El túnel del Canal de la Mancha

Ubicación y conexiones del Eurotúnel. Wikipedia

Eurotunel es un túnel ferroviario que cruza el canal de la Mancha, uniendo Francia con el Reino Unido. La construcción del túnel fue iniciada en 1986 y terminado en 1994, con una inversión total de 14,7 mil millones de euros. En la actualidad, cerca de 500 trenes circulan por el túnel cada día, con un tiempo de travesía de unos 35 minutos entre Calais/Coquelles (Francia) y Folkestone (Reino Unido). Tiene una longitud de 50,5 km, 39 de ellos submarinos, siendo así el segundo túnel submarino más largo del mundo, con una profundidad media de 40 metros, detrás del Túnel Seikan, cuya longitud es de 53 km.  El servicio ferroviario por el Eurotúnel tiene dos variantes: el Eurostar, para pasajeros, y el Shuttle, que transporta camiones, automóviles y motos.

Está formado por tres galerías:

  • Dos túneles de 7,6 m de diámetro reservados para el transporte ferroviario, uno de ida y otro de vuelta (A).
  • Una galería de servicios de 4,8 m, preparada para la circulación de vehículos eléctricos (B).
Sección transversal del túnel. Wikipedia.

Estas tres galerías están unidas cada 375 m por otras galerías transversales de auxilio y mantenimiento (C) y (D), que permiten que haya una corriente de aire para disminuir la presión, evitando así la propagación del humo en caso de incendio, así como la resistencia aerodinámica al paso de los trenes que circulan a 140 km/h. Cada túnel ferroviario contiene una sola vía, catenaria y dos pasarelas que se utilizan para las evacuaciones de emergencia, incluyendo un cruce submarino que permite a los trenes pasar de un túnel a otro para facilitar las operaciones de mantenimiento.

La construcción de un túnel que uniera Inglaterra con Francia fue propuesto por primera vez en 1802. El proyecto, sin embargo, no se materializó debido a la ausencia de técnicas apropiadas para la construcción de este tipo de túneles. La construcción del Eurotúnel no fue nada fácil. Un total de 11 tuneladoras, cada una con un peso de aproximadamente 450 toneladas, se emplearon para excavar los túneles. Los dientes montados en su parte frontal están hechos de un metal extremadamente duro y al girar van penetrando en el terreno, haciendo espacio para que la máquina pueda seguir avanzando. La perforadora empleada en el Eurotúnel tenía 8,78 m de diámetro y 200 m de longitud, con un peso total de 11.000 toneladas.

Os dejo un vídeo que espero te guste.

Excavadora anfibia

En las operaciones de limpieza de sedimentos a lagos y lagunas en áreas profundas o de difícil acceso a retroexcavadoras convencionales se pueden utilizar las dragas, o bien esta máquina algo especial: se trata de una retroexcavadora con flotadores. Espero que os gusten los vídeos que os paso sobre estas retroexcavadoras anfibias.

 

Referencias:

CLEMENTE, J.J.; GONZÁLEZ, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2006). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universidad Politécnica de Valencia. Ref. 2006.4038.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Excavación por aspiración

http://sinzatec.blogspot.com.es/

Una excavadora de succión o vacío (vacuum excavator) consiste en una máquina especializada en remover tierra, desechos o escombros mediante la aspiración mediante un tubo de succión. El principio de trabajo se basa en el transporte neumático del material. Se requiere un volumen de aire mayor al del sedimento debido a la diferencia entre sus pesos específicos.

El material succionado puede ser removido previamente mediante una lanza de aire comprimido o de agua a presión, lo cual sirve también para descubrir tuberías o cables subterráneos. Este procedimiento es seguro, especialmente en aquellos lugares donde existan servicios que puedan ser dañados o cuya localización sea incierta. Es particularmente útil cuando las condiciones descartan el uso de máquinas de excavación mecánicas.

Excavadora de succión. https://www.arqhys.com/construcciones/excavadora-succion.html

El aire fluye a través de la boquilla de admisión, máquinas y la manguera en una serie de cámaras, incluyendo el tanque de almacenamiento de material principal, antes de pasar a través de un sistema de filtro de malla de micro y luego fuera a la atmósfera. Cuando el operador dirige la boquilla de admisión hacia el suelo, el flujo de aire aspira el material que se deposita en el tanque de almacenamiento principal. Las partículas pequeñas se depositan en otros dos tanques más pequeños y las partículas de polvo quedan atrapadas en el sistema de micro filtro de malla antes de que el aire salga de la máquina.

http://www.forceoneltd.co.uk/

 

En el siguiente enlace se puede ver el reportaje que ha realizado el Diario Montañés sobre cómo se ha resuelto la extracción de arenas en el restaurante El Cormorán situado en la Playa del Sardinero de Santander:

Os paso además algunos vídeos sobre esta técnica.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistema «Omega» de ejecución de pilotes de desplazamiento por rotación

Sistema Omega de ejecución de pilotes. Imagen: W. Van Impe (http://scon.persianblog.ir/post/121/)

El sistema Omega de ejecución de pilotes permite, mediante la aplicación de rotación y empuje a la cabeza en la fase de perforación y rotación y tiro en la fase de extracción, la instalación de pilotes con total ausencia de vibraciones y produciendo un desplazamiento lateral del terreno que lo compacta y evita la extracción de detritus.

Por encima del diámetro máximo de la cabeza, unas hélices horizontales y la inclinación adecuada del ángulo superior producen un segundo desplazamiento del terreno durante la secuencia de extracción y la fase de hormigonado. En esta fase, la presión controlada de inyección de hormigón a través de la varilla del tubo central induce un tercer estado de desplazamiento, asegurando una perfecta adherencia del pilote al terreno.

Se utiliza una perforadora de vuelo parcial con una sección de desplazamiento que comprime y mejora la densidad de los flancos del agujero. Esto mejora la fricción perimetral y la capacidad de carga del pilote vaciado en el molde.

Un documento explicativo lo podéis encontrar aquí: http://www.ifc-es.com/docs/doc478f25b17f2af6.04560118.pdf de la empresa IFC Cimentaciones Especiales S.A. Otro muy interesante, de Juan José Rosas: http://www.consultorsestructures.org/images/stories/quaderns/quaderns15.pdf?phpMyAdmin=1f73cb5e5b5871b17a5dd37e0ee619a6

Os dejo un vídeo en el que podéis ver cómo se realiza este tipo de pilote. Espero que os guste.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los tramos de prueba en la compactación de suelos

Figura 1. Tramo de prueba de suelo seleccionado. https://twitter.com/cytemsl/status/888377967256244224/photo/1

La compactación de suelos suele ser uno de los procedimientos constructivos en los que las patologías suelen presentarse por su mala ejecución. Debido a la multitud de factores que influyen en la compactación, para grandes volúmenes de obra se aconseja realizar tramos de prueba, en los que se pueden establecer los criterios que, bajo la perspectiva económica, resulten óptimos para alcanzar la compactación especificada. Los tramos de prueba no suelen estar justificados en el caso de que los materiales sean suficientemente homogéneos y siempre resulta interesante cuando nos encontramos ante yacimientos importantes. En otro caso, no resulta económica su ejecución. Estos tramos de prueba están formados por una cuña, cuyo espesor llega hasta el máximo que se considere para el equipo empleado. Veamos brevemente cómo se puede determinar el espesor de tongada y el número óptimo de pasadas.

Figura 2. Esquema de tramo de prueba (Rojo, 1988)

La humedad y la naturaleza del suelo, el espesor de compactación, el equipo seleccionado para la compactación, la velocidad de trabajo y el número de pases, entre otros, están relacionados entre sí y, con ellos, se puede alcanzar la densidad exigida para cada caso. Esta propiedad es cambiante con la profundidad de la capa, con una variación que depende del equipo de compactación, por lo que consideraremos una densidad media de capa. Los pliegos de condiciones pueden exigir que la compactación media de la capa sea superior a un valor determinado, según su densidad especificada, o bien que la compactación en cualquier punto sea superior a un valor determinado. Hoy en día se tienen en cuenta no solo los valores medios, sino también su dispersión.

La densidad es, en general, débil en los primeros centímetros, alcanza su máximo a los 10 o 20 cm y disminuye con rapidez, de forma variable según los materiales y el compactador utilizado. Sin embargo, el efecto de compactación de capas sucesivas produce un aumento de la densidad, de modo que la densidad media de la capa se aproxima a la obtenida con el método de ensayo.

Figura 3. Distribución de la compactación en profundidad

Los máximos de las curvas de compactación, con el número de pases, se sitúan cada vez más profundos en la compactación vibratoria; en cambio, se acercan a la superficie en la compactación por amasado (pata de cabra). Se dice en este último caso que la compactación es de “abajo hacia arriba”, tal y como vimos en un punto anterior.

El contenido de agua tiene un valor decisivo en la elección del grosor de la tongada, ya que para cada grosor existe una humedad óptima, y ambas variables crecen de forma conjunta. A mayor humedad, más efectiva es la acción del compactador en profundidad. Esta consideración es de gran importancia económica, puesto que se puede elegir un grosor de capa en función de la humedad natural previa a la corrección. También es decisivo, a la hora de calcular rendimientos, tener perfectamente establecido el número de pases, que disminuye con el espesor de la capa.

Estos tramos de prueba están formados por una cuña, cuyo espesor llega hasta el máximo que se considere para el equipo empleado. Se miden las densidades obtenidas en función del grosor de capa y del número de pases, lo que da lugar a curvas como las reflejadas en la Figura 3.

Figura 4. Curvas de resultados del tramo de pruebas

Una vez obtenido el conjunto de puntos “a”, “b”, etc., se elige el par formado por el número de pases y el espesor de tongada de mayor producción horaria.

El Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes establece en su artículo 330 que «cuando lo indique el Proyecto o lo aconsejen las características del material o de la obra, y previa autorización del Director de las Obras, las determinaciones «in situ» de densidad, humedad, y módulo de deformación se complementarán por otras, como los ensayos de huella ejecutados según NLT 256 o el método de «Control de procedimiento» a partir de bandas de ensayo previas. En estas últimas deberán quedar definidas, para permitir su control posterior, las operaciones de ejecución, equipos de extendido y compactación, espesores de tongada, humedad del material y número de pasadas, debiendo comprobarse en esas bandas de ensayo que se cumplen las condiciones de densidad, saturación, módulo de deformación y relación de módulos que se acaban de establecer. En estas bandas o terraplenes de ensayo el número de tongadas a realizar será, al menos, de tres (3)”.

A continuación, os dejamos un Polimedia donde se recoge una somera explicación a la realización de estos tramos de prueba.

Referencias:

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Elaboración de mezcla asfáltica

https://es.wikipedia.org/wiki/Hormig%C3%B3n_asf%C3%A1ltico

Una mezcla asfáltica, también denominada aglomerado, en general es una combinación de un ligante hidrocarbonato y agregados minerales pétreos. Las proporciones relativas de estos minerales determinan las propiedades físicas de la mezcla así como el rendimiento de la misma como mezcla terminada para un determinado uso. Las mezclas asfálticas se emplean en la construcción de firmes, ya sea en capas de rodadura o en capas inferiores y su función es proporcionar una superficie de rodamiento cómoda, segura y económica a los usuarios de las vías de comunicación, facilitando la circulación de los vehículos, aparte de transmitir suficientemente las cargas  debidas al tráfico a la explanada para que sean soportadas por ésta. Las mezclas asfálticas se utilizan en la construcción de carreteras, aeropuertos, pavimentos industriales, entre otros. Sin olvidar que se utilizan en las capas inferiores de los firmes para tráficos pesados intensos.

Estas mezclas asfálticas pueden ser en caliente, lo más común, o en frío. Estas mezclas asfálticas pueden ser confeccionadas en plantas y con los equipos apropiados para esta labor. El proceso de fabricación de las mezclas asfálticas en caliente implican calentar el ligante y los agregados (excepto quizás el polvo mineral de aportación) y su puesta en obra se realizará a una temperatura muy superior a la ambiente (Pliego de Prescripciones Técnicas Generales PG-3, art. 542 y 543).

El tema da para mucho, pero el objeto de este artículo es introductorio. Os aconsejo que acudáis a la web de la Asociación Española de Fabricantes de Mezclas Asfálticas (ASEFMA). Os dejo a continuación un vídeo a este tema de la elaboración de mezclas asfálticas. Se trata de un vídeo meramente divulgativo, por lo que tiene alguna imprecisión técnica y de traducción. Así y todo, espero que os guste.

Asimismo os dejo un vídeo explicativo del profesor Miguel Ángel del Val, de la Universidad Politécnica de Madrid, sobre fabricación y puesta en obra de las mezclas asfálticas.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Editorial de la Universitat Politècnica de València.

Trituradora de cono

Los trituradores de cono pueden considerarse una modificación de una trituradora giratoria, presentan un esquema similar de funcionamiento, si bien se utilizan solo para la trituración secundaria o terciaria.

Los conos secundarios dan unas granulometrías entre 150 y 40 mm, empleándose como primarios en graveras y secundarios en canteras. Los conos terciarios dan granulometrías entre 40 y 10-12 mm, siendo los gravilladores por excelencia y dando productos con coeficientes de forma excelentes. Los trituradores de cono ultrafinos se usan cuando se necesitan grandes cantidades de arena o finos y sus granulometrías suelen estar entre los 20 y 5 mm. Estas máquinas permiten unas buenas relaciones de reducción, de 6 a 8 en la trituración secundaria clásica y de 2 a 3 en las moliendas gruesas, con una forma de grano adecuada, muchas veces en cuanto a su forma no lajosa.

Con el fin de asegurar el control sobre el tamaño del producto producido, estos trituradores se caracterizan porque presentan una sección paralela entre los revestimientos de trituración a la salida de la descarga. Los revestimientos de las partes internas están fabricados en acero al manganeso, de gran resistencia al desgaste y alta tenacidad.

Dependiendo de cómo se encuentre el eje con el cono, estas trituradoras pueden ser suspendidas o apoyadas:

  • Las que presentan el cono suspendido precisan de un crucero para apoyar al eje, de forma similar a las trituradoras giratorias. En este caso, los esfuerzos de trituración son prácticamente horizontales, lo cual permite una pendiente importante que disminuye la fricción con las piezas de trituración y favorece el paso de los materiales.
  • En los trituradores de cono apoyado, también denominados trituradores Symons, el eje reposa sobre unos cojinetes semiesféricos a través del cuerpo tronco-cónico móvil. El ensanchamiento del tazón va a permitir un ángulo del cono más abierto (90º-125º), proporcionando una mayor capacidad de trituración frente a un giratorio de dimensiones similares.

El triturador Symons es el más habitual, fabricándose bajo dos modelos: el estándar utilizado en la trituración secundaria normal, y el de cabeza corta, empleado en la trituración o molienda terciaria o fina. La diferencia entre ambos estriba en la forma de las cámaras de trituración. En estas máquinas, la relación de reducción es de una media de 8/1, pero se puede llegar a 10/1. Su velocidad de rotación alcanza los 250 r.p.m. y su amplitud unas 5 veces superior a las trituradoras de eje suspendido. El problema es que es muy sensible a los materiales húmedos y cargados de finos.

Os dejo algunos vídeos donde se puede ver claramente cómo trabajan estas trituradoras. Espero que os gusten.

https://www.youtube.com/watch?v=4eDxhBSRDwE&list=PL8F1E16732010F9CB

 [politube2]65104:450:388[/politube2]

Referencias:

FUEYO, L. (1999). Equipos de trituración, molienda y clasificación: tecnología, diseño y aplicación. Editorial Rocas y Minerales. 1ª edición. Fueyo Editores. Madrid, 371 pp. ISBN: 84-923128-2-3.

LÓPEZ JIMENO, C. (1998). Manual de áridos. 3ª edición. Ed. Carlos López Jimeno. Madrid, 607 pp. ISBN: 84-605-1266-5.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

Perforación mediante jumbos

Jumbo es el nombre que recibe una unidad de perforación equipada con uno o varios martillos perforadores sobre brazos hidráulicos donde puede montarse un martillo de perforación o una cesta donde pueden alojarse uno o dos operarios y que permite el acceso a cualquier parte del frente. Es una máquina diseñada para realizar labores subterráneas de forma rápida y automatizada: avance de túneles y galerías, bulonaje y perforación transversal, banqueo con barrenos horizontales y minería por corte y relleno, entre otras.

El mecanismo de traslación de los jumbos normalmente es autopropulsado por un tractor montado sobre neumáticos, cadenas o carriles, aunque existen modelos remolcados. Cuando trabajan se estacionan y su accionamiento es eléctrico, aunque pueden disponer de un motor diésel para el desplazamiento.

Los martillos perforadores son hidráulicos para conseguir mayores potencias que los neumáticos, funcionando a rotopercusión: la barrena gira continuamente ejerciendo a la vez un impacto sobre el fondo del taladro. Se precisa un aporte de agua para arrastrar los detritus y refrigerar la boca de perforación.

Con esta máquina se pueden alcanzar rendimientos que superan los 3,5 m/min de velocidad instantánea de perforación. Además, están computerizados, de forma que se automatiza la dirección de los taladros, el impacto y la velocidad de los martillos, e incluso la secuencia y disposición de los taladros. En pocas horas, un solo operario puede perforar la pega completa del frente del túnel.

A continuación os dejo varios vídeos donde podemos ver esta máquina de perforación en funcionamiento. El primero es de un jumbo AMV con 3 brazos para perforación y un brazo con canastillo.

 

Referencias:

YEPES, V. (2022). Maquinaria para sondeos, movimientos de tierras y construcción de firmes. Apuntes de la Universitat Politècnica de València, Ref. 22.

Cuchara bivalva hidráulica

La cuchara bivalva suele ser una máquina compuesta de cables, consta de una pluma de la cual pende una cuchara prensora, formada generalmente por dos valvas o mandíbulas articuladas en su parte superior, que se ajustan una con otra por los bordes cuando se encuentran juntas. Esta máquina puede excavar, recoger el material y verterlo en una misma vertical, o cerca de la misma, y por debajo o por encima del nivel de la máquina, siendo esta propiedad la que la distingue del resto de aparatos de excavación. Sin embargo, tal y como vemos en la figura y en los vídeos que os dejo, también se pueden accionar mediante mecanismos hidráulicos.

La cuchara prensora está formada por dos mandíbulas, cuyo borde puede ser liso o tener dientes intercambiables. Pueden estar accionadas por cables, teniendo cucharas de simple o doble suspensión, o bien las hidráulicas, que mediante cilindros montados en su armazón, accionan el cierre y la apertura de las mismas. Es importante advertir, que cada material puede requerir un tipo de cuchara en particular, aunque los fabricantes proporcionan modelos estandarizados. Las capacidades normales están entre 0,25 y 6 m3.

Aunque cuentan con menor capacidad de corte que las excavadoras hidráulicas, su uso es adecuado en espacios reducidos tales como pozos o zanjas de cimentación, o en profundidades no alcanzables por otro tipo de excavadoras. Es usada también en operaciones de dragado o carga en los muelles de los puertos de granel.

 

 

Espero que os gusten los vídeos que os dejo.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Reflexiones sobre el 6º Foro PTEC de debate

PTECEl pasado 10 de junio de 2014 se celebró en la Escuela de Ingenieros de Caminos de Valencia el 6º Foro PTEC de debate bajo el título «La I+D+i en la mejora de los procesos de construcción». Es el momento de realizar algunas reflexiones sobre este evento que, desde mi punto de vista, acabó siendo un éxito tanto en asistencia como en contenidos desarrollados. Además, este foro tiene un sentido especial para mí, siendo profesor de la asignatura «Procedimientos de Construcción» de los grados de ingeniería civil y de obras públicas, además de la asignatura «Gestión de la innovación en el sector de la construcción», en el Máster Universitario en Planificación y Gestión en la Ingeniería Civil». Esperamos que nuestra Universitat Politècnica de València sea en breve miembro activo del PTEC.

Para aquellos de vosotros interesados en la Plataforma Tecnológica Española de Construcción, os remito a su página web: http://www.plataformaptec.com/

PTEC 3
Inauguración del Foro por parte de las autoridades

Lo primero que me gustaría resaltar es la pertinencia del tema elegido. Los procedimientos constructivos forman la piedra angular de la innovación tanto en las empresas constructoras como en todas aquellas otras que les sirven de apoyo tecnológico. Es por ello que el Grupo de Trabajo específico PTEC sobre Procesos de Construcción presenta un valor añadido indudable. Dicho grupo está coordinado por la empresa CYPE Ingenieros, el Instituto Tecnológico de Aragón ITA y la Universidad Politécnica de Madrid. Dentro del Foro presentaron dos trabajos, uno relacionado con la construcción de túneles y otro sobre la rehabilitación de envolventes de edificios. A este respecto me gustaría apuntar que son dos buenas iniciativas, aunque existe un campo muy amplio donde poder avanzar y donde se hace necesaria la participación de más empresas, universidades y centros de investigación.

Alguna de las notas que tomé en las jornadas no tienen desperdicio (algunas me preocupan especialmente):

  • La innovación no es suficiente para ser competitivo. No debe ser un objetivo en sí mismo.
  • El sector de la construcción no es un objetivo prioritario en los planes autonómicos que financian la innovación. Los sectores clave son otros: turismo, salud, productos innovadores (donde la cerámica tiene algo de cancha), la industria del motor, el calzado…
  • Los objetivos del PTEC se centran en la internacionalización, el impulso de la innovación y la mejora de la imagen del sector de la construcción.
  • Opinión de que el sector de la construcción, un sector maduro, no necesita I+D+i, sino inversión.

 

 

PTEC 1
Visita de las instalaciones del ICITECH

El programa seguido fue el siguiente:

Sesión de apertura

 Presidencia:

  • Isabel Bonig. Consellera de Infraestructuras, Territorio y Medio Ambiente de la Generalitat Valenciana
  • Francisco J. Mora. Rector de la Universidad Politécnica de Valencia
  • Juan Lazcano. Presidente del Patronato Fundación PTEC y Presidente de la Confederación Nacional de la Construcción CNC

 Coordinación: Jesús Rodríguez. Director Gerente de la PTEC

 Ponencias:

  • Competitividad e Innovación: La I+D+I en la estrategia de política industrial (Epi 2020, Ris3 CV y Estrategia H2020). José Monzonís, Secretario Autonómico de Industria y Energía, Consellería de Economía, Industria, Turismo y Empleo de la Generalitat Valenciana.
  • Oportunidades para la I+D+i sobre procesos de construcción en el programa I+D+i europeo Horizonte 2020. Rikardo Bueno. Tecnalia.

 1ª mesa redonda “La mejora de los procesos de construcción mediante la innovación en maquinaria y equipos auxiliares”

 Presidencia: Miguel Ángel García Muro. Director General de Investigación e Innovación, Departamento de Industria e Innovación del Gobierno de Aragón.

Coordinación: Benjamín Bentura. ANMPOYC (Asociación de fabricantes exportadores de maquinaria de construcción, obra pública y minería)

Ponencias:

  • Trabajos de la PTEC en la mejora de los procesos de construcción mediante la aplicación de la maquinaria y los equipos auxiliares en la excavación de túneles y en la rehabilitación de la envolvente de los edificios. Carlos Millán (Instituto Tecnológico de Aragón ITA) y Jose Luis Alapont. (Instituto de Restauración del Patrimonio IRP-UPV).
  • Innovación en máquinas de proyección de hormigón para construcciones subterráneas. Ignacio Martínez de Osaba. Putzmeister.
  • Nuevas soluciones en medios auxiliares para la rehabilitación de envolventes de edificios. Mikel Martínez. Ulma Construcción
  • Sistemas innovadores de encofrado y armado para la mejora del proceso de ejecución de elementos complejos de hormigón. Carlos Bárcena. Dragados.
  • Mejoras en los procesos de construcción con mezclas bituminosas. Jesús Felipo. Pavasal

2ª Mesa redonda “La mejora de los procesos de construcción mediante el uso innovador de las tecnologías de la información y comunicación”.

Presidencia: José Vicente Dómine, Director General de Obras Públicas, Proyectos urbanos y Vivienda, Consellería de Infraestructuras, Territorio y Medio Ambiente de la Generalitat Valenciana

Coordinación: Benjamín González. CYPE ingenieros

Ponencias:

  1. El papel de las nuevas tecnologías TIC en la industria. Clara Pezuela. ATOS/Planetic
  2. Las nuevas tecnologías aplicadas a los procesos de construcción. Nuevas tecnologías en seguridad y prevención de riesgos laborales (proyecto FHT). Lisardo M. Fort. CYES.
  3. Nuevos sistemas de prevención colectiva inteligente en entornos dinámicos de infraestructuras lineales(Proyecto Precoil). Octavio Nieto-Taladriz. UPM
  4. Building Information Model (BIM) en el sector de la construcción: BIM, una metodología que revoluciona la forma de hacer los proyectos de construcción. David Carlos Martínez Gómez. IBIM; BIM: Retos nacionales. Fernando Blanco. Acciona.

 Nota: se llevará a cabo una visita a las 16:00 h al Instituto de Ciencia y Tecnología del Hormigón ICITECH.

Fue especialmente interesante la visita que se realizó al ICITECH, donde el público asistente pudo comprobar las capacidades de nuestras instalaciones y el trabajo de los grupos de investigación. Os dejo el póster que presentamos nosotros, el grupo de investigación sobre «Optimización de Procedimientos Constructivos». Espero que os guste.

Pincha aquí para descargar