La vida económica de la maquinaria

Figura 1. ¿Cuál es la vida económica de un equipo? No confundirla con la vida útil. Imagen: V. Yepes

Resulta paradójico deshacerse de una máquina cuando el coste horario es el más bajo posible. Este concepto, que a veces cuesta entender, provoca que muchas empresas se resistan a sustituir su maquinaria, lo que alarga su vida útil más de lo que aconseja la economía. En no pocas ocasiones se confunde la vida económica con la vida útil de un equipo. Pero analicemos con cierto detalle esta presunta paradoja para aclarar el concepto.

Al principio, poco después de su adquisición, el cociente entre los gastos acumulados a origen respecto a las horas trabajadas por una máquina es elevado. A medida que la máquina envejece, los costes de reparaciones y sustituciones de piezas son cada vez mayores. Por tanto, existe un punto intermedio en el que dicha relación es mínima. Dicho punto define la vida económica de un equipo, y es en ese momento cuando debería ser sustituido. La relación entre los costes horarios de una máquina a lo largo del tiempo se ha representado en la Figura 2.

Figura 2. Variación de los costos horarios y vida económica de un equipo

Los contratistas que no registran los costes horarios pueden utilizar sus máquinas más allá de su vida económica, por lo que sus costes unitarios de producción serán más elevados que los de su competencia. El reconocimiento y el tratamiento sistemático de la renovación de los bienes de equipo proporciona a las empresas amplias ventajas, ya que reduce:

  • Los costos de conservación.
  • Los costos de producción, salvando la competencia.
  • Las pérdidas por chatarra o retoques.
  • Las demoras y tiempos perdidos.

La vida económica óptima varía en función de la máquina y su trabajo, y es independiente de su vida técnica o física. Así, un equipo puede superar su vida económica y seguir funcionando correctamente o, por el contrario, retirarse antes por obsolescencia. Ahora bien, es absurdo pretender que una máquina trabaje indefinidamente. Con el paso del tiempo, los gastos de mantenimiento y de recuperación aumentan considerablemente el coste. Un cuidado concienzudo y las revisiones generales sistemáticas retrasan la fecha de inutilización, pero llega un momento en que conviene desembarazarse de la máquina, sobre todo cuando el riesgo de fallo de alguna pieza esencial por fatiga excesiva se hace inadmisible. A los equipos de obras públicas se les exige una elevada fiabilidad y, si la empresa no quiere deshacerse de la máquina, esta se pondrá en reserva, tras haber sido revisada a fondo.

Los costos horarios de reparación siguen una curva ascendente con las horas acumuladas de trabajo. Si se disponen de datos históricos sobre los costes totales de reparaciones RH, para un número H de horas trabajadas, se pueden ajustar los coeficientes λ, μ y ρ  de la siguiente parábola:

A los costes propios de la máquina deberían sumarse los de otros equipos que tienen que parar cuando la primera se detiene por una avería. Esta circunstancia evidencia un recorte de la vida útil de las máquinas de las que dependen. También sugiere la duplicidad de estos equipos y su trabajo en paralelo.

Al representar la acumulación de los costes según su origen en relación con el tiempo, aparece una línea quebrada, tal y como se muestra en la Figura 3. La recta que, desde el origen de coordenadas, es tangente a la curva de los costes acumulados, representa la pendiente mínima y, por tanto, el coste horario mínimo posible. En la Figura 3, el valor alcanza su mínimo para el ángulo BOX. El punto B señala el límite de la vida económica. Teniendo en cuenta que la mano de obra, los consumos y las reparaciones se pagan a precios muy diferentes en los distintos países, se comprueba que el óptimo económico varía de unos a otros.

Figura 3. Método gráfico para determinar el coste horario mínimo y la vida económica de un equipo

Cada máquina tiene su vida útil. Por ejemplo, 10 000 horas pueden ser adecuadas para un tractor sobre orugas, pero en una bomba de hormigón estacionaria dicha vida se reduce a la mitad. Algunos autores estiman una vida útil de entre 6000 y 16 000 horas de trabajo, en función de si el material es pesado o extraordinariamente pesado.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Análisis del ciclo de vida de puentes usando matemática difusa bayesiana

Acaban de publicarnos un artículo en la revista científica Applied Sciences (indexada en el JCR, Q2) un artículo que trata sobre el análisis del ciclo de vida de puentes usando redes bayesianas y matemática difusa. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En la actualidad, reducir el impacto de la industria de la construcción en el medio ambiente es fundamental para lograr un desarrollo sostenible. Son muchos los que utilizan programas informáticos para evaluar el impacto ambiental de los puentes. Sin embargo, debido a la complejidad y la diversidad de los factores medioambientales de la industria de la construcción, es difícil actualizarlos y determinarlos rápidamente, lo que provoca la pérdida de datos en las bases de datos. La mayoría de los datos perdidos se optimizan mediante la simulación de Monte Carlo, lo que reduce en gran medida la fiabilidad y precisión de los resultados de la investigación. Este trabajo utiliza la teoría matemática difusa avanzada bayesiana para resolverlo. En la investigación, se establece una evaluación de la teoría matemática difusa bayesiana y un modelo de discriminación prioritaria de sensibilidad de varios niveles, y se definen los pesos y los grados de pertenencia de los factores de influencia para lograr una cobertura completa de los mismos. Con el apoyo de la modelización teórica, se evalúan exhaustivamente todos los factores de influencia en las distintas etapas del ciclo de vida de la estructura del puente. Los resultados muestran que la fabricación de materiales, el mantenimiento y el funcionamiento del puente siguen produciendo contaminación ambiental; la fuente principal de las emisiones supera el 53 % del total. El factor de impacto efectivo alcanza el 3,01. Al final del artículo, se establece un modelo de sensibilidad de «big data». Optimizando con estas técnicas, las emisiones contaminantes del tráfico se redujeron en 330 toneladas. Se confirma la eficacia y la practicidad del modelo de evaluación integral de la metodología propuesta para abordar los factores inciertos en la evaluación del desarrollo sostenible en el caso de los puentes. Los resultados de la investigación contribuyen a alcanzar los objetivos de desarrollo sostenible en la industria de la construcción.

El artículo se ha publicado en abierto, y se puede descargar en el siguiente enlace: https://www.mdpi.com/2076-3417/11/11/4916

ABSTRACT:

At present, reducing the construction industry’s impact on the environment is the key to achieving sustainable development. Countries worldwide are using software systems to bridge environmental impact assessment. However, due to the complexity and discreteness of ecological factors in the construction industry, they are difficult to update and determine quickly, and data is missing in the database. Most of the lost data are optimized by Monte Carlo simulation, which significantly reduces the reliability and accuracy of the research results. This paper uses Bayesian advanced fuzzy mathematics theory to solve this problem. In the research, a Bayesian fuzzy mathematics evaluation and a multi-level sensitivity priority discrimination model are established, and the weights and membership degrees of influencing factors were defined to achieve comprehensive coverage of influencing factors. With the support of theoretical modeling, software analysis and fuzzy mathematics theory are used to comprehensively evaluate the five stages’ influencing factors in the bridge structure’s life cycle. The results show that the bridge’s material manufacturing, maintenance, and operation still produce environmental pollution; the primary source of the emissions exceeds 53% of the total emissions. The practical impact factor reaches 3.01. A big data sensitivity model was established at the end of the article. Significant data innovation and optimization analysis reduced traffic pollution emissions by 330 tonnes. Modeling the comprehensive research model application clearly confirms the effectiveness and practicality of the Bayesian network fuzzy number comprehensive evaluation model in dealing with uncertain factors in evaluating the sustainable development of the construction industry. The research results have made important contributions to realizing the sustainable development goals of the construction industry.

Keywords:

Construction industry; environmental; impact factor; analysis; contribution

Reference:

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

Descargar (PDF, 5MB)

 

Las efemérides también sirven para reivindicar el papel social de la ingeniería civil: El Puente Golden Gate

Figura 1. Puente colgante Golden Gate, en San Francisco. La segunda imagen corresponde al color que quería la Armada estadounidense. Crédito: Joan Campderrós-i-Canas/CC BY 2.0; Golden Gate Bridge, https://www.californiasun.co/stories/6-fascinating-facts-about-california-avocado-and-bumble-bee-bridge-edition/

En tal fecha, como hoy, 27 de mayo, pero del año 1937, se abrió el puente Golden Gate a los peatones y, un día después, a los vehículos. Esta efeméride suele ser noticia y ser objeto de atención por parte de los medios de comunicación. En este caso se hizo eco el programa de Radio Nacional de España “Gente despierta”. Se preparó una pequeña entrevista con el presentador Alfredo Menéndez, pero se quedó corta debido a que el programa se retrasó por la retransmisión en directo de la victoria del Villarreal sobre el Manchester United y la consecución del título de la Europa League.

Destacó de la entrevista cómo los estadounidenses afrontaron un reto como este justo después del crac del 29, y cómo se construyó el puente de mayor vano del mundo, con 1280 m entre pila y pila, y unas torres de 227 m de altura. El récord se mantuvo desde 1937 hasta 1964, momento en el que entró en funcionamiento el puente Verrazano Narrows. Estas dimensiones de vano solo se llega con la tipología de puente colgante, aunque es cierto que el Puente de la isla Russki, que es atirantado, tiene una longitud que se le aproxima, de 1104 m. Hoy el Gran Puente de Akashi Kaikyō, en Japón, tiene el mayor registro de vano de un puente, con 1991 m.

Figura 2. “Gente despierta”, el programa de RNE presentado por Alfredo Menéndez

Ya hice alguna entrevista anterior sobre el Golden Gate en Radio Nacional de España y he escrito algún que otro artículo. Os remito a los siguientes enlaces para los interesados:

Esto me suena… El puente del Golden Gate y el “Ciudadano García”

La “Puerta Dorada” de California: el Golden Gate

La teoría del color y la estética en ingeniería

Pero aquí os dejo la pequeña entrevista, por si no tuvisteis tiempo de escucharla.

Dos trillones de átomos y las infraestructuras sostenibles

Va siendo habitual mi labor de divulgación en medios de comunicación, sobre todo de la radio. Este es el caso de Radio Nacional de España, donde David Sierra conduce un programa de divulgación científica denominado “Dos trillones de átomos”. Es tremendamente interesante, aunque se emite los domingos de 4:00 a 5:00 horas en la madrugada

En este programa, en el que me realizaron una entrevista sobre las infraestructuras sostenibles, hablamos de muchas más cosas: la «dureza de los estudios de ingeniería de caminos», la errónea visión de la construcción como «cultura del ladrillo», la «internacionalización de las empresas constructoras españolas», la «inteligencia artificial», los «gemelos híbridos», etc. Espero que os guste mi propuesta de considerar la ingeniería como «cultura del bienestar». Os dejo el podcast por si os interesa.

Ciclo de trabajo de un equipo de máquinas

Figura 1. Pala sobre neumáticos cargando dúmper. Imagen: V. Yepes

Se denominará ciclo de trabajo, en su sentido más amplio, a la serie de elementos u operaciones elementales que se suceden para realizar completamente una tarea u operación.

Tiempo del ciclo será el invertido en realizar toda la serie de operaciones elementales hasta completar el ciclo, pudiéndose referir a un recurso o a un conjunto de ellos.

El tiempo del ciclo de una máquina se descompone en varios sumandos:

  1. Tiempo fijo: es la duración de determinadas operaciones que requieren un tiempo determinado como la carga, descarga y maniobras en el caso de una pala cargadora de tierras.
  2. Tiempo variable: es la duración de las operaciones elementales que dependen de determinadas condiciones del trabajo, por ejemplo la distancia en un ciclo de transporte.
  3. Tiempo muerto de inactividad: son tiempos de espera que invierte una máquina en esperar a otra cuando realizan juntas una operación.

Un caso habitual consiste en utilizar varias máquinas cuyos ciclos individuales de trabajo tienen un intervalo común. Por ejemplo, una cargadora con varios camiones (Figura 1) o un equipo de mototraíllas convencionales ayudadas en su carga por un tractor. En estos casos, los ciclos individuales de las máquinas se pueden agrupar para formar un ciclo de equipo que se repite periódicamente.

En la Figura 2 se han representado los ciclos de la máquina principal (una cargadora) y los de las máquinas auxiliares a las que sirve (cinco camiones). Se puede observar que la máquina principal presenta un tiempo muerto debido a la falta de un sexto camión. Esto se debe a que el ciclo de la máquina auxiliar no es múltiplo del ciclo de la máquina principal.

Figura 2. Esquema de los ciclos acoplados de máquinas trabajando en equipo. Tiempo muerto en la máquina principal

Siguiendo con este ejemplo, si existiese un sexto camión, la cargadora estaría siempre trabajando, mientras que los camiones deberían parar un tiempo en su ciclo para que este fuera múltiplo del de la cargadora (Figura 3). En este caso, la producción conjunta sería máxima, el plazo de ejecución mínimo y el coste por unidad de obra sería mayor.

Figura 3. Esquema de los ciclos acoplados de máquinas trabajando en equipo. Tiempos muertos en las máquinas auxiliares

Al recurso que limita la producción de un equipo se le denomina cuello de botella. Su identificación es esencial porque cualquier cambio introducido en el funcionamiento repercutirá en la capacidad de producción del equipo. En la Figura 2 se representa un equipo donde el cuello de botella son los camiones, mientras que en la Figura 3 lo es la cargadora. El recurso que causa el estrangulamiento es el que determina la producción del equipo. Se define como factor de acoplamiento o “match factor” a la relación entre la máxima producción posible de los equipos auxiliares respecto a la máxima producción posible de los equipos principales. El coste más bajo de producción se obtiene para factores de acoplamiento próximos a la unidad, pero por debajo de ella.

Conociendo los tiempos de los ciclos de las máquinas se puede estimar el número necesario de máquinas principales y auxiliares. En efecto, en una unidad de tiempo, por ejemplo, 1 hora, el número total de ciclos Nciclos, p que realizan np máquinas principales será:

donde tp es el tiempo del ciclo de la máquina principal.

Análogamente, en una unidad de tiempo, el número total de ciclos Nciclos,a que realizan na máquinas auxiliares será:

donde ta es el tiempo del ciclo de la máquina auxiliar.

Por tanto, como el número de ciclos que hacen las máquinas principales debe ser igual al número de ciclos que realizan las máquinas auxiliares, entonces

Si existen un total de P tipos distintos de máquinas principales y A de máquinas auxiliares, podemos generalizar a la siguiente expresión:

Os dejo el siguiente vídeo sobre el acoplamiento entre máquinas, que espero os sea de interés.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tipos de ensayos de fiabilidad para la distribución exponencial

Figura 1. Los ensayos de fiabilidad permiten estimar el tiempo medio entre fallos de la maquinaria en una obra

En obra pueden estimarse el tiempo medio entre fallos de una máquina mediante los denominados como ensayos de fiabilidad, basándose para ello en la distribución exponencial. Los tipos de ensayos posibles son los siguientes:

  • Ensayos completos: Se realizan hasta el fallo de todas las unidades. 
  • Ensayos censurados: Un ensayo de fiabilidad se llama censurado de orden k si la experiencia se detiene al producirse el fallo k-ésimo. También se llama test limitado por fallos. Puede ser con o sin reemplazamiento de las unidades averiadas. 
  • Ensayos truncados: Un ensayo de fiabilidad se llama truncado cuando la experiencia se detiene al cabo de una cierta duración. También se llama test limitado por tiempo. También pueden ser con o sin reemplazamiento.

La estimación del tiempo medio entre fallos (MTBF) se obtiene repartiendo la duración del ensayo por en número de fallos:

donde

T = tiempo total acumulado del test

r = número de fallos

En los ensayos censurados, si se conoce el valor de q se puede obtener la duración esperada para el ensayo.

  • En ensayo sin reemplazamiento:

  • En ensayo con reemplazamiento:

siendo r el número de fallos y n el de unidades

Asimismo, si se conoce el valor de q se puede obtener el número esperado de fallos en un ensayo trucado de duración T:

  • En ensayo sin reemplazamiento:

  • En ensayo con reemplazamiento:

donde n es el número de unidades ensayadas y T la duración prefijada del ensayo.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curva de fiabilidad de una máquina

Figura 1. La fiabilidad de la maquinaria garantiza su productividad. Imagen: V. Yepes

En determinadas condiciones, una unidad simple o compuesta puede no completar la misión para la que fue diseñada y, por lo tanto, dar lugar a un fallo. Los mecanismos que llevan al fracaso se deben a deterioros por desgaste, al medio ambiente o al azar. Los fallos pueden clasificarse en dos categorías:

  • Fallo de parada o avería: causa el cese de una función.
  • Fallo de deterioro: afecta a la calidad o causa deterioro funcional. El equipo sigue trabajando, pero las imprecisiones y otros tipos de degradación funcional crean defectos en el producto acabado o afecta a su productividad.

El concepto de fiabilidad está relacionado con los de disponibilidad y mantenimiento. En efecto, las máquinas no son infalibles, por lo que, para aumentar su tiempo disponible en las obras, es necesaria una correcta política de reparación y mantenimiento (Figura 1).

Se define la fiabilidad como la probabilidad de que una unidad funcione satisfactoriamente en un intervalo de tiempo determinado, sin que sufra interrupciones de su trabajo por fallo de alguno de sus componentes, siempre que dicho dispositivo se emplee en condiciones establecidas.

La fiabilidad se relaciona con el promedio de horas entre averías, o tiempo medio entre fallos (TMEF), definiéndose para un equipo reparable como la relación del número de horas trabajadas en un intervalo de tiempo y el número de averías sufridas en ese mismo período.

Los equipos siguen a menudo un modelo de fallo similar. La curva de fiabilidad de una máquina representa la evolución de la tasa de fallos de una máquina a lo largo del tiempo. También recibe el nombre de “curva de la bañera”, por su forma. En dicha curva aparecen tres zonas que se diferencian por la frecuencia de los fallos y su causa (ver Figura 2):

1.- Período de mortalidad infantil o de fallos prematuros. Caracterizada por una tasa de fallos elevada que disminuye rápidamente con el tiempo. Las causas de los fallos normalmente se deben a errores de diseño, de fabricación, de utilización u otras causas identificables, que una vez resueltas no suelen repetirse. Los fallos precoces ocurren durante la fase de rodaje de la máquina.

2.- Período de tasa de fallos constante o vida útil. Los fallos aparecen de forma aleatoria y accidental debido a limitaciones del diseño más los percances causados por el uso o por un mal mantenimiento. Es aconsejable limitar la utilización de las máquinas a este período. Para reducir la cuota de fallos durante la vida útil, se debería rediseñar el equipo.

3.- Período de desgaste. Caracterizado por deterioros crecientes con el tiempo, debidos a la vejez y terminación de la vida útil del equipo. Para reducir la tasa de fallos se requiere el reemplazamiento preventivo de los componentes gastados, antes de un incidente catastrófico, llegando incluso a la renovación completa del equipo.

Figura 2. Curva de fiabilidad de una máquina

Se podría alargar al máximo la vida útil de un equipo:

  1. Mediante un envejecimiento preventivo de las máquinas o sus componentes. Al someter a una unidad a un funcionamiento preliminar se eliminan los fallos prematuros. Constituye la “purga” de un elemento antes de instalarlo en un sistema.
  2. Mediante la sustitución preventiva, reemplazando las unidades o componentes al acabar su vida útil, sin esperar a su avería, evitando que se produzcan fenómenos masivos de mortalidad por envejecimiento.

Cuando la tasa de fallos es constante, la ocurrencia de un fallo es imprevisible, es decir, independiente de la vida acumulada de la unidad. En este caso, el tiempo libre de fallos se distribuye exponencialmente, siendo la fiabilidad únicamente dependiente de la duración de la misión del elemento. Estas hipótesis sustentan el denominado modelo exponencial de la fiabilidad que, si bien no es estrictamente exacto para las máquinas, debido a sus desgastes, es un modelo muy utilizado por su sencillez:

donde

R(t) = Probabilidad de funcionamiento libre de fallos durante un período de tiempo igual o mayor que t.

e = 2.718

t = Un período especificado de funcionamiento libre de fallos.

θ  = Tiempo medio entre fallos o “vida media”.

λ = Tasa de fallos (la inversa de q).

Se comprueba que la vida media es superada solo por el 36,8% de las unidades del mismo tipo en funcionamiento, pues R(1/λ)=0,368.

Una generalización del modelo exponencial es la función de Weibull, para situaciones con tasa de fallo variable, siendo adecuado en fases de fallos precoces y de envejecimiento:

donde

δ = vida mínima (>= 0)

θ = vida característica (> δ)

β = parámetro de forma (> 0)

con frecuencia se toma δ = 0, con lo cual:

β = 1 con una cuota de fallos constante. Si β <1 la tasa de fallos disminuye con el tiempo, correspondiendo con la etapa de mortalidad infantil. Si β >1, la tasa de fallos aumenta con el tiempo, recayendo con el período de desgaste. Para β =3,5 la distribución de Weibull se aproxima mucho a la normal.

Figura 3. Representación de la función de Weibull en función del parámetro de forma

La vida media adquiere con el modelo de Weibull la siguiente expresión:

donde

De la función de distribución de Weibull resulta, por desarrollo matemático, que la tasa de fallos sería:

donde λ(t) indicaría qué porcentaje de unidades sobreviven hasta la duración t, se avería en el intervalo siguiente (t+dt).

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cursos de ingeniería en línea: un formato ágil y eficiente de actualizarse

En estos tiempos de pandemia, en los que las formas de comunicarse y de impartir docencia han cambiado profundamente, los cursos en línea han irrumpido con fuerza. Pueden ser cursos síncronos, como los que hemos ofrecido en las universidades, o asíncronos, donde el estudiante avanza en función de su disponibilidad de tiempo. En este último caso, siempre hay videoconferencias u otras fórmulas para que el estudiante pueda comunicarse con el profesor.

También han aparecido otras fórmulas con fuerza. Son los webminarios o las conferencias por streaming que se realizan a través de muchos medios. Sin embargo, tras ver algunas de estas conferencias, tengo serias dudas al respecto. En la mayoría de los casos, se trata de ventas de productos de forma más o menos camuflada, ya que están patrocinados por múltiples empresas. En otros casos, los ponentes tienen un nivel bajo o discutible, con claros errores de concepto. No olvidemos que la democratización de la comunicación en redes sociales provoca una acumulación de información sin filtrar. Como diría mi buen amigo Miguel Ángel del Val Melús, catedrático de Caminos y Aeropuertos de la Universidad Politécnica de Madrid, es preferible leer un buen libro técnico a asistir a la mayoría de webminarios que inundan las redes sociales.

También he tenido la experiencia de recibir múltiples invitaciones, especialmente de Iberoamérica, para participar en conferencias, webminarios y presentaciones de todo tipo. He participado, siempre de forma altruista, en alguna de ellas. No obstante, es imposible aceptar la inmensa mayoría de las invitaciones por falta material de tiempo. He descubierto que en estos países suele ser habitual que los estudiantes se organicen en lo que llaman “capítulos estudiantiles” y sean ellos, y no los profesores, los que se encargan de reclutar a posibles ponentes, sea cual sea su especialidad. En otros casos suelen ser Colegios Profesionales los que se ponen en contacto conmigo. A todos ellos les agradezco sus invitaciones, pero he de disculparme públicamente por el hecho de aceptar solo una fracción muy pequeña de ellas, por razones de agenda.

En cuanto a los cursos de ingeniería en línea, distinguiría dos tipos fundamentales. Los primeros, llamados MOOC, (acrónimo en inglés de Massive Online Open Courses) son cursos online masivos y abiertos. Normalmente, están respaldados por universidades de prestigio y son impartidos por profesores universitarios. Mi plataforma preferida es la llamada edX, en la que participan universidades y organizaciones como el MIT (Instituto Tecnológico de Massachusetts), la Universidad de Harvard, el Tecnológico de Monterrey, IBM, el Banco Interamericano de Desarrollo y nuestra Universitat Politècnica de València. Estos cursos son totalmente gratuitos, aunque existe la opción de obtener un certificado oficial y verificado por un precio muy reducido, de alrededor de 40 euros. La opción de obtener un certificado permite acceder a la evaluación del curso y, en caso de superarlo, obtenerlo.

El segundo tipo de curso es el organizado por alguna empresa especializada en enseñanza a distancia. Estos cursos suelen incluir una mayor presencia del profesor a través de videoconferencias o foros de consulta directa. En mi caso, he realizado tres cursos con la empresa Ingeoexpert. He de decir que estoy totalmente satisfecho con la gestión y la profesionalidad de estos cursos, muchos de ellos avalados por profesores de universidades de prestigio. Estos cursos tienen distintas ediciones a lo largo del año y suelen ofrecer becas a estudiantes y descuentos especiales a empresas.

A modo de ejemplo, os paso dos cursos MOOC que tengo en marcha. Estos cursos se repiten indefinidamente, por lo que un estudiante puede empezar cuando quiera.

Introducción a los encofrados y las cimbras en obra civil y edificación

Este es un curso básico de construcción de obras civiles y de edificación con encofrados y cimbras organizado y avalado por la Universitat Politècnica de València. En este curso aprenderás las distintas tipologías y aplicabilidad de los encofrados y las cimbras utilizados en obras de ingeniería civil, de edificación y en la industria del prefabricado. Se incide especialmente en la comprensión del empuje del hormigón fresco sobre los encofrados, en los aspectos relacionados con la seguridad en los trabajos de cimbrado, descimbrado, encofrado y desencofrado. Se estudia con detalle el cimbrado y descimbrado de plantas sucesivas en edificación y se abordan los encofrados y cimbras empleados en puentes, túneles, estructuras en altura, edificios, entre otros: encofrados telescópicos, trepantes, deslizantes, encofrados túnel, cimbras autolanzables, cimbras autoportantes, etc.

El contenido del curso está organizado en 4 módulos, cada uno con 4 secuencias de aprendizaje que permiten, con una dedicación menor a una hora diaria, aprender los aspectos básicos de los encofrados y las cimbras. Cada semana se trabaja un módulo, teniendo el curso una duración estimada de un mes.

La inscripción la puedes realizar en el siguiente enlace: https://www.edx.org/es/course/introduccion-a-los-encofrados-y-las-cimbras-en-obr?

Introducción a los procedimientos de construcción para la mejora de terrenos en obra civil y edificación

Este es un curso básico de procedimientos constructivos necesarios para la mejora de terrenos en obras civiles y de edificación. En este curso aprenderás las distintas técnicas de mejora del terreno utilizadas habitualmente en obras de ingeniería civil y de edificación. Se incide especialmente en la maquinaria necesaria, en los procedimientos constructivos, en la aplicabilidad a los distintos tipos de suelos, en aspectos económicos, medioambientales y de seguridad en los trabajos. A lo largo del curso se abordarán aspectos como la precarga, las columnas de grava, las inclusiones en el terreno, los pilotes de desplazamiento, la compactación dinámica, la compactación mecánica de suelos, las inyecciones del terreno, la estabilización de suelos, la mezcla profunda, los anclajes, el control del nivel freático, entre otros temas.

El contenido del curso está organizado en 8 módulos, cada uno con 4 secuencias de aprendizaje que permiten, con una dedicación menor a una hora diaria, aprender los aspectos básicos de las técnicas de mejora del terreno. Cada semana se trabaja un módulo, teniendo el curso una duración estimada de dos meses (8 semanas).

La inscripción la puedes realizar en el siguiente enlace: https://www.edx.org/es/course/introduccion-a-los-procedimientos-de-construccion-para-la-mejora-de-terrenos-en-obra-civil-y-edificacion

En cuanto a los cursos que he preparado para Ingeoexpert, son los siguientes:

Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación

El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 50 horas de dedicación del estudiante. Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-construccion-de-cimentaciones-y-estructuras-de-contencion-en-obra-civil-y-edificacion/?v=04c19fa1e772

Procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación

El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-contencion-y-control-del-agua-subterranea-en-obras/?fbclid=IwAR0d1Ga2q6tuY_AfplyREj4TIOjMztLSRsy6aykXT-X4X903Mc8ERBw6TyY

Compactación superficial y profunda de suelos en obras de ingeniería civil y edificación

Este es un curso básico de técnicas y equipos de compactación superficial y profunda de suelos en obras civiles y de edificación. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-compactacion-superficial-y-profunda-de-suelos-en-obras-de-ingenieria-civil-y-edificacion/

Supongo que en los próximos meses me centraré en nuevos cursos similares a éstos y a la redacción de los correspondientes libros de texto. De ello ya os daré detalles en su momento.

Agradecimiento a mis 20.000 seguidores de Twitter en el día de nuestro patrono Santo Domingo de la Calzada

Hoy 12 de mayo se celebra el día del patrono de los ingenieros de caminos, canales y puertos, los ingenieros civiles y de los ingenieros de obras públicas, Santo Domingo de la Calzada. Coincide con el día en que mi cuenta de Twitter (@vyepesp) ha alcanzado los 20.000 seguidores. Este hito me obliga a agradecer profundamente a todos ellos su amor e interés por los temas que comento, que siempre están ligados a la ingeniería civil, la edificación y la construcción.

Por tanto, ¡muchísimas gracias a todos vosotros! Mantener este blog y las cuentas en redes sociales supone bastante esfuerzo que es recompensado sabiendo que estáis todos ahí para darme ánimos.

¡Un abrazo muy grande!

Os dejo algunos tuits de muestra. Saludos.

https://twitter.com/vyepesp/status/1390564517038415878

 

El escaso reconocimiento de la revisión de artículos científicos

Como editor, autor y revisor en varias revistas científicas indexadas, constato una avalancha imparable de envíos de artículos científicos que se ha desbordado en estos últimos meses. No se puede afirmar categóricamente que esto se deba al confinamiento obligatorio de muchos colegas a causa de la pandemia. Es posible que muchos hayan encontrado un hueco para escribir y enviar ahora los artículos.

Me temo que la explicación es mucho más profunda y se debe a la presión existente por publicar como sea, lo cual nos lleva a una cierta inflación que, sin duda, no es buena para el desarrollo y la transmisión del conocimiento científico. Sea la explicación esta o cualquier otra, lo cierto es que se constata un aumento exponencial en el número de artículos remitidos a las revistas.

La consecuencia es inmediata. Aumenta el trabajo de los editores y se necesita un número creciente de revisores cualificados que permitan filtrar los trabajos mínimamente. Como la solución no es sencilla, lo que ocurre es que se rechazan muchos manuscritos a los autores sin siquiera pasar el filtro de la revisión. Como editor, me he visto obligado a devolver una gran cantidad de trabajos que, en numerosas ocasiones, no presentan novedades relevantes, son segundas partes de artículos anteriores publicados, la metodología no es transparente, los datos manejados son confusos o inexistentes, y es muy difícil que un investigador independiente reproduzca los resultados. No son infrecuentes las ocasiones en que ni siquiera se formula la pregunta de investigación ni se discuten los resultados con los obtenidos por otros investigadores. En no pocas ocasiones, las referencias citadas están en un idioma de difícil comprensión internacional (chino, ruso, árabe, etc.) o se basan en páginas web que aparecen y desaparecen por arte de magia (he visto varias veces citar la Wikipedia). También es habitual que haya un alto porcentaje de autoplagio cuando se pasa el documento por un detector de plagios. Por último, suele ocurrir que la redacción en inglés es muy mala, sin una revisión previa por parte de un nativo especialista en publicaciones científicas. Esta falta de estilo es injusta para aquellos trabajos serios que mejorarían, sin duda, tras un debate enriquecedor con revisores de calidad.

Si la investigación es buena, un defecto en el estilo del artículo científico se puede subsanar con una revisión profunda y proactiva a cargo de un revisor experimentado. Si esto ocurre, todos salimos beneficiados. El trabajo es claro y se despejan las dudas del lector. Muchos autores, yo entre ellos, agradecemos enormemente una revisión en profundidad de nuestros trabajos científicos.

Como revisor, he visto en los últimos meses una avalancha de peticiones por parte de las revistas científicas para revisar muchos artículos. Normalmente, recibo entre una y dos peticiones casi todos los días. Al principio intentaba atender el mayor número posible, pero un trabajo riguroso requiere muchas horas dedicadas a esta tarea. Horas que, salvo alguna excepción, no se remuneran. Desgraciadamente, solo un porcentaje pequeño de artículos son realmente buenos y permiten aprender y disfrutar del trabajo bien hecho. Todo lo anterior lleva a tener que renunciar a un alto porcentaje de las invitaciones recibidas.

Entonces, ¿qué ocurre con la revisión? Si en un campo determinado faltan revisores altamente cualificados, hay que buscarlos donde los haya. Por ello, algunos artículos, incluso de revistas de gran impacto, cuentan con la participación de científicos jóvenes o con experiencia en otros campos. El resultado puede ser de lo más variopinto. Puede haber críticas poco argumentadas que no aporten beneficios a la mejora del artículo o revisiones donde no haya críticas, que se limiten a señalar cuestiones menores y poco significativas. Este tipo de revisiones suelen verse en editoriales que ofrecen descuentos económicos si se revisan muchos artículos para publicarlos de forma abierta.

Por tanto, si se quiere hacer una revisión de artículos científicos con profundidad, se deben aceptar pocas invitaciones y seleccionar mucho los temas y las revistas. Es un trabajo al que se dedican muchas horas y que, por lo general, no recibe el reconocimiento que merece. Bueno, salvo en alguna ocasión. A continuación, dejo un reconocimiento que recibí hace unos días y que fue una auténtica sorpresa.