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Abstract: The structural design of prestressed arched trusses presents a complex challenge due to
the need to balance multiple conflicting objectives such as structural performance, weight, and con-
structability. This complexity is further compounded by the interdependent nature of the structural
elements, which necessitates a comprehensive optimization approach. Addressing this challenge is
crucial for advancing construction practices and improving the efficiency and safety of structural
designs. The integration of advanced optimization algorithms and decision-making techniques offers
a promising avenue for enhancing the design process of prestressed arched trusses. This study
proposes the use of three advanced multi-objective optimization algorithms: NSGA-III, CTAEA, and
SMS-EMOA, to optimize the structural design of prestressed arched trusses. The performance of these
algorithms was evaluated using generational distance and inverted generational distance metrics.
Additionally, the non-dominated optimal designs generated by these algorithms were assessed and
ranked using multiple multi-criteria decision-making techniques, including SAW, FUCA, TOPSIS,
PROMETHEE, and VIKOR. This approach allowed for a robust comparison of the algorithms and
provided insights into their effectiveness in balancing the different design objectives. The results
of the study indicated that NSGA-III exhibited superior performance with a GD value of 0.215,
reflecting a closer proximity of its solutions to the Pareto front, and an IGD value of 0.329, indicating
a well-distributed set of solutions across the Pareto front. In comparison, CTAEA and SMS-EMOA
showed higher GD values of 0.326 and 0.436, respectively, suggesting less convergence to the Pareto
front. However, SMS-EMOA demonstrated a balanced performance in terms of constructability and
structural weight, with an IGD value of 0.434. The statistical significance of these differences was
confirmed by the Kruskal–Wallis test, with p-values of 2.50× 10−15 for GD and 5.15× 10−06 for IGD.
These findings underscore the advantages and limitations of each algorithm, providing valuable
insights for future applications in structural optimization.

Keywords: multi-objective optimization; multi-criteria decision-making; NSGA-III; CTAEA;
SMS-EMOA; SAW; FUCA; TOPSIS; PROMETHEE; VIKOR

MSC: 90C11; 90C27; 90C29

1. Introduction

Optimization techniques are crucial in modern engineering practices. In structural
engineering, design optimization focuses on maximizing the contribution and minimizing
the consequences of structures in our environment. Single-objective approaches optimize
one relevant feature of the problem, often related to economic cost and environmental or
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social ramifications. Single-objective optimization (SOO) algorithms generate solutions that
excel in either limiting or enhancing one structural characteristic [1]. However, complex
engineering problems often involve multiple considerations of similar importance. In this
context, multi-objective optimization (MOO) algorithms enable the simultaneous consider-
ation of multiple criteria [2–5]. Additionally, structural design optimization frameworks
integrating multi-criteria decision-making (MCDM) techniques for alternative scoring and
ranking provide a robust approach to balancing various competing factors [6–10].

Prestressed structures achieve structural performance within limited material con-
sumption. By effectively utilizing the elastic working range of materials, prestressed
designs often reduce resource usage without compromising structural integrity. Their
reduced weight and excellent load-bearing capacity make them ideal for long-spanning
truss structures such as bridges, high-rise buildings, and roofs. These applications benefit
from deflection control and enhanced stability intrinsic to prestressing [11–13]. However,
designing prestressed truss elements presents unique challenges.

Traditional prestressed element design methods are complex and have several lim-
itations [14–16]. Accurately defining the prestressing force is challenging, leading to
difficulties in sizing truss elements and achieving optimal weight minimization. Different
unloading forces in the top and bottom chords after prestressing require larger cross-
sections than necessary during actual load-bearing phases, increasing the self-weight and
cost of the truss [17,18]. The reliance on iterative processes for force estimation often results
in imprecise and time-consuming calculations, further complicating material efficiency and
cost-effectiveness.

Partskhaladze et al. [19] outline an SOO approach targeting weight minimization
for a new prestressed arched truss element. Their work thoroughly elaborates on how
prestressed structures extend the elastic capabilities of materials, resulting in improved load-
carrying characteristics. It also addresses the complexities and limitations of traditional
design methods, introducing a novel design approach using a stiffness matrix method
for calculations coupled with a single-objective simulated annealing (SA) optimization
algorithm [20]. The weight minimization results highlight the effectiveness of this design
method and underscore weight reduction as a strategy for material efficiency in these
structural elements.

While effective for targeted weight reduction, this novel SOO approach can be en-
hanced to better address the complex nature of structural engineering problems. MOO
is particularly relevant for considering multiple performance metrics essential for effi-
cient structural design. Additionally, a robust design framework that integrates MOO
and MCDM techniques provides a comprehensive structural design optimization and
ranking approach.

This paper explores the performance of the non-dominated sorting genetic algorithm
III (NSGA-III), the two-archive evolutionary algorithm (CTAEA), and the hypervolume
measure–evolutionary multi-objective optimization algorithm (SMS-EMOA) [21–23]. The
multi-objective optimization (MOO) problem includes the two-stage load-bearing require-
ments of the prestressed truss element, aiming to maximize structural performance in
both non-prestressed and prestressed states, as shown in Figure 1. Building on previous
studies focused on weight minimization, this research introduces a third objective to reduce
self-weight. Additionally, a fourth objective addresses constructability issues, making
assembly easier and enhancing safety in construction.

To address these complex and often conflicting objectives, an optimization framework
is proposed. Within this framework, different objective functions are integrated, and three
specific optimization algorithms—NSGA-III, CTAEA, and SMS-EMOA—are applied. The
interconnection of these algorithms is key, as it is recognized that no single algorithm is
universally optimal; each has its own strengths and weaknesses. By structuring the problem
within this flexible framework, the optimization process leverages the complementary
capabilities of these algorithms, tailoring the approach to the specific needs of the design
and ensuring a more balanced and effective solution.
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Following the optimization process, the framework integrates several multi-criteria
decision-making (MCDM) techniques, such as simple additive weighting (SAW), fair un
choix adéquat (FUCA), technique for order of preference by similarity to ideal solution
(TOPSIS), preference ranking organization method for enrichment evaluation (PROMETHEE),
and “visekriterijumska optimizacija i kompromisno resenje” (VIKOR), combined with
an entropy-based strategy for objective criteria weighting [24–29]. The interconnection
between the optimization algorithms and these MCDM techniques is crucial, as the MCDM
methods assist in the decision-making process by evaluating and ranking the optimized de-
signs based on multiple criteria. This synergy ensures that the most balanced and practical
solutions are identified, taking into account the various trade-offs that are important for
real-world applications.

Additionally, the framework includes a series of analytical visualizations that provide
insights into the variability in different variables within the Pareto front. These visualiza-
tions help in understanding how different optimization strategies affect the design, offering
a clearer picture of the trade-offs involved. This framework can be applied not only to
prestressed trusses but also to various structural designs, making it a powerful tool for
optimization and decision-making in structural engineering.

y

x

30 m

Non-prestressed state

Prestressed state
Cable tie

Figure 1. Multi-state illustration of the truss structure: solid line–non-prestressed state; dashed
line–prestressed state; and solid colored line–cable tie element.

This research contributes to modern engineering practices by implementing an inte-
grated framework for prestressed design leveraging MOO algorithms and MCDM tech-
niques [30–32]. The results advance the understanding and application of prestressed
trusses by addressing the complexities of traditional design methods and incorporating
comprehensive evaluation metrics [33,34]. The framework, which includes objectives for
weight minimization, load-bearing performance, and constructability, ensures a balanced
and practical design process. These innovations enhance structural performance, reduce
resource consumption, and improve constructability and safety, demonstrating practical
implications for more efficient and sustainable construction practices.

2. Methods

This section presents a clear outline of the problem employed to evaluate the effec-
tiveness of optimization algorithms within the combined MOO and MCDM multi-state
design framework. It also comprehensively describes the optimization algorithms used,
explains the criteria weighting process, and details the decision-making techniques applied
in this study.

2.1. Optimization Problem Overview

This paper broadens the scope from the SOO in Partskhaladze et al. [19], introducing
the MOO structural design optimization of a prestressed arched truss element. The MOO
problem involves optimizing multiple conflicting objectives simultaneously. Each solution
vector X⃗ comprising n decision variables represents a potential design within the solution
space and is expressed via Equation (1).

X⃗ = (x1, x2, . . . , xn) (1)
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Throughout the optimization process, specific parameters remain fixed, such as physi-
cal constants, boundary conditions, and other essential values. Section 2.1.1 delineates the
decision variables and parameter values considered in the study.

The k objective functions f (X⃗) aim to either maximize or minimize specific outcomes.
This study targets four objective functions, generally expressed via Equation (2), where f1
and f2 are to be maximized, and f3 and f4 are minimized. Section 2.1.3 details the objective
functions and the computation approach used in this study.

optimize( f (X⃗)) =

{
max( fi(X⃗)) if i ∈ (1, 2)
min( fi(X⃗)) if i ∈ (3, 4)

(2)

The optimization process is subject to m constraints g(X⃗), typically expressed through
Equation (3). Section 2.1.2 outlines the constraints that define the feasible solution space for
the MOO problem in this study.

gm(X⃗) ≤ 0 (3)

In multi-objective optimization, the aim is to effectively explore the solution space
to identify a set of balanced solutions, known as the Pareto front [35]. The Pareto front
consists of non-dominated solutions, where a solution X⃗1 is said to dominate (≻) another
solution X⃗2 if it satisfies the conditions outlined in Equation (4).

X⃗1 ≻ X⃗2 ⇐⇒
{

fi(X⃗1) ≥ fi(X⃗2) for all i = 1, 2, . . . , k
fi(X⃗1) > fi(X⃗2) for at least one i

(4)

The set of non-dominated solutions forms the Pareto front, representing the trade-offs
between different objectives. The multi-objective algorithms detailed in Section 2.2 are
designed to identify balanced solutions, effectively highlighting possible alternatives to be
evaluated through decision-making strategies.

2.1.1. Variables and Parameters

The truss structure comprises a rigid primary framework and a tie-member cable. The
mathematical model, depicted in Figure 2, includes 30 structural elements and 16 joints.
These elements are arranged within the upper chord (elements 1–5 and 16–20), lower chord
(elements 6–8 and 21–23), lattice elements (elements 9–15 and 24–29), and the tie member
(element 30).
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Figure 2. Prestressed arched truss illustration: (a) nodes (1)–(16) and load parameters P1–P5; and
(b) truss elements 1–29, cable tie 30, and prestressing force variables.
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Support nodes with restrained degrees of freedom are located at positions 1 and 14,
strut nodes at 7 and 16, and loading nodes at elements 2–6 and 16–20. The slender part
of the structure is the tie-member cable, designated as segment 30. Truss elements are
constructed from equal-leg angles in a back-to-back configuration, with cross-sectional and
linear mass characteristics detailed in Table 1 and illustrated in Figure 3.

Table 1. Cross-sectional characteristics of equal-leg angles used in the truss elements, configured
back-to-back, in accordance with GOST 8509–93 [36].

b (mm) t (mm) A (cm2) ix (cm) iy (cm) m (kg/m)

50 5 4.88 1.53 2.45 3.77
63 5 6.13 1.94 2.96 4.81
70 5 6.86 2.16 3.22 3.38
75 6 8.78 2.30 3.44 6.89
80 6 9.38 2.47 3.65 7.36
90 6 10.60 2.78 4.03 8.33
90 7 12.30 2.77 4.06 9.64

100 7 13.80 3.08 4.44 10.80
100 8 15.60 3.07 4.47 12.20
110 8 17.20 3.39 4.87 13.50
125 8 19.70 3.87 5.46 15.50
125 9 22.00 3.86 5.48 17.30
140 9 24.70 4.34 6.09 19.40
140 10 27.30 4.33 6.11 21.50
160 10 31.40 4.96 6.91 24.70
160 11 34.40 4.95 6.93 27.00
160 16 49.10 4.89 7.03 38.50
180 11 38.80 5.60 7.74 30.50
180 12 42.20 5.59 7.76 33.10
200 12 47.10 6.22 8.55 37.00
200 14 54.60 6.20 8.60 42.80
200 16 62.00 6.17 8.64 48.70
220 16 68.60 6.81 9.42 53.80
250 16 78.40 7.76 10.6 61.50
250 20 97.00 7.71 10.7 76.10

(a) (b)

x0

x0

x

y0

y0

b

t

z 0

R

y

x

t1

Figure 3. Truss elements profile geometry: (a) cross-sectional dimensions of equal-leg angles; and
(b) back-to-back cross-sectional configuration, in accordance with GOST 8509-93 [36].

Aligning with previous work [19], the primary structure is S245 low-carbon hot-rolled
mild steel, while the tie member uses high-strength steel. The cable properties are outlined
in Table 2. The truss elements have a design resistance of Ry = 24 kN/cm2 and an elastic
modulus of E = 21, 000 kN/cm2. The cable has a design resistance of Ru = 200 kN/cm2

and an E = 16, 000 kN/cm2 elastic modulus. Table 3 also details the dead weight and live
load values considered in the study.
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Table 2. Cross-sectional characteristics of the steel cable used for the tie member of the truss, in
accordance with GOST 3068-66 [37].

Φc (cm) Ac (cm2) mc (kg/m) Rc (kN)

3.80 6.61 5.86 907.50
4.20 8.15 7.24 1120
4.60 9.87 8.75 1350
5.10 11.74 10.45 1610
5.50 13.81 12.25 1895
5.90 16.01 14.20 2200
6.30 18.37 16.30 2525
6.80 20.90 18.55 2825

Table 3. Nodal load values for the computational model, including live-load, dead-load, and
application elements [19].

Unit P1 P2 P3 P4 P5

Live-load (kN) 57.60 57.60 83.40 91.80 30.00
Dead-load (kN) 85.40 85.40 73.00 90.70 30.00
Element (num) 2, 13 3, 12 4, 11 5, 10 6

The sections of the 29 truss elements, the cable section, and the prestressing force
are the 31 decision variables modified to generate different solutions during optimization.
The positions of the nodes, the joints, the loads, and the sectional characteristics are pre-
established known parameters that remain fixed during optimization.

2.1.2. Computational Model and Constraints

The internal stress for each member of the prestressed arched truss, including the tie
cable, is determined using the displacement method. This study follows the geometry,
boundary conditions, dead loads, and live loads in Partskhaladze et al. [19], for a truss
spanning 30 meters. An object-oriented programming (OOP) Python 3 proprietary com-
putational model was developed and utilized to execute the displacement method and
implement the MOO algorithms and MCDM strategies [38].

The displacement method is conducted under the two-dimensional planar hypothesis,
where the structure stiffness matrix (Ks) and nodal forces (F) are known, and the primary
unknowns are the displacements (U) at each node. Equation (5) illustrates the general
equation of this method.

Ks ·U = F (5)

The nodal displacements in the computational model are defined by two degrees
of freedom: horizontal (ux) and vertical (uy) displacements. Assembling the structure’s
stiffness matrix necessitates the preliminary computation of each truss element’s stiff-
ness matrix (Ke). Each Ke is computed first by incorporating a member length (L) per
Equation (6).

L =
√
(x2 − x1)2 + (y2 − y1)2 (6)

Next, the nodal position is determined using the element’s cosine (c) and sine (s)
values in global coordinates, following Equations (7) and (8).

c =
(x2 − x1)

2

L
(7)

s =
(y2 − y1)

2

L
(8)



Mathematics 2024, 12, 2567 7 of 30

Finally, the sectional characteristics, including elastic modulus (E) and cross-sectional
area (A), are integrated, with Ke being computed according to Equation (9). The cable Ke
contains values corresponding to its structural behavior.

Ke =
EA
L
·


c2 cs −c2 −cs
cs s2 −cs −s2

−c2 −cs c2 cs
−cs −s2 cs s2

 (9)

Once Ke is computed for all members, the structure’s Ks is assembled, considering the
connections and positioning. The computational model then constructs the F vector and
generates the reduced Ks and F by considering the restrained degrees of freedom based on
the boundary conditions at nodes 1 and 14. Finally, the resulting system of linear equations
is solved to determine the nodal displacements. With U known, the internal forces in each
element are calculated directly using the element stiffness relationships.

A multi-state constraint verification (M-SCV) system evaluates the structural capability
and constraint compliance of each design generated during the MOO process. Algorithm 1
outlines the procedure applied to each solution during optimization to determine its feasi-
bility. Solutions are classified as feasible (multi-state structural compliance) or unfeasible
(non-compliance in non-prestressed, prestressed, or both states).

Algorithm 1 M-SCV algorithm implementation

1: Function M-SCV(model)
2: Input: model – Python computational model
3: Output: S_1, S_2 – Non-prestressed and prestressed compliance vectors
4: S_1← array of size len(model.elements), initialized to “non-compliant”
5: S_2← array of size len(model.elements), initialized to “non-compliant”
6: Conduct Stress analysis on model.global
7: for each state in model.states do
8: for i, element in enumerate(model.elements) do
9: if non-prestressed state then

10: Initiate non-prestressed analysis on model.element
11: S_1_check← element.state_1_stress ≤ element.compute_resistance()
12: if S_1_check then
13: S_1[i]← “compliant”
14: end if
15: else if prestressed state then
16: Initiate prestressed analysis on model.elements
17: S_2_check← element.state_2_stress ≤ element.compute_resistance()
18: if S_2_check then
19: S_2[i]← “compliant”
20: end if
21: end if
22: end for
23: end for
24: return S_1, S_2

The outputs of the constraint verification process within the computational model
are vectors with lengths equal to the number of model members. A null value indicates
compliance, while a non-null value (1 in this study) signifies non-compliance. Summing
the validation vector reveals the number of elements that do not comply with the truss
structure’s non-prestressed or prestressed states.

2.1.3. Objective Functions

The MOO for this problem incorporates four distinct objective functions, aiming to
improve safety and operational performance in construction projects that integrate pre-
stressed elements. Two of these functions aim to maximize structural performance in
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both non-prestressed and prestressed states. The third objective focuses on minimizing
the structure’s weight, aligning with previous work to ensure efficient resource utiliza-
tion and enhance the structure’s environmental profile. The fourth objective addresses
constructability issues.

The first objective function evaluates the ability of the truss’s structural elements to
withstand loads in the non-prestressed state. Ensuring the resistance of prestressed struc-
tures before applying prestressing is crucial for worker safety in construction engineering.
The structure must be capable of bearing loads beyond the widened elastic range provided
by prestressing. This study aims to maximize the non-prestressed resistance capacity
of the truss, setting this as a key objective within the MOO framework. This structural
performance is calculated using Equation (10), which sums the indicator function δi for
non-compliant elements and divides it by the total number of elements n.

f1(X⃗) =
1
n

n

∑
i=1

δi(X⃗) (10)

Prestressing enables the truss structure to withstand the live loads applied to the
structural assembly by introducing stresses that counteract the expected load effects. This
study establishes a second objective function to maximize the effectiveness of prestressing
in improving the truss’s performance. This objective function specifically evaluates the
structural performance in the prestressed state, ensuring that the prestressed elements can
adequately support the anticipated live loads. The evaluation uses the approach outlined
in Equation (11), which also employs the abovementioned indicator function δi.

f2(X⃗) =
1
n

n

∑
i=1

δi(X⃗) (11)

The objective functions f1 and f2 use an indicator function δ that returns 1 for non-
compliant elements and 0 for compliant ones. This shared mechanism, expressed through
Equation (12), ensures consistency in evaluating compliance across different structural
states within the OOP multi-objective algorithm deployment.

δi(X⃗) =

{
1 if the i-th element is non-compliant
0 otherwise

(12)

A third objective function aims to minimize the truss weight, aligning with previous
SOO applications for the structural typology under study. By reducing the structure’s
weight, this approach minimizes resource consumption, thereby lowering economic costs
and enhancing the overall efficiency and sustainability of the prestressed arched truss
design. This objective is computed using Equation (13) as the sum of the product of the
length Li and the linear mass mi across the n elements in the structural configuration.

f3(X⃗) =
n

∑
i=1

Li ·mi(X⃗) (13)

A fourth objective function targets the constructability of the prestressed arched truss
by minimizing the number of different cross-sectional profiles used in the structure’s
elements. This objective focuses on improving construction efficiency and ease of assembly.
This approach simplifies manufacturing and assembly processes by reducing the variety
of cross-sectional profiles, reducing construction complexity and enhancing safety. This
objective is calculated using Equation (14) as the sum of the unique cross-sectional profiles
in the structural configuration, with the uniqueness of each profile determined by the
indicator function Ui in Equation (15).

f4(X⃗) =
n

∑
i=1

Ui(X⃗) (14)



Mathematics 2024, 12, 2567 9 of 30

Ui(X⃗) =

{
1 if pi /∈ (p1, p2, . . . , pi−1)

0 otherwise
(15)

These four objective functions collectively provide a robust and innovative approach
to optimizing prestressed arched truss designs, balancing performance, safety, and con-
structability. Including objectives that maximize structural performance in non-prestressed
and prestressed states ensures the truss can withstand loads throughout its life cycle. Mini-
mizing the structure’s weight enhances resource efficiency and sustainability profile. Finally,
focusing on constructability improves assembly processes. This MOO enhances operational
performance and supports safety and viability constraints. This paper presents a novel
contribution by integrating these diverse objectives into a cohesive optimization problem.

2.2. Optimization Algorithms

This section outlines a framework for multi-objective optimization that integrates the
NSGA-III, CTAEA, and SMS-EMOA algorithms. In Section 2.2.1, the initial setup is intro-
duced, which includes a repair operator common to all three methods, ensuring a uniform
approach to managing solutions. Section 2.2.2 describes the execution phase for each of the
NSGA-III, CTAEA, and SMS-EMOA algorithms. These algorithms utilize the SBX crossover
with defined probabilities and distribution indices, along with polynomial mutation, also
specified by probability and distribution indices. Figure 4 presents a flowchart of the stan-
dardized processes and methodologies within this framework, offering a detailed overview
of the optimization workflow.

Figure 4. Diagram showing the optimization framework for NSGA-III, CTAEA, and SMS-EMOA
algorithms.

2.2.1. Probabilistic Repair Operator

Algorithm 2 describes a repair operator that enhances solutions within an optimiza-
tion algorithm by using statistical measures, such as the mean and median, alongside a
probabilistic approach. During each iteration, a probability parameter β is used to decide
which repair strategy will be applied. If a randomly generated number is less than β,
the median is chosen for discrete variables (such as Choice and Integer), while the mean
is applied to continuous (Real) variables. The median is particularly useful for discrete
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variables as it mitigates the impact of outliers and reflects the most frequently occurring
values in the dataset. Conversely, for continuous variables, the mean is used to calculate an
average value, effectively capturing the central tendency within the population.

Algorithm 2 Statistical repair operator

1: Function StatRepair(S, β)

2: Input: S, β

3: Output: repaired_S
4: repaired_S← copy of S
5: avg←mean of S along axis 0

6: med←median of S along axis 0

7: for each solution s in repaired_S do

8: for each variable index i in s do

9: type← variable type at index i
10: if rand < β then

11: if type is Choice or Integer then

12: medValue←med[i]
13: if type is Choice then

14: s[i]← closest value to medValue in type.choice
15: else

16: s[i]← round medValue to nearest integer within type.bounds
17: end if

18: else if type is Real then

19: s[i]← clip avg[i] within type.bounds
20: end if

21: else

22: Standard repair is applied based on variable type and bounds

23: end if

24: end for

25: end for
26: return repaired_S

2.2.2. Multi-Objective Optimization Algorithms

In the field of multi-objective optimization, different algorithms offer distinct advan-
tages depending on the complexity and dimensionality of the problem. One of the most
widely recognized algorithms is NSGA-II, known for its effectiveness in solving problems
with two or three objectives by maintaining a balance between convergence and diversity
of solutions. However, as the number of objectives increases, NSGA-II’s performance
diminishes due to its limited capability in maintaining diversity across a high-dimensional
Pareto front. This limitation necessitates the exploration of more advanced algorithms
capable of handling many-objective optimization problems, which are common in complex
engineering designs like prestressed arch trusses.

When addressing the complex optimization challenges associated with the design
of prestressed arch trusses, it is essential to select algorithms that can handle multiple,
often conflicting objectives. The chosen algorithms must be capable of maintaining diver-
sity across the solution space, efficiently handling constraints, and optimizing multiple
objectives simultaneously. Different algorithms offer distinct advantages depending on
the specific nature of the problem. For instance, some algorithms excel in managing
many-objective problems by ensuring a well-distributed Pareto front, while others are
more effective in handling constraints or maximizing specific performance metrics, such
as the hypervolume.



Mathematics 2024, 12, 2567 11 of 30

In this study, three specific optimization algorithms—NSGA-III, CTAEA, and SMS-
EMOA—were selected based on these considerations. NSGA-III was chosen for its ability
to maintain diversity in high-dimensional objective spaces, CTAEA was selected for its
efficiency in handling constrained optimization problems, and SMS-EMOA was chosen for
its focus on maximizing the quality of the Pareto front through hypervolume optimization.
Together, these algorithms offer a comprehensive and robust approach to solving the
multi-objective optimization problem inherent in the design of prestressed arch trusses.
The specific characteristics and advantages of each selected algorithm are detailed in the
following sections.

To implement these optimization algorithms effectively, the selection of appropriate
genetic operators is crucial. In this study, the simulated binary crossover (SBX) operator
was employed as the crossover mechanism, complemented by polynomial mutation (PM).
The SBX operator was chosen for its capability to generate diverse offspring by simulating
the behavior of binary crossover within real-coded genetic algorithms. This operator is
particularly beneficial in multi-objective optimization as it balances the need for exploration
and exploitation, which is essential for achieving a well-distributed Pareto front. The
parameters for SBX, including the crossover probability (crossover_prob) and crossover
index (η), were carefully selected to optimize the algorithm’s performance, especially in
addressing the complex design requirements of prestressed arch trusses. The combination
of SBX and PM ensured a thorough exploration of the solution space while maintaining
diversity, a critical factor in handling the high-dimensional objective spaces characteristic
of this study.

NSGA-III: As discussed in this section, it addresses these challenges through its
incorporation of reference points and enhanced selection mechanisms, which allow it to
manage a larger number of objectives effectively. As shown in Algorithm 3, NSGA-III
combines selection, crossover, and mutation techniques. This algorithm uses simulated
binary crossover (SBX) and polynomial mutation (PM) to generate a varied set of offspring,
while predefined reference directions ensure a well-distributed array of solutions across
multiple objectives. This method enhances NSGA-III’s ability to effectively explore and
exploit the multi-dimensional objective space, distinguishing it from the earlier NSGA-II.
The selection strategy based on reference points is critical, as it directs the population
toward a Pareto front that comprehensively represents the entire objective space, a key
aspect in many-objective optimization. The algorithm’s systematic approach, as detailed
in the accompanying pseudocode, illustrates how it achieves a thorough and diverse set
of solutions.

Algorithm 3 NSGA-III

1: Input: pop_size (population size), re f _dirs (reference directions), mutation_prob
(mutation probability), mutation_index (mutation distribution index), crossover_prob
(crossover probability), crossover_index (crossover distribution index)

2: Initialize population P with pop_size individuals
3: Evaluate initial population P
4: Compute reference points re f _dirs
5: Set generation counter gen = 0
6: while termination criteria not satisfied do
7: Choose parent individuals from P through a tournament-based selection process
8: Perform SBX crossover utilizing crossover_prob and crossover_index
9: Apply polynomial mutation with mutation_prob and mutation_index

10: Assess the offspring population Q
11: Combine populations: R = P ∪Q
12: Execute non-dominated sorting on R to generate fronts F1, F2, . . .
13: Choose the next generation population P based on reference point selection
14: Update generation counter: gen = gen + 1
15: end while
16: return Population P that approximates the Pareto front
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CTAEA: The CTAEA, as described in Algorithm 4, uses a two-archive approach to
enhance the search process in many-objective optimization tasks. The algorithm employs
adaptive differential evolution (ADE) for generating offspring and uses two separate archives
to maintain convergence and diversity. This method ensures an effective exploration and
exploitation of the objective space, facilitating the attainment of a well-distributed Pareto front.
The detailed steps of the algorithm are encapsulated in the pseudocode provided.

Algorithm 4 CTAEA

1: Input: population size pop_size, mutation factor F, crossover probability CR
2: Initialize the population P with pop_size individuals
3: Set up the convergence archive CA and diversity archive DA
4: Assess the initial population P
5: Set the generation counter to gen = 0
6: while termination criteria are not fulfilled do
7: Choose parents from P via tournament selection
8: Apply ADE using the mutation factor F and crossover probability CR
9: Evaluate the resulting offspring population Q

10: Update the archives CA and DA with the offspring Q
11: Merge archives and population: R = P ∪ CA ∪ DA
12: Execute non-dominated sorting on R to form fronts F1, F2, . . .
13: Choose the next generation population P from R
14: Increment gen = gen + 1
15: end while
16: return The population P that best approximates the Pareto front

SMS-EMOA: The SMS-EMOA, as described in Algorithm 5, incorporates selection,
crossover, and mutation strategies to handle many-objective optimization tasks. This
algorithm leverages SBX and PM for offspring generation and employs a hypervolume-
based selection mechanism to guide the search towards the Pareto front. The hypervolume
indicator helps maintain a balance between convergence and diversity, ensuring a well-
represented set of solutions. The following pseudocode provides a detailed overview of
the algorithm’s steps.

Algorithm 5 SMS-EMOA

1: Input: population size pop_size, crossover probability crossover_prob, mutation proba-
bility mutation_prob, crossover distribution index crossover_index, mutation distribu-
tion index mutation_index

2: Create the initial population P with pop_size individuals
3: Assess the initial population P
4: Initialize the generation counter gen = 0
5: while termination criteria are not satisfied do
6: Choose parents from P using tournament selection
7: Apply SBX crossover with crossover_prob and crossover_index
8: Perform PM mutation with mutation_prob and mutation_index
9: Evaluate the offspring Q

10: Merge populations: R = P ∪Q
11: Conduct non-dominated sorting on R to generate fronts F1, F2, . . .
12: Choose the next generation population P using hypervolume-based selection
13: Increment gen = gen + 1
14: end while
15: return The population P that best approximates the Pareto front



Mathematics 2024, 12, 2567 13 of 30

2.3. Evaluation and Decision-Making

Numerous factors beyond the scope of this paper can significantly influence decision-
making outcomes when assessing performance and safety considerations. This study
acknowledges these limitations and evaluates the effectiveness of different decision-making
algorithms, identifying variations and similarities in their outcomes within the specific
considerations outlined.

The MOO generates a set of non-dominated solutions representing well-balanced
designs. This paper evaluates these efficient alternatives by objectively scoring and ranking
them via decision-making strategies. The MCDM problem is structured with a decision ma-
trix X = rij, comprising m alternatives Ai = {A1, A2, . . . , Am} evaluated for n criteria. Each
element rij of the decision matrix indicates the performance of alternative i for criterion
j. This study employs the SAW, FUCA, TOPSIS, PROMETHEE, and VIKOR MCDM algo-
rithms [31]. Criteria weighting, computed via an entropy theory-based strategy detailed
in Section 2.3.1, serves as input for these algorithms, outlined in Section 2.3.2. A comparative
analysis of the results from each strategy assesses their effectiveness in achieving robust
and objective structural design selection.

2.3.1. Entropy Theory-Based Criteria Weighting

Entropy is a fundamental concept that quantifies a system’s degree of disorder or ran-
domness by measuring the number of possible microstates corresponding to a macrostate.
The criteria weights Wj are calculated using an entropy-based approach [24], ensuring
objectivity in the decision-making process and eliminating potential subjective biases.
In this study, higher entropy levels indicate more uncertain information, affecting the
decision-making algorithms’ effectiveness.

The first step involves computing the normalized decision matrix X′ via Equation (16)
to level criteria with different units and orders of magnitude.

X′ = rij⟨
m

∑
i=1

rij⟩−1 (16)

After normalization, each criterion’s entropy Ej and degree of divergence Dj are
calculated through Equations (17) and (18).

Ej =
−1

ln⟨m⟩

〈
m

∑
i=1

rij · ln⟨rij⟩
〉

(17)

Dj = 1− Ej (18)

The final step is to compute Wj by normalizing Dj across all criteria per Equation (19).
These objective criteria weights are then used as input for the decision-making algorithms
in Section 2.3.2.

Wj =
Dj

∑n
j=1 Dj

(19)

2.3.2. Multi-Criteria Decision-Making Techniques

This study evaluated the efficacy of the NSGA-III, CTAEA, and SMS-EMOA optimization
algorithms in identifying high-quality optima within the complex solution space, focusing
on multi-stage structural performance, weight reduction, and constructability [14–16]. This
section details the five decision-making techniques applied to the MCDM problem [25–29].
The cohesive evaluation of their outputs allows a robust assessment of the non-dominated
solutions for similar mixed-integer programming (MIP) problems targeting sustainable
infrastructure [31].
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SAW: Algorithm 6 details the implementation of the SAW technique [25], which uses
the decision matrix and entropy criteria weighting as inputs and is executed in three steps.
First, the normalized decision matrix X′ is computed, accounting for both maximization
and minimization criteria intrinsic to the MOO problem in this study. Next, the algorithm
calculates the Si score for each alternative by summing the products of each element rij and
the corresponding entropy weight Wj across all criteria. Finally, the alternatives are ranked
in descending order based on their scores S.

Algorithm 6 SAW algorithm implementation

1: Function SAW(X, W)

2: Input: X, W
3: Output: S, ranking
4: S← vector of zeros with size n
5: X′ ← normalize X along axis 0

6: for each alternative i in n do

7: Si ← 0

8: for each criterion j in m do

9: rij ← X′ij
10: Si ← Si + Wj · rij

11: end for

12: end for

13: ranking← sort descending S
14: return S, ranking

FUCA: Algorithm 7 details the FUCA technique [26], which begins by sorting al-
ternatives in descending order for maximization criteria (structural performance in non-
prestressed and prestressed states) and in ascending order for minimization criteria (struc-
ture weight and constructability issues). The score Si is then calculated by summing the
products of the rankings Rij and the entropy weights Wj for all criteria. Finally, the alterna-
tives are sorted in ascending order based on the S scores, resulting in the final rankings for
this technique.

Algorithm 7 FUCA algorithm implementation

1: Function FUCA(X, W)

2: Input: X, W
3: Output: S, ranking
4: S← vector of zeros with size n
5: for each alternative i in n do

6: for each criterion j in m do

7: rij ← Xij

8: Q← sort ascending Xj

9: Rij ← rij index within Q
10: Si ← Si + Wj · Rij

11: end for

12: end for

13: ranking← sort descending S
14: return S, ranking
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TOPSIS: Algorithm 8 describes the TOPSIS technique [27]. Initially, the normalized
decision matrix X′ and the normalized weighted matrix Tij are computed, considering both
maximization and minimization criteria. Next, the algorithm picks the ideal solution A+ by
selecting the highest values for maximization criteria, the lowest values for minimization
criteria within Tij, and the least favorable solution A− by selecting the opposite. The
nature of the TOPSIS technique involves calculating each alternative’s proximity to the
ideal solution and its distance from the least favorable one, computing each alternative’s
Euclidean distances D+

i to A+ and D−i to A−. The similarity index Si is then evaluated
as the distance ratio to the least favorable solution. Finally, the alternatives are sorted in
descending order based on S.

Algorithm 8 TOPSIS algorithm implementation

1: Function TOPSIS(X, W)

2: Input: X, W
3: Output: S, ranking
4: S← vector of zeros with size n
5: X′ ← normalize X along axis 0

6: for each criterion j in m do

7: T′j ← X′j ·Wj

8: end for

9: A+, A− ← max(T′j ) and min(T′j ) for each criterion j in m
10: D+, D− ← vectors of zeros with size n
11: for each alternative i in n do

12: for each criterion j in m do

13: D+
i ← D+

i + (T′ij − A+
j )

2

14: D−i ← D−i + (T′ij − A−j )
2

15: end for

16: D+
i ← (D+

i )0.5 distance to D+

17: D−i ← (D−i )0.5 distance to D−

18: Si ← D−i /(D−i + D+
i )

19: end for

20: ranking← sort descending S
21: return S, ranking

PROMETHEE: The PROMETHEE technique utilizes pairwise preference aggrega-
tion to convert the decision matrix into an explicit hierarchy. Algorithm 9 illustrates the
PROMETHEE algorithm [28], which begins by constructing a preference matrix through
pairwise comparisons of alternatives. The algorithm in this paper considers both maximiza-
tion and minimization criteria (where higher and lower values are preferred, respectively)
and integrates a preference function incorporating criteria weights W to quantify the pref-
erence degree between alternatives. The positive and negative flows, Φ+ and Φ−, are
then computed from the preference matrix, representing how much each alternative is
favored or opposed in all comparisons. The scoring S equivalent to the net flow Φi for each
alternative assesses overall performance by offsetting its positive flow against its negative
flow. Finally, the alternatives are sorted in descending order based on S.
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Algorithm 9 PROMETHEE algorithm implementation

1: Function: PROMETHEE(X, W)
2: Input: X, W
3: Output: S, ranking
4: S← vector of zeros with size n
5: F ←matrix of zeros with size n× n
6: for each alternative i in n do
7: for each alternative j in n do
8: if i ̸= j then
9: Pij ← max(0, Xi − Xj) ·W

10: Fij ← ∑ Pij
11: end if
12: end for
13: end for
14: Φ+, Φ− ← vectors of zeros with size n
15: for each alternative i in n do
16: for each alternative j in n do
17: Φ+

i ← Φ+
i + Fij · (n− 1)−1 positive flow

18: Φ−i ← Φ−i + Fji · (n− 1)−1 negative flow
19: end for
20: Φi ← Φ+

i −Φ−i net flow
21: Si ← Φi
22: end for
23: ranking← sort descending S
24: return S, ranking

VIKOR: Algorithm 10 describes the VIKOR technique [29]. First, the algorithm
calculates X′ and identifies the best ( f+) and worst ( f−) performance values for each
criterion, considering both maximization and minimization criteria. Two metrics are then
evaluated for each alternative: the utility Ui, calculated as the weighted sum of the distances
from an alternative to the optimal solution, normalized by the total range of criterion values;
and the regret Ri, which identifies the maximum of these normalized distances to indicate
the furthest deviation from the optimal in the worst-case scenario. The Ui and Ri metrics
are then combined into a compound index Si using the balance coefficient v (set to 0.5 in this
study) to balance overall group utility against individual regret. Finally, the alternatives
are sorted in ascending order based on S.

Algorithm 10 VIKOR algorithm implementation

1: Function VIKOR(X, W)
2: Input: X, W
3: Output: S, ranking
4: U, R, S← vectors of zeros with size n
5: X′ ← normalize X along axis 0
6: f+, f− ← max(X′j) and min(X′j) for each criterion j in m
7: for each alternative i in n do
8: for each criterion j in m do
9: Ui ← Ui + Wj · ( f+j − X′ij) · ( f+j − f−j )−1

10: Ri ← max(Ri, Wj · ( f+j − X′ij) · ( f+j − f−j )−1)

11: end for
12: end for
13: U∗ ← min(U), U− ← max(U)
14: R∗ ← min(R), R− ← max(R)
15: for each alternative i in n do
16: Si ← v · (Ui −U∗)/(U− −U∗) + (1− v) · (Ri − R∗)/(R− − R∗)
17: end for
18: ranking← sort ascending S
19: return S, ranking
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3. Results

This section presents the results of the optimization using three algorithms: SMS-
EMOA , NSGA-III, and CTAEA. In the subsection Algorithm Comparisons , the optimization
values for four objective functions are detailed: structural capacity before tensioning, struc-
tural capacity after tensioning, structure weight, and constructability issues. Descriptive
statistics are analyzed, and radar charts are presented, showing both individual solutions
and the means and standard deviations for each algorithm.

The subsection Performance Indicator Analysis assesses the algorithms’ effectiveness
by employing two metrics: generational distance (GD) and inverted generational distance
(IGD). These metrics measure how well the generated solutions converge towards and are
distributed along a known Pareto front. Finally, in the subsection Multi-Criteria Decision
Analysis for Structural Design Optimization, the non-dominated solutions are evaluated using
a range of multi-criteria decision-making (MCDM) algorithms. This analysis compares the
structural properties of the solutions, such as the cross-sectional areas of various elements
and the corresponding prestressing forces.

3.1. Algorithm Comparisons

The CTAEA algorithm was utilized to define the probabilities for the crossover and
mutation operators. The tuning process for the operators within the CTAEA algorithm
was carried out systematically in two distinct phases, using the hypervolume metric as
the main criterion for evaluation. In the first phase, the crossover probability was tested
across various values—0.01, 0.1, 0.2, 0.3—to determine settings that could improve the
optimization process. Similarly, the mutation probability was examined across a range of
values—0.01, 0.02, 0.03, 0.04—to determine its impact on generating new solutions. During
this exploratory phase, the crossover η value was fixed at five to maintain consistency in
the distribution tightness of solutions.

Advancing to the second phase, a more focused exploitation strategy was employed,
narrowing down the crossover probability to finer values—0.08, 0.1, 0.12—to optimize
the frequency of crossover events. Concurrently, the mutation probability was refined to
values—0.015, 0.02, 0.025—to further enhance solution diversity. This phase was essential
for identifying the exact parameter configurations that optimize the hypervolume metric,
achieving an ideal balance between the convergence of the Pareto front and the maintenance
of diversity within the solution set.

This section presents the optimization results of the three algorithms: CTAEA, NSGA-
III, and SMS-EMOA. Table 4 details the optimization values for each of the four objective
functions: structural capacity before tensioning, structural capacity after tensioning, struc-
ture weight, and constructability issues. Subsequently, the descriptive statistics in Table 5
provide a statistical analysis to help understand the results. In Figure 5, two types of
visualizations are presented: radar charts displaying all individual solutions and radar
charts showing the means and standard deviations for each algorithm. The metrics of the
solutions were normalized using a MinMax scale based on all solutions. Specifically, the
structural capacity before tensioning ( f1) was transformed to a logarithmic scale, and the
structure weight ( f3) and constructability issues ( f4) were converted to one minus their
normalized values to reflect their minimization objectives. The axes in the radar charts
represent the four objective functions: structural capacity before tensioning ( f1), structural
capacity after tensioning ( f2), structure weight ( f3), and constructability issues ( f4). The
shaded areas in the individual solution charts indicate the variability in the solutions, while
the solid lines and shaded areas in the mean charts represent the averages and the ranges
of one standard deviation, respectively.
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Table 4. Multi-objective optimization results for different algorithms: CTAEA, NSGA-III, and SMS-EMOA.

Algorithm f1 f2 f3 f4

CTAEA

8.519124× 1013 7.903836× 100 3.932445× 101 1.700000× 101

8.519124× 1013 1.698375× 101 3.521146× 101 1.600000× 101

8.519124× 1013 7.471966× 100 3.042398× 101 2.000000× 101

3.407360× 1014 7.601503× 100 4.144611× 101 1.500000× 101

4.097467× 101 4.476063× 101 3.344251× 101 1.900000× 101

2.776707× 101 6.558122× 100 2.394779× 101 1.600000× 101

4.256668× 1013 6.823006× 100 2.789407× 101 1.700000× 101

8.512460× 1013 7.917770× 100 2.879679× 101 1.900000× 101

1.735717× 101 7.726929× 100 2.642775× 101 1.800000× 101

NSGA-III

6.389343× 1013 1.028564× 101 2.596566× 101 1.800000× 101

1.277579× 1014 9.974873× 100 3.878275× 101 1.700000× 101

1.185833× 101 7.033907× 100 2.875980× 101 1.600000× 101

1.703067× 1014 8.633605× 100 2.942017× 101 1.800000× 101

4.259562× 1013 3.994824× 101 2.564713× 101 1.800000× 101

4.256169× 1013 4.945458× 101 3.212230× 101 1.700000× 101

8.519124× 1013 6.481887× 100 2.452360× 101 1.700000× 101

3.748801× 101 4.377684× 100 2.388024× 101 1.800000× 101

4.259562× 1013 7.576271× 100 2.378082× 101 2.000000× 101

SMS-EMOA

2.042585× 101 1.283917× 101 3.122146× 101 1.600000× 101

8.509959× 1013 8.575811× 101 2.669033× 101 1.800000× 101

1.276972× 1014 7.516954× 102 3.039425× 101 1.900000× 101

8.511064× 1013 9.880472× 100 2.857700× 101 1.700000× 101

6.388163× 1013 1.241284× 101 3.123967× 101 1.600000× 101

8.510857× 1013 8.374851× 100 2.981695× 101 1.400000× 101

8.518104× 1013 6.713652× 100 2.921615× 101 1.900000× 101

1.064536× 1013 2.236685× 101 3.371193× 101 1.500000× 101

8.516618× 1013 7.344048× 100 2.452646× 101 1.700000× 101

9.358560× 1013 9.039729× 100 3.623062× 101 1.600000× 101

Table 5. Descriptive statistics of multi-objective optimization results for different algorithms: CTAEA,
NSGA-III, and SMS-EMOA.

Algorithm Metric f1 f2 f3 f4

CTAEA

Mean 8.519124× 1013 1.421000× 101 3.185000× 101 1.733000× 101

Median 8.519124× 1013 7.600000× 100 3.042000× 101 1.700000× 101

Std Dev 1.130000× 1014 1.374000× 101 6.160000× 100 1.410000× 100

Min 1.740000× 101 6.560000× 100 2.395000× 101 1.500000× 101

Max 3.407360× 1014 4.476000× 101 4.145000× 101 2.000000× 101

NSGA-III

Mean 6.389343× 1013 1.731000× 101 2.812000× 101 1.778000× 101

Median 4.259562× 1013 9.970000× 100 2.876000× 101 1.800000× 101

Std Dev 5.420000× 1013 1.575000× 101 7.770000× 100 1.410000× 100

Min 1.185833× 101 4.380000× 100 2.378000× 101 1.600000× 101

Max 1.703067× 1014 4.945000× 101 3.878000× 101 2.000000× 101

SMS-EMOA

Mean 8.509959× 1013 9.160000× 101 2.948000× 101 1.650000× 101

Median 8.509959× 1013 9.880000× 100 2.982000× 101 1.600000× 101

Std Dev 1.140000× 1014 2.252200× 102 2.730000× 100 1.890000× 100

Min 2.042585× 101 6.710000× 100 2.453000× 101 1.400000× 101

Max 1.276972× 1014 7.517000× 102 3.623000× 101 1.900000× 101
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Figure 5. Radarchart visualization for the MOO results for each algorithm: (a) individual non-
dominated solutions; and (b) mean and standard deviation values.

The CTAEA algorithm exhibits a high variability in structural capacity before tension-
ing, with a maximum value of 3.41× 1014 and a significant standard deviation of 1.13× 1014.
This suggests that CTAEA can generate solutions with a wide range of structural capacities.
On the other hand, NSGA-III shows a lower mean (6.39× 1013) and a lower standard devia-
tion (5.42× 1013), indicating more consistent solutions. SMS-EMOA, while having a similar
mean (8.51× 1013), has a considerably high standard deviation (1.14× 1014), suggesting
high variability in its solutions.

CTAEA presents significant variability in structural capacity after tensioning, with
a standard deviation of 13.74 and a maximum value of 44.76. This indicates that some
CTAEA solutions are significantly better after tensioning. NSGA-III, with a more balanced
structural capacity after tensioning, has a mean of 17.31 and a standard deviation of 15.75,
showing less variability. SMS-EMOA displays an extremely high mean (91.60) and a very
large standard deviation (225.22), suggesting high variability and some exceptionally good
solutions after tensioning.

In terms of structure weight, CTAEA has a mean of 31.85 with a standard deviation of
6.16, indicating relatively consistent solutions. NSGA-III shows a lower mean (28.12) and a
standard deviation of 7.77, suggesting good consistency. SMS-EMOA, with a mean of 29.48
and a low standard deviation (2.73), also produces fairly consistent solutions.

Regarding constructability issues, CTAEA has a mean of 17.33 and a standard deviation
of 1.41, indicating good consistency. NSGA-III is similar, with a mean of 17.78 and a
standard deviation of 1.41, demonstrating consistent solutions. SMS-EMOA, with a lower
mean (16.50) and a standard deviation of 1.89, indicates slightly less consistent solutions.

In conclusion, CTAEA produces solutions with high variability in structural capacity
but consistent results in terms of weight and constructability issues. NSGA-III generates
balanced and consistent solutions across all aspects. SMS-EMOA shows high variability in
structural capacity after tensioning but consistent results in weight and constructability
issues, which could be advantageous in specific scenarios where variability in structural
capacity is acceptable or desirable.
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From the radar charts and the analysis of the normalized data, Figure 5, it is observed
that the CTAEA algorithm exhibits high variability in structural capacity before tensioning,
suggesting it can generate solutions with a wide range of structural capacities. However,
it shows consistency in terms of weight and constructability issues. The NSGA-III algo-
rithm produces more balanced and consistent solutions across all metrics, which may be
preferable for applications requiring stability. On the other hand, SMS-EMOA shows high
variability in structural capacity after tensioning but generates consistent results in weight
and constructability issues. Therefore, CTAEA is useful for exploring a wide range of struc-
tural capacities, NSGA-III offers balanced and consistent solutions, and SMS-EMOA could
be beneficial in scenarios where variability in structural capacity is acceptable or desirable.

3.2. Performance Indicator Analysis

In this research, a systematic experimental setup was employed to assess the per-
formance of three multi-objective optimization algorithms: CTAEA, NSGA-III, and SMS-
EMOA. The experiment consisted of 30 independent runs, with each algorithm producing a
varying number of points using a set of predefined parameters. This methodology enabled
a direct comparison of the algorithms’ effectiveness under uniform parameter conditions.
To maintain consistency across different objective functions, a min-max normalization was
applied to each function individually. This involved standardizing the units of the vari-
ables across all data points, including those on the Pareto front. For every experiment, the
points generated by each algorithm were normalized by scaling their values between the
minimum and maximum observed within the dataset. This normalization ensured that the
varied scales were converted into a common metric, allowing for consistent comparisons
across different optimization scenarios.

To assess the effectiveness of the optimization algorithms more thoroughly, two per-
formance metrics were introduced: generational distance (GD) and inverted generational
distance (IGD). These metrics evaluated the quality of the solutions produced by the
algorithms, focusing on their convergence and diversity relative to a known Pareto front.

The generational distance (GD) measures the average Euclidean distance between
each solution in a given set and the closest point on the Pareto front, providing an indication
of how well the algorithm’s solutions converge. In our experiment, the size of set A varied,
representing the number of points obtained in each run. The GD is computed using the
following equation:

GD(A) =

(
1
|A|

|A|

∑
i=1

(d2
i )

) 1
2

where di represents the Euclidean distance between the ith solution ai in set A and the
closest point on the Pareto front Z. The sets A and Z are defined as follows:

A = {a1, a2, . . . , a|A|}, Z = {z1, z2, . . . , z|Z|}

This metric is crucial for evaluating how close the generated solutions are to the ideal points
on the Pareto front.

The inverted generational distance (IGD) is a metric that reverses the concept of
generational distance by measuring the distance from each point in Z, the Pareto front,
to the nearest point in A. In our experiment, set A included a variable number of points
generated in each run. The IGD is computed using the following equation:

IGD(Z) =

(
1
|Z|

|Z|

∑
i=1

(d̂2
i )

) 1
2

where d̂i represents the Euclidean distance (using p = 2) from a point zi on the Pareto front
to its closest reference point in set A. The set A is defined as A = {a1, a2, . . . , a|A|}, which
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represents the solutions generated in each run. This metric is essential for assessing how
well the generated solutions cover the Pareto front.

Advantages of each metric:

• The GD is especially valuable for evaluating how closely the generated solutions
approach the Pareto front. A smaller GD value implies that the solutions produced by
the algorithm are nearer to the optimal set, indicating better convergence performance.

• The IGD provides a comprehensive view of both the convergence and diversity of the
solutions. It not only measures the proximity of the solutions to the Pareto front but
also evaluates how evenly the solutions are spread across the front. A lower IGD value
suggests that the solutions effectively cover the Pareto front with good distribution as
well as proximity.

By utilizing both GD and IGD metrics, this study offers a thorough assessment of the
algorithms’ capability to produce solutions that are not only close to but also well spread
across the ideal set of solutions, highlighting the subtle performance distinctions among
the algorithms in multi-objective optimization tasks.

To assess the performance of the optimization algorithms, descriptive statistics were
calculated to provide basic insights into the distribution of results for each algorithm.
These statistics included the mean, maximum, minimum, standard deviation, and median
values, which were key for understanding the central tendency and spread of the data.
Additionally, the non-parametric Kruskal–Wallis test was applied to determine whether
there were statistically significant differences between the algorithms. This test was selected
due to its strength in dealing with non-normally distributed data and its suitability for
comparing more than two groups without assuming equal variances, making it an ideal
choice for the ordinal data produced in this experiment.

The results of the Kruskal–Wallis test, presented in Table 6, revealed statistically signif-
icant differences between the algorithms, with p-values of 2.50× 10−15 for the generational
distance (GD) and 5.15× 10−06 for the inverted generational distance (IGD). These highly
significant p-values indicate that the differences observed in the GD and IGD metrics were
not due to random variation but reflected genuine performance discrepancies among the
algorithms. Specifically, the GD results suggest that the proximity of solutions to the Pareto
front varied significantly across the algorithms, while the IGD results highlight notable
differences in how well the solutions covered the Pareto front. This statistical analysis
underscores the distinct advantages and limitations of each algorithm in generating optimal
solutions within the defined multi-objective optimization framework.

The combination of GD and IGD metrics provides a robust framework for evaluating
multi-objective optimization algorithms. The statistical significance of the differences be-
tween the algorithms, as revealed by the Kruskal–Wallis test, confirms that these metrics
effectively differentiate the performance of the algorithms. Specifically, NSGA-III demon-
strated superior convergence with lower GD values, indicating its solutions were closer
to the Pareto front. However, when considering the IGD metric, NSGA-III also showed a
balanced performance in terms of both convergence and diversity, ensuring a good spread
of solutions across the Pareto front. This comprehensive evaluation highlights NSGA-III’s
strengths in generating well-converged and diverse solutions, making it a robust choice for
multi-objective optimization tasks.
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Table 6. Results of the GD and IGD for different algorithms: CTAEA, NSGA-III, and SMS-EMOA.

Experiment
GD IGD

CTAEA NSGA-III SMS-EMOA CTAEA NSGA-III SMS-EMOA

1 0.343259 0.243163 0.562466 0.415568 0.334083 0.534358
2 0.344080 0.213318 0.590454 0.384573 0.357843 0.455668
3 0.259630 0.272583 0.486718 0.354933 0.436259 0.349575
4 0.332514 0.212139 0.454232 0.373068 0.292265 0.423739
5 0.354127 0.227103 0.521676 0.372890 0.357248 0.533556
6 0.309129 0.236694 0.314915 0.407252 0.419472 0.572944
7 0.393313 0.170852 0.597626 0.509682 0.398380 0.630672
8 0.421196 0.173322 0.306982 0.426333 0.332707 0.369995
9 0.268765 0.181077 0.504147 0.344514 0.339513 0.450241

10 0.284359 0.184755 0.448456 0.328917 0.308511 0.545038
11 0.286714 0.193047 0.364076 0.324218 0.283482 0.353318
12 0.260416 0.220492 0.421789 0.277172 0.306831 0.380599
13 0.322161 0.238490 0.456986 0.325745 0.316086 0.451070
14 0.400086 0.296006 0.393422 0.495041 0.392059 0.366927
15 0.283593 0.259695 0.469320 0.324543 0.362978 0.392514
16 0.351758 0.183666 0.326615 0.419597 0.287520 0.338755
17 0.331178 0.198670 0.359512 0.327612 0.286142 0.333001
18 0.334168 0.225676 0.396315 0.393625 0.349529 0.311955
19 0.322582 0.209546 0.342055 0.341323 0.284754 0.330602
20 0.309153 0.218193 0.345856 0.299896 0.284260 0.319379
21 0.362974 0.230623 0.561288 0.611660 0.378574 0.546087
22 0.264373 0.177711 0.424309 0.297895 0.294437 0.462823
23 0.348124 0.202473 0.379133 0.345787 0.344871 0.406306
24 0.242443 0.209284 0.362349 0.356406 0.262120 0.373122
25 0.274540 0.220155 0.461544 0.296070 0.304126 0.370325
26 0.344041 0.185727 0.461015 0.382598 0.284607 0.495314
27 0.386205 0.175720 0.297417 0.405136 0.312236 0.400061
28 0.322235 0.231037 0.481121 0.357127 0.326930 0.415491
29 0.382607 0.245432 0.348565 0.526730 0.340903 0.367277
30 0.353866 0.223426 0.643884 0.384533 0.317316 0.759258

Min 0.242443 0.170852 0.297417 0.277172 0.262120 0.311955
Max 0.421196 0.296006 0.643884 0.611660 0.436259 0.759258

Mean 0.326453 0.215336 0.436141 0.380348 0.329868 0.434666

Kruskal–Wallis 2.50× 10−15 5.15× 10−6

p-value GD IGD

3.3. Multi-Criteria Decision Analysis for Structural Design Optimization

This paper examined the performance of the CTAEA, NSGA-III, and SMS-EMOA
multi-objective algorithms. Sections 3.1 and 3.2 thoroughly evaluate each algorithm’s capa-
bility to generate balanced solutions that achieve equilibrium among conflicting objectives
within a complex solution space. This section focuses on the results concerning the main
structural characteristics of the non-dominated optimal solutions resulting from the MOO
and the scoring and ranking of these balanced solutions using several decision-making
algorithms detailed in Section 3.3.

Traditional and SOO design consider criteria either in isolation or sequentially. In
contrast, the novel design approach in this study integrates multiple factors simultaneously
within a framework integrating MOO and MCDM. Conventional prestressed arch truss
design processes do not support this simultaneous consideration. The experimental results
in this paper demonstrate the effectiveness of a multi-objective framework, enabling a more
nuanced and comprehensive optimization of design parameters. This study seeks to move
beyond the traditional and SOO approaches via a novel integrated methodology.

The cross-sectional area is a critical characteristic in structural analysis as it directly
influences the load-bearing capacity and stability of the arched truss. Table 7 presents the
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average cross-sectional values for the upper chord (elements 1–5 and 16–20), lower chord
(elements 6–8 and 21–23), lattice elements (elements 9–15 and 24–29), and the tie member
(element 30), along with the associated prestressing force for the non-dominated solutions.

Table 7. Element cross-sectional area results for different algorithms: A1 to A9 for CTAEA; A10 to A18

for NSGA-III; and A19 to A28 for SMS-EMOA.

Alternative Prest. Force
(kN)

Cable Tie
(cm2)

Upper Chord
(cm2)

Lower Chord
(cm2)

Lattice Elem.
(cm2)

A1 586.71 18.37 34.08 39.26 33.43
A2 596.43 13.81 22.21 34.66 27.52
A3 631.25 11.74 25.11 34.81 32.84
A4 636.02 9.87 26.58 34.10 33.76
A5 565.26 18.37 40.37 28.40 33.29
A6 444.86 11.74 25.17 38.28 25.17
A7 254.70 18.37 35.31 36.12 23.18
A8 397.66 9.87 21.35 32.29 28.74
A9 916.31 13.81 42.99 57.95 32.80

A10 370.60 9.87 26.55 34.27 26.75
A11 476.54 16.01 37.56 29.96 28.79
A12 370.84 16.01 25.01 21.42 33.70
A13 575.16 13.81 28.56 34.78 31.31
A14 597.28 9.87 39.12 26.21 25.47
A15 583.16 16.01 24.48 16.60 28.42
A16 484.74 16.01 21.09 39.26 38.10
A17 995.20 8.15 19.27 45.23 34.63
A18 637.81 20.9 35.61 18.84 33.46

A19 349.80 6.61 28.71 39.48 45.42
A20 575.16 13.81 34.11 45.64 33.77
A21 992.25 13.81 25.71 32.04 31.68
A22 916.78 8.15 28.90 27.29 29.09
A23 725.01 8.15 36.41 30.35 28.57
A24 617.31 16.01 35.10 30.13 28.49
A25 446.36 16.01 32.10 32.74 27.46
A26 825.72 11.74 25.38 21.34 35.40
A27 630.45 9.87 28.69 36.85 27.91
A28 674.55 18.37 38.08 35.10 27.26

Figure 6 illustrates the interdependencies in structural element sizing and the design
implications by comparing the cross-sectional areas (in cm2) of the upper and lower chords,
lattice elements, and cable ties. Each dot in the scatter plots represents a specific design
configuration obtained through MOO, with the trend line highlighting the overall rela-
tionship between the cross-sectional areas of the elements being compared. The shaded
regions in the diagonal plots (the n× n positions) indicate the range and distribution of
these configurations, enabling an assessment of how various sizing decisions influence the
overall truss design.

The results indicated a slight positive correlation between the upper and lower chords,
suggesting an interdependent element sizing to ensure balanced stiffness and strength.
Lattice elements showed a positive correlation with the lower chord but a negative cor-
relation with the upper chord, indicating that lattice elements were scaled more closely
with the lower chord to maintain stability while allowing flexibility in the upper chord’s
design. Cable tie elements exhibited a positive correlation with the upper chord but a
slight negative correlation with the lower chord and lattice elements, highlighting their
specialized role in accommodating prestressing requirements within the lower section of
the prestressed arched truss.
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Figure 6. Non-dominated element sizing pair-plot interdependence analysis, with row and column
positions: (1) upper chord; (2) lower chord; (3) lattice elements; and (4) cable tie member.

Figure 7 presents the distribution of prestressing forces (in kN) for the non-dominated
optimal solutions achieved by the CTAEA, NSGA-III, and SMS-EMOA algorithms. Each
violin plot represents the distribution and emphasizes the mean and median values for
each MOO algorithm. The results for the CTAEA algorithm showed a relatively narrow
distribution around the median value, indicating a consistent generation of solutions with
similar prestressing force selection. In contrast, the NSGA-III algorithm displayed a slightly
higher mean and median, suggesting a tight clustering of solutions around these slightly
greater forces.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Mean: 558.81
Median: 586.72

(a) CTAEA

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Mean: 565.71
Median: 575.17

(b) NSGA-III

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
Prestressing force (kN)

Mean: 675.34
Median: 652.51

(c) SMS-EMOA

Figure 7. Non-dominated prestressing force violin plot: (a) CTAEA; (b) NSGA-III; and (c) SMS-
EMOA.
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The SMS-EMOA algorithm, however, exhibited a significantly higher mean prestress-
ing force with a more dispersed distribution. This indicated that while SMS-EMOA could
produce solutions with higher prestressing forces, there was more significant variabil-
ity in the results, potentially offering a wider range of balanced solutions but with less
predictability.

Figure 8 illustrates the effect of the prestressing force on the objective function results
across all non-dominated solutions. Each subplot illustrates how an objective function
varies with the prestressing force, with dots representing non-dominated solution data, lines
indicating trends, and shaded areas representing variability through confidence intervals.

The prestressing force slightly enhanced the non-prestressed structural capacity f1,
potentially due to higher sizing requirements for greater prestressing forces. It did not
significantly affect the structure’s weight f3. However, it slightly increased constructability
issues f4, presumably due to the need for larger sections in specific areas, such as the upper
chord. Notably, a positive correlation existed between prestressing force and prestressed-
state resistance, mainly concentrated around the mid-range of 600 kN. This behavior
corresponded with the enlarged elastic range attained with greater prestressing. This was
particularly evident in the A21 solution achieved by the SMS-EMOA algorithm.
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Figure 8. Prestressing force influence on objective function values across all non-dominated solutions:
(a) f1; (b) f2; (c) f3; and (d) f4.

Table 8 presents the results for the MCDM problem, including criteria weighting via
an entropy theory-based approach, normalized objective functions, and the corresponding
scoring and ranking results for the non-dominated solutions. The scoring and ranking were
conducted using the SAW, FUCA, TOPSIS, PROMETHEE, and VIKOR techniques for the
balanced designs attained by the CTAEA, NSGA-III, and SMS-EMOA algorithms.

The criteria weighting, calculated via entropy theory, objectively assesses the impor-
tance of each criterion in the multi-criteria decision-making process, minimizing subjective
biases for a balanced evaluation. The results showed higher weights for the structural ca-
pacity objectives. The prestressed state structural capacity f2 was identified as the primary
source of information within the MCDM process, followed by the non-prestressed state
f1. Constructability issues f4 and structural self-weight f3 received moderate and very
similar weightings.

The scoring and ranking results using various MCDM techniques indicated a multi-
faceted scenario where no algorithm consistently outperformed the others, highlighting the
complexity of balancing conflicting objectives. Figure 9 represents the alternative ranking
for each technique, clearly illustrating how each algorithm shows strengths in specific
non-dominated solutions but may lag in others. This reflects the trade-offs inherent in
the MOO problem in this paper. The radar chart compares the performance of the design
alternatives (A1 to A28) across the five decision-making techniques. Each axis represents
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one of the alternatives, and each line shows how a specific MCDM technique ranks across
all non-dominated solutions.

Table 8. Multi-criteria decision-making for structural optimization results for different algorithms:
A1 to A9 for CTAEA; A10 to A18 for NSGA-III; and A19 to A28 for SMS-EMOA.

f1 f2 f3 f4 Scores Ranks

Wj 0.2292 0.4840 0.1585 0.1282 SS
i SF

i ST
i SP

i SV
i RS

i RF
i RT

i RP
i RV

i

A1 0.2500 0.0047 0.0000 0.5000 0.012916 16.85074 0.071882 –0.00763 0.918520 21 21 21 21 21
A2 0.2500 0.0168 0.8338 0.3333 0.016630 10.60937 0.075152 –0.00730 0.744238 20 20 4 4 20
A3 0.2500 0.0041 0.7061 1.0000 0.012738 18.92702 0.074052 –0.01265 0.931583 4 2 13 20 24
A4 1.0000 0.0043 1.0000 0.1666 0.041782 14.96239 0.239817 +0.10735 0.610298 15 14 20 13 4
A5 0.0000 0.0540 0.7866 0.8333 0.018321 14.61366 0.053725 –0.02510 1.000000 13 15 11 11 14
A6 0.0000 0.0029 0.5335 0.3333 0.002706 20.27396 0.035312 –0.06431 0.669736 14 10 28 15 15
A7 0.1249 0.0032 0.6387 0.5000 0.007641 20.55176 0.045388 –0.03935 0.748575 11 22 27 2 27
A8 0.2498 0.0047 0.6628 0.8333 0.012914 16.34708 0.074960 –0.01550 0.830591 5 26 16 1 16
A9 0.0000 0.0044 0.5996 0.6666 0.003181 19.31930 0.029751 –0.05810 0.827828 2 28 24 28 6

A10 0.1875 0.0079 0.5873 0.6666 0.011475 12.51064 0.062053 –0.02791 0.731420 28 11 22 3 13
A11 0.3749 0.0074 0.9290 0.5000 0.018591 12.77009 0.104729 +0.01249 0.857182 22 13 2 8 22
A12 0.0000 0.0035 0.6618 0.3333 0.002899 21.32036 0.027050 –0.05908 0.760730 24 23 8 25 26
A13 0.4998 0.0056 0.6794 0.6666 0.022870 13.01932 0.136464 +0.02280 0.699700 1 24 25 22 23
A14 0.1250 0.0475 0.5788 0.6666 0.021188 11.26051 0.066044 –0.01835 0.613945 8 19 3 14 10
A15 0.1249 0.0603 0.7514 0.5000 0.02507 11.84549 0.071162 –0.00695 0.638484 3 5 1 24 2
A16 0.2500 0.0028 0.5488 0.5000 0.012337 17.20333 0.077831 –0.02368 0.644327 27 4 15 27 7
A17 0.0000 0.0000 0.5317 0.6666 0.001813 22.39345 0.034005 –0.06291 0.781043 25 27 14 16 12
A18 0.1250 0.0042 0.5290 1.0000 0.007951 18.14143 0.049548 –0.03868 0.847478 23 8 10 23 17

A19 0.0000 0.0113 0.7274 0.3333 0.005272 14.58186 0.025158 –0.05275 0.804788 16 1 23 5 28
A20 0.2497 0.1088 0.6066 0.6666 0.044740 9.110490 0.130015 +0.03217 0.387529 10 16 5 10 19
A21 0.3747 1.0000 0.7053 0.8333 0.321856 7.758039 0.836178 +0.49541 0.000000 26 18 18 18 9
A22 0.2497 0.0073 0.6569 0.5000 0.013717 12.52747 0.075759 –0.01734 0.706069 18 3 7 7 8
A23 0.1874 0.0107 0.7279 0.3333 0.012344 13.03355 0.059425 –0.02403 0.710294 7 9 6 26 25
A24 0.2497 0.0053 0.6900 0.0000 0.013104 13.84709 0.076015 –0.02142 0.568877 19 6 17 19 18
A25 0.2499 0.0031 0.6739 0.8333 0.012428 20.66047 0.074604 –0.01584 0.843857 9 7 26 9 11
A26 0.0312 0.0240 0.7938 0.1666 0.010376 12.56141 0.032106 –0.04055 0.709243 12 25 9 12 1
A27 0.2499 0.0039 0.5489 0.5000 0.012687 16.34379 0.077928 –0.02312 0.640559 6 12 12 17 3
A28 0.2746 0.0062 0.8609 0.3333 0.014334 12.62740 0.079368 –0.00769 0.790756 17 17 19 6 5

Alternatives A7 and A8 from CTAEA stood out due to their performance in the
PROMETHEE method, securing the top and second ranks, respectively. Additionally, A8
remained within the top five for the SAW technique but was poorly ranked by FUCA and
exhibited mid-range performance in both TOPSIS and VIKOR. This variability indicated
context-dependent alternatives with strengths for specific techniques and limitations when
evaluated by other methods.

In contrast, some CTAEA alternatives, such as A1 and A5, displayed more consistent
rankings across different techniques. A1 consistently appeared in the lower rankings,
indicating a general lack of competitiveness across all criteria. On the other hand, A5
maintained mid-tier positions, reflecting balanced but non-exceptional performance across
the board. This consistency could indicate non-dominated solutions with characteristics
advantageous in decision contexts that value stability and predictability over specialization.

The NSGA-III algorithm demonstrated notable performance, particularly with alterna-
tive A15, which ranked in the top five across four out of five techniques, including securing
the top rank for TOPSIS. This non-dominated solution exhibited significant robustness and
versatility across all techniques, making it a strong candidate under diverse evaluation
methodologies. However, FUCA ranked A15 lower, favoring other alternatives such as
CTAEA’s designs. This discrepancy suggested that while the NSGA-III-generated solution
excelled in most contexts, its suitability may be limited using FUCA’s algorithmic approach.
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Figure 9. Alternative ranking radar chart for all non-dominated solutions across the MCDM techniques.

SMS-EMOA alternatives presented a diverse range of rankings. Alternative A19
was ranked highest by FUCA and performed well in PROMETHEE, yet it was poorly
ranked by VIKOR, indicating a solid alignment with specific techniques but a lack of
general transferability. Similarly, A26 showed strong performance with a top rank in
VIKOR but mid and low rankings across other techniques, suggesting its strengths were
evaluation-specific.

Across algorithms, NSGA-III and SMS-EMOA alternatives generally achieved higher
ranks more consistently than CTAEA alternatives. NSGA-III’s and SMS-EMOA’s non-
dominated alternatives frequently appeared in higher positions, indicating their robustness
and adaptability. The stark contrast in rankings for some alternatives, such as CTAEA’s
A8 and SMS-EMOA’s A19, underscores the importance of selecting and applying multiple
MCDM techniques and evaluating top-ranked alternatives that better align with stakehold-
ers’ specific decision criteria and objectives for the MOO problem posed in this paper.

4. Conclusions

This study focused on the structural design optimization of a prestressed arched truss
using a combination of multi-objective algorithms and decision-making techniques. The
research integrated NSGA-III, CTAEA, and SMS-EMOA algorithms to optimize multi-
state structural performance, weight, and constructability. The non-dominated optimal
designs were evaluated and ranked using the MCDM techniques SAW, FUCA, TOPSIS,
PROMETHEE, and VIKOR. The analysis of the results led to the following conclusions:



Mathematics 2024, 12, 2567 28 of 30

• The performance of the optimization algorithms was comprehensively evaluated using
generational distance (GD) and inverted generational distance (IGD) metrics. NSGA-
III demonstrated superior convergence, indicated by lower GD values, suggesting
that its solutions were closer to the Pareto front. Additionally, NSGA-III showed a
balanced performance in terms of diversity and convergence, as evidenced by lower
IGD values, ensuring a good spread of solutions across the Pareto front.

• The element sizing results for the non-dominated designs indicate that the upper and
lower chords, while interdependent, allow for targeted adjustments to meet specific
structural demands.

• The profile selection in the upper and lower chords significantly influences the lattice
elements, with the lower chord primarily affecting their sizing. Modifying the lattice
design for specific applications can impact stress distribution and element sizing.
Implementing topological optimization within the MOO process presents an avenue
for subsequent research projects.

• Cable ties’ sizing directly correlates with the upper chord and negatively correlates
with the lower chord and lattice elements, highlighting their role in sustaining and
distributing prestressing forces across the structure.

• A multifaceted approach involving multiple MCDM techniques is crucial for cap-
turing a comprehensive view of each alternative’s potential, balancing the strengths
and weaknesses identified by each method to achieve the most suitable solution for
structural design optimization.

• The selection of an alternative should be guided by the specific conditions of the
decision-making process, using insights from multiple MCDM techniques to ensure
a well-rounded and informed choice that aligns with stakeholders’ specific interests
and project objectives.

This study provides a comprehensive framework for optimizing prestressed arched
truss designs, balancing multiple objectives through advanced optimization algorithms
and robust decision-making techniques. A comprehensive comparison of the outcomes
for the MOO and MCDM framework with traditional approaches is a relevant avenue
for subsequent research projects requiring an extensive analysis beyond the scope of the
present study. Future research should target this comparison and explore incorporating
criteria such as environmental impact and life-cycle cost into the optimization and decision-
making process to enhance the framework’s scope and applicability within sustainable
development. Moreover, adapting and deploying additional MOO and MCDM techniques
could provide deeper insights and drive advancements in the optimization framework,
contributing to its ongoing development and refinement.
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Abbreviations

The following abbreviations are used in this manuscript:
SOO Single-objective optimization
MOO Multi-objective optimization
MCDM Multi-criteria decision-making
NSGA-III Non-dominated sorting genetic algorithm III
CTAEA Two-archive evolutionary algorithm
SMS-EMOA Hypervolume measure–evolutionary multi-objective optimization algorithm
SAW Simple additive weighting
FUCA Fair un choix adéquat
SLCA Social life-cycle analysis
TOPSIS Technique for order of preference by similarity to ideal solution
PROMETHEE Preference ranking organization method for enrichment evaluation
VIKOR Visekriterijumska optimizacija i kompromisno resenje
OOP Object-oriented programming
M-SCV Multi-state constraint verification
SBX Simulated binary crossover
PM Polynomial mutation
ADE Adaptive differential evolution
MIP Mixed-integer problem
GD Generational distance
IGD Inverted generational distance
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