Preguntas sobre la productividad y el estudio del trabajo

¿Qué es la productividad y por qué es crucial para una empresa?

La productividad se define como la relación entre los bienes y servicios producidos y los recursos empleados para ello. Es un indicador vital para cualquier actividad empresarial, ya que las empresas que no mejoran su productividad con respecto a la de sus competidores están abocadas a desaparecer. Un aumento de la producción no siempre implica un aumento de la productividad; para conseguirlo, es necesario buscar la eficiencia en todos los procesos de la empresa. La mejora de la productividad conlleva una reducción de costes y plazos, lo que incrementa la competitividad a largo plazo.

¿Cuál es la diferencia entre productividad y rendimiento?

La productividad se refiere a la relación entre la producción y los recursos consumidos. El rendimiento, por otro lado, es el cociente entre lo realizado y lo previsto, ya sea en relación con la producción o con el tiempo dedicado a una actividad. El rendimiento contribuye a aumentar o disminuir la productividad modificando la eficiencia de los medios de producción, pero no los medios en sí mismos. La pérdida de productividad a menudo se debe a ineficiencias en el tiempo total invertido en una operación.

¿Cómo se puede aumentar la productividad de una empresa, según la OIT?

De acuerdo con la Organización Internacional del Trabajo (OIT), existen dos categorías principales de medios directos para aumentar la productividad.

  • Inversión de capital: Esto incluye idear nuevos procedimientos básicos o mejorar fundamentalmente los existentes, así como instalar maquinaria o equipo más moderno y de mayor capacidad, o modernizar los ya existentes.
  • Mejor dirección: Implica reducir el contenido de trabajo del producto, reducir el contenido de trabajo del proceso y reducir el tiempo improductivo, ya sea imputable a la dirección o a los trabajadores.

¿Qué es el estudio del trabajo y cuáles son sus componentes principales?

El estudio del trabajo es un término que engloba técnicas para examinar tareas humanas en todos sus contextos con el fin de investigar sistemáticamente los factores que influyen en la eficiencia y la economía, y así poder introducir mejoras. Se trata de una herramienta fundamental para alcanzar objetivos y tomar decisiones. Consta de dos técnicas interrelacionadas:

  • Estudio de métodos: Se enfoca en cómo se realiza un trabajo, buscando formas más sencillas y eficientes para reducir costes.
  • Medición del trabajo: Su objetivo es determinar cuánto tiempo se requiere para ejecutar una tarea definida por un trabajador calificado, según normas y rendimientos preestablecidos.

¿Cuáles son los objetivos principales del estudio de métodos?

El estudio de métodos busca registrar y examinar críticamente de forma sistemática los factores y recursos involucrados en los sistemas de ejecución existentes y propuestos. Sus objetivos son:

  • Mejorar los procesos y los procedimientos.
  • Optimizar la disposición del lugar de trabajo, el diseño del equipo y las instalaciones.
  • Economizar el esfuerzo humano y reducir la fatiga innecesaria.
  • Mejorar la utilización de materiales, máquinas y mano de obra.
  • Crear mejores condiciones de trabajo.

¿Cuáles son las fases clave para implementar un estudio de mejora de métodos?

Para abordar y llevar a la práctica un estudio de mejora de métodos, se siguen cinco fases generales:

  1. Elección y definición del problema: Identificar el trabajo a analizar que ofrecerá la mayor rentabilidad.
  2. Observación y registro del método actual: Recopilar datos sobre cómo se realiza el trabajo actualmente.
  3. Análisis del método actual: Cuestionar sistemáticamente cada aspecto del método actual (qué, dónde, cuánto, quién, cómo, cuándo) para identificar ineficiencias.
  4. Desarrollo del método mejorado: Basándose en el análisis, buscar posibilidades como eliminar trabajo innecesario, combinar operaciones, cambiar el orden de ejecución o simplificar las operaciones.
  5. Aplicación y mantenimiento del nuevo método: Una vez aprobado por la dirección, implementar el nuevo método y vigilar periódicamente su cumplimiento.

¿Qué son los diagramas de proceso y qué tipos se mencionan?

Los diagramas de procesos (o cursogramas) son representaciones gráficas de los eventos que ocurren durante una serie de acciones u operaciones, junto con información relevante. Durante un proceso, se identifican cinco tipos de acciones: operación, transporte, inspección, demora y almacenamiento. Entre los tipos de diagramas de proceso se incluyen:

  • Diagrama de las operaciones del proceso (operation process-chart): Muestra los puntos donde se introducen los materiales, la secuencia de inspecciones y todas las operaciones (excepto el manejo de materiales), incluyendo tiempo y localización. Útil para procesos complicados o nuevos.
  • Diagrama del análisis del proceso del recorrido (flow process-chart): Representa todas las operaciones, transportes, inspecciones, demoras y almacenajes, con información sobre tiempo requerido y distancia recorrida. Se construye determinando el producto y unidad, anotando fases, uniendo símbolos, y midiendo distancias y duraciones.
  • Diagramas planimétricos de flujo o diagrama de recorrido: Representación gráfica sobre un plano del área de actividad, mostrando la ubicación de los puestos de trabajo y el trazado de movimientos de hombres y/o materiales. Ayuda a identificar áreas congestionadas, avances y retrocesos, y a mejorar la distribución de la planta. Se utiliza la misma simbología que el diagrama de proceso.

¿Qué son los gráficos de actividades simultáneas y cuál es su propósito?

Los gráficos de actividades simultáneas o múltiples son herramientas que se utilizan para registrar y estudiar las actividades interdependientes de personas y máquinas. Su objetivo principal es reducir el número y la duración de los tiempos improductivos (paradas y esperas). La técnica consiste en representar el trabajo de cada recurso en una escala de tiempos común para visualizar las interrelaciones entre ellos y examinar y analizar el método con el fin de eliminar los periodos de inactividad.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376.

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

RESILIFE: Optimización resiliente de estructuras híbridas en condiciones extremas

En este artículo se explica el proyecto RESILIFE, cuyos investigadores principales son Víctor Yepes y Julián Alcalá, de la Universitat Politècnica de València. Se trata de un proyecto de investigación de carácter internacional en el que también colaboran profesores de Brasil, Chile y China. Además, se están realizando varias tesis doctorales de estudiantes de Cuba, Perú, México y Ecuador, así como de estudiantes españoles. A continuación, se describe brevemente el proyecto y se incluye una comunicación reciente donde se explica con más detalle.

El proyecto RESILIFE se centra en optimizar de forma resiliente el ciclo de vida de estructuras híbridas y modulares para conseguir una alta eficiencia social y medioambiental, especialmente en condiciones extremas. La investigación aborda la necesidad de diseñar, construir y mantener infraestructuras que puedan resistir y recuperarse rápidamente de desastres naturales o provocados por el ser humano, minimizando las pérdidas y el impacto en la sociedad y el medioambiente. Para ello, el estudio propone utilizar inteligencia artificial, metaheurísticas híbridas, aprendizaje profundo y teoría de juegos en un enfoque multicriterio. El objetivo es mejorar la seguridad, reducir costes y optimizar la recuperación, alineándose con los Objetivos de Desarrollo Sostenible (ODS). La metodología integral incluye el análisis del ciclo de vida, así como la aplicación de lógica neutrosófica y redes bayesianas para la toma de decisiones.

¿Qué problema aborda el proyecto RESILIFE y por qué es urgente?

El proyecto RESILIFE aborda el desafío crítico que supone diseñar y mantener infraestructuras resilientes y sostenibles frente a desastres naturales y provocados por el ser humano. La urgencia es evidente debido a las enormes pérdidas humanas y económicas causadas por estos eventos (más de 1,1 millones de muertes y 1,5 billones de dólares en pérdidas entre 2003 y 2013), lo que subraya la necesidad de estructuras de alto rendimiento que protejan vidas y economías, al tiempo que se alinean con los Objetivos de Desarrollo Sostenible (ODS) de las Naciones Unidas. Además, los errores de diseño y construcción, así como la falta de mantenimiento, han demostrado ser causas significativas de colapso estructural, y solo el 50 % de las reparaciones de hormigón resultan efectivas en Europa.

¿Cuál es el objetivo principal de RESILIFE?

El objetivo general del proyecto RESILIFE es optimizar el diseño, el mantenimiento y la reparación de estructuras híbridas y modulares (MMC) de alta eficiencia social y medioambiental para que puedan resistir condiciones extremas. Para ello, se deben abordar problemas complejos de toma de decisiones en los ámbitos público y privado, integrando criterios de sostenibilidad social y medioambiental durante todo el ciclo de vida de las estructuras y teniendo en cuenta la variabilidad e incertidumbre inherentes al mundo real. El objetivo es que estas estructuras sean tan seguras como las tradicionales, pero con una mayor capacidad de recuperación rápida y un menor impacto social y medioambiental.

 

¿Qué tipos de estructuras son el foco de RESILIFE y por qué?

El proyecto se centra en estructuras híbridas (que combinan, por ejemplo, acero y hormigón) y en estructuras basadas en métodos modernos de construcción (MMC), especialmente las modulares. Estas estructuras se han elegido como objeto de estudio debido a su gran potencial para mejorar la resiliencia estructural, la eficiencia en la construcción (al reducir las interrupciones en obra y mejorar el control de calidad) y la sostenibilidad. A pesar de sus ventajas, se han identificado lagunas en la investigación sobre su optimización para eventos extremos y su aplicación en estructuras complejas, aspectos que el proyecto RESILIFE busca subsanar.

¿Qué metodologías innovadoras utiliza RESILIFE para lograr sus objetivos?

RESILIFE emplea un enfoque multidisciplinario e innovador que integra diversas técnicas avanzadas:

¿Cómo aborda RESILIFE la incertidumbre y la variabilidad en el diseño y mantenimiento de estructuras?

El proyecto aborda la incertidumbre y la variabilidad mediante varias estrategias:

  • Análisis de funciones de distribución de eventos extremos: Para el diseño óptimo basado en fiabilidad.
  • Metamodelos y metaheurísticas híbridas basadas en fiabilidad: Permiten manejar la aleatoriedad de los parámetros y asegurar que los proyectos optimizados no sean inviables ante pequeños cambios en las condiciones.
  • Técnicas de decisión multicriterio (lógica neutrosófica y redes bayesianas): Integran aspectos inciertos y criterios subjetivos en la toma de decisiones.
  • Análisis de sensibilidad: De los escenarios presupuestarios y las hipótesis del ciclo de vida para identificar las mejores prácticas.

¿Qué se entiende por «resiliencia» en el contexto de RESILIFE y cómo se cuantifica?

En el contexto de RESILIFE, la resiliencia se define como la capacidad de una estructura para resistir eventos extremos, mantener su funcionalidad o recuperarla rápidamente con reparaciones mínimas tras sufrir daños, y con un bajo coste social y medioambiental. El objetivo es ir más allá de la simple resistencia y centrarse en la capacidad de adaptación y recuperación. El proyecto tiene como objetivo desarrollar procedimientos explícitos para cuantificar la resiliencia de las estructuras e infraestructuras en el contexto de múltiples amenazas, un aspecto que actualmente presenta una laguna en la investigación. Esto incluye tener en cuenta la funcionalidad técnico-socioeconómica y los impactos a lo largo de toda su vida útil.

¿Qué tipo de casos de estudio se aplican en la metodología RESILIFE?

La metodología de RESILIFE se aplica a varios casos de estudio clave:

  • Optimización de pórticos de edificios altos: Con estructura de acero híbrido y hormigón armado, sometidos a un fuerte incremento de temperatura, o ante el fallo completo de soportes para evitar el colapso progresivo.
  • Viviendas sociales prefabricadas en zonas sísmicas: Optimizando su resistencia a acciones extremas y su capacidad de reparación rápida.
  • Mantenimiento y reparación de patologías: Resultantes de eventos extremos en diversas estructuras.
  • Otras estructuras como puentes mixtos y estructuras modulares: Ampliando el alcance más allá de las viviendas. Estos casos de estudio permiten validar la aplicabilidad de las metodologías propuestas en situaciones reales y complejas.

¿Cuáles son las principales contribuciones esperadas de RESILIFE a la ingeniería estructural y la sostenibilidad?

Las principales contribuciones esperadas de RESILIFE son:

  • Desarrollo de soluciones constructivas innovadoras: Como conexiones especiales y estructuras fusibles para aumentar la resiliencia y evitar el colapso progresivo.
  • Formulación de metodologías de participación social: Para integrar criterios objetivos y subjetivos en decisiones multicriterio.
  • Propuesta de técnicas de optimización multiobjetivo avanzadas: Basadas en metaheurísticas híbridas de deep learning, teoría de juegos y fiabilidad.
  • Introducción de nuevas métricas: Que prioricen soluciones resilientes en la frontera de Pareto.
  • Identificación de políticas presupuestarias efectivas: Y definición de buenas prácticas de diseño, reparación y mantenimiento robusto en construcciones MMC y estructuras híbridas.
  • Avances en la modelización y evaluación: De la sostenibilidad a largo plazo y el impacto ambiental de las infraestructuras, contribuyendo a normativas y software de diseño más eficientes.

Pincha aquí para descargar

Glosario de términos clave

  • Resiliencia (estructural): Capacidad de una estructura para absorber, resistir, adaptarse y recuperarse de un evento extremo, manteniendo o recuperando su funcionalidad rápidamente y con costes mínimos.
  • Estructuras híbridas: Estructuras que combinan dos o más materiales estructurales diferentes, como acero y hormigón, para optimizar sus propiedades y rendimiento.
  • Estructuras modulares: Estructuras compuestas por unidades o módulos prefabricados que se ensamblan en el lugar de la construcción, ofreciendo ventajas en velocidad de construcción y control de calidad.
  • Eventos extremos: Desastres naturales (terremotos, tsunamis, inundaciones) o provocados por humanos (explosiones, impactos) que causan daños significativos a las estructuras y la sociedad.
  • Optimización del ciclo de vida: Proceso de diseño, construcción, mantenimiento y reparación de una estructura, considerando su impacto total (económico, social, ambiental) a lo largo de toda su vida útil.
  • Sostenibilidad: Principio que busca satisfacer las necesidades actuales sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades, integrando aspectos ambientales, sociales y económicos.
  • Inteligencia artificial (IA): Campo de la informática que dota a las máquinas de la capacidad de aprender, razonar y resolver problemas, utilizada aquí para evaluar y mejorar la resiliencia.
  • Metaheurísticas híbridas: Algoritmos de optimización que combinan diferentes técnicas heurísticas o metaheurísticas para encontrar soluciones eficientes a problemas complejos, especialmente en la optimización multiobjetivo.
  • Aprendizaje profundo (Deep Learning – DL): Subcampo del aprendizaje automático que utiliza redes neuronales artificiales con múltiples capas para aprender representaciones de datos, aplicado para mejorar la toma de decisiones y reducir tiempos de cálculo.
  • Teoría de juegos: Rama de las matemáticas que estudia las interacciones estratégicas entre agentes racionales, aplicada en la optimización multiobjetivo para el diseño de estructuras.
  • Lógica neutrosófica: Marco matemático para tratar la indeterminación y la inconsistencia, utilizado en la toma de decisiones multicriterio para manejar la incertidumbre.
  • Redes bayesianas: Modelos gráficos probabilísticos que representan relaciones de dependencia condicional entre variables, empleadas en el análisis multicriterio y la gestión de incertidumbre.
  • Colapso progresivo: Fenómeno en el cual un daño inicial localizado en una estructura se propaga a otras partes, llevando al colapso desproporcionado de una gran porción o de toda la estructura.
  • Modern Methods of Construction (MMC): Métodos de construcción modernos que incluyen tecnologías de prefabricación, construcción modular e impresión 3D, buscando mayor eficiencia y control de calidad.
  • BIM (Building Information Modeling / Modelos de Información en la Construcción): Proceso de creación y gestión de un modelo digital de un edificio o infraestructura, que facilita la integración del proyecto estructural y la toma de decisiones a lo largo del ciclo de vida.
  • Metamodelo (o modelo subrogado): Modelo simplificado de un sistema complejo que permite realizar cálculos más rápidos y eficientes, crucial para reducir los tiempos de computación en la optimización.
  • Diseño óptimo basado en fiabilidad: Enfoque de diseño que considera la probabilidad de fallo y las incertidumbres inherentes para optimizar las estructuras, garantizando un nivel de seguridad predefinido.
  • Frontera de Pareto: Conjunto de soluciones óptimas en problemas de optimización multiobjetivo, donde ninguna de las funciones objetivo puede mejorarse sin degradar al menos otra función objetivo.

Agradecimientos:

Grant PID2023-150003OB-I00 funded by MCIN/AEI/10.13039/501100011033, and the European Regional Development Fund (ERDF), a program of the European Union (EU).

Entornos de aprendizaje emergentes en la educación en ingeniería

La formación en ingeniería está experimentando una transformación profunda, impulsada por desafíos globales como el cambio climático, la revolución digital y la creciente brecha entre la enseñanza académica y las exigencias del mercado laboral. A continuación, analizamos el trabajo de Hadgraft y Kolmos (2020), donde se explora cómo la educación en ingeniería está evolucionando para hacer frente a estos retos mediante cuatro tendencias clave: el aprendizaje centrado en el estudiante, el aprendizaje contextual, la digitalización de la enseñanza y el desarrollo de competencias profesionales. A partir de estas líneas de cambio, se propone que la educación futura debe pasar de un enfoque en disciplinas individuales a currículos integrados que aborden problemas complejos y promuevan trayectorias de aprendizaje personalizadas. En última instancia, se hace hincapié en la necesidad de un cambio sistémico en el diseño curricular para preparar a los ingenieros para un futuro laboral en constante cambio.

La educación en ingeniería se enfrenta a tres desafíos fundamentales: la sostenibilidad y el cambio climático, la Cuarta Revolución Industrial (Industria 4.0) y la empleabilidad de los graduados. Estos desafíos exigen que los ingenieros del futuro posean habilidades transdisciplinares, pensamiento sistémico y contextual, y la capacidad de actuar en situaciones complejas y caóticas. Para responder a estas necesidades, la educación en ingeniería ha evolucionado hacia un enfoque centrado en el estudiante, la integración de la teoría y la práctica, el aprendizaje digital y en línea, y el desarrollo de competencias profesionales. A largo plazo, se tenderá a modelos curriculares más personalizados y centrados en proyectos que permitan a los estudiantes construir sus propias trayectorias de aprendizaje y documentar sus competencias para el aprendizaje a lo largo de la vida.

1. Desafíos clave para la educación en ingeniería

Se identifican tres desafíos principales que están impulsando la necesidad de transformar la educación en ingeniería:

  • Sostenibilidad y cambio climático: la ingeniería es fundamental para abordar los 17 Objetivos de Desarrollo Sostenible (ODS) de la ONU, especialmente en lo que respecta a la pobreza, el hambre, la salud, el agua, la energía, el crecimiento económico y la acción climática. La educación en ingeniería debe preparar a los graduados para responder a estos desafíos humanitarios, sociales y económicos.
  • Cuarta Revolución Industrial (Industria 4.0): Esta revolución implica la integración generalizada de tecnologías como la automatización, el internet de las cosas (IoT), la inteligencia artificial (IA), la robótica y la fabricación aditiva. Tradicionalmente, la ingeniería no se ha enseñado de manera integradora, pero el éxito de la Industria 4.0 depende de la interacción y la integración de estas tecnologías. Esto requiere una mayor colaboración interdisciplinaria entre diferentes programas y disciplinas universitarias, como informática, análisis de datos, robótica, automatización, producción, gestión, electrónica y materiales. La segunda revolución industrial, que está en la agenda política e industrial, implica la integración generalizada de tecnologías como la automatización, el IoT, la IA, la robótica, los materiales avanzados, la fabricación aditiva, la impresión multidimensional, las bio-, nano- y neurotecnologías, y las realidades virtuales y aumentadas.
  • Empleabilidad y competencias de innovación: a pesar de la creciente importancia de habilidades como el emprendimiento y el pensamiento de diseño, aún existe una brecha entre la formación en ingeniería y la preparación para el mundo laboral. La integración de la teoría y la práctica mediante pasantías, proyectos en colaboración con el sector y laboratorios de aprendizaje son soluciones parciales. El aprendizaje basado en problemas o proyectos (PBL) se presenta como un mecanismo para abordar este desafío. La brecha entre la educación en ingeniería y la preparación para el trabajo sigue existiendo, por lo que se deben integrar la teoría y la práctica mediante un enfoque centrado en la empleabilidad y la colaboración con la industria mediante pasantías, proyectos de asociación y laboratorios de aprendizaje.
Desafíos principales que están impulsando la necesidad de transformar la educación en ingeniería

Estos tres desafíos exigen, en conjunto, un mayor énfasis en la responsabilidad social, la integración del contexto social y la interdisciplinariedad, combinados con habilidades digitales y genéricas.

2. Respuestas actuales y tendencias emergentes

La educación en ingeniería ha respondido a estos desafíos con cuatro tendencias principales que se materializarán a corto plazo:

  1. Aprendizaje centrado en el estudiante: Un cambio significativo de la enseñanza tradicional (el profesor da la clase, los estudiantes escuchan) a un currículo más interactivo donde los estudiantes influyen en la dirección de su propio aprendizaje. Esto incluye metodologías como el aprendizaje activo, el aprendizaje colaborativo, el aprendizaje basado en equipos, el aprendizaje basado en el diseño, el aprendizaje basado en la investigación y, en particular, el aprendizaje basado en problemas y proyectos (PBL). El PBL ha demostrado su eficacia para aumentar la motivación, reducir las tasas de abandono y desarrollar competencias, y constituye una respuesta clave a la necesidad de un aprendizaje más complejo. El aprendizaje centrado en el estudiante es un área bien investigada. Los estudios sobre aprendizaje activo, aprendizaje basado en la investigación, aprendizaje basado en el diseño y aprendizaje basado en desafíos muestran efectos positivos en los resultados del aprendizaje. La motivación aumenta cuando los estudiantes inician proyectos, en los que identifican problemas y tienen un alto grado de influencia en la dirección del proyecto.
  2. Aprendizaje contextual y basado en la práctica: Incorporación de elementos curriculares relacionados con situaciones laborales futuras, como pasantías, proyectos de la industria, emprendimiento y centros de innovación. Los proyectos iniciados externamente (por empresas o la comunidad) son particularmente valiosos porque son auténticos y exponen a los estudiantes a la complejidad del mundo real. Junto con la tendencia del aprendizaje centrado en el estudiante, existe una tendencia de aprendizaje contextual y relacionado con la práctica, en la que los estudiantes cuentan con elementos del currículo relacionados con situaciones laborales posteriores, como pasantías, proyectos de la industria, emprendimiento y centros de innovación.
  3. Aprendizaje digital y en línea: Evolución del aprendizaje a distancia a estrategias de aprendizaje combinado (blended learning) que utilizan nuevas tecnologías como la realidad aumentada y la visualización 3D. El modelo del «aula invertida» (flipped classroom) es un ejemplo destacado, en el que los estudiantes se preparan con contenido en línea antes de clase y utilizan el tiempo en el aula para actividades interactivas y resolución de problemas. Este enfoque es una respuesta a la ineficacia de las clases magistrales tradicionales para los niveles superiores de la taxonomía de Bloom y los aspectos complejos del marco Cynefin. En la actualidad, el aprendizaje digital se centra en las estrategias de aprendizaje combinado. La digitalización es más que ofrecer plataformas y entornos de aprendizaje en línea como Blackboard o Moodle; consiste en usar nuevas tecnologías para el aprendizaje, como la realidad aumentada, la visualización 3D, etc. El modelo de «aula invertida», como enfoque centrado en el estudiante, es una respuesta a la metodología de enseñanza y aprendizaje más extendida en la educación en ingeniería, que consiste en un aprendizaje instructivo basado en libros de texto organizado como conferencias, tutoriales y laboratorios, combinado con la resolución de pequeños ejercicios.
  4. Competencias profesionales: Reconocimiento de la creciente importancia de desarrollar competencias profesionales integradas para la empleabilidad en el siglo XXI. Esto incluye el «aprendizaje meta» para que los estudiantes identifiquen y desarrollen sus propias competencias de manera personalizada, a menudo a través de portafolios que les permitan articular su aprendizaje y trayectoria profesional. Se enfatiza la responsabilidad individual en la construcción de la trayectoria de aprendizaje, combinada con la participación en actividades colaborativas. Otro aspecto emergente en la educación en ingeniería es la creciente importancia del aprendizaje integrado de competencias profesionales. Los portafolios desempeñarán un papel fundamental en este proceso, ya que ayudarán a los estudiantes a presentar su aprendizaje a sí mismos, a sus mentores académicos y a futuros empleadores en una entrevista de trabajo.
Respuestas actuales y tendencias en la educación en ingeniería

3. La complejidad y los sistemas en la educación en ingeniería

Los desafíos del futuro requieren que los ingenieros operen en situaciones de complejidad creciente. El marco Cynefin se utiliza para clasificar las situaciones en simples, complicadas, complejas y caóticas, y prescribe diferentes enfoques para cada una:

  • Simple: Comportamiento bien entendido, «mejores prácticas» definidas. Se aplica el método «sentir, categorizar y responder» (ej. fundamentos de ingeniería, problemas de examen tipo fórmula).
  • Complicado: Requiere comportamiento experto, múltiples respuestas correctas. Se aplica «sentir, analizar y responder» (ej. diseño de puentes o teléfonos móviles; proyectos de diseño de estudiantes). La ingeniería de sistemas proporciona un marco estructurado.
  • Complejo: No hay una solución clara o única; surgen soluciones. Se aplica «probar, sentir y responder». Estos son los «problemas complejos» (wicked problems), caracterizados por no tener una formulación definitiva, no tener una mejor solución única, no tener un punto final claro, y donde cada intento de solución impacta el sistema. El diseño de sistemas de transporte para grandes ciudades es un ejemplo.
  • Caótico: Resultado de desastres, requiere acción inmediata para estabilizar antes de aplicar otros enfoques. No suelen ser el foco directo de un grado de ingeniería, excepto en la ética de la ingeniería, aprendiendo de desastres pasados.

Los currículos de ingeniería deben incluir formación para afrontar situaciones simples, complicadas y, crucialmente, complejas. Se necesitan currículos de ingeniería que incluyan la complejidad y lo complicado. Además, para educar a los estudiantes del futuro, deben tener la posibilidad de aprender tanto disciplinas específicas como la transdisciplinariedad, así como conocimientos y habilidades técnicos simples y complicados, y la complejidad que implica la comprensión del contexto, los sistemas, la sostenibilidad y los valores.

4. Modelos curriculares futuros e integrados

La evolución de las respuestas educativas muestra una transición de lo «dirigido por el profesor» a lo «dirigido por el estudiante» y de «módulos únicos» a «modelos de currículo completo».

  • Cambio a nivel de sistema: Existe una tendencia emergente a diseñar currículos a nivel de sistema, coordinando todos los elementos curriculares en lugar de simplemente agregar o modificar cursos individuales. Este enfoque sistémico es crucial para el aprendizaje de la complejidad. Pero, en términos generales, definitivamente ha habido un cambio de un entorno de aprendizaje dirigido por el profesor a otro mucho más dirigido por el estudiante. Además, está surgiendo la tendencia a desarrollar currículos a nivel de sistema, lo que implica coordinar todos los elementos del currículo.
  • Proyectos como núcleo: Los proyectos constituyen un elemento central en los modelos curriculares emergentes, especialmente aquellos iniciados por entidades externas (industria, comunidad). Estos proyectos permiten el desarrollo de habilidades técnicas, sociales y ambientales (comunicación, trabajo en equipo, ética, sostenibilidad) y de diseño y resolución de problemas (pensamiento de diseño, ingeniería de sistemas). También facilitan la consideración de perspectivas multidisciplinares y la comprensión de problemas en contexto, con múltiples puntos de vista y sistemas de valores.
  • Ejemplos de modelos emergentes:
    • University College London (UCL) – Integrated Engineering Program (IEP): Dedica una semana de cada cinco a un proyecto integrado. Esto permite a los estudiantes ver las conexiones entre diferentes módulos y disciplinas.
    • Charles Sturt University (CSU): Programa radicalmente diferente con tres semestres orientados a proyectos, donde los estudiantes aprenden «justo a tiempo» a través de módulos en línea y pasan la mitad de su tiempo en proyectos. Luego realizan cuatro pasantías de un año.
    • Swinburne University: Enfoque similar al de CSU, con proyectos de seis semanas patrocinados por la industria realizados en la universidad, operando como una empresa de ingeniería.
    • Iron Range Engineering: Los estudiantes trabajan en proyectos de empresa y reflexionan continuamente sobre su aprendizaje.

Estos ejemplos muestran cómo las instituciones combinan el aprendizaje basado en proyectos, el aprendizaje digital/en línea y el uso de portafolios para apoyar las trayectorias de aprendizaje personalizadas.

5. Perspectivas y conclusiones

La educación en ingeniería se dirige hacia un futuro en el que la combinación de trayectorias de aprendizaje personales, competencias profesionales y capacidad de abordar la complejidad será la tendencia dominante. Esto implica lo siguiente:

  • Currículos sistémicos: Es necesario un enfoque más sistémico y holístico en el diseño curricular, en lugar de modificaciones aisladas a nivel de curso. Los modelos tradicionales centrados en cursos individuales a menudo dejan la tarea de integrar el conocimiento al estudiante.
  • Aprendizaje para la complejidad: La educación debe preparar a los estudiantes para manejar problemas complejos, que requieren integrar conocimientos disciplinarios e interdisciplinarios, teoría y práctica, comprensión contextual y abstracta, y construcción de conocimiento individual y colaborativa.
  • Habilidades del Siglo XXI: La automatización de cálculos técnicos significa que los ingenieros futuros necesitarán comprender los requisitos sociales, ambientales y económicos de la tecnología y su aplicación.
  • Aprendizaje a lo largo de la vida: Los ingenieros serán cada vez más responsables de sus propias rutas de aprendizaje personales y necesitarán saber cómo construir su crecimiento individual dentro de comunidades de aprendizaje colaborativas. El acceso al conocimiento en línea (MOOCs) aumentará, pero la clave será cómo los estudiantes desarrollan competencias para el aprendizaje a lo largo de la vida, incluida la reflexión crítica y el pensamiento sistémico, normativo y anticipatorio.

En resumen, la educación en ingeniería debe evolucionar de un enfoque basado en la transmisión de conocimientos técnicos simples a otro que fomente la capacidad de los estudiantes para navegar y resolver problemas complejos, multidisciplinares y contextualizados, preparándolos para ser aprendices activos de por vida en un mundo en constante cambio.

Referencia:

Hadgraft, R.G.; Kolmos, A. (2020). «Emerging learning environments in engineering education«, Australasian Journal of Engineering Education, 25:1, 3-16, DOI: 10.1080/22054952.2020.1713522

Glosario de términos clave

  • Aprendizaje centrado en el estudiante: Un enfoque pedagógico en el que el estudiante se convierte en el centro del proceso de aprendizaje, con métodos como el aprendizaje activo, colaborativo, basado en problemas y proyectos, donde los estudiantes tienen una influencia significativa en la dirección de su aprendizaje.
  • Aprendizaje contextual y basado en la práctica: Un enfoque de aprendizaje que integra situaciones del mundo real y experiencias prácticas en el currículo, incluyendo pasantías, proyectos industriales y hubs de innovación, para conectar la teoría con la futura situación laboral.
  • Aula invertida (Flipped Classroom): Una metodología de aprendizaje semipresencial donde la instrucción directa se mueve de la clase a un espacio individual (generalmente en línea), y el tiempo en clase se transforma en un entorno de aprendizaje dinámico e interactivo donde el educador guía a los estudiantes a aplicar conceptos.
  • CDIO (Concebir, Diseñar, Implementar, Operar): Un marco curricular para la educación en ingeniería que enfatiza el desarrollo de habilidades profesionales y un enfoque holístico e integrado del currículo, desde la concepción de una idea hasta su operación.
  • Competencias profesionales: Conjunto de conocimientos, habilidades y aptitudes (tanto técnicas como genéricas, como la comunicación, el trabajo en equipo y la ética) que se espera que los ingenieros adquieran para desempeñarse eficazmente en el lugar de trabajo.
  • Complejidad (en el marco Cynefin): Un dominio de situaciones donde la relación causa-efecto solo puede discernirse en retrospectiva, y las soluciones emergen del sondeo y la experimentación. Se caracteriza por problemas «perversos» sin soluciones únicas o definitivas.
  • Complicado (en el marco Cynefin): Un dominio de situaciones que requieren experiencia y análisis para encontrar múltiples respuestas correctas, pero donde la relación causa-efecto es clara, aunque puede no ser obvia para todos. La resolución de problemas implica «sentir, analizar y responder».
  • Cuarta Revolución Industrial (Industria 4.0): Un término que describe la tendencia actual de automatización e intercambio de datos en las tecnologías de fabricación, incluyendo sistemas ciberfísicos, el Internet de las Cosas (IoT), la computación en la nube y la inteligencia artificial (IA).
  • Currículo sistémico/integral: Un enfoque de diseño curricular que coordina todos los elementos de un programa educativo a nivel de sistema, en lugar de centrarse solo en módulos o asignaturas individuales, buscando una progresión y coherencia holísticas en los resultados del aprendizaje.
  • Cynefin Framework: Un modelo conceptual creado por Dave Snowden que ayuda a la toma de decisiones al categorizar los problemas en diferentes dominios (simple, complicado, complejo, caótico y desorden) basados en la naturaleza de su relación causa-efecto.
  • Diseño centrado en el usuario (User Experience – UX): Se refiere a la experiencia general que tiene un usuario al interactuar con un producto o sistema. En ingeniería, implica diseñar soluciones que realmente satisfagan los requisitos del cliente, el usuario y la comunidad.
  • Diseño de sistemas (Systems Design): Un enfoque estructurado para el diseño de sistemas complejos que considera las interacciones entre los componentes y el entorno, y busca satisfacer un conjunto de requisitos funcionales y no funcionales.
  • Pensamiento de diseño (Design Thinking): Una metodología de resolución de problemas centrada en el ser humano que implica fases como empatizar, definir, idear, prototipar y probar, común en muchas disciplinas de diseño, incluida la ingeniería.
  • Emergencia: En el contexto de los entornos de aprendizaje, se refiere a cómo las estructuras, patrones y comportamientos de aprendizaje se vuelven visibles a través de las interacciones entre elementos más pequeños, como estudiantes y recursos, indicando posibles direcciones futuras en la educación.
  • Habilidades blandas/genéricas: Habilidades no técnicas pero igualmente importantes, como la comunicación, el trabajo en equipo, la ética, el pensamiento crítico y la resolución de problemas, que son aplicables en una amplia gama de contextos profesionales.
  • Internet de las Cosas (IoT): Una red de objetos físicos equipados con sensores, software y otras tecnologías que les permiten conectarse e intercambiar datos con otros dispositivos y sistemas a través de Internet.
  • PBL (Aprendizaje Basado en Problemas y Proyectos): Un enfoque pedagógico centrado en el estudiante donde los alumnos aprenden sobre un tema trabajando en un problema abierto o un proyecto complejo, desarrollando habilidades de resolución de problemas, trabajo en equipo e investigación.
  • Portafolio: Una colección de trabajos de los estudiantes que demuestra su aprendizaje, habilidades y crecimiento a lo largo del tiempo. En ingeniería, se utiliza para articular las trayectorias de aprendizaje individuales y las competencias profesionales a mentores y futuros empleadores.
  • Simple (en el marco Cynefin): Un dominio de situaciones donde la relación causa-efecto es obvia para todos, y las «mejores prácticas» pueden aplicarse. La resolución de problemas implica «sentir, categorizar y responder», como la aplicación de fórmulas fundamentales de ingeniería.
  • Sostenibilidad (ODS): La capacidad de satisfacer las necesidades del presente sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades. Los ODS (Objetivos de Desarrollo Sostenible) son una colección de 17 objetivos globales interconectados establecidos por las Naciones Unidas.
  • Sistemas (Pensamiento sistémico): La capacidad de comprender cómo los componentes de un sistema interactúan entre sí y con el entorno para producir un comportamiento determinado, en lugar de analizar los componentes de forma aislada.
  • Trayectorias de aprendizaje personalizadas: Rutas de aprendizaje adaptadas a las necesidades, intereses y aspiraciones profesionales individuales de los estudiantes, permitiéndoles configurar y documentar su propio desarrollo de competencias como parte de una estrategia de aprendizaje a lo largo de toda la vida.

¿Cómo formar a los arquitectos del futuro? Un modelo innovador desde la educación técnica

La transformación digital y la industrialización de la construcción están generando una demanda creciente de profesionales altamente cualificados. Tanto la arquitectura, como la ingeniería civil, requieren un cambio profundo en la forma de formar a los futuros profesionales.

En este contexto, un grupo de investigadores de la Hunan University of Science and Engineering (China) y de la Universitat Politècnica de València (España) propone un nuevo modelo formativo que conecta mejor la educación superior con las necesidades reales del sector.

El artículo examina la necesidad de modernizar la educación en arquitectura y sugiere un modelo innovador para formar a los profesionales del futuro. Este modelo busca conectar la educación superior con las demandas reales de la industria de la construcción, caracterizada por la digitalización y la industrialización. La metodología empleada incluye análisis de datos, modelos matemáticos y la integración de la teoría con la práctica profesional. El objetivo principal es preparar arquitectos con competencias sólidas en construcción industrializada y tecnología digital, adaptados a las exigencias del mercado laboral contemporáneo.

Introducción: el desafío de modernizar la educación en arquitectura

El sector de la construcción está experimentando una transformación profunda impulsada por la digitalización, la automatización y la necesidad de soluciones sostenibles. Sin embargo, los sistemas educativos técnicos no siempre han sabido adaptarse a estas exigencias. En todo el mundo, los modelos educativos tradicionales en arquitectura muestran una desconexión creciente con la realidad del mercado laboral, especialmente en áreas como la prefabricación, el diseño colaborativo con BIM o el uso de tecnologías inteligentes.

El artículo revisado se enmarca en este contexto, tomando como referencia el caso chino, pero con ideas extrapolables a otras regiones. El objetivo principal es diseñar un sistema de formación profesional que responda de forma más efectiva a los retos de la construcción industrializada, incorporando criterios técnicos, sociales y pedagógicos.

Metodología: combinar datos, teoría y práctica

El estudio emplea una metodología cuantitativa que incluye:

  • Análisis de datos nacionales e internacionales sobre educación y empleo en el sector de la construcción.
  • Modelos matemáticos de predicción, como regresiones polinómicas y simulaciones con MATLAB.
  • Aplicación del modelo de evaluación educativa de Levin, ajustado mediante métodos de entropía para ponderar factores como calidad docente, entorno familiar, habilidades cognitivas y recursos institucionales.

A partir de estos datos, se diseñó un modelo de formación por etapas —llamado «optimización innovadora de múltiples módulos»— que articula mejor el aprendizaje teórico con la práctica profesional en empresas.

Aportaciones relevantes: una formación más adaptada al mercado

El artículo presenta un nuevo marco para la formación de profesionales de la arquitectura más alineado con las necesidades del sector. Sus aportaciones clave son las siguientes:

  • Propuesta de un modelo formativo escalonado, adaptable al ritmo del alumnado y al contexto institucional.
  • Inclusión de criterios de evaluación integral: desde la calidad académica hasta factores personales y sociales.
  • Análisis detallado de las políticas públicas chinas como base para la propuesta, con énfasis en la colaboración universidad-empresa.
  • Validación de la propuesta mediante simulaciones y estudios de casos reales.

Este enfoque integrador permite preparar a profesionales técnicos con competencias sólidas en construcción industrializada, tecnología digital y gestión de obra.

Discusión de resultados: mejoras observables y retos pendientes

Los resultados del estudio muestran mejoras concretas en la motivación del alumnado, su adecuación a los puestos de trabajo y su capacidad de adaptación a entornos reales. Se observa un aumento del interés por la profesión y una mejora de la empleabilidad, especialmente en sectores vinculados con tecnologías emergentes.

No obstante, el artículo reconoce desafíos importantes, como la falta de infraestructura adecuada para la formación práctica, la escasez de docentes con experiencia en obra y las dificultades para establecer colaboraciones estables con empresas.

Futuras líneas de investigación: ampliar, adaptar, evaluar

A partir del modelo propuesto, el artículo sugiere explorar:

  • Aplicación del sistema en otros países con necesidades similares de actualización en formación técnica.
  • Seguimiento longitudinal de las trayectorias laborales del alumnado.
  • Incorporación de inteligencia artificial y plataformas digitales para personalizar la enseñanza.
  • Extensión del modelo a otras ramas de la ingeniería civil, como estructuras o transporte.

Conclusión

El artículo revisado propone una reforma de la educación técnica en arquitectura con una propuesta estructurada, ambiciosa y bien fundamentada. Su valor radica en integrar múltiples factores en un solo modelo formativo con una base matemática sólida y una clara vocación práctica. En un momento en que el sector de la construcción necesita perfiles técnicos con nuevas competencias, investigaciones como esta ofrecen herramientas útiles para transformar la manera en que formamos a los futuros talentos.

Referencia:

ZHOU, Z.; TIAN, Q.; ALCALÁ, J.; YEPES, V. (2025). Research on the coupling of talent cultivation and reform practice of higher education in architecture. Computers and Education Open, 9:100268. DOI:10.1016/j.caeo.2025.100268.

Este artículo está publicado en abierto, por lo que os lo dejo para su descarga.

Pincha aquí para descargar

Glosario de términos clave

  • BIM (Building Information Modeling): Metodología de trabajo colaborativa para la creación y gestión de un proyecto de construcción. Su objetivo es centralizar toda la información del proyecto en un modelo digital.
  • Construcción industrializada: Proceso constructivo que implica la fabricación de componentes o módulos en un entorno de fábrica, bajo condiciones controladas, para luego ser ensamblados en el lugar de la obra.
  • Digitalización: Proceso de convertir información y procesos de formatos analógicos a digitales, aplicando tecnologías que permiten la automatización y mejora de la eficiencia.
  • Entropía (en evaluación educativa): Concepto utilizado en el estudio para ponderar y ajustar la importancia de diferentes factores de evaluación (calidad docente, entorno familiar, habilidades cognitivas, recursos institucionales) dentro del modelo de Levin.
  • Gestión de obra: Disciplina que abarca la planificación, organización, dirección y control de los recursos para llevar a cabo un proyecto de construcción de manera eficiente y dentro de los plazos y presupuestos establecidos.
  • MATLAB: Entorno de programación y plataforma numérica utilizada para realizar cálculos matemáticos, análisis de datos, desarrollo de algoritmos y modelado de sistemas, empleada en el estudio para simulaciones.
  • Modelo de evaluación educativa de Levin: Un marco teórico o práctico para valorar la calidad y eficacia de un sistema educativo, que en el estudio es ajustado con métodos de entropía para una ponderación más precisa de sus factores.
  • Modelos matemáticos de predicción: Herramientas que utilizan ecuaciones y algoritmos para prever comportamientos futuros o resultados basándose en datos históricos o actuales, como las regresiones polinómicas.
  • Optimización innovadora de múltiples módulos: Nombre del modelo formativo propuesto en el artículo, diseñado por etapas para integrar el aprendizaje teórico con la práctica profesional y adaptarse a diferentes contextos.
  • Prefabricación: Técnica constructiva que consiste en producir elementos o componentes de un edificio en un lugar distinto al de la obra, generalmente en una fábrica, para luego transportarlos e instalarlos en el sitio.
  • Regresiones polinómicas: Un tipo de análisis de regresión en el que la relación entre la variable independiente y la variable dependiente se modela como un polinomio de n-ésimo grado, utilizado para predicción en el estudio.
  • Sostenibilidad (en construcción): Enfoque que busca minimizar el impacto ambiental de las edificaciones a lo largo de su ciclo de vida, optimizando el uso de recursos, reduciendo residuos y promoviendo la eficiencia energética y el bienestar humano.
  • Transformación digital: El cambio integral que experimenta una organización o sector al integrar tecnologías digitales en todos los aspectos de sus operaciones, cultura y estrategias, lo que lleva a la creación de nuevos modelos de negocio y servicios.

 

Evaluación de sistemas de cerramiento en naves industriales de acero: impacto ambiental y estrategias de final de vida.

Acaban de publicar nuestro artículo en la revista Buildings, de la editorial Elsevier, indexada en el JCR. El trabajo se realiza un exhaustivo análisis comparativo, basado en la metodología de Análisis de Ciclo de Vida (LCA) «de la cuna a la tumba», de tres soluciones de cerramiento para naves industriales de acero (chapas de acero, combinación de acero y ladrillo de arcilla y combinación de acero y bloque de hormigón) bajo dos escenarios de fin de vida (vertedero y reciclaje). Partiendo de una unidad funcional de 500 m² de envolvente lateral y utilizando el método ReCiPe 2016 Midpoint en 18 categorías de impacto, se desglosan detalladamente los inventarios de materiales, factores de reposición, procesos de extracción y fabricación, así como las repercusiones de distintas rutas de gestión de residuos. El estudio identifica los puntos críticos en las fases preoperativa, operativa y postoperativa, cuantifica las ventajas ambientales del reciclaje frente al vertido y evidencia que, pese a la preponderancia del acero, los indicadores de toxicidad humana y ecotoxicidad superan ampliamente la huella de carbono en importancia relativa. Por último, se discuten las limitaciones, se destacan las conclusiones clave y se proponen líneas de actuación futuras para enriquecer la sostenibilidad en el diseño y la gestión de las naves industriales.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València, y es fruto de la colaboración internacional con investigadores de la Universidad Tecnológica Federal de Paraná (Universidade Tecnológica Federal do Paraná, UTFPR), de Brasil.

En el sector de la construcción existe una fuerte demanda de sustituir las técnicas tradicionales por sistemas más sostenibles que cuantifiquen y reduzcan sus impactos ambientales más allá de las simples emisiones de CO₂ o la energía incorporada. Sin embargo, son escasos los estudios comparativos de LCA en naves industriales de acero que contrasten diversas opciones de cerramiento y analicen simultáneamente distintos escenarios de fin de vida. Este trabajo compara tres sistemas de cerramiento en naves de acero (SW: paneles de acero, SClaW: acero + ladrillo de arcilla y SConW: acero + bloque de hormigón) bajo dos rutas de fin de vida (vertedero frente a reciclaje), evaluando su desempeño en 18 categorías de impacto del método ReCiPe 2016 Midpoint. El objetivo es determinar qué combinaciones de materiales y gestión de residuos ofrecen el menor impacto ambiental global y, en consecuencia, orientar futuras decisiones de diseño y gestión.

Siguiendo la norma ISO 14040/44, se define el alcance como el ciclo completo de vida de las naves (extracción de materias primas, producción, construcción, uso y fin de vida). La unidad funcional elegida es 500 m² de cerramiento lateral equivalente a la envolvente de dos muros completos de la nave (superficie total: 600 m², 30 m × 20 m × 5 m). Se excluyó el tratamiento de los residuos generados en la obra y en el mantenimiento por falta de datos fiables y para garantizar la comparabilidad entre los tres diseños.

Las naves comparten estructura de perfiles de acero (ASTM A36 y A572 Gr. 50) y techo de chapa trapezoidal galvanizada de 0,5 mm de espesor y una pendiente del 5 %. Los cerramientos varían únicamente:

  • SW: chapa de acero (2500,78 kg).
  • SClaW: chapa (1190,85 kg) + ladrillo de arcilla (17 503,33 kg) + mortero (10 860,95 kg).
  • SConW: chapa (1190,85 kg) + bloque de hormigón (51 102,57 kg) + mortero (11 235,08 kg).

Para la etapa de uso, se asumió una vida útil de la nave de 50 años y de 40 años para el cerramiento (ABNT NBR 15575), por lo que se calculó un factor de reposición RF = 50/(40−1) = 0,25. Es decir, durante la explotación se sustituyó el 25 % de los materiales del cerramiento.

Se empleó SimaPro 9.6.0.1 con la base de datos Ecoinvent 3.10 y el método ReCiPe 2016 Midpoint (perspectiva jerárquica), con el que se caracterizaron 18 categorías: desde el «potencial de calentamiento global» o GWP hasta la toxicidad humana y la ecotoxicidad (terrestre, dulce y marina), pasando por la eutrofización, el agotamiento de recursos y el consumo de agua. El análisis abarca las fases preoperacional, operativa (incluido el RF) y postoperativa (vertederos inertes/sanitarios según la norma CONAMA 307/2002 frente a rutas de reciclaje).

Resultados: fases preoperativa y operativa

  • SW presenta los mayores impactos en seis categorías clave (eutrofización, ecotoxicidad y toxicidad humana), debido a la extracción y procesamiento intensivos del acero, con liberación de metales pesados y compuestos que elevan la eutrofización de las aguas continentales, la eutrofización marina, la ecotoxicidad terrestre, la ecotoxicidad de las aguas continentales, la eutrofización marina y la toxicidad carcinógena humana.
  • SClaW es el más perjudicial en otras seis categorías (escasez de recursos fósiles, escasez de recursos minerales, GWP, formación de partículas finas, radiación ionizante y toxicidad no carcinógena humana) debido al alto consumo de combustibles fósiles y materias primas en la cocción de ladrillos.
  • SConW lidera las 6 categorías restantes (ozonación, ozonización humana y terrestre, acidificación terrestre, consumo de agua, uso del suelo), atribuibles a la producción de cemento y hormigón (SO₂, NO_x, consumo de áridos y agua).

El impacto operativo equivale a un 25 % del preoperacional en todas las categorías, debido al RF uniforme, por lo que se suma directamente para el análisis conjunto.

Resultados: fase postoperativa

  • En el Escenario 1 (vertedero), SW arroja los mayores impactos en GWP, escasez de recursos fósiles, toxicidad y consumo de agua al verter acero (100 % reciclable) en un vertedero sanitario, lo que aumenta la demanda de material virgen y las emisiones asociadas.
  • En el Escenario 2 (reciclaje), todos los impactos se reducen drásticamente para los tres proyectos; la magnitud de esta reducción es mayor en SW debido a su alta proporción de acero, lo que penaliza severamente su perfil ambiental en el vertedero.

Este contraste evidencia que la estrategia de gestión de residuos (vertedero frente a reciclaje) tiene un efecto igual o más importante que la elección del material de cerramiento.

Resultados: ciclo de vida completo y comparativa cuantitativa.

En el ciclo de vida completo bajo el escenario 2, el SW + reciclaje obtiene el mejor desempeño ambiental en 9 de las 18 categorías. Por ejemplo, en GWP registra 7 823,752 kg CO₂ eq, con el SClaW al 98,34 % y el SConW al 72,66 % de ese valor; en Ozone Depletion es 0,00126 kg CFC11 eq (SClaW al 78,62 %, SConW al 176,45 %); en Ionizing Radiation registra 221,576 kBq Co-60 eq (33,85 % y −4,54 % respectivamente).

En contraste, el SW + vertedero es la peor alternativa en siete categorías (ecotoxicidad terrestre y acuática, carcinogenicidad y eutrofización), lo que subraya el impacto negativo de no reciclar el acero.

La normalización revela que las categorías de ecotoxicidad (terrestre, dulce y marina) y toxicidad no carcinógena para los humanos dominan el impacto total, superando ampliamente a la de GWP. Esto indica que existen riesgos locales y laborales por exposición a contaminantes pesados y compuestos tóxicos, que a menudo quedan fuera de los debates centrados únicamente en el cambio climático.

Discusión de los resultados

  • La opción más favorable en la mitad de las categorías ambientales evaluadas es la elección de chapas de acero reciclables, combinada con un programa de reciclaje efectivo.
  • El estudio demuestra la relevancia de ampliar el alcance de los indicadores más allá del CO₂, ya que categorías como la ecotoxicidad y la toxicidad humana pueden ser hasta 20 veces más significativas en términos normalizados.
  • La disposición de materiales reciclables (acero, ladrillo, hormigón) en vertederos supone un «punto caliente» que puede anular parcialmente las ventajas de un diseño ligero o materialmente eficiente.

Limitaciones y futuras líneas de investigación

Los autores reconocen que el estudio presenta varias limitaciones derivadas del ámbito de los datos y del alcance metodológico. En primer lugar, se ha excluido del inventario la generación de residuos durante las fases de construcción y mantenimiento, debido a la falta de datos fiables y específicos para proyectos de naves industriales. Además, la dependencia de procesos y materiales modelados en la base de datos genérica Ecoinvent, sin tener en cuenta los inventarios locales brasileños, puede afectar a la representatividad regional de los resultados y sesgar las conclusiones. Por último, el análisis se ha centrado exclusivamente en indicadores ambientales, dejando fuera las dimensiones económica y social, como los costes de ciclo de vida y el impacto social, así como aspectos operativos clave, como el confort térmico y la eficiencia energética durante el uso de las naves.

Para superar estas limitaciones y enriquecer la sostenibilidad de futuros estudios, se proponen una serie de recomendaciones. En primer lugar, se sugiere incorporar inventarios primarios locales que reflejen de manera más precisa los procesos y materiales de cada región, especialmente en contextos como el brasileño. En segundo lugar, se debe ampliar el abanico de sistemas constructivos analizados, incluyendo soluciones con aislantes y materiales híbridos que puedan ofrecer mejores prestaciones ambientales. En tercer lugar, se debe avanzar hacia un análisis integrado de costes y aspectos sociales mediante una metodología LCSA (Life Cycle Sustainability Assessment), que combine las dimensiones económica, ambiental y social. Por último, se debe evaluar el rendimiento en uso de las naves y relacionar los resultados de la LCA ambiental con parámetros de eficiencia energética y confort térmico para ofrecer una visión más completa del ciclo de vida del edificio.

Referencia:

VITORIO JUNIOR, P.C.; YEPES, V.; ONETTA, F.; KRIPKA, M. (2025). Comparative Life Cycle Assessment of Warehouse Construction Systems under Distinct End-of-Life Scenarios. Buildings, 15(9), 1445. DOI:10.3390/buildings15091445

Como el artículo está publicado en abierto, lo dejo para su descarga.

Pincha aquí para descargar

 

Optimización de la inversión en ingeniería de la construcción mediante redes de atención gráfica y MCDM

Tenemos el placer de anunciar la publicación de un artículo en la revista Computers & Industrial Engineering, revista indexada en el primer cuartil del JCR. Se trata de una colaboración con colegas de Turquía, en especial con el profesor Vedat Toğan.

El artículo analiza si la integración de Graph Attention Networks (GAT) con metodologías multicriterio de toma de decisiones (MCDM) mejora la precisión y fiabilidad en la selección de proyectos de inversión en ingeniería de la construcción. La cuestión central es si los modelos de aprendizaje automático basados en redes superan a los métodos MCDM tradicionales a la hora de predecir la viabilidad de proyectos de inversión. Esta pregunta define el problema de la ineficacia en la selección de proyectos debido a la complejidad de los factores interdependientes y orienta el estudio hacia la evaluación de modelos predictivos basados en redes.

Metodología

El estudio emplea un enfoque híbrido que combina el juicio experto, los métodos MCDM y el aprendizaje automático avanzado. Se procesa un conjunto de datos de más de 33 000 proyectos de inversión en construcción, aplicando la selección de características mediante análisis de componentes principales (PCA) y la clasificación basada en criterios como el riesgo país, la calificación de desarrollo empresarial y el valor del proyecto. A partir de estos datos, se estructuran tres redes de inversión: regional, nacional y basada en el modo de financiación. Estas redes se introducen en modelos GAT, que aplican mecanismos de atención para predecir la viabilidad de la inversión. La validación del modelo se realiza mediante métricas de precisión, exhaustividad, puntuación F1 y curvas ROC, y se compara con árboles de decisión y modelos de bosque aleatorio.

Contribuciones relevantes

  1. Integración de aprendizaje automático y MCDM: El estudio demuestra cómo los GATs pueden mejorar la precisión en la selección de proyectos, combinando métodos MCDM y aprendizaje profundo.
  2. Desarrollo de modelos de inversión basados en redes: Se estructuran los datos de inversión en tres redes diferenciadas, proporcionando un marco novedoso para evaluar interdependencias entre proyectos.
  3. Validación de la eficacia de los GATs: Se logra una precisión superior al 99 % en la red regional y superior al 98 % en las redes nacionales y de financiación, destacando el potencial de los GATs en la planificación estratégica de inversiones.
  4. Aplicabilidad práctica en la toma de decisiones: Se demuestra la viabilidad de los GATs para mejorar herramientas de apoyo a la decisión en inversiones a gran escala, reduciendo riesgos financieros.

Discusión de resultados

Los modelos GAT basados en redes mejoran significativamente la precisión en la selección de proyectos de inversión en comparación con los métodos MCDM convencionales. La red regional es la que logra una mayor precisión, lo que sugiere que la agregación geográfica proporciona una base sólida para la toma de decisiones. Las redes nacionales y de financiación, aunque con una precisión ligeramente menor, siguen superando a los métodos tradicionales, lo que demuestra las ventajas del modelado de dependencias basadas en redes.

Las tasas de error, aunque mínimas, resaltan la necesidad de combinar modelos automatizados con la validación experta. En conclusión, los GAT son herramientas eficaces para la selección de proyectos, pero no deben reemplazar la toma de decisiones humanas. Además, se evidencia que los modelos basados en financiación capturan estructuras financieras clave que influyen en la viabilidad de los proyectos, lo que aporta un valor añadido a la evaluación del riesgo de inversión.

Líneas de investigación futuras

  1. Ampliación de modelos basados en redes: Explorar redes adicionales que incluyan marcos regulatorios y estabilidad económica para optimizar la toma de decisiones.
  2. Integración de datos en tiempo real: Incorporar tendencias de mercado y datos económicos actualizados para mejorar la capacidad predictiva.
  3. Comparación con otros modelos de aprendizaje profundo: Evaluar el desempeño de los GATs frente a otras variantes de redes neuronales gráficas como Graph Convolutional Networks (GCNs).
  4. Aplicación en otros sectores de infraestructura: Extender la metodología a sectores como el transporte y la planificación urbana para evaluar su aplicabilidad.
  5. Desarrollo de sistemas híbridos de apoyo a la decisión: Combinar técnicas MCDM con predicciones en tiempo real para maximizar la usabilidad en la práctica.

Conclusión

El estudio demuestra que la integración de GAT con MCDM mejora la toma de decisiones en inversiones en ingeniería de la construcción. Al estructurar los datos en modelos basados en redes, se proporciona un marco más preciso y contextualizado para la selección de proyectos. Los resultados confirman la superioridad de los modelos basados en redes frente a los enfoques tradicionales, especialmente en lo que respecta a la gestión de dependencias complejas entre proyectos. No obstante, se destaca la importancia de la validación experta para mitigar errores de clasificación. Las futuras investigaciones deben centrarse en mejorar las capacidades del modelo, integrar datos dinámicos y perfeccionar las herramientas de apoyo a la toma de decisiones para optimizar la selección de inversiones en ingeniería de la construcción.

Referencia:

MOSTOFI, F.; BAHADIR, U.; TOKDEMIR, O.B.; TOGAN, V.; YEPES, V. (2025). Enhancing Strategic Investment in Construction Engineering Projects: A Novel Graph Attention Network Decision-Support Model. Computers & Industrial Engineering, 203:111033. DOI:10.1016/j.cie.2025.111033

El artículo se puede descargar gratuitamente hasta el 5 de mayo de 2025 en el siguiente enlace: https://authors.elsevier.com/c/1kmrt1I2r-Q9z0

Ya está disponible la norma UNE-EN ISO 56001:2024

La nueva norma ISO 56001, que establece un sistema de gestión de la innovación, ya está disponible. Esta norma es útil tanto para las organizaciones que ya cuentan con la certificación AENOR en gestión de la innovación como para aquellas que inician este proceso. La ISO 56001 facilita la migración desde la norma UNE 166002, con la que comparte más del 90 % de los requisitos, lo que permite una transición fluida. Las organizaciones tienen de plazo hasta enero de 2028 para realizar esta migración.

La certificación ISO 56001 no solo optimiza la gestión de la innovación, sino que también mejora la competitividad, eficiencia y sostenibilidad de las empresas. AENOR ha liderado el desarrollo de esta norma a nivel internacional, habiendo emitido ya más de 700 certificados en varios países.

La norma ISO 56001 introduce un nuevo enfoque respecto a la UNE 166002:2021, especialmente en lo que respecta a la definición y el alcance de la innovación. Mientras que la UNE 166002 abarcaba la I+D+i (Investigación, Desarrollo e Innovación), la ISO 56001 se centra únicamente en la innovación, integrando la investigación y el desarrollo dentro de este concepto.

El nuevo enfoque de innovación se orienta hacia la creación y redistribución de valor, entendido como las ganancias derivadas de la satisfacción de necesidades y expectativas, lo que incluye aspectos como ingresos, ahorros, productividad, sostenibilidad y satisfacción.

La principal novedad del sistema de gestión de la innovación de la ISO 56001 es su enfoque estratégico para planificar los procesos, en lugar de imponer una gran cantidad de requisitos. Las organizaciones deben tener en cuenta aspectos como las cuestiones internas y externas, los requisitos de las partes interesadas y los riesgos y oportunidades al planificar el sistema.

Otra novedad importante es la jerarquía establecida en la ISO 56001 para los niveles de gestión: intención > política > estrategia > objetivos > indicadores, en contraste con la jerarquía de la UNE 166002: visión > estrategia > política > objetivos > indicadores.

La razón de este enfoque es que un sistema de gestión de la innovación opera en tres niveles: estratégico, táctico y operativo. Según los requisitos de la norma ISO 56001, las relaciones entre estos niveles se describen de la siguiente manera:

  • Intención de innovación (Cláusula 4): En el nivel estratégico, define el alcance del sistema de gestión y establece la base para la estrategia de innovación.
  • Alcance (Cláusula 4): Determina los límites y la aplicabilidad del sistema de gestión de la innovación.
  • Política de innovación (Cláusula 5): Proporciona un marco para definir la estrategia y los objetivos de innovación. Esta política puede complementar otras políticas del sistema de gestión de la organización.
  • Estrategia de innovación (Cláusula 5): Basada en la intención de innovación, está alineada con la política de innovación y establece los objetivos estratégicos, creando el marco para definir los objetivos tácticos y las carteras de innovación.
  • Objetivos de innovación (Cláusula 6): A nivel táctico, deben ser coherentes con la política y la estrategia de innovación.
  • Carteras de innovación (Cláusula 6): Alineadas con la estrategia y los objetivos de innovación, consisten en un conjunto de iniciativas de innovación.
  • Iniciativas de innovación (Cláusula 8): Se desarrollan a nivel operativo.
  • Procesos de innovación (Cláusula 8): También establecidos a nivel operativo, son flexibles y adaptables para ejecutar las iniciativas de innovación.

Ventajas de implementar la ISO 56001

Las organizaciones que implementen y certifiquen un Sistema de Gestión de la Innovación según la Norma ISO 56001 disfrutarán de numerosos beneficios. A continuación, se detallan las principales ventajas:

  • Mejora de la capacidad de innovación: La norma ISO 56001 proporciona una estructura clara y procesos definidos que permiten gestionar la innovación de manera sistemática. Esto facilita la flexibilidad y adaptabilidad, y ayuda a las organizaciones a responder rápidamente a los cambios del mercado y a aprovechar nuevas oportunidades.
  • Aumento de la eficiencia y eficacia: Al implementar esta norma, se optimizan los recursos, ya que se garantiza su uso eficiente y orientado a actividades innovadoras. Además, fomenta la gestión proactiva de la incertidumbre y los riesgos, lo que reduce significativamente las posibilidades de fracaso en proyectos de innovación.
  • Fomento de una cultura de innovación: La adopción de la ISO 56001 fomenta comportamientos innovadores, como la exploración, la colaboración y la experimentación dentro de la organización. Además, motiva al personal y genera un entorno donde se valoran y apoyan las ideas innovadoras, lo que fortalece el compromiso de los empleados.
  • Mejora de la competitividad: Al fomentar la innovación, esta norma no solo mejora la competitividad de la organización, sino que también aumenta su capacidad para adaptarse a un entorno en constante cambio. La norma facilita la creación de productos, servicios y procesos innovadores que diferencian a la organización del resto en el mercado, lo que le otorga una ventaja competitiva. También permite adaptarse de manera efectiva a las demandas y tendencias del mercado, lo que garantiza una mejor respuesta a las necesidades de los clientes.
  • Creación de valor: La implementación de la ISO 56001 contribuye a generar valor financiero y no financiero a través de soluciones innovadoras. Además, garantiza la sostenibilidad a largo plazo de la organización al integrar la innovación en su estrategia empresarial.
  • Mejora de la gestión del conocimiento: Esta norma fomenta la explotación del conocimiento mediante la utilización de fuentes internas y externas para generar y aprovechar información. Además, establece enfoques efectivos para gestionar el conocimiento necesario para impulsar la innovación.
  • Integración con otros sistemas de gestión: La norma ISO 56001 es compatible con otros sistemas de gestión, como el de calidad (ISO 9001). Esto facilita una integración coherente y eficiente, y permite una gestión más holística de las operaciones organizativas.
  • Mejora continua: La norma fomenta la evaluación continua del rendimiento del sistema de gestión de la innovación y promueve la implementación de mejoras basadas en los resultados obtenidos. De este modo, se garantiza un progreso constante hacia la excelencia en innovación.
  • Certificación y reconocimiento: La certificación conforme a la ISO 56001 otorga credibilidad y reconocimiento, y demuestra el compromiso de la organización con la innovación. Además, aumenta la confianza de clientes, inversores y otras partes interesadas en la capacidad de la organización para innovar de manera efectiva.

En resumen, la ISO 56001 no solo mejora la capacidad de innovación, sino que también fortalece la competitividad, la eficiencia y la cultura de innovación dentro de las organizaciones, garantizando su sostenibilidad y éxito en un mercado dinámico.

9 beneficios de la gestión de la innovación con la ISO 56001. https://revista.aenor.com/408/beneficios-de-la-gestion-de-la-innovacion-con-la-nueva-iso-5.html#msdynttrid=u5uhfJbvbt2_jFR9qdSsTWyES9PhHwzzZA9G0gvVxWY

El presente informe analiza en profundidad la norma UNE-EN ISO 56001:2024, que establece los requisitos para un sistema de gestión de la innovación. A continuación, se desarrolla detalladamente su contenido según sus principales apartados.

Contexto de la organización

La norma exige que la organización comprenda su entorno interno y externo, incluidos los factores políticos, económicos, tecnológicos, sociales, legales y ambientales que puedan afectar a su capacidad para gestionar la innovación. Este análisis implica identificar riesgos, oportunidades y cuestiones relevantes que puedan influir en sus actividades.

Los factores externos incluyen condiciones políticas y legislativas, dinámicas del mercado, desarrollo tecnológico, cambios sociales, impacto ambiental y regulaciones gubernamentales. Una comprensión adecuada permite a la organización anticiparse a tendencias, identificar amenazas y descubrir nuevas oportunidades para innovar. Por ejemplo, cambios en la legislación medioambiental pueden fomentar el desarrollo de productos sostenibles.

En cuanto a los factores internos, se incluyen elementos como la cultura organizativa, la estructura jerárquica, los recursos disponibles, la experiencia acumulada y los procesos internos. La organización debe evaluar sus capacidades y limitaciones para determinar su nivel de preparación para la innovación. Un equipo bien capacitado y una cultura abierta a nuevas ideas son esenciales para facilitar la adopción de innovaciones.

También se subraya la necesidad de comprender las necesidades y expectativas de las partes interesadas, que pueden incluir clientes, empleados, proveedores, socios estratégicos y reguladores. Identificar sus intereses permite diseñar soluciones que generen valor y fortalezcan las relaciones comerciales.

Determinar el propósito de la innovación implica establecer metas claras sobre lo que se espera lograr a través de actividades innovadoras. Este propósito debe reflejarse en una declaración estratégica y estar respaldado por la alta dirección.

Por último, definir el alcance del sistema de gestión de la innovación implica delimitar las áreas de aplicación. Esto incluye identificar los procesos, productos, servicios y ubicaciones relevantes. El alcance debe documentarse formalmente y revisarse periódicamente para garantizar su pertinencia y alineación con los objetivos de la organización.

Liderazgo

La alta dirección debe demostrar liderazgo y compromiso mediante la definición de una política de innovación clara y alineada con la estrategia empresarial. Este compromiso incluye establecer una visión y objetivos estratégicos de innovación, garantizar recursos adecuados y fomentar una cultura organizativa que valore la innovación.

La alta dirección es responsable de integrar los requisitos del sistema de gestión de la innovación en todos los procesos de la organización. Debe establecer estructuras organizativas que permitan la colaboración, la toma de decisiones efectiva y el desarrollo de capacidades clave. El liderazgo implica delegar responsabilidades y empoderar a equipos y personas clave para desarrollar y gestionar iniciativas de innovación.

La comunicación efectiva es un aspecto esencial. La alta dirección debe comunicar la importancia de la innovación a todos los niveles de la organización y garantizar que los empleados comprendan los objetivos, la estrategia y su contribución individual. Esto incluye promover la transparencia, compartir información relevante y establecer mecanismos de retroalimentación.

Además, el liderazgo incluye la gestión del cambio. La alta dirección debe preparar a la organización para adaptarse a cambios internos y externos, fomentando la flexibilidad y la resiliencia. Debe fomentar un entorno que valore la toma de riesgos calculados y la experimentación controlada.

La promoción de una cultura de innovación es otro aspecto fundamental. Esto implica desarrollar valores organizativos que apoyen la creatividad, la apertura al cambio y el aprendizaje continuo. Se espera que la alta dirección actúe como modelo a seguir, demostrando un compromiso visible con la innovación mediante su participación activa en proyectos clave y la asignación de incentivos y reconocimientos adecuados.

Por último, se debe establecer una política de innovación formal que exprese claramente el compromiso de la organización con el desarrollo de nuevas ideas, la mejora continua y el cumplimiento de los requisitos legales y reglamentarios aplicables. Esta política debe estar documentada, comunicada y revisada periódicamente para garantizar su relevancia y eficacia.

Planificación

La planificación es un pilar fundamental para implementar un sistema de gestión de la innovación eficaz. Implica identificar riesgos y oportunidades, establecer objetivos claros y definir estrategias para alcanzarlos.

  • Identificación y gestión de riesgos y oportunidades: La organización debe realizar un análisis en profundidad de los riesgos y oportunidades relacionados con la innovación. Esto incluye factores internos, como los recursos disponibles y las capacidades técnicas, y factores externos, como los cambios en el mercado, las regulaciones y los avances tecnológicos. La gestión proactiva permite mitigar riesgos potenciales y aprovechar oportunidades emergentes.
  • Establecimiento de objetivos de innovación: Los objetivos deben ser específicos, medibles, alcanzables, relevantes y con plazos definidos (SMART). Deben alinearse con la estrategia general de la organización y abarcar todos los niveles funcionales. Los objetivos estratégicos marcan la dirección general, mientras que los tácticos y operativos detallan acciones específicas.
  • Desarrollo de estrategias y planes de acción: Para cada objetivo, la organización debe desarrollar planes detallados que incluyan los recursos necesarios, los responsables, los plazos y las métricas de éxito. Es crucial establecer indicadores clave de rendimiento (KPI) para hacer un seguimiento del progreso. Los planes deben ser flexibles y adaptables a cambios en el entorno.
  • Gestión de carteras de innovación: La gestión de carteras permite priorizar proyectos en función de criterios como la viabilidad técnica, el impacto potencial, el coste y la alineación estratégica. El portafolio debe ser equilibrado y considerar proyectos a corto, medio y largo plazo, con distintos niveles de riesgo e innovación disruptiva.

Apoyo

El éxito del sistema de gestión de la innovación depende de la provisión adecuada de recursos y del apoyo continuo por parte de la organización. Este apartado detalla los elementos clave que deben estar disponibles para garantizar el funcionamiento eficaz del sistema.

  • Recursos humanos: Para gestionar la innovación de manera efectiva, es necesario contar con un equipo cualificado y capacitado. La organización debe proporcionar formación continua para desarrollar habilidades técnicas, creativas y de gestión. El personal debe estar motivado y comprometido con políticas de incentivos, reconocimiento y planes de carrera.
  • Infraestructura y tecnología: Es indispensable contar con instalaciones físicas adecuadas y plataformas tecnológicas avanzadas que permitan desarrollar, implementar y gestionar iniciativas innovadoras. Esto incluye laboratorios, oficinas creativas y herramientas de gestión de proyectos.
  • Financiación y recursos económicos: Es fundamental contar con financiación acorde con los objetivos estratégicos de innovación. La financiación debe estar garantizada y ser acorde con los objetivos estratégicos de innovación. La asignación presupuestaria debe cubrir la investigación, el desarrollo, las pruebas y la comercialización de productos o servicios innovadores.
  • Gestión del conocimiento: La creación, el almacenamiento y la difusión del conocimiento son esenciales. Deben crearse sistemas para capturar lecciones aprendidas y buenas prácticas. El uso de plataformas digitales facilita la gestión de la información crítica.
  • Propiedad intelectual y cumplimiento legal: Es imprescindible proteger los derechos de propiedad intelectual mediante patentes, marcas y derechos de autor. La organización debe garantizar el cumplimiento de todas las normativas legales aplicables para evitar riesgos jurídicos.

Operación

Este apartado se centra en la ejecución de los procesos relacionados con la gestión de la innovación, que abarca desde la generación de ideas hasta la implementación de soluciones.

  • Gestión de iniciativas: Las iniciativas de innovación deben gestionarse mediante proyectos estructurados de manera adecuada. Esto implica definir objetivos claros, asignar recursos adecuados y establecer responsables para cada tarea.
  • Procesos de innovación: Los procesos de innovación incluyen la identificación de oportunidades, el desarrollo de conceptos, la validación de soluciones y su posterior implementación. Cada etapa debe estar documentada y ser objeto de un seguimiento constante.
  • Desarrollo y pruebas: Las soluciones innovadoras deben pasar por fases de desarrollo técnico y pruebas piloto para garantizar su viabilidad antes de implementarse por completo. Para ello, se realizan simulaciones, se crean prototipos y se ejecutan ensayos controlados.
  • Comercialización y lanzamiento: El proceso de innovación culmina con la comercialización de productos o servicios desarrollados. La estrategia de lanzamiento debe incluir análisis de mercado, marketing y distribución para maximizar su impacto.
  • Control: El rendimiento de las iniciativas debe controlarse de manera continua mediante indicadores clave de rendimiento (KPI). Así se pueden realizar ajustes y mejorar los resultados obtenidos.

Evaluación del rendimiento

La evaluación del rendimiento es un componente esencial para garantizar la sostenibilidad y la eficacia del sistema de gestión de la innovación. Implica medir, analizar y revisar los resultados obtenidos.

  • Auditorías internas: Las auditorías internas deben realizarse periódicamente para verificar el cumplimiento de los requisitos de la norma. Esto incluye revisar procesos, proyectos y resultados obtenidos, identificando desviaciones y proponiendo acciones correctivas.
  • Indicadores clave de rendimiento: Para evaluar el rendimiento de las iniciativas de innovación, es necesario definir y utilizar indicadores clave. Entre estos indicadores se incluyen el número de proyectos completados, la tasa de éxito de los lanzamientos, el retorno de la inversión (ROI) y la satisfacción de los clientes.
  • Revisión por parte de la alta dirección: La alta dirección debe llevar a cabo revisiones periódicas para analizar los avances del sistema de gestión de la innovación. Esto implica evaluar el cumplimiento de los objetivos estratégicos, identificar áreas de mejora y redefinir políticas y estrategias en función de los resultados obtenidos.
  • Análisis de resultados y mejoras continuas: Los resultados deben analizarse de manera integral, teniendo en cuenta tanto los éxitos como los fracasos. Las lecciones aprendidas deben documentarse para optimizar futuros procesos. La mejora continua debe ser un principio rector que guíe la evolución del sistema.

Mejora

Según la norma UNE-EN ISO 56001:2024, el proceso de mejora constituye un pilar central en la gestión de la innovación. Este proceso implica una revisión constante y sistemática de los procesos, los resultados y las estrategias implementadas. Su objetivo es incrementar la efectividad, adaptarse a nuevas condiciones del entorno y potenciar la capacidad innovadora de la organización.

  • Identificación de áreas de mejora: Para ello, la organización debe realizar un análisis continuo de sus procesos y resultados para identificar posibles áreas de mejora. Este análisis incluye el seguimiento de indicadores clave de rendimiento, la revisión de proyectos concluidos y la retroalimentación de las partes interesadas. Además, las auditorías internas y externas son fundamentales para detectar debilidades y oportunidades de crecimiento.
  • Gestión de no conformidades: La gestión de no conformidades se centra en la identificación, el registro y el tratamiento de desviaciones respecto a los estándares establecidos. La gestión de no conformidades consiste en identificar, registrar y tratar las desviaciones respecto a los estándares establecidos. Para ello, la organización debe contar con procedimientos que permitan analizar las causas raíz de las no conformidades, establecer acciones correctivas y prevenir su recurrencia.
  • Acciones correctivas y preventivas: Es fundamental implementar acciones correctivas para abordar los problemas identificados y minimizar su impacto negativo. Del mismo modo, las acciones preventivas buscan anticiparse a posibles problemas antes de que ocurran. Ambas deben estar documentadas, asignadas a responsables específicos y sujetas a plazos de ejecución para garantizar su cumplimiento y efectividad.
  • Evaluación de la eficacia de las mejoras: Es fundamental evaluar la eficacia de las mejoras implementadas. Para ello, la organización debe establecer métricas y realizar un seguimiento periódico para verificar si las acciones han logrado los resultados esperados. Esto permite ajustar estrategias y tomar decisiones informadas para futuras mejoras.
  • Revisión de la alta dirección: La alta dirección debe revisar regularmente el sistema de gestión de la innovación, considerando los resultados de auditorías, análisis de indicadores y retroalimentación de las partes interesadas. Esta revisión debe incluir la definición de nuevas metas, la reasignación de recursos y la actualización de políticas y procedimientos.
  • Innovación continua: La mejora debe ser entendida como un proceso continuo e integrado en la cultura organizacional. Esto implica fomentar un entorno donde la innovación sea un valor compartido y promover una actitud proactiva hacia el cambio y la búsqueda constante de soluciones creativas.
  • Lecciones aprendidas y gestión del conocimiento: Es esencial registrar y analizar las lecciones aprendidas de cada proyecto de innovación. La gestión del conocimiento permite capitalizar estas experiencias y aplicarlas a futuras iniciativas, reduciendo errores y potenciando el éxito en nuevos desarrollos.
  • Impulso de una cultura de mejora: Para lograr una mejora sostenida, la organización debe promover una cultura donde todos los niveles estén comprometidos con el aprendizaje continuo y la optimización de procesos. Esto incluye programas de formación, talleres de creatividad y espacios de intercambio de ideas.

Conclusión

La norma UNE-EN ISO 56001:2024 establece un enfoque integral para la gestión de la mejora en el contexto de la innovación. Su correcta aplicación permite a las organizaciones adaptarse a un entorno dinámico, ser más competitivas y generar valor sostenible a largo plazo.

Os paso un par de vídeos sobre los beneficios de la innovación con la nueva ISO 56001.

También os dejo un extracto de la norma.

Pincha aquí para descargar

Gestión y sostenibilidad de las playas en la Comunidad Valenciana: un análisis del turismo y la erosión costera

De Siocaw – Trabajo propio, Dominio público, https://commons.wikimedia.org/w/index.php?curid=3782634

El turismo es un pilar económico esencial para España, ya que representa el 12,8 % del Producto Interior Bruto (PNB) y el 12,6 % del empleo directo en 2023. Entre las distintas formas de turismo, el modelo de «sol y playa» ocupa un lugar privilegiado gracias a las favorables condiciones climáticas y a la riqueza natural de sus costas. En este contexto, la Comunidad Valenciana se posiciona como una de las principales zonas receptoras de turistas nacionales e internacionales gracias a sus playas, que suponen un recurso tanto económico como medioambiental.

Sin embargo, este modelo de desarrollo se enfrenta a importantes desafíos. La erosión costera, la presión urbanística y la sobreexplotación de recursos están poniendo en peligro la sostenibilidad de las playas, que constituyen el núcleo de la oferta turística de la región. Este informe, basado en el análisis de Yepes y Medina (2005), profundiza en los modelos turísticos, identifica las causas principales de la erosión costera y propone soluciones para garantizar el equilibrio entre desarrollo económico y conservación ambiental. Aunque este artículo tiene 20 años, algunos datos deberían actualizarse, su contenido sigue siendo plenamente vigente. No obstante, algunas de las conclusiones del estudio pueden sorprender a quienes no conocen este sector. Por tanto, recomiendo leer el artículo completo para comprenderlo mejor.

El turismo como motor económico

España es uno de los destinos turísticos más visitados del mundo, compitiendo con Estados Unidos y Francia, que en 2004 recibieron 85,7 millones de turistas extranjeros y generaron 37 250 millones de euros, lo que convierte al turismo en un sector clave para la economía nacional, ya que cubre más de la mitad del déficit comercial. En este contexto, la Comunidad Valenciana destaca por su litoral de 454 km y su clima privilegiado, con 4,9 millones de turistas internacionales y 15,9 millones de viajeros nacionales en 2004, que sumaron más de 151 millones de pernoctaciones, gracias a sus playas, sus 3000 horas de sol anuales y las temperaturas del agua, entre 13 °C y 29 °C.

Modelos de desarrollo turístico

El desarrollo turístico de las zonas litorales de la Comunidad Valenciana se puede dividir en dos modelos principales: intensivo y extensivo. Ambos tienen características distintivas que afectan a su impacto económico, medioambiental y social.

El modelo intensivo se caracteriza por estancias cortas en hoteles o apartamentos de alquiler, con alta densidad urbana y elevados niveles de gasto diario. Benidorm es un ejemplo destacado por su rentabilidad y sostenibilidad. Entre sus principales ventajas se encuentran una alta productividad económica, con ingresos de hasta 12 000 €/m², un menor consumo de recursos como agua, energía y suelo por turista, y la capacidad de operar durante todo el año, lo que reduce significativamente la estacionalidad.

El modelo extensivo se basa en estancias prolongadas en segundas residencias, con baja densidad urbana y un gasto diario reducido. Torrevieja es un ejemplo destacado por su predominio de viviendas vacacionales. Entre sus principales desventajas se encuentran un uso ineficiente de recursos, ya que se requieren hasta catorce veces más suelo por turista que en el modelo intensivo, altos costes en servicios públicos debido a la dispersión geográfica y baja densidad poblacional, así como una limitada capacidad para generar empleo y dinamismo económico local.

El análisis de Yepes y Medina demuestra que los modelos intensivos son superiores desde las perspectivas económica y medioambiental. Por ejemplo, un turista en un modelo intensivo consume cuatro veces menos agua y requiere un 93 % menos de superficie que un turista en un modelo extensivo. Además, los gastos diarios del modelo intensivo son un 60 % más altos, lo que contribuye a dinamizar el sector servicios y a crear empleo.

Erosión costera: una amenaza crítica

La erosión costera es uno de los mayores desafíos para el turismo y la sostenibilidad ambiental en la Comunidad Valenciana, donde se ha perdido arena a un ritmo de 3 millones de m³ al año desde la década de 1950, lo que supone la reducción de 200 000 m² de playas cada año y afecta al 58 % de sus 178 km de playas arenosas. Entre sus principales causas se incluyen la construcción de represas, como los 187 embalses del río Ebro, que han reducido casi totalmente su aporte de sedimentos, antes de 15 millones de m³ anuales; las barreras costeras, como espigones y rompeolas en los puertos de Valencia, Sagunto y Castellón, que generan desequilibrios sedimentarios; y la urbanización, que disminuye los reservorios naturales de sedimentos y agrava la erosión durante tormentas.

Propuestas de soluciones sostenibles

Las soluciones sostenibles para mitigar la erosión costera incluyen la recuperación de sedimentos fluviales mediante sistemas de bypass en presas y el drenaje de sedimentos acumulados en embalses para reabastecer las playas. También se proponen proyectos de regeneración de playas mediante la alimentación artificial con sedimentos marinos y fluviales, priorizando zonas críticas como la costa sur de Benidorm, que cuenta con 20 millones de m³ disponibles. Además, se recomienda restringir el desarrollo urbano en áreas vírgenes de la costa, implementando planes de ordenación territorial que equilibren turismo y conservación ambiental. Finalmente, se sugiere promover el modelo intensivo, replicando casos de éxito como el de Benidorm, e incentivar el uso eficiente de recursos mediante políticas y normativas específicas.

Impacto futuro de la inacción

La falta de medidas efectivas para abordar la erosión y la presión urbanística podría tener consecuencias desastrosas. Si no se actúa, las playas continuarán retrocediendo a un ritmo alarmante, y los recursos críticos, como el espacio litoral y la arena, se agotarán. Esto no solo afectará al turismo, sino también a la biodiversidad costera y al bienestar de las comunidades locales.

Conclusiones

El turismo costero en la Comunidad Valenciana es un recurso de incalculable valor económico y ambiental. Sin embargo, la erosión costera, la presión urbanística y la falta de estrategias de manejo sostenible están poniendo en peligro este modelo. Las soluciones deben centrarse en:

  • Restablecer el transporte natural de sedimentos.
  • Limitar la expansión urbana en áreas críticas.
  • Promover modelos turísticos intensivos más eficientes.

Si se implementan estas medidas, se puede garantizar la sostenibilidad a largo plazo de las playas valencianas, protegiendo su riqueza natural y asegurando su viabilidad económica para futuras generaciones.

Referencias

  • Yepes, V. & Medina, J.R. (2005). Land Use Tourism Models in Spanish Coastal Areas. A Case Study of the Valencia Region. Journal of Coastal Research, SI 49, 83-88.
  • Organización Mundial del Turismo (2004). Tourism Highlights Edition 2004.

Os dejo el artículo completo para su consulta:

Pincha aquí para descargar

Construcción en América Latina y el Caribe: digitalización e innovación como claves para la sostenibilidad

El sector de la construcción en América Latina y el Caribe (ALC) es uno de los pilares fundamentales de la economía regional, pero también se enfrenta a desafíos significativos en términos de sostenibilidad, productividad y digitalización.

A continuación nos hacemos eco de un informe donde se detallan las claves para transformar el sector basándose en datos, análisis de tendencias y recomendaciones prácticas. El informe lo tenéis al final de este resumen.

 

1. Introducción: importancia del sector y sus retos

El sector de la construcción genera aproximadamente 300 000 millones de dólares en América Latina y el Caribe, lo que representa el 6 % del producto interior bruto (PIB) regional y más de 20 millones de empleos directos. A nivel mundial, contribuye al 13 % del PIB y da empleo a 250 millones de personas. Sin embargo, su productividad ha crecido solo un 1 % anual en las últimas dos décadas, lo que la sitúa muy por debajo de sectores como la manufactura (3,6 %) y la agricultura (2,8 %).

El sector de la construcción es uno de los mayores consumidores de recursos naturales y contribuye significativamente al cambio climático. Según el World Green Building Council (2023):

  • Representa el 50 % del consumo global de recursos extraídos.
  • Utiliza el 15 % del agua potable mundial.
  • Es responsable del 37 % de las emisiones globales de CO₂ relacionadas con la energía.
  • Genera el 35 % de los residuos sólidos producidos anualmente en el planeta.

Además, las proyecciones indican que el sector crecerá considerablemente en los próximos años. Se estima que para 2050 aún no se ha construido el 60 % de los edificios necesarios y que el 20 % de las estructuras existentes requieren renovaciones para cumplir los objetivos de sostenibilidad y cero emisiones netas.

2. Soluciones habilitantes para la construcción sostenible

El documento identifica seis categorías fundamentales de soluciones que pueden transformar el sector hacia la sostenibilidad. Estas soluciones integran tecnologías digitales, diseño innovador, materiales sostenibles y enfoques de gestión eficientes.

  • Tecnologías digitales avanzadas: Las tecnologías digitales son esenciales para mejorar la eficiencia, la transparencia y la sostenibilidad en todas las etapas del ciclo de vida de los proyectos de construcción.
    1. Building Information Modeling (BIM): permite el diseño colaborativo de infraestructuras en un entorno digital. Sus beneficios incluyen:
      • Incremento de la productividad en un 13%.
      • Reducción de costos en un 4% y de los plazos en un 6%.
      • Automatización de procesos como la simulación de consumo energético y la evaluación de impactos climáticos.
      • Caso de éxito: en Uruguay, el uso de BIM y LEAN Construction en el proyecto CAIF Aeroparque resultó en un ahorro del 50% en tiempos de respuesta y un 63% menos en sobrecostos durante la pandemia​.
    2. Inteligencia artificial (IA): mejora la planificación, el diseño y la operación de los activos construidos. Ejemplos:
      • Simulaciones para evaluar el rendimiento energético y el comportamiento estructural ante desastres.
      • Optimización de rutas de transporte y logística en obra, reduciendo costos y emisiones.
    3. Internet de las cosas (IoT):
      • Sensores inteligentes monitorean el uso de energía, agua y recursos en tiempo real, ajustando automáticamente los sistemas para maximizar la eficiencia.
      • Aplicaciones como Building Resilience ayudan a evaluar riesgos climáticos y seleccionar ubicaciones óptimas para proyectos.
    4. Impresión 3D:
      • Permite fabricar componentes en obra o en fábricas cercanas, reduciendo los residuos y las emisiones de transporte.
      • Facilita el uso de materiales reciclados, disminuyendo la dependencia de recursos vírgenes.
    5. Blockchain:
      • Asegura la trazabilidad de materiales, verifica certificaciones ambientales y gestiona residuos con mayor transparencia.
    6. Gestión en la nube:
      • Reduce el empleo de papel, mejora la colaboración en tiempo real y almacena datos clave para optimizar la sostenibilidad.

  • Diseño sostenible: El diseño sostenible aborda el impacto ambiental desde la concepción del proyecto, empleando enfoques como el diseño bioclimático, que optimiza la orientación solar, el aislamiento térmico y la ventilación pasiva para reducir la demanda energética. Un ejemplo de ello son los edificios pasivos, que minimizan el uso de climatización activa; la eficiencia energética y la generación de energía renovable mediante paneles solares, sistemas LED y edificaciones de carbono neutro o positivas que producen más energía de la que consumen; y la flexibilidad en el diseño, con espacios modulares que se adaptan a diferentes usos y disminuyen la necesidad de futuras demoliciones.
  • Materiales sostenibles: El uso de materiales con bajas emisiones de carbono es fundamental para reducir el impacto ambiental. Entre estos materiales destacan la madera certificada, que tiene una huella de carbono negativa, es renovable, reciclable y eficiente energéticamente, y constituye una alternativa clave al hormigón en Chile, que representa el 54 % de las emisiones de carbono de un edificio; el bambú, un material resistente y de rápido crecimiento utilizado en zonas tropicales; y los materiales reciclados, que disminuyen la extracción de recursos naturales y los residuos de construcción.
  • Sistemas de construcción industrializada: La prefabricación, la construcción modular y la impresión 3D contribuyen a reducir los residuos en obra y el tiempo de construcción, y permiten finalizar las obras hasta un 50 % más rápido que con los métodos tradicionales.
  • Medición y verificación del impacto ambiental: Certificaciones como LEED, EDGE y BREEAM permiten evaluar y validar la sostenibilidad de los proyectos.
  • Enfoques de gestión eficientes: Metodologías como LEAN Construction y Advanced Work Packaging optimizan los procesos y reducen retrasos.

3. Experiencias, retos y oportunidades en Latinoamérica y el Caribe

El análisis en Brasil, Chile, Costa Rica y Uruguay revela 44 iniciativas identificadas desde 2015, la mayoría lideradas por el sector público. Entre los retos a los que se enfrentan destacan la falta de integración entre soluciones digitales y sostenibles, la baja percepción del valor económico de la sostenibilidad y los altos niveles de informalidad en el sector. Entre las buenas prácticas destacan el uso de estrategias internacionales de benchmarking, la capacitación técnica en metodologías digitales y la compra pública innovadora y ecológica para estimular la demanda de tecnologías sostenibles.

4. Claves para el futuro

Para transformar el sector, se recomiendan políticas de liderazgo público que promuevan la digitalización y la sostenibilidad, así como incentivos financieros y no financieros, como subsidios, créditos y regulaciones, para fomentar la adopción de prácticas sostenibles. También se recomienda fomentar la colaboración multisectorial mediante alianzas entre los sectores público, privado y académico para compartir conocimientos y recursos, y ofrecer programas de capacitación y educación en habilidades digitales para los trabajadores del sector.

5. Conclusión

La adopción masiva de tecnologías digitales, materiales sostenibles y enfoques innovadores puede situar a Latinoamérica y el Caribe a la vanguardia de la construcción sostenible a escala mundial. Para transformar el sector de la construcción, es necesario adoptar un enfoque holístico que combine innovación tecnológica, gestión eficiente y políticas públicas. La adopción generalizada de soluciones digitales y sostenibles no solo mejorará la productividad, sino que también reducirá el impacto ambiental, lo que hará que el sector sea más resiliente y competitivo en el contexto global.

Os dejo el siguiente documento, donde tenéis toda la información. Espero que os sea de interés.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Gestión del conocimiento: clave para la innovación y competitividad de las pymes en el sector de la construcción

El estudio, liderado por Salvador López y Víctor Yepes y publicado en la revista Advances in Civil Engineering, se centra en cómo las pequeñas y medianas empresas (pymes) del sector de la construcción pueden optimizar la gestión y el intercambio de conocimiento (conocido como KS, Knowledge Sharing, y KT, Knowledge Transfer) para mejorar su competitividad y capacidad de innovación. Este tipo de empresas, que son fundamentales para el crecimiento económico y la generación de empleo en muchas economías, se enfrentan a retos significativos en la adaptación a los cambios del mercado y en la implementación de procesos innovadores, especialmente en un sector tan competitivo y dinámico como el de la construcción.

El valor del conocimiento en las pymes de construcción

El estudio parte de la premisa de que el conocimiento es uno de los activos más valiosos para las organizaciones, especialmente en industrias de rápido cambio. Una gestión adecuada del conocimiento en las pymes no solo permite que estas empresas sobrevivan, sino que prosperen, manteniendo una ventaja competitiva mediante la innovación continua. Sin embargo, a pesar de su importancia, las pymes han enfrentado históricamente dificultades en este ámbito, dado que, a diferencia de las grandes empresas, suelen carecer de estructuras de gestión del conocimiento consolidadas o de los recursos necesarios para implementar complejos sistemas de intercambio de información.

Metodología del estudio

Para comprender mejor el panorama actual y las tendencias futuras en la gestión del conocimiento en pymes de la construcción, López y Yepes emplearon un enfoque bibliométrico y analizaron 184 publicaciones académicas mediante técnicas avanzadas, como el análisis de co-citación y el análisis de palabras clave, facilitado por el software VOSviewer. Este programa permitió crear un mapa conceptual que muestra las conexiones entre estudios y temáticas clave, y ayudó a identificar patrones emergentes y áreas que requieren más investigación. La visualización de estos datos ayudó a resaltar cómo el intercambio y la transferencia de conocimientos han evolucionado en el sector, y ofreció una visión estructurada de los temas y métodos predominantes en el ámbito de la gestión del conocimiento.

Resultados principales y recomendaciones

El análisis revela varias tendencias importantes. En primer lugar, la colaboración interorganizacional y el aprendizaje continuo se destacan como factores esenciales para el éxito de las pymes en la gestión del conocimiento. Al fomentar redes de trabajo en colaboración, tanto dentro como fuera de la organización, las pymes pueden beneficiarse de una mayor fluidez en el intercambio de conocimientos, lo que facilita la innovación y la mejora de procesos. Otro aspecto clave es el desarrollo de capacidades tecnológicas y la implementación de sistemas digitales que permitan organizar y difundir el conocimiento de manera eficiente. Estos sistemas pueden incluir desde plataformas digitales de comunicación interna hasta bases de datos de conocimientos compartidos.

López y Yepes subrayan también la importancia del liderazgo transformacional en estas empresas. Un estilo de liderazgo que fomente la apertura y la flexibilidad de la organización puede ser determinante para crear una cultura de innovación en la que el conocimiento fluya de forma más efectiva. Esta cultura de apertura es crucial para que las pymes puedan adaptarse a los cambios en el sector y aprovechar las oportunidades de mejora y crecimiento.

Además, el estudio identifica varias áreas de mejora. Las pymes del sector de la construcción suelen enfrentar problemas en la transferencia de conocimientos debido a ineficiencias en sus redes colaborativas y a la falta de sistemas digitales que apoyen esta tarea. Como resultado, los autores recomiendan una mayor inversión en infraestructura tecnológica, como herramientas de gestión del conocimiento, que faciliten la recopilación, el almacenamiento y la difusión de la información relevante. También sugieren adaptar estas prácticas de intercambio a contextos culturales y geográficos específicos, especialmente para las empresas que operan en mercados globales o que colaboran con organizaciones de otras regiones.

Implicaciones para el futuro de la gestión del conocimiento en pymes

Las conclusiones de López y Yepes destacan la necesidad de que la gestión del conocimiento en las pymes del sector de la construcción evolucione para responder a los desafíos del mercado actual. Entre las recomendaciones de futuro, el estudio enfatiza la necesidad de adoptar un enfoque de aprendizaje continuo y de mejorar las capacidades tecnológicas para facilitar la innovación y el crecimiento sostenido. Además, sugiere que las pymes deberían desarrollar una cultura organizacional que valore y facilite el intercambio de conocimientos a todos los niveles, desde la alta dirección hasta el personal operativo.

Este marco de gestión del conocimiento supone un cambio fundamental para las pymes del sector de la construcción, ya que les proporciona una base sólida para crear redes colaborativas y sistemas de intercambio de información que les permitan ser competitivas en un sector globalizado y en rápida evolución. Así, este trabajo no solo proporciona un marco conceptual para entender la gestión del conocimiento en estas empresas, sino que también ofrece una guía práctica para que puedan adaptarse y prosperar en el entorno actual.

Referencia:

LOPEZ, S.; YEPES, V. (2024). Visualizing the future of Knowledge sharing in SMEs in the construction industry: A VOS-viewer Analysis of emerging trends and best practices. Advances in Civil Engineering, 2024:6657677. DOI:10.1155/2024/6657677

Como el artículo está publicado en abierto, os lo dejo para su descarga.

Pincha aquí para descargar