de 2026, tiene como objetivo reforzar la colaboración científica con el grupo de investigación del profesor Víctor Yepes, especialmente en los ámbitos de la optimización estructural y de la sostenibilidad en ingeniería civil.

El profesor Alves cuenta con una sólida trayectoria académica y docente. En la UFES imparte docencia en los grados de Ingeniería Civil y de Arquitectura, así como en los programas de máster y de doctorado en Ingeniería Civil. A lo largo de su carrera ha asumido importantes responsabilidades de gestión académica, entre ellas la coordinación de los grados y másteres en ingeniería civil, periodo durante el cual impulsó de manera decisiva la creación del programa de doctorado en esta disciplina en su universidad.

Más allá de su actividad estrictamente académica, destaca también su compromiso social. Ha coordinado proyectos de extensión universitaria vinculados a la ONG Ingenieros Sin Fronteras, participando en iniciativas orientadas a la transferencia del conocimiento de la ingeniería a comunidades vulnerables, lo cual se alinea directamente con la visión contemporánea de la ingeniería como herramienta de transformación social.

Durante su estancia posdoctoral en la UPV, financiada por la Fundación de Apoyo a la Investigación del Espíritu Santo (FAPES, Brasil), el profesor Cassimiro Alves trabajará estrechamente con el grupo del profesor Víctor Yepes en líneas de investigación comunes. Su trabajo se centra en la optimización estructural, con especial énfasis en criterios de sostenibilidad y en la reducción del impacto ambiental, abordando temas como la minimización de emisiones de CO₂, el análisis estructural lineal y no lineal, el hormigón armado y las estructuras mixtas de acero y hormigón.

Este tipo de estancias refuerza la internacionalización de la investigación, favorece el intercambio de conocimientos y experiencias y contribuye al desarrollo de soluciones innovadoras para uno de los grandes retos actuales de la ingeniería civil: diseñar estructuras más eficientes, seguras y sostenibles. Sin duda, la colaboración entre la UFES y la UPV durante estos meses será una oportunidad enriquecedora para ambas instituciones y para el avance de la investigación en ingeniería estructural.

 

5 lecciones sorprendentes de la IA para construir puentes más sostenibles y económicos.

La tesis doctoral leída recientemente por Lorena Yepes Bellver se centra en la optimización del diseño de puentes de losa de hormigón pretensado para pasos elevados con el fin de mejorar la sostenibilidad económica y ambiental mediante la minimización de costes, energía incorporada y emisiones de CO₂. Con el fin de reducir la elevada carga computacional del análisis estructural, la metodología emplea un marco de optimización de dos fases asistido por modelos sustitutos, en el que se destaca el uso de Kriging y redes neuronales artificiales (RNA).

En concreto, la optimización basada en Kriging condujo a una reducción de costes del 6,54 % al disminuir significativamente el consumo de hormigón y acero activo sin comprometer la integridad estructural. Si bien las redes neuronales demostraron una mayor precisión predictiva global, el modelo Kriging resultó más eficaz para identificar los óptimos locales durante el proceso de búsqueda. El estudio concluye que las configuraciones de diseño óptimas priorizan el uso de altos coeficientes de esbeltez y suponen una reducción del hormigón y del acero activo en favor del acero pasivo, con el fin de mejorar la eficiencia energética. Finalmente, la investigación integra la toma de decisiones multicriterio (MCDM, por sus siglas en inglés) para evaluar de manera integral los diseños en función de sus objetivos económicos, estructurales y ambientales.

Cuando pensamos en la construcción de grandes infraestructuras, como los puentes, suele venirnos a la mente la imagen de proyectos masivos, increíblemente caros y con un gran impacto ambiental. Son gigantes de hormigón y acero que, aunque necesarios, parecen irrenunciablemente vinculados a un alto coste económico y ecológico.

Sin embargo, ¿y si la inteligencia artificial nos estuviera mostrando un camino para que estos gigantes de hormigón fueran más ligeros, económicos y respetuosos con el planeta? Una reciente tesis doctoral sobre la optimización de puentes está desvelando hallazgos impactantes y, en muchos casos, sorprendentes. Este artículo resume esa compleja investigación en cinco lecciones clave y a menudo sorprendentes que no solo se aplican a los puentes, sino que anuncian una nueva era en el diseño de infraestructuras.

1. La sostenibilidad cuesta mucho menos de lo que crees.

Uno de los descubrimientos más importantes de la investigación es que la idea de que la sostenibilidad siempre implica un alto sobrecoste es, en gran medida, un mito. La optimización computacional demuestra que la viabilidad económica y la reducción del impacto ambiental no son objetivos opuestos.

La tesis doctoral lo cuantifica con precisión: un modesto aumento de los costes de construcción (inferior al 1 %) puede reducir sustancialmente las emisiones de CO₂ (en más de un 2 %). Este dato es muy relevante, ya que demuestra que con un diseño inteligente asistido por modelos predictivos se puede conseguir un beneficio medioambiental significativo con una inversión mínima. La sostenibilidad y la rentabilidad pueden y deben coexistir en el diseño de las infraestructuras del futuro.

2. El secreto está en la esbeltez: cuanto más fino, más eficiente.

En el diseño de un puente, la «relación de esbeltez» es un concepto clave que define la proporción entre la altura del tablero (su grosor) y la longitud del vano principal. Tradicionalmente, podríamos pensar que «más robusto es más seguro», pero la investigación demuestra lo contrario.

El estudio identificó una relación de esbeltez óptima para minimizar el impacto ambiental. Concretamente, el estudio halló una relación de esbeltez de aproximadamente 1/30 para optimizar las emisiones de CO₂ y de aproximadamente 1/28 para optimizar la energía incorporada. Esto significa que, en lugar de construir puentes masivos por defecto, los modelos de IA demuestran que un diseño más esbelto y afinado no solo es estructuralmente sólido, sino también mucho más eficiente en el uso de materiales. Este diseño más esbelto se logra no solo usando menos material en general, sino también mediante un sorprendente reequilibrio entre los componentes clave de la estructura, como veremos a continuación.

3. El equilibrio de materiales: menos hormigón, más acero (pasivo).

Quizás uno de los descubrimientos más sorprendentes es que el diseño más sostenible no consiste simplemente en utilizar menos cantidad de todos los materiales. La solución óptima es más un reequilibrio inteligente que una simple reducción general.

La investigación revela que los diseños optimizados lograron reducir el uso de hormigón en un 14,8 % y de acero activo (el acero de pretensado que tensa la estructura) en un 11,25 %. Sin embargo, este descenso se compensa con un aumento de la armadura pasiva (el acero convencional que refuerza el hormigón). Esto resulta contraintuitivo, ya que la intuición ingenieril a menudo favorece una reducción uniforme de los materiales. Sin embargo, los modelos computacionales identifican un complejo intercambio —sacrificar un material más barato (hormigón) por otro más caro (acero pasivo)— para alcanzar un diseño globalmente óptimo en términos de coste y emisiones de CO₂, un equilibrio que sería extremadamente difícil de lograr con métodos de diseño tradicionales.

4. Precisión frente a dirección: El verdadero poder de los modelos predictivos.

Al comparar diferentes modelos de IA, como las redes neuronales artificiales y los modelos Kriging, la tesis doctoral reveló una lección fundamental sobre su verdadero propósito en ingeniería.

El estudio reveló que, si bien las redes neuronales ofrecían predicciones absolutas más precisas, el modelo Kriging era más eficaz para identificar las regiones de diseño óptimas. Esto pone de manifiesto un aspecto crucial sobre el uso de la IA en el diseño: su mayor potencial no radica en predecir un valor exacto, como si fuera una bola de cristal, sino en guiar al ingeniero hacia la «región» del diseño donde se encuentran las mejores soluciones posibles. La IA es una herramienta de exploración y dirección que permite navegar por un universo de posibilidades para encontrar de forma eficiente los diseños más prometedores.

5. La optimización va directo al bolsillo: reducción de costes superior al 6 %.

Más allá de los objetivos medioambientales, la investigación demuestra que estos modelos de IA son herramientas muy potentes para la optimización económica directa. Este descubrimiento no se refiere al equilibrio entre coste y sostenibilidad, sino a la reducción pura y dura de los costes del proyecto.

La tesis doctoral muestra que el método de optimización basado en Kriging consigue una reducción de costes del 6,54 %. Esta importante reducción se consigue principalmente minimizando el uso de materiales: un 14,8 % menos de hormigón y un 11,25 % menos de acero activo, el acero de pretensado más especializado y costoso. Esto demuestra de forma contundente que los modelos sustitutivos no solo sirven para alcanzar metas ecológicas, sino que también son una herramienta de gran impacto para la optimización económica en proyectos a gran escala.

Conclusión: Diseñando el futuro, un puente a la vez.

La inteligencia artificial y los modelos de optimización han dejado de ser conceptos abstractos para convertirse en herramientas prácticas que permiten descubrir formas novedosas y eficientes de construir la infraestructura del futuro. Los resultados de esta investigación demuestran que es posible diseñar y construir puentes que sean más económicos y sostenibles al mismo tiempo.

Estos descubrimientos no solo se aplican a los puentes, sino que abren la puerta a una nueva forma de entender la ingeniería. Si la IA puede rediseñar algo tan grande como un puente para hacerlo más sostenible, ¿qué otras grandes industrias están a punto de transformarse con un enfoque similar?

En este audio podéis escuchar una conversación sobre este tema.

Este vídeo resume las ideas principales.

Aquí tenéis un documento resumen de las ideas básicas.

Pincha aquí para descargar

Referencias:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Predictive modeling for carbon footprint optimization of prestressed road flyovers. Applied Sciences15(17), 9591. DOI:10.3390/app15179591

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. Social Life Cycle Assessment of Railway Track Substructure AlternativesJ. Clean. Prod. 2024450, 142008.

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450. DOI:10.3390/su16198450

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tesis doctoral: Optimización sostenible y resiliente de edificios con estructuras híbridas y mixtas

De izquierda a derecha: Fermín Navarrina, Víctor Yepes, Iván Negrín, Tatiana García y Rasmus Rempling.

Hoy, 19 de diciembre de 2025, ha tenido lugar la defensa de la tesis doctoral de D. Iván Antonio Negrín Díaz, titulada “Metaheuristic optimization for the sustainable and resilient design of hybrid and composite frame building structures with advanced integrated modeling”, dirigida por los profesores Víctor Yepes y Moacir Kripka. La tesis ha obtenido la máxima calificación de sobresaliente «cum laude». A continuación, presentamos un breve resumen de la misma.

El cambio climático y la rápida expansión de las áreas urbanas han intensificado el impacto ambiental del sector de la construcción, responsable de cerca del 37 % de las emisiones globales de CO₂ y de más de un tercio del consumo energético mundial. Por tanto, mejorar la sostenibilidad y la resiliencia de las estructuras de edificios se ha convertido en una prioridad esencial, plenamente alineada con los Objetivos de Desarrollo Sostenible de las Naciones Unidas. Esta tesis doctoral aborda este reto mediante el desarrollo de un marco de diseño optimizado que permite obtener soluciones innovadoras, sostenibles y resilientes para estructuras porticadas.

El objetivo principal de la investigación es crear y validar metodologías avanzadas que integren tipologías estructurales híbridas y mixtas con estrategias de optimización de vanguardia apoyadas en modelos estructurales de alta fiabilidad. Para ello, se formulan problemas de optimización que consideran conjuntamente criterios económicos, ambientales, constructivos, de durabilidad y de seguridad estructural, e incorporan, además, aspectos frecuentemente ignorados, como la interacción suelo-estructura, la robustez frente al colapso progresivo y el desempeño ambiental a lo largo del ciclo de vida de la estructura. Entre los objetivos específicos, destacan los siguientes: evaluar metaheurísticas avanzadas y técnicas de optimización asistida por metamodelos; cuantificar los riesgos de modelos estructurales simplificados; integrar la resiliencia como restricción de diseño; valorar los beneficios de tipologías híbridas y mixtas; explorar estrategias de optimización multiobjetivo; y comparar enfoques de diseño basados en fases iniciales y en el ciclo de vida.

Los resultados muestran que las estrategias metaheurísticas avanzadas y asistidas por metamodelos (como BBO-CINS, enfoques basados en Kriging y Optimización Escalarizada de Pareto) superan claramente a los algoritmos tradicionales, ya que logran reducciones de hasta el 90 % en el coste computacional en problemas de un solo objetivo y mejoras de hasta el 140 % en la calidad del frente de Pareto en problemas de varios objetivos. Asimismo, se evidencia el riesgo de simplificar en exceso los modelos estructurales: omitir aspectos críticos, como la interacción suelo-estructura o los elementos secundarios (forjados, muros), puede distorsionar el diseño, comprometer la seguridad (por ejemplo, al subestimar la resistencia al colapso) y aumentar los impactos ambientales a largo plazo, debido al deterioro acelerado y a las mayores necesidades de mantenimiento. También se demuestra que, al incorporar la resiliencia como restricción de diseño en lugar de tratarla como un objetivo de optimización, es posible mejorar la robustez frente al colapso progresivo sin perjudicar la sostenibilidad y reducir la carga ambiental del diseño robusto en torno al 11 % al considerar elementos estructurales secundarios.

A nivel de componentes estructurales, la optimización de las vigas de acero soldadas confirmó las ventajas de la hibridación y de las geometrías variables, lo que dio lugar a la tipología Transversely Hybrid Variable Section (THVS), que reduce los costes de fabricación hasta en un 70 % respecto a las vigas I convencionales. Su integración en pórticos compuestos de hormigón armado y elementos THVS proporcionó mejoras adicionales en sostenibilidad, con reducciones del 16 % en emisiones y del 11 % en energía incorporada en las fases iniciales de diseño, y hasta un 30 % en emisiones de ciclo de vida en comparación con los sistemas tradicionales de hormigón armado. La inclusión de forjados y muros estructurales amplificó estos beneficios, reduciendo los impactos del ciclo de vida hasta en un 42 % respecto a configuraciones de pórticos en las que solo el esqueleto trabaja estructuralmente (omitiendo forjados y muros).

En conjunto, esta tesis demuestra que las metodologías de diseño basadas en la optimización, apoyadas en modelos estructurales realistas y en estrategias computacionales avanzadas, permiten concebir edificios que, al mismo tiempo, son más sostenibles y resilientes. Al resaltar las ventajas de las tipologías híbridas y mixtas e integrar la resiliencia sin comprometer la sostenibilidad, la investigación establece un marco claro para el diseño contemporáneo. Además, al enfatizar la optimización a lo largo de todo el ciclo de vida, ofrece una base metodológica sólida para impulsar una nueva generación de edificaciones alineadas con los objetivos globales de sostenibilidad y de acción climática.

Referencias:

  1. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Life-cycle environmental impact optimization of an RC-THVS composite frame for sustainable construction. Engineering Structures, 345, 121461. DOI:10.1016/j.engstruct.2025.121461
  2. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Manufacturing cost optimization of welded steel plate I-girders integrating hybrid construction and tapered geometry. International Journal of Advanced Manufacturing Technology, 140, 1601-1624DOI:10.1007/s00170-025-16365-2
  3. NEGRÍN, I.; CHAGOYÉN, E.; KRIPKA, M.; YEPES, V. (2025). An integrated framework for Optimization-based Robust Design to Progressive Collapse of RC skeleton buildings incorporating Soil-Structure Interaction effects. Innovative Infrastructure Solutions, 10:446. DOI:10.1007/s41062-025-02243-z
  4. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Design optimization of a composite typology based on RC columns and THVS girders to reduce economic cost, emissions, and embodied energy of frame building construction. Energy and Buildings, 336:115607. DOI:10.1016/j.enbuild.2025.115607
  5. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Metamodel-assisted design optimization of robust-to-progressive-collapse RC frame buildings considering the impact of floor slabs, infill walls, and SSI implementationEngineering Structures, 325:119487. DOI:10.1016/j.engstruct.2024.119487
  6. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2024). Optimized Transverse-Longitudinal Hybrid Construction for Sustainable Design of Welded Steel Plate Girders. Advances in Civil Engineering, 2024:5561712. DOI:10.1155/2024/5561712.
  7. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Multi-criteria optimization for sustainability-based design of reinforced concrete frame buildingsJournal of Cleaner Production, 425:139115. DOI:10.1016/j.jclepro.2023.139115
  8. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657
  9. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Design optimization of welded steel plate girders configured as a hybrid structure. Journal of Constructional Steel Research, 211:108131. DOI:10.1016/j.jcsr.2023.108131
  10. TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.
  11. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631. DOI:10.1016/j.istruc.2023.04.006

 

Optimización y control inteligente de puentes atirantados

Acaban de publicar un artículo nuestro en Results in Engineeringuna de las revistas de mayor impacto científico, ubicada en el primer decil del JCR. Este trabajo trata sobre un sistema avanzado para el seguimiento de la salud estructural (SHM, por sus siglas en inglés) y la optimización de puentes de gran envergadura y estáticamente indeterminados (hiperestáticos).

La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. Además, muestra la internacionalización de nuestro grupo de investigación, en este caso, con China. A continuación, se presenta un resumen del trabajo y de la información de contexto.

 El problema central que se aborda en este trabajo es la insuficiencia de los métodos de supervisión tradicionales, ya que no permiten una vigilancia continua, en tiempo real y a distancia, crucial para garantizar la seguridad, la longevidad y el mantenimiento rentable de estas complejas infraestructuras.

La solución propuesta es una plataforma inteligente en la nube para el control y la alerta temprana que integra la informática, la ingeniería de comunicaciones, el control y la automatización y la mecánica de ingeniería. Este sistema combina los datos de supervisión en tiempo real, obtenidos mediante la tecnología de Internet de las Cosas (IoT), con modelos de elementos finitos (FEM) para evaluar con precisión el estado de la estructura.

Su eficacia se demostró mediante un estudio de caso del Puente del Río Amarillo en China (LZYB). El análisis de los datos de seguimiento y las simulaciones por elementos finitos revelaron que el diseño original del puente era excesivamente conservador, ya que la deflexión vertical real bajo cargas operativas representaba entre el 26,5 % y el 33,9 % del valor predicho en el diseño.

Con base en este hallazgo, se optimizó el diseño de la viga principal del puente, lo que permitió reducir el volumen de hormigón de la losa de fondo en un 15 %. Un análisis posterior del ciclo de vida (LCA) cuantificó los beneficios de esta optimización, que incluyen una reducción de 2009,65 toneladas de emisiones de CO₂ y un ahorro económico de 2 694 189,55 CNY, sin comprometer la seguridad ni el rendimiento estructural. Este enfoque representa un nuevo paradigma para el mantenimiento seguro, económico y sostenible de infraestructuras críticas.

1. Introducción y desafíos de la auscultación estructural.

Los puentes de gran envergadura y estáticamente indeterminados están sometidos a múltiples factores que pueden afectar a su integridad, como la respuesta dinámica de la estructura y el daño por fatiga acumulada debido a la interacción de cargas múltiples y condiciones ambientales complejas. Las microfisuras internas pueden propagarse hasta convertirse en fisuras macroscópicas y provocar la inestabilidad y el fallo de la estructura.

1.1. Limitaciones de los métodos tradicionales.

  • Inspección visual: los métodos iniciales, basados en la inspección visual realizada por personal cualificado para detectar defectos superficiales, como las grietas por fatiga, son imprecisos y propensos a errores.
  • Supervisión de la salud estructural (SHM) convencional: ha mejorado la precisión, pero enfrenta desafíos como la falta de sensores adecuados para el monitoreo autónomo a largo plazo y de algoritmos eficaces para predecir y diagnosticar daños locales por fatiga.
  • Enfoques basados en algoritmos: existen dos métodos principales: los basados en modelos, que utilizan un modelo de elementos finitos preciso, pero que consumen mucho tiempo, y los basados en datos, que analizan series temporales continuas, pero que pueden verse limitados por las bajas tasas de transmisión de datos de las redes inalámbricas.

El estudio aborda estas limitaciones combinando las ventajas de ambos enfoques e integrando algoritmos innovadores de alta eficiencia para avanzar en la monitorización continua de la salud estructural.

2. Marco teórico e innovación del sistema.

El trabajo establece un modelo teórico complejo y una plataforma inteligente que integra múltiples disciplinas para superar las barreras técnicas del seguimiento tradicional.

2.1. Puntos clave de la innovación.

  1. Modelo interdisciplinario: se desarrolló un modelo teórico modal complejo, multifactorial y de múltiples fuentes que combina la ciencia de la computación, la ingeniería de comunicaciones, el control y la automatización y la mecánica de ingeniería. Este modelo analiza el impacto de múltiples factores en las estructuras de los puentes y permite realizar un seguimiento de alertas tempranas en una plataforma en la nube.
  2. Supervisión basada en IoT: se adopta un monitoreo en línea, automatizado y en tiempo real basado en el Internet de las cosas (IoT). De este modo, se soluciona la incapacidad de la tecnología tradicional para lograr un seguimiento espaciotemporal continuo y a gran distancia, y se transforma el seguimiento de un «basado en puntos, indirecto y de ajuste de curvas» a otro «espacial, directo y continuo».
  3. Sistema de alerta temprana: proporciona un modelo eficaz de control y de alerta temprana para diversos tipos de deterioro, como grietas, deformaciones, envejecimiento y vibración dinámica. Valida la viabilidad de la estructura en términos de integridad, seguridad, durabilidad y control de la resistencia.

2.2. Componentes del modelo teórico.

El modelo matemático integra varios análisis para evaluar el estado de la estructura:

  • Daño por fatiga estructural: utiliza un modelo de daño por fatiga acumulativa no lineal para analizar la propagación de las fisuras y la degradación continua del módulo de elasticidad del hormigón.
  • Daño por fatiga del acero: se considera que la vida útil del puente está determinada principalmente por la fatiga de las barras de acero. El modelo calcula la profundidad crítica de la fisura y la tensión residual del acero.
  • Efecto de cargas múltiples: se aplica un modelo de mezcla gaussiana para analizar los datos de monitorización, que presentan una distribución de picos múltiples, y se calcula la deflexión total considerando la carga viva, la tensión térmica, la pérdida de pretensado y la retracción y la fluencia del hormigón.
  • Acoplamiento vehículo-puente: Construye una ecuación de un sistema de movimiento acoplado para analizar las interacciones mecánicas entre los vehículos y el puente.
  • Optimización dinámica estructural: utiliza un modelo matemático basado en la función lagrangiana para realizar un diseño de optimización dinámica con un ritmo de convergencia rápido.

3. Estudio de caso: el puente del río Amarillo (LZYB)

La metodología se aplicó a esta estructura atirantada, con un vano principal de 360 metros, ubicada en China.

3.1. Descripción del puente y sistema de control

  • Especificaciones: El LZYB es un puente extragrande para autopista de cuatro carriles con torres romboidales de hormigón armado (C50), una altura de torre de hasta 151 metros y cables atirantados de haces de alambre de acero paralelos galvanizados.
  • Sistema de monitorización: se instalaron 374 dispositivos de 10 tipos diferentes, incluidos sensores de temperatura y de humedad, acelerómetros, extensómetros y sensores de fibra óptica, entre otros. Estos dispositivos se ubicaron en puntos críticos de momento flector y de fuerza cortante, determinados mediante principios de mecánica y el modelo FEM. Los datos se transmiten en tiempo real a una plataforma en la nube basada en internet de las cosas (IoT, por sus siglas en inglés) para su análisis y alerta temprana.
Número Elementos de control Indicadores de alerta Método de adquisición
1 Análisis del modelo de vehículo Identificación de carga nominal (nº de ejes, longitud) Videovigilancia
2 Análisis del flujo de tráfico Autopista de 4 carriles (ADT 2 500-55 000 vehículos) Videovigilancia; captura de video
3 Análisis de sobrepeso Límite de 49 toneladas (se detectaron 82.5; 110 ton) Control dinámico de pesaje
4 Análisis de exceso de velocidad Límite de 80 km/h Control de flujo con exceso de velocidad
5 Control de temperatura ambiental Intervalo de control: -15 ~ 39 °C Sensor de fibra óptica de temperatura
6 Control de humedad ambiental 6,5 % ~ 98 % (torre principal); prevenir corrosión Sensor de fibra óptica de humedad
7 Control de carga de viento Velocidad del viento < 25,8 m/s Anemómetro
8  Control de carga sísmica E1 < 0,20g Instrumento de medición de movimiento del suelo
9  Control de respuesta estructural Frecuencia natural inferior al valor teórico calculado Equipo de monitorización de fibra óptica

3.2. Análisis de los datos de monitorización en tiempo real (abril-julio).

  • Cargas de tráfico: se observó un crecimiento mensual significativo en el volumen total de tráfico, en el número de vehículos con sobrepeso y en el de vehículos que circulaban a exceso de velocidad. El tráfico medio diario osciló entre 7319 y 14 431 vehículos, con picos en junio y julio.
  • Respuesta estructural (deformación): la respuesta de deformación bajo cargas de vehículos mostró una distribución de picos múltiples. El análisis identificó que dicha respuesta se concentraba en la sección de 3.50 L a 5.50 L del lado oeste.
  • Acoplamiento temperatura-deflexión: se halló una fuerte correlación positiva entre la temperatura ambiental y la deflexión de la viga principal (R² = 0,6953). La deflexión máxima registrada fue de 628,9 mm. El análisis identificó las zonas de la viga principal en las que la influencia de la temperatura sobre la deflexión era más marcada.

3.3. Acoplamiento y análisis mediante el modelo de elementos finitos (MEF).

Se creó un modelo 3D del LZYB en Abaqus/CAE 2021 para simular su comportamiento bajo cargas de diseño. Los resultados de la simulación fueron los siguientes:

  • Energía: la energía máxima se concentró en la losa de fondo de la viga principal, entre los vanos 2 y 3.
  • Deformación: la máxima deformación (0,004813 µε) se observó en la parte media de los cables atirantados.
  • Tensión: La tensión máxima (991,175 MPa) se localizó también en los cables atirantados, concretamente en el cable 3-1.
  • Desplazamiento: El desplazamiento vertical máximo calculado fue de 0,002267 metros en el centro del vano principal (sección 6L/12 de la viga).

4. Discusión: optimización y evaluación de la sostenibilidad.

La comparación entre los datos de supervisión en tiempo real y los resultados del FEM sirvió de base para optimizar el diseño.

4.1. Redundancia estructural identificada.

El análisis comparativo reveló una discrepancia significativa: la deflexión vertical global del puente durante su funcionamiento (entre 0,0021 y 0,5944 m) representaba entre el 26,50 % y el 33,90 % del valor máximo predicho por el modelo FEM con cargas de diseño (hasta 2,2434 m). Este hecho indica que el diseño estructural es significativamente conservador o «redundante».

4.2. Optimización del diseño de la viga principal.

Aprovechando la redundancia identificada, se llevó a cabo un proceso de optimización del diseño acoplado de la viga principal. Se analizó el impacto de reducir el volumen de hormigón de la viga de forma iterativa.

Resultado de la optimización: se determinó que era posible reducir el volumen de hormigón de la losa de fondo de la viga principal en un 15 % (es decir, reducir su espesor a 70 mm) sin comprometer el cumplimiento de los requisitos de rendimiento bajo las cargas de diseño originales.

4.3. Evaluación del ciclo de vida (LCA) y de los beneficios.

Se realizó una evaluación del ciclo de vida (LCA) para cuantificar los beneficios ambientales y económicos del diseño optimizado.

Beneficios ambientales y económicos: la reducción del 15 % del hormigón utilizado en la viga principal se traduce en un ahorro significativo a lo largo de todo el ciclo de vida del proyecto.

Indicador de evaluación Reducción
Calentamiento global (GWP100a) 2009,65 toneladas de CO2 eq.
Acidificación (AP) 8,86 toneladas de SO2 eq.
Eutrofización (FEP) 7,12 toneladas de PO4 eq.
Polvo en suspensión (PMFP) 79,63 toneladas
Ahorro económico (coste de material) 2 694 189,55 CNY

5. Conclusiones y hallazgos clave

La investigación demuestra con éxito la viabilidad de un sistema inteligente de supervisión en la nube, acoplado a un modelado FEM, para analizar la seguridad y optimizar el diseño de puentes de gran envergadura.

Resultados clave:

  1. Fallo de cables: el fallo de los cables es un factor crítico para la estabilidad de los puentes atirantados y debe ser un objetivo principal del seguimiento.
  2. Ubicación de la tensión máxima: la tensión más alta se concentra en los cables más largos (en este caso, el cable n.º 10), específicamente en la zona situada a menos de 2 metros de la parte superior de la torre principal.
  3. Diseño del sistema de monitorización subóptimo: el diseño actual de los puntos de control resulta ineficiente. No hay sensores en la parte superior de la torre, donde la tensión es máxima, mientras que hay demasiados en la viga principal.
  4. Enfoque del mantenimiento: el mantenimiento rutinario de los cables atirantados debe centrarse en las zonas de conexión de la parte superior de la torre y de la viga principal.

Innovación y limitaciones: La principal innovación del estudio consiste en aplicar de manera sistemática datos medidos y el modelado FEM 3D para resolver problemas de seguridad y optimización en puentes complejos. Esto ofrece un ejemplo práctico de supervisión en tiempo real y de análisis de la solidez de los datos. Una limitación reconocida es la falta de un estudio en profundidad sobre los efectos destructivos de las sobrecargas de peso y de velocidad, lo que sugiere una línea de investigación para el futuro.

Referencia:

ZHOU, Z.; ZHAO, Z.; ALCALÁ, J.; YEPES, V. (2025). Intelligent operation monitoring and finite element coupled identification of hyperstatic structures. Results in Engineering, 27, 106990. DOI:10.1016/j.rineng.2025.106990

Os dejo una conversación en la que podéis escuchar las ideas más interesantes de este trabajo.

En este vídeo se resumen las ideas más importantes.

Os he dejado una presentación que resume también lo más importante.

Pincha aquí para descargar

Os dejo el artículo completo, ya que está publicado en formato abierto.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización multiobjetivo de pasarelas mixtas: un equilibrio entre sostenibilidad y protección frente al fuego

Acaban de publicar un artículo nuestro en Structural Engineering and Mechanicsuna de las revistas de referencia del JCR. Este trabajo sintetiza los resultados de un estudio en el que se presenta un marco de optimización multiobjetivo innovador para el diseño de pasarelas peatonales con estructuras mixtas de acero y hormigón.

La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo y de la información contextual.

El objetivo principal de esta investigación ha sido equilibrar la eficiencia económica y medioambiental con la seguridad estructural y el confort del usuario, integrando de manera única la resiliencia ante incendios. A diferencia de investigaciones previas, este trabajo incorpora seis escenarios distintos de exposición al fuego, desde 320 hasta 720 segundos, para evaluar el rendimiento de la estructura en condiciones extremas.

Los resultados revelan una relación directa y lineal entre el coste y las emisiones de CO₂, lo que demuestra que por cada dólar estadounidense (1 USD) ahorrado en el coste por metro de la estructura, se reduce la emisión de 0,7727 kg de CO₂. Este descubrimiento posiciona la optimización de costes como una estrategia que favorece la sostenibilidad económica y medioambiental.

Un descubrimiento clave es que se pueden lograr mejoras sustanciales en la seguridad contra incendios con inversiones moderadas. Un aumento del 23 % en el coste permite que la estructura resista casi 8 minutos (460 segundos) de exposición al fuego antes de colapsar, mientras que incrementos menores, del 3,91 % y 15,06 %, aseguran la estabilidad durante 320 y 400 segundos, respectivamente. El estudio también pone de manifiesto un cambio fundamental en la configuración del diseño óptimo: mientras que los diseños esbeltos son más eficientes en términos de coste y emisiones en condiciones normales, las configuraciones más compactas son necesarias para garantizar la seguridad en caso de exposición prolongada al fuego. Estos resultados ofrecen directrices prácticas para el desarrollo de infraestructuras urbanas más seguras, resilientes y sostenibles.

1. Marco de optimización multiobjetivo.

El estudio aborda una brecha crítica en ingeniería estructural: la falta de investigaciones que apliquen métodos de optimización a infraestructuras reales, integrando simultáneamente criterios de sostenibilidad (económicos, medioambientales y sociales) y de seguridad, especialmente en condiciones extremas, como la exposición al fuego.

1.1. Metodología aplicada

El análisis se centra en una pasarela peatonal de estructura mixta de acero y hormigón, con una luz de 17,5 metros, ubicada en el sur de Brasil. Con el fin de hallar las soluciones óptimas, se empleó un algoritmo de Búsqueda de Armonía Multiobjetivo (MOHS, por sus siglas en inglés), desarrollado a medida en Python. El proceso de optimización busca minimizar simultáneamente tres funciones objetivo:

  • Coste: coste de los materiales necesarios para construir la estructura, basado en los precios del mercado brasileño.
  • Emisiones de CO₂: el impacto ambiental, medido por las emisiones de CO₂ asociadas a la producción de los materiales, para lo que se han utilizado indicadores específicos de la región objeto de estudio.
  • Aceleración vertical máxima: medida del confort de los peatones, calculada a partir de las vibraciones inducidas por su movimiento.

El modelo tiene en cuenta ocho variables de diseño discretas, como el espesor de la losa de hormigón y las dimensiones de las vigas de acero, lo que da como resultado un espacio de búsqueda de 7×10¹¹ soluciones posibles.

Ilustración de la pasarela mixta

1.2. Escenarios de exposición al fuego.

Una de las innovaciones centrales del estudio es incorporar la resiliencia al fuego en el proceso de optimización. Se ha simulado un escenario de incendio de un vehículo debajo de una pasarela utilizando una curva tiempo-temperatura específica, desarrollada a partir de pruebas experimentales realizadas en puentes no confinados. Además de la condición a temperatura ambiente (0 segundos), se analizaron seis periodos de exposición al fuego que provocaron una degradación significativa de las propiedades mecánicas del acero.

Periodo de exposición al fuego (s) Temperatura del acero (°C) Factor de reducción (límite elástico) Factor de reducción (módulo de elasticidad)
0 20 1,00 1,00
320 200 1,00 0,90
400 300 1,00 0,80
460 400 1,00 0,70
510 500 0,78 0,60
560 600 0,47 0,31
720 700 0,23 0,13

2. Hallazgos clave y análisis de resultados.

El proceso de optimización generó un frente de Pareto tridimensional que muestra los equilibrios entre coste, emisiones y confort en los distintos escenarios de incendio.

2.1. Relación lineal entre el coste y las emisiones de CO₂.

Se identificó una relación directa y consistente entre el coste de fabricación y las emisiones de CO₂ en todos los escenarios analizados. Los datos demuestran que cada real brasileño (R$) ahorrado mediante la optimización equivale a una reducción de 0,1358 kg de CO₂. Convertido a dólares estadounidenses, esto equivale a una reducción de 0,7727 kg de CO₂ por cada dólar estadounidense ahorrado por metro de pasarela.

Esta correlación confirma que la optimización económica es una herramienta eficaz para promover la sostenibilidad medioambiental, especialmente en regiones que necesitan desarrollar infraestructuras sin sacrificar la eficiencia económica.

2.2. Intercambio entre la resistencia al fuego y el coste.

Como era de esperar, aumentar la resistencia de la estructura al fuego implica un mayor coste y, por tanto, más emisiones. Sin embargo, el estudio demuestra que es posible lograr mejoras significativas en la seguridad con incrementos de coste relativamente bajos o moderados.

  • Un incremento del 3,91 % en el coste permite que la estructura resista durante 320 segundos (5 minutos) de fuego.
  • Un incremento del 15,06 % extiende la resistencia a 400 segundos (6,5 minutos).
  • Un incremento moderado del 23 % evita el colapso durante casi ocho minutos (460 segundos), lo que proporciona un tiempo valioso para la evacuación.
  • Diseñar para resistir un incendio de 12 minutos (720 segundos) incrementa el coste en más del 400 %, por lo que resulta inviable en la mayoría de los casos.

2.3. Impacto en el confort de los peatones.

Los objetivos de coste y confort son conflictivos: un mayor confort (menor aceleración vertical) exige una mayor rigidez estructural, lo que se traduce en un mayor consumo de materiales.

  • Pasar de un nivel de confort «mínimo» a «medio» implica un aumento del coste promedio del 44 %.
  • Mejorar el nivel de confort de «medio» a «máximo» solo requiere un aumento promedio del 6 % en el coste, lo que sugiere que es una inversión factible en la mayoría de los escenarios.
  • La excepción es el escenario de 12 minutos de fuego, en el que alcanzar el nivel de confort «máximo» supone un 68 % más que el «medio», debido a la grave degradación del rendimiento del acero.

3. Implicaciones prácticas y configuraciones óptimas de diseño.

El análisis de las variables de diseño de las soluciones óptimas revela patrones claros y ofrece implicaciones prácticas para la ingeniería.

3.1. Evolución del diseño en función de la exposición al fuego.

La configuración geométrica óptima de la pasarela varía drásticamente según el tiempo de exposición al fuego considerado.

  • En ausencia de fuego o con una exposición breve, la solución más eficiente es un diseño de alta esbeltez, con vigas de acero altas y delgadas que se acercan a los límites normativos. Así se minimiza el consumo de material, lo que reduce costes y emisiones.
  • Con una exposición prolongada al fuego (es decir, superior a 510 segundos), la solución óptima se desplaza hacia configuraciones más compactas y menos esbeltas. Se observa un aumento considerable del espesor del alma y de las alas de las vigas de acero.

Este cambio se debe a que, a altas temperaturas, el límite de esbeltez (que depende del módulo de elasticidad y del límite elástico del acero) disminuye considerablemente. En los escenarios más extremos, el límite de esbeltez deja de ser una restricción activa y el algoritmo prioriza la robustez geométrica para cumplir con otros requisitos de diseño.

Periodo de exposición (s) Esbeltez óptima / Límite de esbeltez
0 99,17 %
460 99,54 %
560 68,45 %
720 46,98 %

3.2. Estrategias de materiales.

  • Preferencia por el acero: el estudio revela que, para aumentar la seguridad contra incendios, es más rentable y sostenible incrementar el consumo de acero (a pesar de la degradación de sus propiedades) que aumentar la rigidez mediante una losa de hormigón más gruesa.
  • Interacción total: en todas las soluciones óptimas de menor coste, el grado de interacción entre la viga de acero y la losa de hormigón es del 100 % (α = 1,0), lo que indica que el comportamiento compuesto completo es la opción más eficiente.

4. Conclusiones principales

El estudio presenta un marco sólido para el diseño de pasarelas mixtas de acero y hormigón y demuestra que es posible equilibrar sostenibilidad, economía y seguridad. Las conclusiones más relevantes son las siguientes:

  • Sostenibilidad y coste vinculados: existe una relación lineal y cuantificable entre la reducción de costes y la disminución de las emisiones de CO₂, por lo que la optimización económica puede utilizarse como herramienta para la sostenibilidad ambiental.
  • Seguridad contra incendios asequible: es posible mejorar significativamente la seguridad de una pasarela ante un incendio con incrementos de coste moderados y económicamente viables.
  • El diseño se adapta al riesgo: la configuración óptima de una estructura no es universal; los diseños esbeltos son ideales para condiciones normales, pero las configuraciones compactas son cruciales para la resiliencia en escenarios de incendio prolongados.
  • Implicaciones para el diseño: los resultados subrayan la importancia de incorporar escenarios de riesgo extremo en las primeras fases del diseño estructural para crear infraestructuras más seguras y resilientes sin comprometer desproporcionadamente los recursos.

Estas conclusiones se aplican únicamente a la tipología de estructura y al escenario de incendio estudiados, así como a los costes y a los factores de emisión regionales. Por tanto, se requieren más investigaciones para validar y extender estos resultados a otros contextos.

Referencia:

TRES JUNIOR, F.L.; DE MEDEIROS, G.F.; KRIPKA, M.; YEPES, V. (2025). Designing for Safety and Sustainability: Optimization of Fire-Exposed Steel-Concrete Composite Footbridges. Structural Engineering and Mechanics, 96 (4):337-350. DOI:10.12989/sem.2025.96.4.337

En esta conversación puedes escuchar información interesante sobre este tema.

En este vídeo se resumen las ideas más importantes de esta investigación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Europa premia a la UPV por revolucionar el diseño estructural con Inteligencia Artificial

La Universitat Politècnica de València (UPV) ha obtenido un reconocimiento destacado europeo al ganar el premio al mejor proyecto en la categoría «AI for Sustainable Development» de la European Universities Competition on Artificial Intelligence, organizada por la HAW Hamburg.

El trabajo galardonado, desarrollado en el ICITECH por el doctorando Iván Negrín, demuestra cómo la inteligencia artificial puede transformar el diseño estructural para hacerlo más sostenible y resiliente, con reducciones de hasta un 32 % en la huella de carbono respecto a los sistemas convencionales. Este logro posiciona a la UPV como un referente europeo en innovación ética e impacto y reafirma su compromiso con la búsqueda de soluciones frente al cambio climático y al desarrollo insostenible.

El trabajo se enmarca en el proyecto de investigación RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. La tesis doctoral de Iván la dirigen los profesores Víctor Yepes y Moacir Kripka.

Introducción: El dilema de la construcción moderna.

La industria de la construcción se enfrenta a un reto monumental: edificar las ciudades del futuro sin agotar los recursos del presente. El enorme impacto medioambiental de los materiales y procesos tradicionales, especialmente las emisiones de CO₂, es uno de los problemas más acuciantes de nuestra era.

¿Y si la solución a este problema no radicara en un nuevo material milagroso, sino en una nueva forma de pensar? ¿Y si la inteligencia artificial (IA) pudiera enseñarnos a construir de manera mucho más eficiente y segura?

Esa es precisamente la hazaña que ha logrado un innovador proyecto de la Universitat Politècnica de València (UPV). Su enfoque es tan revolucionario que acaba de ganar un prestigioso premio europeo, lo que demuestra que la IA ya no es una promesa, sino una herramienta tangible para la ingeniería sostenible.

Clave 1: una innovación europea premiada al más alto nivel.

Este no es un proyecto académico cualquiera. La investigación, dirigida por el doctorando Iván Negrín del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) de la UPV, ha recibido el máximo reconocimiento continental.

Inicialmente seleccionado como uno de los diez finalistas, el proyecto tuvo que defenderse en una presentación final ante un jurado de expertos. Tras la deliberación del jurado, el proyecto fue galardonado como el mejor en la categoría «AI for Sustainable Development Projects» de la competición «European Universities Competition on Artificial Intelligence to Promote Sustainable Development and Address Climate Change», organizada por la Universidad de Ciencias Aplicadas de Hamburgo (HAW Hamburg). Este reconocimiento consolida la reputación del proyecto en el ámbito de la innovación europea.

Clave 2: adiós al CO₂: reduce la huella de carbono en más del 30 %.

El resultado más impactante de esta investigación es su capacidad para abordar el principal problema medioambiental del sector de la construcción: las emisiones de carbono. La plataforma de diseño asistido por IA puede reducir la huella de carbono de los edificios de manera significativa.

En concreto, consigue una reducción del 32 % de la huella de carbono en comparación con los sistemas convencionales de hormigón armado, que ya habían sido optimizados. Esta reducción abarca todo el ciclo de vida del edificio, desde la extracción de materiales y la construcción hasta su mantenimiento y su eventual demolición.

En un sector tan difícil de descarbonizar, un avance de esta magnitud, impulsado por un diseño inteligente y no por un nuevo material, supone un cambio de paradigma fundamental para la ingeniería sostenible.

Clave 3: Rompe el mito: más sostenible no significa menos resistente.

Uno de los aspectos más revolucionarios del proyecto es la forma en que resuelve un conflicto histórico en ingeniería: la sostenibilidad frente a la resiliencia. La IA ha superado la barrera que obligaba a elegir entre usar menos material para ser sostenible o más material para ser resistente.

En una primera fase, el modelo optimizó estructuras mixtas de acero y hormigón (denominadas técnicamente RC-THVS) para que fueran altamente sostenibles, aunque con una resiliencia baja. Lejos de detenerse, la IA iteró sobre su propio diseño y, en una evolución posterior (RC-THVS-R), logró una solución altamente sostenible y resiliente frente a eventos extremos.

La metodología desarrollada permite compatibilizar la sostenibilidad y la resiliencia, superando el tradicional conflicto entre ambos objetivos.

Clave 4: Ahorro desde los cimientos. Menos costes, energía y materiales.

Los beneficios de esta IA no solo benefician al planeta, sino también al bolsillo y a la eficiencia del proyecto. La optimización inteligente de las estructuras se traduce en ahorros tangibles y medibles desde las primeras fases de la construcción.

Los datos demuestran un ahorro significativo en múltiples frentes:

  • -16 % de energía incorporada.
  • -6 % de coste económico.
  • – Reducción del 17 % de las cargas transmitidas a columnas y cimentaciones.

Este último punto es clave. Una menor carga en los cimientos no solo supone un ahorro directo de materiales, sino que tiene un efecto cascada en materia de sostenibilidad: al usar menos hormigón, se reduce la cantidad de cemento empleado, uno de los principales generadores de CO₂ a nivel mundial.

Clave 5: un enfoque versátil para las ciudades del futuro (y del presente).

La aplicación de esta metodología no se limita a los grandes edificios de nueva construcción. Su versatilidad la convierte en una herramienta estratégica para el desarrollo urbano integral.

Puede aplicarse a infraestructuras de transporte, como puentes y pasarelas, para minimizar su impacto ambiental. También es fundamental para la rehabilitación de estructuras existentes, ya que permite optimizar su seguridad y reducir las emisiones asociadas a los refuerzos.

Este enfoque se alinea con los Objetivos de Desarrollo Sostenible (ODS) de la ONU, concretamente con los ODS 9 (Industria, innovación e infraestructura), 11 (Ciudades y comunidades sostenibles) y 13 (Acción por el clima).

Conclusión: construyendo un futuro inteligente.

Este proyecto de la UPV demuestra que la inteligencia artificial ha dejado de ser una tecnología futurista para convertirse en una herramienta imprescindible en la ingeniería civil. Ya no se trata de promesas, sino de soluciones prácticas que resuelven problemas reales, medibles y urgentes.

La capacidad de diseñar estructuras más baratas, ecológicas, seguras y resistentes abre un nuevo capítulo en la construcción.

¿Estamos a las puertas de una nueva era en la ingeniería en la que la sostenibilidad y la máxima seguridad ya no son objetivos contrapuestos, sino aliados inseparables gracias a la inteligencia artificial?

En futuros artículos, explicaremos con más detalle el contenido de este proyecto ganador. De momento, os dejo una conversación que lo explica muy bien y un vídeo que resume lo más importante. Espero que os resulte interesante.

Os dejo un documento resumen, por si queréis ampliar la información.

Pincha aquí para descargar

Referencias:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Environmental Life-Cycle Design Optimization of a RC-THVS composite frame for modern building construction. Engineering Structures, 345, 121461. DOI:10.1016/j.engstruct.2025.121461

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Manufacturing cost optimization of welded steel plate I-girders integrating hybrid construction and tapered geometry. International Journal of Advanced Manufacturing Technology, 140, 1601-1624DOI:10.1007/s00170-025-16365-2

NEGRÍN, I.; CHAGOYÉN, E.; KRIPKA, M.; YEPES, V. (2025). An integrated framework for Optimization-based Robust Design to Progressive Collapse of RC skeleton buildings incorporating Soil-Structure Interaction effects. Innovative Infrastructure Solutions, 10:446. DOI:10.1007/s41062-025-02243-z

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Design optimization of a composite typology based on RC columns and THVS girders to reduce economic cost, emissions, and embodied energy of frame building construction. Energy and Buildings, 336:115607. DOI:10.1016/j.enbuild.2025.115607

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Metamodel-assisted design optimization of robust-to-progressive-collapse RC frame buildings considering the impact of floor slabs, infill walls, and SSI implementationEngineering Structures, 325:119487. DOI:10.1016/j.engstruct.2024.119487

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2024). Optimized Transverse-Longitudinal Hybrid Construction for Sustainable Design of Welded Steel Plate Girders. Advances in Civil Engineering, 2024:5561712. DOI:10.1155/2024/5561712.

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Multi-criteria optimization for sustainability-based design of reinforced concrete frame buildingsJournal of Cleaner Production, 425:139115. DOI:10.1016/j.jclepro.2023.139115

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Design optimization of welded steel plate girders configured as a hybrid structure. Journal of Constructional Steel Research, 211:108131. DOI:10.1016/j.jcsr.2023.108131

TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631. DOI:10.1016/j.istruc.2023.04.006

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

5 lecciones sorprendentes de ingeniería avanzada para construir puentes más sostenibles y económicos

Cuando pensamos en la construcción de grandes infraestructuras, como los puentes, a menudo nos viene a la mente una imagen de fuerza bruta: toneladas de hormigón y acero ensambladas con una precisión monumental. Se trata de una proeza de la ingeniería física, un testimonio de la capacidad humana para dominar los materiales y la geografía.

Sin embargo, detrás de esta fachada de poderío industrial se está produciendo una revolución silenciosa. La inteligencia artificial y los modelos computacionales avanzados, que pueden ejecutar el equivalente a décadas de diseño y pruebas de ingeniería en cuestión de horas, están redefiniendo las reglas del juego. Lejos de ser un mero ejercicio teórico, estas herramientas permiten a los ingenieros diseñar puentes que son no solo más resistentes, sino también sorprendentemente más económicos y respetuosos con el medio ambiente.

Las lecciones que siguen se basan en los hallazgos de una tesis doctoral, defendida por la profesora Lorena Yepes Bellver, innovadora en la optimización de puentes. La tesis obtuvo la máxima calificación de sobresaliente «cum laude». Las lecciones demuestran que el futuro de la construcción no radica únicamente en nuevos materiales milagrosos, sino en la aplicación de una inteligencia que permita aprovechar los ya existentes de forma mucho más eficiente.

De izquierda a derecha: Julián Alcalá, Salvador Ivorra, Lorena Yepes, Tatiana García y Antonio Tomás.

1. El pequeño coste de un gran impacto ecológico: pagar un 1 % más para emitir un 2 % menos de CO₂.

Uno de los principales obstáculos para la adopción de prácticas sostenibles ha sido siempre la creencia de que «ser verde» es significativamente más caro. Sin embargo, la investigación en optimización de puentes revela una realidad mucho más alentadora. Gracias a los diseños perfeccionados mediante metamodelos, es posible lograr reducciones significativas de la huella de carbono con un impacto económico mínimo.

El dato clave del estudio es contundente: «Un modesto aumento de los costes de construcción (menos del 1 %) puede reducir sustancialmente las emisiones de CO₂ (más del 2 %)». Este hallazgo demuestra que la sostenibilidad no tiene por qué ser un lujo, sino el resultado de una ingeniería más inteligente.

 

«Esto demuestra que el diseño de puentes sostenibles puede ser económicamente viable».

Esta lección es fundamental, ya que pone fin a una falsa dicotomía entre la economía y la ecología. Demuestra que no es necesario elegir entre un puente asequible y otro respetuoso con el medio ambiente. Gracias a las decisiones de diseño inteligentes, guiadas por la optimización avanzada, es posible alcanzar ambos objetivos simultáneamente, de modo que la sostenibilidad se convierte en una ventaja competitiva y no en una carga.

2. La paradoja de los materiales: añadir más componentes para reducir el consumo global.

La lógica convencional nos diría que, para construir de forma más sostenible, el objetivo debería ser reducir la cantidad total de materiales utilizados. Menos hormigón, menos acero, menos de todo. Sin embargo, uno de los hallazgos más sorprendentes de la tesis es una paradoja que desafía esta idea tan simple.

El diseño óptimo y más sostenible aumenta, de hecho, la cantidad de uno de sus componentes: la armadura pasiva (el acero de refuerzo convencional). A primera vista, esto parece contradictorio: ¿cómo puede ser más ecológico añadir más material?

La explicación se debe a un enfoque sistémico. Este aumento estratégico y calculado del refuerzo pasivo permite reducir considerablemente el consumo de otros dos materiales clave: el hormigón y la armadura activa (el acero de pretensado). La producción de estos materiales, especialmente la del cemento y del acero de alta resistencia, es intensiva en energía y, por tanto, genera numerosas emisiones de CO₂. En esencia, se sacrifica una pequeña cantidad de un material de menor impacto para ahorrar una cantidad mucho mayor de materiales de alto impacto.

Este enfoque, que podría describirse como «sacrificar una pieza para ganar el juego», es un ejemplo perfecto de cómo la optimización avanzada supera las reglas simplistas de reducción. En lugar de aplicar un recorte general, se analiza el sistema en su conjunto y se determina el equilibrio más eficiente. Este equilibrio inteligente de materiales solo es posible si se afina otro factor clave: la geometría de la estructura.

Retos en la optimización de puentes con metamodelos

3. Más esbelto es mejor: el secreto de la «delgadez» estructural para la sostenibilidad.

En el ámbito de la ingeniería de puentes, el concepto de «esbeltez» es fundamental. En términos sencillos, se refiere a la relación entre el canto de la losa y la luz que debe cubrir. Una mayor esbeltez implica un diseño estructural, en palabras comunes, más «delgado» o «fino».

La investigación revela un hallazgo crucial: los diseños que son óptimos tanto en términos de emisiones de CO₂ como de energía incorporada se logran con relaciones de esbeltez altas, concretamente de entre 1/30 y 1/28. En otras palabras, los puentes más sostenibles son también los más delgados y se complementan con hormigones óptimos situados entre 35 y 40 MPa de resistencia característica.

¿Por qué es esto tan beneficioso? Un diseño más esbelto requiere, inherentemente, una menor cantidad de materiales, principalmente de hormigón. Lo realmente notable es cómo se consigue. Los métodos tradicionales suelen basarse en reglas generales y márgenes de seguridad amplios, mientras que la optimización computacional permite a los ingenieros explorar miles, e incluso millones, de variaciones para acercarse al límite físico de la eficiencia sin sacrificar la seguridad. El resultado es una elegancia estructural casi contraintuitiva: puentes que alcanzan su fuerza no a través de la masa bruta, sino mediante una delgadez inteligentemente calculada, donde la sostenibilidad es una consecuencia natural de la eficiencia.

4. La optimización inteligente genera ahorros reales: una reducción de costes de hasta un 6,5 %.

Más allá de los beneficios medioambientales, la aplicación de estas técnicas de optimización tiene un impacto económico directo y medible. El diseño de infraestructuras deja de ser un arte basado únicamente en la experiencia para convertirse en una ciencia precisa que busca la máxima eficiencia económica.

El resultado principal del estudio sobre la optimización de costes es claro: el uso de modelos sustitutos (metamodelos Kriging) guiados por algoritmos heurísticos, como el recocido simulado, logró una reducción de costes del 6,54 % en comparación con un diseño de referencia.

Estos ahorros no son teóricos, sino que provienen directamente de la reducción de materiales. En concreto, se consiguió una disminución del 14,8 % en el uso de hormigón y del 11,25 % en el acero activo (pretensado). Es crucial destacar que estas reducciones se consiguieron sin afectar a la integridad estructural ni a la capacidad de servicio del puente. No se trata de sacrificar la calidad por el precio, sino de diseñar de manera más inteligente. Esta metodología convierte la optimización del diseño en una tarea académica en una herramienta práctica y altamente eficaz para la gestión económica de grandes proyectos de ingeniería civil.

5. No todos los cerebros artificiales piensan igual; la clave está en elegir el modelo computacional adecuado.

Una de las lecciones más importantes de esta investigación es que no basta con aplicar «inteligencia artificial» de forma genérica. El éxito de la optimización depende de elegir la herramienta computacional adecuada para cada tarea específica.

La tesis comparó dos potentes metamodelos: las redes neuronales artificiales (RNA) y los modelos de Kriging. Se descubrió una diferencia crucial en su rendimiento: si bien las RNA ofrecían predicciones absolutas más precisas sobre el comportamiento de un diseño concreto, el modelo de Kriging demostró ser mucho más eficaz para identificar los «óptimos locales», es decir, las zonas del mapa de diseño donde se encontraban las mejores soluciones.

Esto revela una capa más profunda de la optimización inteligente. Un modelo puede ser excelente para predecir un resultado (RNA), mientras que otro es más eficaz para guiar la búsqueda del mejor resultado posible (Kriging). No se trata solo de utilizar IA, sino de comprender qué «tipo de pensamiento» artificial es el más adecuado para cada fase del problema: predecir frente a optimizar. La verdadera maestría de la ingeniería moderna consiste en saber elegir las herramientas adecuadas para cada fase del problema.

Conclusión: la nueva frontera del diseño de infraestructuras.

La construcción de nuestras infraestructuras entra en una nueva era. La combinación de la ingeniería estructural clásica con el poder de los modelos computacionales avanzados, como el metamodelado Kriging y las redes neuronales artificiales, está abriendo una nueva frontera en la que la eficiencia y la sostenibilidad no son objetivos opcionales, sino resultados intrínsecos de un buen diseño.

Como hemos visto, los grandes avances no siempre provienen de materiales revolucionarios. A menudo, los «secretos» mejor guardados residen en la optimización inteligente de los diseños y materiales que ya conocemos. Obtener un mayor beneficio ecológico pagando menos, utilizar estratégicamente más de un material para reducir el consumo global o diseñar estructuras más esbeltas y elegantes son lecciones que van más allá de la construcción de puentes.

Nos dejan con una pregunta final que invita a la reflexión: si podemos lograr esto con los puentes, ¿qué otras áreas de la construcción y la industria están esperando a ser reinventadas por el poder de la optimización inteligente?

Os dejo un audio en el que se discuten las ideas de la tesis doctoral. Espero que os guste.

Y en este vídeo, tenemos resumidas las ideas principales de esta tesis.

Referencias:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Predictive modeling for carbon footprint optimization of prestressed road flyovers. Applied Sciences15(17), 9591. DOI:10.3390/app15179591

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. Social Life Cycle Assessment of Railway Track Substructure AlternativesJ. Clean. Prod. 2024450, 142008.

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450. DOI:10.3390/su16198450

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.;

Inteligencia artificial y eficiencia en el diseño de edificios

La inteligencia artificial (IA) está transformando de manera radical el diseño arquitectónico y la edificación. En la actualidad, el sector de la construcción se enfrenta a tres tendencias clave: la industrialización, la sostenibilidad y la transformación digital e inteligente. La convergencia de estos factores genera numerosas oportunidades, pero también desafíos significativos.

Los proyectos contemporáneos son cada vez más grandes y complejos, y están sujetos a requisitos ambientales más estrictos, lo que aumenta la presión sobre los equipos de diseño en términos de procesamiento de información, tiempo y recursos. En este contexto, la IA no solo optimiza los procesos, sino que también mejora la eficiencia de los métodos tradicionales de diseño.

A continuación, analizamos cómo la IA puede impulsar la eficiencia del diseño, fomentar la innovación y contribuir a la sostenibilidad de los proyectos. La tecnología ya está presente en todas las etapas del ciclo de vida del edificio, desde el análisis predictivo y la supervisión de la construcción hasta el mantenimiento de las instalaciones.

La digitalización ha transformado profundamente la forma en que concebimos, proyectamos y gestionamos las infraestructuras. Tras la aparición del diseño asistido por ordenador (CAD) y el modelado de información para la construcción (BIM), la inteligencia artificial (IA) se presenta como el siguiente gran avance tecnológico. A diferencia de otras herramientas, la IA no solo automatiza tareas, sino que también aprende, genera propuestas y ayuda a tomar decisiones complejas de manera óptima. Como señalan Li, Chen, Yu y Yang (2025), la IA se está consolidando como una herramienta fundamental para aumentar la eficiencia en el diseño arquitectónico e integrar criterios de sostenibilidad, industrialización y digitalización en toda la cadena de valor.

La IA se puede definir como un conjunto de técnicas informáticas que buscan reproducir procesos propios de la inteligencia humana, como el razonamiento, el aprendizaje o el reconocimiento de patrones. Entre sus ramas se incluyen el aprendizaje automático (machine learning o ML), basado en algoritmos que identifican patrones en grandes volúmenes de datos; las redes neuronales artificiales, que imitan el funcionamiento del cerebro y permiten resolver problemas complejos, como la predicción energética (Chen et al., 2023); los algoritmos genéticos, que simulan procesos evolutivos para hallar soluciones óptimas en problemas con múltiples variables, y la IA generativa, capaz de crear contenidos originales, como imágenes o planos, a partir de descripciones textuales. Este último enfoque, también conocido como AIGC (contenido generado por IA), ha popularizado herramientas como Stable Diffusion o Midjourney (Li et al., 2025).

En el sector de la construcción confluyen tres grandes tendencias: la industrialización, vinculada a la modularización y la prefabricación de componentes; el desarrollo sostenible, que impulsa diseños energéticamente eficientes y con menor impacto ambiental; y la digitalización inteligente, en la que la IA desempeña un papel protagonista (Asif, Naeem y Khalid, 2024). Estas tres dinámicas están interrelacionadas: sin tecnologías de análisis avanzado, como la IA, sería mucho más difícil cumplir los objetivos de sostenibilidad o gestionar procesos constructivos industrializados.

Tendencias de la construcción

Las aplicaciones de la IA se extienden a lo largo de todo el ciclo de vida del edificio. En las primeras fases de diseño, los algoritmos generan en segundos múltiples alternativas de distribución, optimizando la orientación, la iluminación natural o la ventilación. El diseño paramétrico asistido por IA permite explorar variaciones infinitas ajustando solo unos pocos parámetros (Li et al., 2025). Durante la fase de proyecto, los sistemas basados en procesamiento del lenguaje natural pueden interpretar normativas y detectar incumplimientos de forma automática, lo que reduce la probabilidad de modificaciones en obra (Xu et al., 2024). Además, las técnicas de simulación permiten prever el comportamiento estructural, acústico o energético de un edificio antes de su construcción, lo que proporciona seguridad y precisión en la toma de decisiones.

Avances de la IA en el diseño arquitectónico

En el sector de la construcción, la IA se combina con sensores y análisis de datos en tiempo real para optimizar la producción y la logística. En la construcción industrializada, los algoritmos ajustan la fabricación de elementos prefabricados, optimizan los cortes y los ensamblajes, y mejoran la gestión de las obras (Li et al., 2025). Al mismo tiempo, la monitorización inteligente permite anticiparse a las desviaciones, planificar los recursos con mayor eficiencia e incrementar la seguridad en entornos complejos.

Optimización del ciclo de vida del edificio con IA

Uno de los campos más avanzados es la predicción y optimización del consumo energético. Algoritmos como las redes neuronales, las máquinas de soporte vectorial o los métodos evolutivos permiten modelizar con gran precisión el comportamiento energético, incluso en las fases preliminares (Chen et al., 2023). Gracias a estas técnicas, es posible seleccionar soluciones constructivas más sostenibles, diseñar envolventes eficientes e integrar energías renovables en el proyecto. Como señalan Ding et al. (2018), estas herramientas facilitan el cumplimiento de los sistemas de evaluación ambiental y apoyan la transición hacia edificios de energía casi nula.

Las ventajas de la IA son evidentes: aumenta la eficiencia, reduce los errores y permite generar múltiples alternativas en mucho menos tiempo (Li et al., 2025). También optimiza los aspectos energéticos y estructurales, lo que hace que los proyectos sean más fiables y competitivos. La automatización de tareas repetitivas agiliza la creación de planos y documentos, mientras que los profesionales pueden dedicarse a tareas creativas. Además, las herramientas de gestión de proyectos con IA ayudan a organizar mejor los recursos y los plazos. Gracias a su capacidad para analizar grandes volúmenes de datos, fomentan la innovación, diversifican los métodos de diseño y facilitan la selección de materiales y el rendimiento energético.

Beneficios de la IA en el diseño

Sin embargo, la IA también plantea importantes desafíos. Su eficacia depende de la calidad de los datos; sin información fiable, los algoritmos pierden precisión. Además, integrarla con plataformas como CAD o BIM sigue siendo complicado (Xu et al., 2024). A esto se suman cuestiones éticas y legales, como la propiedad intelectual de los diseños generados por IA, la opacidad en la toma de decisiones y el riesgo de que los diseñadores pierdan cierto control. En algunos lugares, como EE. UU., se han revocado derechos de autor sobre obras generadas por IA, lo que refleja la incertidumbre legal existente.

Otros retos son la homogeneización del diseño si todos usan herramientas similares, la reticencia de algunos profesionales a adoptar soluciones de IA por dudas sobre la personalización y la fiabilidad, y los altos costes y la limitada disponibilidad de hardware y software especializados. Aún así, la IA sigue siendo una herramienta poderosa que, si se utiliza correctamente, puede transformar la eficiencia, la creatividad y la sostenibilidad en el sector de la construcción, abriendo un futuro lleno de oportunidades.

Desafíos de la adopción de la IA en el diseño

Ya existen ejemplos prácticos que muestran el potencial de estas tecnologías. Herramientas como Stable Diffusion o FUGenerator pueden generar imágenes y maquetas a partir de descripciones en lenguaje natural y actúan como asistentes que multiplican la productividad del proyectista (Li et al., 2025). Estas plataformas no sustituyen la creatividad humana, pero ofrecen un apoyo decisivo en la fase de ideación.

Bucle interactivo de inferencia de diseño arquitectónico de FUGenerator (Li et al., 2025)

La IA se está convirtiendo en un pilar fundamental de la construcción, integrándose cada vez más con tecnologías como la realidad aumentada (RA), la realidad virtual (RV), la realidad mixta (RM) y los gemelos digitales. Gracias a esta combinación, no solo es posible visualizar cómo será un edificio, sino también anticipar su comportamiento estructural, energético o acústico antes de su construcción (Xu et al., 2024). Esto permite a los diseñadores y a los clientes evaluar las propuestas en las primeras etapas, lo que mejora la calidad del diseño y la experiencia del usuario.

La IA del futuro será más inteligente y adaptable, capaz de predecir con gran precisión los resultados del diseño y ofrecer soluciones personalizadas. Su impacto no se limita al diseño arquitectónico: la gestión de la construcción se beneficiará de la robótica asistida, lo que aumentará la seguridad y la eficiencia en tareas complejas o de alto riesgo; la operación de los edificios podrá monitorizar su rendimiento, anticipar las necesidades de mantenimiento y prolongar su vida útil, lo que reducirá los costes, y el análisis de mercado aprovechará el big data para prever la demanda y los precios de los materiales, lo que optimizará la cadena de suministro.

En ingeniería civil, la integración de la IA y las tecnologías avanzadas permite tomar decisiones más fundamentadas, minimizar riesgos y entregar proyectos más seguros y sostenibles (Xu et al., 2024). Así, la construcción del futuro se perfila como un proceso más eficiente, innovador y conectado, en el que la tecnología y la planificación estratégica trabajan juntas para lograr resultados óptimos.

En conclusión, la IA no pretende sustituir a los ingenieros y arquitectos, sino ampliar sus capacidades, como ya hicieron el CAD o el BIM (Asif et al., 2024; Li et al., 2025). Automatiza tareas repetitivas, agiliza el diseño, facilita la toma de decisiones basada en datos y ayuda a elegir materiales, mejorar la eficiencia energética y estructural e inspirar soluciones creativas. Su impacto trasciende el diseño y se extiende a la planificación, la supervisión de la construcción y la gestión del ciclo de vida del edificio. No obstante, su adopción plantea desafíos como los altos costes, la escasez de software disponible y la necesidad de contar con datos de calidad y algoritmos robustos. Si se depende en exceso de la IA, los diseños podrían homogeneizarse, por lo que es fundamental definir claramente los roles entre los arquitectos y la IA. Si se utiliza correctamente, la IA puede potenciar la creatividad, la eficiencia y la sostenibilidad, y ofrecer un futuro más innovador y dinámico para la construcción.

Os dejo un vídeo que resume las ideas más importantes.

Referencias:

Glosario de términos clave

  • Inteligencia Artificial (IA): Una disciplina científica y tecnológica de vanguardia que simula el aprendizaje y la innovación humanos para extender el alcance de la aplicación de la tecnología.
  • Inteligencia Artificial Generativa (GAI): Un subconjunto de la IA que utiliza el aprendizaje automático y las capacidades de procesamiento del lenguaje natural para que las computadoras simulen la creatividad y el juicio humanos, produciendo automáticamente contenido que cumple con los requisitos.
  • Diseño Paramétrico: Un método de diseño en el que se utilizan algoritmos para definir la relación entre los elementos de diseño, permitiendo la generación de diversas variaciones de diseño mediante el ajuste de parámetros.
  • Diseño Asistido por IA: Métodos en los que las herramientas de IA ayudan a los diseñadores a optimizar diseños, analizar datos, resolver problemas y explorar conceptos creativos.
  • Colaboración Hombre-Máquina: Un enfoque en el que humanos y máquinas trabajan juntos en tareas complejas, con la IA apoyando la innovación humana y el intercambio de información eficiente.
  • Redes Neuronales Artificiales (RNA o ANN): Un tipo de algoritmo de IA, modelado a partir del cerebro humano, que se utiliza para modelar relaciones complejas entre entradas y salidas, a menudo empleadas en la predicción del consumo de energía de los edificios.
  • Aprendizaje Profundo (Deep Learning): Un subcampo del aprendizaje automático que utiliza redes neuronales con múltiples capas (redes neuronales profundas o DNN) para aprender representaciones de datos con múltiples niveles de abstracción.
  • Redes Neuronales Profundas (DNN): Redes neuronales con numerosas capas ocultas que permiten que el modelo aprenda patrones más complejos en los datos, mejorando la precisión en tareas como la predicción del consumo de energía.
  • Máquinas de Vectores de Soporte (SVM): Un algoritmo de aprendizaje supervisado utilizado para tareas de clasificación y regresión, especialmente eficaz con conjuntos de datos pequeños y para identificar relaciones no lineales.
  • Procesamiento del Lenguaje Natural (PLN o NLP): Un campo de la IA que se ocupa de la interacción entre las computadoras y el lenguaje humano, permitiendo a los sistemas interpretar y generar lenguaje humano.
  • Modelado de Información de Construcción (BIM): Una metodología para la gestión de la información de construcción a lo largo de su ciclo de vida, utilizada con la IA para mejorar las simulaciones de rendimiento del edificio.
  • Algoritmos Genéticos (GA): Una clase de algoritmos de optimización inspirados en el proceso de selección natural, utilizados para encontrar soluciones óptimas en tareas de diseño complejas.
  • Adaptación de Bajo Rango (LoRA): Un método de ajuste de bajo rango para modelos de lenguaje grandes, que permite modificar el comportamiento de los modelos añadiendo y entrenando nuevas capas de red sin alterar los parámetros del modelo original.
  • Stable Diffusion: Una herramienta avanzada de IA para generar imágenes a partir de descripciones de texto o dibujos de referencia, que a menudo utiliza el modelo LoRA para estilos específicos.
  • Inception Score (IS) y Fréchet Inception Distance (FID): Métricas cuantitativas utilizadas para evaluar la calidad y diversidad de las imágenes generadas por modelos de IA, con IS evaluando la calidad y FID la similitud de la distribución entre imágenes reales y generadas.
  • FUGenerator: Una plataforma que integra varios modelos de IA (como Diffusion Model, GAN, CLIP) para respaldar múltiples escenarios de aplicación de diseño arquitectónico, desde la descripción semántica hasta la generación de bocetos y el control.
  • Industrialización (en construcción): Énfasis en métodos de construcción modulares y automatizados para mejorar la eficiencia y estandarización.
  • Desarrollo Ecológico (en construcción): Enfoque en la conservación de energía durante el ciclo de vida, el uso de materiales sostenibles y la reducción del impacto ambiental.
  • Transformación Digital-Inteligente (en construcción): Integración de sistemas de digitalización e inteligencia, aprovechando tecnologías como la GAI para optimizar procesos y mejorar la creación de valor.
  • Problema Mal Definido (Ill-defined problem): Problemas de diseño, comunes en arquitectura, que tienen propósitos y medios iniciales poco claros.
  • Problema Malicioso (Wicked problem): Problemas de diseño caracterizados por interconexiones y objetivos poco claros, que requieren enfoques de resolución complejos.
  • Integración del Internet de las Cosas (IoT): La interconexión de dispositivos físicos con sensores, software y otras tecnologías para permitir la recopilación y el intercambio de datos, crucial para los sistemas de control de edificios inteligentes

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La interacción suelo–estructura como factor decisivo en el diseño optimizado y robusto frente al colapso progresivo de edificios de hormigón armado

Acaban de publicarnos un artículo en Innovative Infrastructure Solutions, revista indexada en el JCR. El artículo presenta un marco de optimización estructural para edificios con pórticos de hormigón armado que integra la resistencia frente al colapso progresivo y la interacción suelo-estructura con el objetivo de conseguir diseños seguros, sostenibles y realistas. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. A continuación se recoge un resumen sintético del trabajo.

En los últimos años, la optimización matemática se ha convertido en una herramienta muy valiosa para la ingeniería. Lejos de ser un mero ejercicio teórico, se ha comprobado que permite diseñar estructuras más eficientes, con menos consumo de materiales, costes e impacto medioambiental. Sin embargo, hasta ahora, un aspecto importante había quedado fuera de estos procesos de optimización: la seguridad frente al colapso progresivo, un fenómeno en el que el fallo localizado de un elemento estructural provoca una reacción en cadena que puede ocasionar el derrumbe total del edificio.

Este tipo de situaciones no son meramente hipotéticas: explosiones accidentales, impactos de vehículos, errores de ejecución e incluso actos intencionados han provocado a lo largo de la historia fallos de este tipo, con consecuencias devastadoras en términos humanos y económicos. Por este motivo, organismos como la General Services Administration (GSA) y el Departamento de Defensa (DoD) de EE. UU. han desarrollado directrices específicas para incorporar criterios de robustez frente al colapso progresivo en el diseño estructural.

La principal aportación de este trabajo es la propuesta de un marco computacional integrado denominado Optimization-based Robust Design to Progressive Collapse (ObRDPC), que combina tres elementos fundamentales:

  1. Optimización estructural mediante algoritmos heurísticos.

  2. Diseño robusto frente a colapso progresivo, aplicado desde el inicio del proceso de cálculo con el método del Alternate Path.

  3. Consideración de la interacción suelo–estructura (SSI), aspecto habitualmente ignorado, pero que modifica de forma notable la respuesta real de un edificio.

La metodología desarrollada no se limita a verificar a posteriori si una estructura cumple los requisitos de robustez, sino que integra estas exigencias como restricciones en el propio proceso de optimización. Así, el algoritmo no solo busca minimizar un objetivo (en este caso, las emisiones de CO₂ asociadas a la construcción), sino que también garantiza la seguridad frente a escenarios de fallo.

Para validar la propuesta, se estudiaron cinco casos de edificios de pórticos de hormigón armado tridimensionales con distintas combinaciones de número de plantas (de cuatro a seis) y longitudes de vano (cuatro, seis y ocho metros). A cada edificio se le aplicaron dos escenarios de daño: la eliminación de una columna de esquina y la eliminación de una columna exterior. Estos escenarios, definidos en la guía GSA, simulan situaciones críticas y permiten evaluar la capacidad de la estructura para redistribuir las cargas y evitar un colapso en cadena.

El marco ObRDPC integra un proceso automatizado en el que el modelado estructural se realiza con SAP2000, enlazado con rutinas programadas en MATLAB. Además, se tiene en cuenta el diseño constructivo de cimentaciones mediante zapatas aisladas, que se modelan como losas apoyadas sobre un suelo con comportamiento elástico. En este punto, la SSI es fundamental, ya que los asientos diferenciales de la cimentación generan esfuerzos adicionales en pilares y vigas, lo que modifica la redistribución de cargas en caso de fallo. El estudio muestra que ignorar este efecto puede dar lugar a errores de hasta el 24 % en el dimensionamiento de la superestructura tras la pérdida de un pilar, lo que se traduce en diseños potencialmente inseguros o, por el contrario, sobredimensionados y poco sostenibles.

Los resultados más destacados se pueden resumir así:

  • Influencia de la altura del edificio: a medida que aumenta el número de plantas, la estructura gana en robustez. Esto se debe a la redundancia estructural y a la existencia de múltiples caminos alternativos para la redistribución de cargas (efecto de pórtico global, mecanismos tipo Vierendeel, etc.). En consecuencia, los edificios de mayor altura presentan una menor diferencia entre un diseño convencional y otro robusto frente al colapso progresivo.

  • Influencia de la luz de vano: a diferencia de lo que ocurre con la altura, un mayor aumento de la luz compromete la robustez. En vanos de 8 metros, el impacto ambiental de un diseño robusto frente al colapso progresivo aumenta en más de un 50 %. La razón es doble: por un lado, las vigas deben absorber momentos flectores mucho mayores cuando desaparece un apoyo y, por otro, disminuye la redundancia estructural al haber menos pilares por unidad de superficie.

  • Estrategias de redistribución de cargas: los mecanismos estructurales varían según el elemento. En las vigas, la optimización conduce a secciones más profundas y a un incremento del refuerzo superior de hasta el 35 % en zonas críticas. En los pilares, tienden a utilizarse secciones más robustas y hormigones de mayor resistencia (hasta 40 MPa) para controlar las solicitaciones combinadas de axiles y flectores. Las cimentaciones, por su parte, tienden a tener geometrías más cuadradas, lo que mejora su respuesta frente a asientos diferenciales.

  • Impacto ambiental y sostenibilidad: en edificios con vanos moderados (4 m), el sobrecoste ambiental de diseñar frente a un colapso progresivo es inferior al 8 %, una cifra razonable para garantizar una mayor seguridad. Sin embargo, en estructuras con vanos grandes, el impacto es muy significativo, por lo que es necesario reflexionar sobre las limitaciones geométricas de ciertos proyectos si se pretende compatibilizar sostenibilidad y robustez.

El valor práctico de esta investigación es indudable. Frente a los métodos tradicionales basados en el ensayo y el error y en hipótesis de apoyo rígido, la propuesta permite automatizar el proceso de diseño e integrar la seguridad y la sostenibilidad desde el principio. Para los ingenieros y proyectistas, esto supone una herramienta que evita tanto el riesgo de subdiseño (estructuras inseguras) como el de sobrediseño (estructuras innecesariamente pesadas y contaminantes).

En definitiva, este trabajo supone un avance hacia una ingeniería estructural más integral, ya que no solo se trata de optimizar costes o reducir emisiones, sino también de garantizar la resiliencia de nuestras construcciones frente a eventos extremos. La integración de la interacción suelo-estructura añade, además, un realismo que acerca la investigación a la práctica profesional. En el futuro, esta metodología podría extenderse a otros sistemas estructurales, como marcos metálicos, estructuras mixtas o rascacielos, lo que supondría un horizonte prometedor para la construcción de infraestructuras seguras, sostenibles y duraderas.

Referencia:

NEGRÍN, I.; CHAGOYÉN, E.; KRIPKA, M.; YEPES, V. (2025). An integrated framework for Optimization-based Robust Design to Progressive Collapse of RC skeleton buildings incorporating Soil-Structure Interaction effects. Innovative Infrastructure Solutions, 10:446. DOI:10.1007/s41062-025-02243-z

Os dejo el artículo para que lo descarguéis, ya que está publicado en abierto.

Pincha aquí para descargar

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.