Sostenimiento de un muro pantalla y elementos de sujeción

Los muros pantalla, en función de la calidad del terreno y del proyecto de construcción, se pueden clasificar en apoyadas y sin apoyo. En las apoyadas, la estabilidad se consigue mediante una o varias líneas de tirantes o puntos de apoyo, además del empuje pasivo del empotramiento. En las pantallas sin apoyo, denominadas autoestables o en voladizo, la estabilidad solo se debe a las reacciones del suelo en la parte empotrada.

Figura 1. Arriostramiento de muros pantalla mediante anclajes. Imagen: V. Yepes

Para dimensionar los elementos de sujeción, se deben tomar los máximos esfuerzos derivados de las comprobaciones de estabilidad de la pantalla, aplicando los coeficientes de seguridad parciales correspondientes. A este respecto, se remite al lector a la Tabla 2.1 del DB SE-C del Código Técnico de Edificación y las disposiciones de la Instrucción de Hormigón Estructural vigentes. Los elementos de sujeción habituales en un muro pantalla son los anclajes, los puntales o tornapuntas, las celosías metálicas y los propios forjados de la estructura principal.

Una forma habitual de realizar el soporte lateral de las pantallas es mediante anclajes que pueden estar en uno o en varios niveles. En la Figura 1 se observa el anclaje de los muros pantalla de un recinto para una vivienda. En estos casos, los anclajes se pueden utilizar siempre que no afecten a los edificios o servicios colindantes a la pantalla. Deben tener una longitud capaz de sostener la superficie pésima de deslizamiento debidas a las comprobaciones de estabilidad general y de estabilidad de la pantalla. Además, es necesario contemplar medidas para evitar la corrosión de los anclajes, ya sean definitivos o provisionales de larga duración.

Otra forma de contener un muro pantalla es mediante puntales o tornapuntas, que son elementos que permiten apear la pantalla. Estos elementos inclinados se apoyan tanto en la propia pantalla como en la parte inferior con durmientes fijos (Figura 2). En el caso de que los esfuerzos al terreno sean elevados, deberá disponerse una zapata corrida paralela a la pantalla. En cualquier caso, los puntales deben afectar lo menos posible a la excavación y a la ejecución de cimientos y estructura.

Figura 2. Arriostramiento de muros pantalla mediante tornapuntas

También se pueden apoyar los muros pantalla mediante codales metálicos. En la Figura 3 se observa el apoyo de una pantalla contra otra, incluso en las esquinas. Se trata de una obra realizada en Valencia, la misma de la Figura 1.

Figura 3. Arriostramiento de muros pantalla. Imagen: V. Yepes

También es habitual apuntalar las propias pantallas entre sí mediante celosías metálicas dispuestas en planos horizontales, tal y como muestran las Figuras 4 y 5, fotografías tomadas en Burgos en el 2019. Se trata de evitar en lo posible entorpecer las labores de excavación y en la construcción de cimentaciones y estructura del edificio.

Figura 4. . Arriostramiento mediante celosías metálicas. Imagen: V. Yepes

 

Figura 5. Detalle del arriostramiento mediante celosías metálicas en esquina. Imagen: V. Yepes

Otro sistema de apuntalamiento del muro pantalla es el formado por los propios forjados de un edificio (Figura 6). En efecto, con el procedimiento constructivo “top-down”, ascendente-descendente. Se trata de acodalar los muros de contención mediante los propios forjados de los sótanos, que se construyen a medida que se profundiza el vaciado. Téngase en cuenta que hay que considerar en el cálculo de los forjados los esfuerzos de los empujes de las pantallas. Para el apoyo de estos forjados, normalmente se construyen pilotes interiores. Este sistema es muy adecuado para grandes profundidades de excavación o cuando el terreno es de mala calidad y se pretende controlar los movimientos del terreno exterior a la excavación.

Figura 6. Arriostramiento de muro pantalla mediante los forjados del edificio

Os dejo un vídeo explicativo que, espero, os sea de interés.

REFERENCIAS:

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estudio de los puentes de las cinco mayores regiones económicas de China

Acaban de publicarnos un artículo en la revista International Journal of Environmental Research and Public Health (revista indexada en el JCR, en el primer cuartil) donde se estudia el ciclo de vida completo de seis puentes atirantados en las más importantes regiones económicas de China.

El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

ABSTRACT

The construction industry of all countries in the world is facing the issue of sustainable development. How to make effective and accurate decision-making on the three pillars (Environment; Economy; Social influence) is the key factor. This manuscript is based on an accurate evaluation framework and theoretical modelling. Through a comprehensive evaluation of six cable-stayed highway bridges in the entire life cycle of five provinces in China (from cradle to grave), the research shows that life cycle impact assessment (LCIA), life cycle cost assessment (LCCA), and social impact life assessment (SILA) are under the influence of multi-factor change decisions. The manuscript focused on the analysis of the natural environment over 100 years, material replacement, waste recycling, traffic density, casualty costs, community benefits and other key factors. Based on the analysis data, the close connection between high pollution levels and high cost in the maintenance stage was deeply promoted, an innovative comprehensive evaluation discrete mathematical decision-making model was established, and a reasonable interval between gross domestic product (GDP) and sustainable development was determined.

KEYWORDS

sustainable development; LCIA; LCCA; SILA; cable-stayed bridge; GDP.

REFERENCE:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

Descargar (PDF, 3.24MB)

El Puente de Serranos sobre el viejo cauce del Turia en Valencia. Una aproximación histórica, estética y constructiva

El actual Puente de Serranos, de piedra tallada del siglo XVI, tiene precedentes en estructuras anteriores que fueron desapareciendo por los recurrentes embates del río Turia. Su nombre podría explicarse a que, en tiempo de la conquista por Jaime I, las huestes oriundas de la serranía de Teruel se establecieron en sus cercanías, aunque también puede deberse a que era el paso que se daba a los comerciantes procedentes de Sagunto, Maestrazgo o de la serranía de Valencia. Las crónicas musulmanas narran cómo el acceso a la ciudad se realizaba por Bab al-Qantara, que significaba “la puerta del puente”. Esta puerta árabe se encontraba en la actual plaza dels Furs, algo más al interior de la ciudad que las actuales torres de Serranos. En la época cristiana, la puerta también se conoció como Roters, Caldedería y Ferrisa (Coscollá, 2003:61).

Artículo completo descargable.

Puente de Serranos. Imagen: V. Yepes (2010)

Referencia:

YEPES, V. (2010). El puente de Serranos sobre el viejo cauce del Río Turia en Valencia. Una aproximación histórica, estética y constructiva. Universitat Politècnica de València, 32 pp. DOI: 10.13140/RG.2.2.12043.72485

 

Descargar (PDF, 3.9MB)

 

De la regla de cálculo al ordenador: olvidarse de cómo se calculaba antes

Henry Petroski. https://es.wikipedia.org/wiki/Henry_Petroski

Henry Petroski, ingeniero civil estadounidense y profesor en la Universidad de Duke en Durham (Carolina del Norte) escribió un libro que recomiendo a mis estudiantes y a cualquier profesional de la ingeniería que se llama “La ingeniería es humana. La importancia del fallo en el éxito del diseño“. Este libro está editado en castellano por la editorial CINTER, traducido por María Eugenia Matamala Pérez y prologado por Robert Brufau.

Todos los capítulos son verdaderamente interesantes, pero me gustaría destacar el que se llama “De la regla de cálculo al ordenador: olvidarse de cómo se calculaba antes”. De este tema ya he hablado en mi blog en alguna ocasión: https://victoryepes.blogs.upv.es/2013/09/10/los-ingenieros-los-ordenadores-y-mil-un-indios/ y también cuando hablaba de las cifras significativas y los errores de precisión. Os remito a su lectura.

La conclusión es muy clara, un ingeniero debería saber de antemano el orden de magnitud del cálculo antes de calcularlo realmente. Dejar todo al libre albedrío del ordenador sin criterio para saber si el resultado final es aceptable o no, es un riesgo inaceptable. Eso explica el éxito de libros sobre “Números gordos” o bien cómo la investigación puede llevarnos a descubrir fórmulas de predimensionamiento útiles en la práctica (ver el artículo que escribí sobre cómo predimensionar un muro sin calculadora).

Pero no voy a ser “spoiler” de libro de Petroski. Simplemente os adjunto lo que la American Society of Civil Engineers (ASCE) indicó cuando anunció el Premio Mead (es un premio anual para estudiantes de ingeniería civil que otorga el ASCE  un trabajo sobre la ética profesional):

“Los ingenieros civiles han recurrido al ordenador en busca de mayor rapidez y productividad. Sin embargo, ¿se corre el riegos de comprometer la seguridad y el bienestar del usuario? Muchos han predicho que los fallos futuros de ingeniería se atribuirán al uso o el mal uso de los ordenadores. ¿Se está convirtiendo en habitual aceptar un proyecto cuando no se tiene experiencia simplemente porque se dispone de un paquete de software? ¿Cómo pueden garantizar los ingenieros civiles la precisión del programa del ordenador y que el ingeniero civil está cualificado para usarlo de manera apropiada?”

Os dejo estas preguntas para pensar. Es evidente que un ordenador no deja de ser más que una regla de cálculo electrónico o los cuadernos de cálculo de toda la vida. Muchas ventajas, pero mucha precaución en su empleo.

Referencia:

PETROSKY, H. (2007). La ingeniería es humana. La importancia del fallo en el éxito del diseño. Ed. CINTER, 320 pp.

 

Terminan los dos primeros estudiantes del Doble Máster en Ingeniería de Caminos e Ingeniería del Hormigón

 

¡Han acabado los dos primeros estudiantes con el Doble Máster de Ingeniería de Caminos, Canales y Puertos e Ingeniería del Hormigón de la Universitat Politècnica de València! En efecto, hoy 10 de diciembre de 2020, Lorena Yepes Bellver y Alejandro Brun Izquierdo han presentado sus Trabajos Final de Máster correspondientes. El TFM de Alejandro Brun fue “Optimización energética de tableros tipo losa pretensados aligerados mediante modelos Kriging”, mientras que el de Lorena Yepes fue “Diseño óptimo de tableros de puentes losa pretensados aligerados frente a emisiones de CO2 utilizando metamodelos”. Ambos obtuvieron la máxima calificación de 10 Matrícula de Honor y fueron tutorados por el profesor Julián Alcalá, de nuestro grupo de investigación. ¡Enhorabuena a todos ellos!

El Máster Universitario en Ingeniería de Caminos, Canales y Puertos (en adelante MUICCP) habilita para ejercer la profesión de Ingeniero de Caminos, Canales y Puertos, mientras que el Máster Universitario en Ingeniería del Hormigón (en adelante MUIH) está orientado al campo de la ingeniería del hormigón, tanto desde el punto de vista de los materiales constituyentes como desde el punto de vista estructural, tanto desde el punto de vista profesional como científico. En este caso concreto un alumno que quiera adquirir las competencias profesionales para ejercer como Ingeniero de Caminos, Canales y Puertos y, además, quiera una especialización profesional o investigadora en ingeniería del hormigón, debería cursar ambos másteres.

En consecuencia, el doble título permite adquirir las competencias de ambos másteres a través de una trayectoria académica integrada. Todo ello con un coste temporal y económico inferior al que representa la obtención de ambos másteres de manera individualizada. De este modo, un estudiante del MUICCP, en lugar de cursar los 120 ECTS del MUICCP y los 90 ECTS del MUIH, cursa únicamente un total de 165 ECTS, representando así un ahorro de 45 ECTS y de un cuatrimestre docente.

Sistema de almacenamiento y calentamiento del ligante

Figura 1. Transporte calefactado del betún. Imagen: V. Yepes

El ligante se almacena en tanques provistos de serpentines de aceite para su calefacción. Suelen ser depósitos cilíndricos metálicos con aislante térmico de fibra de vidrio, con una capacidad que depende de la producción de la planta. Es habitual el uso de dos calderas para mantener en ellas el ligante a la temperatura requerida, o bien utilizar una para la recepción del ligante y otra para su calefacción. En ausencia de tanques, se pueden construir fosas de hormigón impermeabilizadas para evitar fugas; equipadas con serpentines para mantener a la temperatura. Además, la planta debería prever el uso de betún envasado en bidones como reserva para evitar el desabastecimiento.

 

Figura 2.- Tanque portátil

El sistema de calentamiento está compuesto por una caldera, una bomba centrífuga que hace recircular el aceite caliente, tuberías encamisadas, serpentines sumergidos en los depósitos del ligante, así como termómetros para el control. Todos los elementos disponen de aislamientos que evitan pérdidas de calor y ahorran energía. En algunos sistemas también se utilizan los gases de combustión como fluido caliente. En caso de usar los sistemas de calefacción por gases calientes de quemadores de combustible líquidos, la cámara de combustión, debe estar fuera del tanque o protegida con material refractario; siendo necesario un mejor control de la temperatura.

Figura 3.- Almacenamiento en silos del betún. Imagen: V. Yepes

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

Secador de áridos en una planta asfáltica en caliente

Figura 1. Tambor secador. Imagen: V. Yepes

Las plantas asfálticas en caliente disponen de un tambor secador que seca los áridos y eleva su temperatura, hasta los 150 a 200ºC, para que en el mezclador queden perfectamente envueltos en el ligante. La elevación de la temperatura permite el secado (humedad < 1% en peso) y la eliminación del polvo de los áridos. El secador debe regularse para que la combustión sea completa y garantice la ausencia de humo negro en la chimenea. La eficacia de un secador depende del tipo de quemador, del sistema de alimentación, de la circulación y evacuación de áridos, del grado de humedad de los áridos, del diámetro y longitud del tambor, entre otros factores. Los rendimientos dependen en gran medida de la humedad de los áridos, donde el árido fino es el que más humedad retiene.

 

Figura 2. Secador y ciclón extractor de una instalación de fabricación de mezclas bituminosas

En las plantas discontinuas y en las continuas convencionales, el tambor secador consiste habitualmente en un cilindro metálico de gran diámetro y una longitud de 3 o 4 diámetros (hasta 2 m de diámetro y 15 m de longitud). Este tubo gira sobre su eje a una velocidad de 5 a 15 revoluciones por minuto. Los áridos entran a contracorriente: unas paletas arrastran los áridos hacia la llama y los gases calientes del quemador de fuel, que se encuentra en el extremo opuesto del cilindro (Figura 2). Un sistema de ciclones fuerza el aire para permitir la salida de vapor de agua. En las plantas de tambor secador-mezclador, el secado de los áridos se realiza junto con la mezcla. El diseño de tambores secadores mezcladores largos, con longitudes mayores a 5 diámetros, permite la extracción del calor de los gases de combustión hasta temperaturas de 12ºC por encima de la temperatura de la mezcla, evitando el deterioro del ligante.

Se aconseja que la temperatura de los áridos a la llegada del quemador no supere en más de 10ºC a la del ligante, y que el conjunto no sobrepase 15ºC de la máxima de envuelta del ligante, calculada de la viscosidad óptima de fabricación de la mezcla. Si no fuera así, existirá un deterioro en las características del betún debido a una brusca oxidación por choque térmico y una merma de las prestaciones de la mezcla.

Figura 3. Secador de áridos

Os dejo a continuación algún vídeo al respecto de este elemento.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

IV Foro de la Cátedra Hidralia+UGR. COVID-19: Oportunidad o amenaza para los ODS

Tengo el placer de comunicar mi participación en la Mesa Redonda sobre “Medio ambiente, clima, sostenibilidad y COVID-19“, que tendrá lugar el día 24 de noviembre de 2020, a las 18:35 h. Esta mesa se organiza dentro del IV Foro de la Cátedra Hidralia+URG Red Andaluza contra el Cambio Climático. Os paso la información del evento y os animo a inscribirse y a participar. Haga clic en el enlace a continuación para unirse al seminario web:
https://zoom.us/j/95398766471

¿Cómo está afectando la COVID-19 a la consecución de los Objetivos de Desarrollo Sostenible? Esta cuestión es la que se tratará de dilucidar en el IV Foro de la Cátedra Hidralia+UGR que tendrá lugar, por cuarto año consecutivo, por cuarto año consecutivo, que este año lleva por título COVID-19: Oportunidad o amenaza para los OD, enmarcado en el ciclo de actividades “Hablemos de Ingeniería Civil” de la World Council of Civil Engineers y donde se presentarán unos resultados preliminares del proyecto “Diseño de estrategias para afrontar el impacto del COVID-19 en el cumplimiento de la ODS en Andalucía” que se está desarrollando en el marco de la convocatoria de la Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía, sobre el SARS-COV-2 y la enfermedad COVID-19, cofinanciada con Fondos FEDER.

Os dejo a continuación el programa del Foro.

Descargar (PDF, 925KB)

Papel de la dimensión social en la optimización del mantenimiento orientado a la sostenibilidad de los puentes en entornos costeros

http://www.revistacyt.com.mx/index.php/tecnologia/324-at-reparacion-de-pilotes-submarinos-proteccion-de-estructuras-en-contacto-con-el-medio-marino

En los objetivos de desarrollo sostenible recientemente establecidos se reconoce la importancia de las infraestructuras para lograr un futuro sostenible. A lo largo de su ciclo de vida, las infraestructuras generan una serie de impactos cuya reducción ha sido uno de los principales focos de atención de los investigadores en los últimos años. La optimización de los intervalos de mantenimiento de las estructuras, como los puentes, ha despertado la atención del sector de la ingeniería civil, pues la mayoría de los impactos de las infraestructuras se producen durante la fase de servicio. Así pues, actualmente los puentes se proyectan para atender a los efectos económicos y ambientales derivados de las actividades de mantenimiento. Sin embargo, en esos análisis se suele descuidar el pilar social de la sostenibilidad. Dado que todavía no existe una metodología universalmente aceptada para su evaluación, la dimensión social no se incluye de forma efectiva en las evaluaciones del ciclo de vida de las infraestructuras. En la presente comunicación se evalúan los efectos del ciclo de vida de diseños alternativos de los tableros de hormigón de los puentes en un ambiente costero que requiere mantenimiento. Los intervalos de mantenimiento derivados de la fiabilidad se optimizan primero minimizando los impactos económicos y ambientales. En una segunda etapa del análisis, se incluye la dimensión social en el proceso de optimización y se comparan los resultados. Los resultados de optimización de estas evaluaciones combinadas se obtienen aplicando la técnica de toma de decisiones multicriterio AHP-TOPSIS. En este trabajo se muestra cómo la inclusión de la dimensión social puede conducir a estrategias de mantenimiento óptimo diferentes y más orientadas a la sostenibilidad. El enfoque tridimensional que se aplica aquí ha dado lugar a que se prefieran otras alternativas a las derivadas de la evaluación convencional que considera las perspectivas económica y ambiental. Esa conclusión apoya la idea de que se requieren evaluaciones holísticas del ciclo de vida para el diseño sostenible de las infraestructuras y de que es necesario hacer más esfuerzos urgentes para integrar la dimensión social en las evaluaciones de la sostenibilidad de las estructuras.

Referencia:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Role of the social dimension on the sustainability-oriented maintenance optimization of bridges in coastal environments. 10th International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI 2020, pp. 205-215, 3-5 June 2020, Prague, Czech Republic.

Descargar (PDF, 469KB)

Comparación pareada como método de evaluación de competencias transversales en materia de sostenibilidad

La evaluación de las competencias transversales adquiridas a lo largo de la formación universitaria es un objetivo fundamental para garantizar la adecuada formación de los alumnos. Con los recientemente establecidos Objetivos de Desarrollo Sostenible, la demanda de competencias transversales orientadas a tal fin es cada vez mayor y, su desarrollo y evaluación, más urgente. En el contexto de la sostenibilidad, resulta particularmente relevante la capacidad de pensamiento crítico de los estudiantes. Ante la falta de consenso en cuanto a cómo determinar el grado de adquisición de las competencias transversales, se propone un procedimiento objetivo orientado a la evaluación del pensamiento crítico basado en la resolución de casos de estudio, combinados con la aplicación del Proceso Analítico Jerárquico de decisión multicriterio. La aplicación de este proceso permite determinar, de forma objetiva, la coherencia implícita de los alumnos en sus juicios y ofrece, por lo tanto, una herramienta valiosa para evaluar su capacidad de pensamiento crítico y la claridad con la que perciben la sostenibilidad y sus implicaciones en el desarrollo de su futura práctica profesional.

Referencias:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Comparación pareada como método de evaluación de competencias transversales en materia de sostenibilidad. VI Congreso de Innovación Educativa y Docencia en Red. IN-RED 2020, 16 y 17 de julio de 2020. Doi: http://dx.doi.org/10.4995/INRED2020.2020.12000