El estudio de métodos como técnica de mejora de la productividad

En un artículo anterior ya expliqué cómo aumentar la productividad a través de la medición del trabajo. En esta ocasión vamos a centrarnos en el estudio de métodos.

El estudio de métodos consiste en el registro sistemático y el examen crítico de los factores y recursos implicados en los sistemas existentes y propuestos de ejecución, como medio para desarrollar y aplicar métodos más efectivos y reducir costes. En la Tabla 1 se indican algunos posibles síntomas que harían necesario un estudio de métodos en una obra.

Tabla 1. Síntomas que evidencian la necesidad de un estudio de métodos

Los objetivos perseguidos por el estudio de métodos son los siguientes:

  • Mejorar los procesos y los procedimientos.
  • Mejorar la disposición del lugar de trabajo, así como el diseño del equipo e instalaciones.
  • Economizar el esfuerzo humano y reducir la fatiga innecesaria.
  • Mejorar la utilización de materiales, máquinas y mano de obra.
  • Crear mejores condiciones de trabajo.

En el estudio del trabajo es necesaria una actitud crítica y una actuación sistemática para analizar y mejorar la realización de una actividad específica. Así, los principios generales que deberían regir el estudio de los métodos son los siguientes:

  1. Abordar los problemas con un espíritu abierto.
  2. Eliminar ideas preconcebidas y prejuicios.
  3. Aceptar solamente los hechos y no las opiniones.
  4. Actuar sobre las causas, no sobre los efectos.
  5. Siempre hay un método mejor.

Fases del estudio de métodos

En general, para abordar y llevar a la práctica cualquier tipo de estudio de mejora de métodos, se siguen cinco fases que son las siguientes:

  1. Elección conveniente del problema y su definición.
  2. Observar y tomar registros del método actual.
  3. Analizar el método actual.
  4. Desarrollar el método mejorado.
  5. Aplicar y mantener el nuevo método.

Para elegir convenientemente el trabajo que vamos a analizar normalmente se atiende a aquel que proporciona una mayor rentabilidad en el sentido de maximizar los beneficios de la mejora en relación a los recursos destinados. Así, normalmente se seleccionan los cuellos de botella, los transportes que no aportan nada al producto, los trabajos que requieren gran cantidad de mano de obra o maquinaria o las operaciones que requieran un trabajo repetitivo.

La forma de criticar un trabajo actual es plantearse sistemáticamente preguntas sobre cada uno de los factores que intervienen en el método observado y analizado. La técnica de las preguntas daría respuesta a las siguientes cuestiones:

  • ¿Qué es lo que se hace exactamente?, y ¿por qué se hace?
  • ¿Dónde se hace?, y ¿por qué se hace ahí?
  • ¿Cuánto se hace?, y ¿por qué en esa cantidad?
  • ¿Quién lo hace?, y ¿por qué este ejecutante?
  • ¿Cómo se hace?, y ¿por qué se hace así?
  • ¿Cuándo se hace?, y ¿por qué en ese momento?

Para desarrollar el nuevo método de trabajo normalmente existen cuatro posibilidades básicas:

  1. Eliminar el trabajo innecesario.
  2. Combinar operaciones o fases de operación.
  3. Cambiar el orden de ejecución de las operaciones.
  4. Simplificar las operaciones necesarias.

Antes de adoptar el nuevo método, la dirección debe aprobarlo, para lo cual se debe realizar un informe donde se exponga:

  • Los costes y gastos generales de ambos métodos y las economías previstas.
  • El coste de implantación del nuevo método.
  • Las decisiones ejecutivas necesarias para aplicar el nuevo método.

Por último, una vez implantado el nuevo método es preciso, mediante comprobaciones periódicas –muy frecuentes al principio-, vigilar que se trabaje de acuerdo a lo previsto. Estos controles se espacian con el tiempo hasta llegar al sistema habitual de vigilancia.

Os dejo a continuación varios vídeos explicativos al respecto. Espero que os sean de interés.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Fiabilidad de los equipos de maquinaria

Se define la fiabilidad como la probabilidad de que una unidad funcione satisfactoriamente en un intervalo de tiempo determinado, sin que sufra interrupciones de su trabajo por fallo de alguno de sus componentes, siempre que dicho dispositivo se emplee en condiciones establecidas.

El concepto de fiabilidad se encuentra relacionado con el de disponibilidad y el de mantenimiento. En efecto, las máquinas no son infalibles, y por tanto para aumentar su tiempo disponible en las obras se requiere una correcta política de reparación y mantenimiento.

La fiabilidad de un sistema formado por un conjunto de componentes depende de la fiabilidad individual de sus partes constitutivas. Consideraremos, para su estudio, los sistemas con componentes acoplados en serie y en paralelo.

En el caso de la maquinaria de movimiento de tierras, una cargadora se encontraría en serie respecto a un conjunto de camiones, puesto que si falla la cargadora o el conjunto de los camiones, el equipo se para. En cambio, los camiones se encuentran en paralelo entre ellos, pues aunque falle uno de ellos, el resto del equipo puede seguir funcionando.

Sistemas con componentes acoplados en serie

El fallo de cualquier unidad de un sistema acoplado en serie supone el fracaso del conjunto. Suponiendo que n elementos funcionan con independencia, y la i-ésima componente tiene una fiabilidad Ri(t), entonces la fiabilidad del sistema completo R(t) viene dada por el producto de las fiabilidades.

Consecuencia de la ley del producto es que la fiabilidad de un sistema con componentes acoplados en serie disminuye con rapidez al aumentar su número.

Con probabilidades de fallo muy pequeñas, el producto de las probabilidades es despreciable:

Sistemas con componentes acoplados en paralelo

Un sistema con componentes acoplados en paralelo solo dejará de funcionar si lo hacen todos los elementos que lo componen. Si n unidades que actúan con independencia se conectan en paralelo y la i-ésima componente presenta una fiabilidad Ri(t), la fiabilidad del sistema completo se obtiene de la siguiente forma:

y en cuanto a las probabilidades de fallo:

La ley del producto en este caso implica que la posibilidad de fallo de un sistema con componentes acoplados en paralelo disminuye con rapidez al aumentar su número.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 156 pp. ISBN: 978-84-9048-301-5. Ref. 402.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Problemas teóricamente sencillos pero que marean a nuestros estudiantes

Cuando llevas casi 28 años impartiendo una asignatura, examen tras examen, llega un momento que te falta cierta imaginación para no repetir los problemas. Con toda la buena intención del mundo, propones un ejercicio que crees sencillo de resolver y luego te das cuenta que es más difícil de lo que habías planeado.

Si analizas las posibles causas te das cuenta que no suele fallar lo que se explica en clase, sino ciertos conceptos muy básicos que deberían haberse adquirido en Bachiller, o incluso en Secundaria. Mi impresión es que algunos estudiantes prefieren aprender un método o forma de solucionar un problema antes de pensar un poco e intentar resolverlo. Voy a poner algún ejemplo de estos problemas, con su solución para que veáis de qué estoy hablando.

Descargar (PDF, 81KB)

Referencias:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Premio TORRECID al mejor Trabajo Final de Grado de la Universidad Politécnica de Valencia para Alejandro Ferrero Montes

Alejandro Ferrero Montes, durante la presentación de su TFG

Es un placer anunciar que Alejandro Ferrero Montes ha ganado el Premio Torrecid al mejor Trabajo Final de Grado de la Universitat Politècnica de València. Dicho TFG tuve el placer de dirigirlo junto con el profesor Julián Alcalá González.

Su título fue “Estudio de soluciones mediante criterios de sostenibilidad y análisis de ciclo de vida de un paso superior, tipo pérgola, de la LAV Madrid – Levante, en el término municipal de Parla (Madrid)“. Dicho TFG se defendió el 15 de septiembre de 2020.

La empresa TORRECID es consciente de que las personas son la base de cualquier tipo de actividad, y de su formación depende el desarrollo futuro de las empresas y de la sociedad. Por eso uno de sus objetivos es fomentar habilidades emprendedoras y mentalidad internacional entre los estudiantes de la UPV para proporcionar futuros líderes empresariales, que basándose en el campo de la cerámica y el vidrio, puedan abrir nuevos caminos en estos u otros sectores, según cláusula primera del convenio UPV-Cátedra Fundación Torrecid.

La Cátedra Torrecid (recientemente Cátedra Fundación Torrecid), fue creada en 2015, dentro del marco de la colaboración estrecha que desde 1980 viene teniendo la empresa Torrecid con la Universitat Politècnica de València, reflejado en el convenio de colaboración entre la UPV y la empresa TORRECID.

Paso superior, tipo pérgola, de la LAV Madrid – Levante, en el término municipal de Parla (Madrid)

RESUMEN

El transporte es un factor principal en emisiones de GEI a nivel global. Se fomenta el uso del ferrocarril como medio de transporte, debido a su eficiencia energética, minimizando dichos impactos. Pero la implementación del ferrocarril como medio de transporte requiere la construcción de importantes infraestructuras, cuya ejecución causa grandes impactos. Se pretende reducirlos planteando un estudio de soluciones  mediante el uso de técnicas multicriterio, que considere la economía, el medio ambiente y la sociedad, para puentes de ferrocarril de tipología pérgola. Se emplea la metodología de Análisis de Ciclo de Vida, evaluando las fases que conforman el Ciclo de Vida de cada alternativa. Se ha aplicado en una pérgola de la Línea de Alta Velocidad Madrid – Levante, ubicada en Parla (Madrid). Se evalúan tres alternativas distintas: una de ejecución in situ, otra por elementos prefabricados y una de concepción mixta, con la finalidad de seleccionar la solución más sostenible.

Os dejo a continuación un resumen extendido del TFG. Como podéis comprobar, el nivel del trabajo es muy alto. Obtuvo la máxima calificación de Sobresaliente, 10 Matrícula de Honor.

Descargar (PDF, 548KB)

 

Gestión de inventarios en obra

Figura 1. Necesidad de gestión de inventarios en una obra. https://www.interempresas.net/Robotica/Articulos/255497-Procesos-de-digitalizacion-en-las-obras-de-construccion.html

Los inventarios son provisiones de artículos en espera de su utilización posterior, cuya utilidad depende de la cantidad, momento y lugar de su necesidad. En el entorno de la maquinaria, los constituyen desde las propias máquinas a las piezas de recambio u otros elementos necesarios para su funcionamiento. En general, los inventarios, existencias o stocks, evitan la escasez cuando la demanda futura del artículo sea incierta, para aprovechar la economía de escala que supone la solicitud de grandes cantidades a costos menores y para mantener el flujo de trabajo en los procesos productivos. No obstante, los artículos ociosos de inventario inmovilizan fondos y precisan de recursos para su almacenaje y mantenimiento, siendo en algún caso perecederos. Ello obliga al compromiso entre las ventajas aportadas por los grandes inventarios y los costes que suponen mantenerlos. La gestión de inventarios será la técnica que ayuda a los gerentes a determinar cuándo deben reabastecerse las existencias actuales y en qué cantidad. La gestión de las máquinas y repuestos, dichas funciones se realizan en los parques de maquinaria.

Componentes del coste de un sistema de inventarios

Una política de inventarios busca el mínimo coste esperado para un período determinado, por tanto, se deben estimar los diversos componentes que lo integran:

  1. El coste del pedido o de organización, se asocia con el reabastecimiento de un inventario, siendo independiente del número de unidades pedidas. Incluye los tiempos de oficina y administrativos, cargos por fax, teléfonos, y otros como los gastos generales de la empresa.
  2. Cada unidad pedida incurre en un coste de compra, que es un coste directo por unidad. Esta cifra puede depender del número de unidades pedidas, debido a los descuentos por cantidad.
  3. El coste de conservación por período de tiempo para cada artículo del inventario incluye los gastos de almacenamiento (almacén, seguro, mermas de existencias, personal, etc.), y los costes de oportunidad del dinero comprometido en las existencias.
  4. El coste de déficit o desabastecimiento es el asociado con la insatisfacción de la demanda. Pueden ser explícitos si existen penalizaciones al proveedor cada vez que exista una ruptura o cuando la venta de un producto se pierde, e implícitos, asociados a la insatisfacción del cliente y pérdidas de futuras ventas y de credibilidad. Cuando los artículos no se surten, además de estos costes fijos, los costes de déficit pueden incluir costes explícitos e implícitos por cada unidad de tiempo que un artículo sigue sin ser suministrado.

Modelos de demanda y gestión de existencias

Se entiende por control de existencias, el abastecimiento de la cantidad y calidad necesarias de elementos dados, en el momento y en el lugar en que se necesita, con la menor inversión posible. La gestión de existencias trata de minimizar los costes, buscando el compromiso entre el ahorro producido por un stock determinado y los gastos producidos al almacenarlo.

La mera posesión de las máquinas supone gastos fijos elevados, así pues, no resulta económico tener los equipos parados. A ello se suman los costes del propio almacén. Todo ello indica que los inventarios deben ser los estrictamente necesarios. La empresa constructora se encuentra presionada por fuerzas de sentido opuesto a la hora de determinar el volumen de existencias conveniente. Se trata de un problema de equilibrio, para cuya resolución se han formulado distintos modelos.

Los modelos de gestión de inventarios permiten dimensionar el almacén minimizando los costes de posesión y renovación de existencias para evitar las rupturas del inventario. En los parques de maquinaria, el volumen de reserva deberá minimizar los costes que por depreciación, mantenimiento y almacenaje de las máquinas, se sumen a los que se incurren si se paralizan o retrasan las obras por falta de suministro. Se recomiendan unos stocks reducidos para disminuir los recursos financieros destinados a los inventarios y sus gastos correspondientes.

La gestión de un almacén con artículos diferentes debe considerar la relación entre la demanda de cualquiera de ellos. La demanda de un artículo es independiente si no afecta a la demanda de los demás, en caso contrario es dependiente. La demanda determinística de un artículo es la que se conoce con certeza, mientras la probabilística está sujeta a la incertidumbre y variabilidad.

Si en un sistema de coordenadas representamos la cantidad de existencias y el tiempo, se obtiene la clásica curva en forma de “dientes de sierra” que representa la evolución temporal de las existencias. En la Figura 2 se representa una evolución de una demanda determinista y constante, fenómeno poco frecuente en la realidad, con un volumen de pedido S durante el periodo de reaprovisionamiento T.

Figura 2. Evolución temporal del stock

Con este modelo determinista y constante, es necesario conocer el punto de pedido Sm, es decir, el número de unidades suficientes para hacer frente a la demanda durante el plazo de entrega l. Cuando el ritmo de salidas del parque y el de entradas son conocidos, no deben producirse rupturas. Sin embargo, como dichas variables son aleatorias, es necesario recurrir al stock de seguridad Se, también llamado stock de protección, de reserva o de acopio. Éste se define como el volumen de existencias que tenemos en almacén por encima de lo que se necesita habitualmente, para afrontar las fluctuaciones en exceso de la demanda, a los retrasos imprevistos en la recepción de los pedidos, o a ambos.

Cuando la demanda es variable existen diversos sistemas de gestión de inventarios o políticas de pedidos:

  • Sistema de la cantidad fija de pedido: El reaprovisionamiento se realiza cuando el inventario llega a un cierto nivel previamente especificado. El tiempo entre pedidos suele ser desigual. Esta política también se denomina revisión continua, pues requiere revisar el inventario frecuentemente para determinar cuándo se alcanza el punto de pedido. En la mayoría de los casos, se deja cierto margen o stock de seguridad.
  • Sistema de restablecimiento del nivel máximo de stock: Cada intervalo fijo de tiempo se reabastece el almacén al nivel máximo previsto de existencias. La cantidad pedida cada vez varía. Esta política también se denomina revisión periódica pues requiere inspeccionar el nivel de inventario cada cierto tiempo. Presenta el inconveniente de inducir mayores niveles de almacenamientos, que puede paliarse en buena parte incrementando la frecuencia de los pedidos y consecuentemente de los aprovisionamientos.
  • Sistema de los dos almacenes o restablecimiento condicional: La diferencia con el anterior consiste en que si al final del período establecido (final de mes, por ejemplo), no se ha bajado de determinado nivel de existencias, no se realiza el pedido. El proceso se repite en los períodos sucesivos, restableciendo o no el stock inicial en función del agotamiento hasta cierto nivel de las existencias iniciales o “primer almacén”.

Cuando la demanda es de un solo producto, podemos aplicar el modelo de Wilson o de la cantidad económica del pedido. Es un modelo matemático usado como base para la gestión de existencias en el que la demanda y el plazo de entrega son determinísticos, no permitiéndose los déficits y abasteciéndose el almacén por lotes. Así se obtiene una cantidad en inventario que hace mínima la suma de los gastos en pedidos (correo, teléfono, recepción de los materiales, inspección y trámites administrativos) y los gastos de mantenimiento de las existencias (almacenamiento, financiero y manejo de materiales). En este caso se demuestra que:

donde:

Q = Cantidad económica a pedir en el periodo considerado.

C = Consumo en el periodo considerado.

S = Coste de pedido por pedido.

I = Coste de mantenimiento por unidad de artículo y unidad de tiempo.

En el siguiente vídeo tenéis un ejercicio resuelto del modelo de Wilson:

Existen otras técnicas interesantes para realizar una gestión de existencias eficaz, y que consideran en mayor o menor medida la complejidad de una planta de producción: la planificación de necesidades de materiales (Materials requirement planning MRP), la planificación de recursos de fabricación y los sistemas de inventarios “justo a tiempo” (Just in time JIT).

  • Planificación de necesidades de materiales: Apropiada cuando las demandas de los artículos individuales dependen de la demanda del producto final en el que se usan como componentes. Proporciona no solo las cantidades de los lotes y los puntos de pedido, sino también un calendario de cuándo se necesita cada artículo y en qué cantidades, durante un proceso de producción, basándose en los costes de organización y de conservación involucrados.
  • Planificación de recursos de fabricación: Es un desarrollo del sistema anterior en el cual no solo se controlan los inventarios, sino que se coordinan todos los recursos y actividades de los distintos departamentos. Se coordina fabricación, ventas, compras, finanzas e ingeniería. En construcciones civiles, integrarían todos los departamentos de una obra concreta, en coordinación con sus proveedores.
  • Sistemas “justo a tiempo”: Ideados con el objeto de reducir a cero los stocks de una empresa, de forma que los suministradores aportan sus productos en el momento que se precisan. Ello supone minimizar los costes relativos a los stocks, para lo cual se precisa que los flujos de producción sean estables, que se simplifiquen los trabajos al máximo, que estén ubicados con corrección en los lugares de producción, y que exista una verdadera coordinación entre todos los integrantes de los procesos productivos.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 156 pp. ISBN: 978-84-9048-301-5. Ref. 402.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clasificación de las máquinas empleadas en construcción

Figura 1. Maquinaria de movimiento de tierras: dúmper articulado. Imagen: V. Yepes

La mecanización del trabajo en cualquier obra civil o de edificación es totalmente necesaria desde la perspectiva técnica, económica, humana e incluso jurídica. Las máquinas, que nacieron con el propósito de liberar al hombre de las tareas más penosas, se han convertido en herramientas para producir más, más barato y con mejor calidad. Han permitido abreviar la realización de labores que en otros tiempos parecían imposibles y, por consiguiente, han conseguido acelerar la acción del hombre sobre su entorno más inmediato. La adjudicación de un contrato de obras suele requerir de la empresa constructora la disposición de la maquinaria adecuada que garantice los plazos, las calidades y la seguridad. Además, determinadas unidades de obra no pueden ejecutarse sin el uso de la maquinaria, tales como las inyecciones, el pilotaje, los dragados, cimentaciones por aire comprimido, etc. En otros casos, la fabricación manual de hormigones, compactaciones de tierras, etc., no podría satisfacer las elevadas exigencias de los pliegos de condiciones técnicas vigentes.

La maquinaria ha cambiado rápidamente con las innovaciones tecnológicas. Se ha derivado hacia la especialización, evolucionando unas hacia el gigantismo para obtener grandes producciones, mientras otras se han convertido en diminutas y versátiles. En otros casos se ha buscado la polivalencia del trabajo en equipos pequeños y medianos. Los medios informáticos han auxiliado y mejorado los sistemas de los equipos. La maquinaria va siendo cada vez más fiable, segura y cómoda para el operador, facilitándole las labores de conservación. En general se observa una preocupación creciente por la seguridad, el medio ambiente y la calidad.

Con todo, las máquinas suponen fuertes inversiones para las empresas constructoras, que si bien son menores en las obras de edificación, mayores en las obras de carreteras e hidráulicas, son importantísimas en las obras portuarias. El índice de inversión en maquinaria, calculado como la relación entre el valor anual de adquisición de la misma y la obra total anual, oscila entre el 3 y el 13%. Se estima entre el 13% y el 19% el índice de mecanización -valor del parque de maquinaria respecto a la producción anual- de las firmas constructoras.

Aunque existen múltiples criterios para clasificar las máquinas, en las Figuras 2 y 3 se presenta una ordenación de los distintos equipos empleados tanto en edificación como en obra civil.

Figura 2. Clasificación de la maquinaria de edificación
Figura 3. Clasificación de la maquinaria de obra civil

Otra posible agrupación de la maquinaria es la que utiliza la Hacienda Pública para la clasificación de contratistas:

  • Grupo 1.- Material de bombeo, aire comprimido, sondeos y cimentaciones.
  • Grupo 2.- Material de producción y transformación de energía.
  • Grupo 3.- Maquinaria de movimiento de tierras.
  • Grupo 4.- Maquinaria de transporte.
  • Grupo 5.- Maquinaria de elevación.
  • Grupo 6.- Maquinaria de construcción de firmes.
  • Grupo 7.- Maquinaria de machaqueo y clasificación de áridos.
  • Grupo 8.- Maquinaria de hormigonado y edificación.
  • Grupo 9.- Maquinaria para construcción de ferrocarriles.
  • Grupo 10.- Material flotante.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 156 pp. ISBN: 978-84-9048-301-5. Ref. 402.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Premio a la mejor tesis doctoral en decisión multicriterio para Ignacio Javier Navarro Martínez

Ignacio J. Navarro junto con el tribunal (Salvador Ivorra, Juan José del Coz y Julián Alcalá) y los directores de tesis (Víctor Yepes y José V. Martí), tras terminar la defensa de su tesis doctoral, el 22 de noviembre de 2019

El Grupo de Trabajo en Decisión Multicriterio (GTDM) de la Sociedad Española de Estadística e Investigación Operativa (SEIO) convoca los Premios a las Mejores Tesis Doctorales en Decisión Multicriterio, que se conceden a las tres mejores tesis doctorales realizadas en el área de la toma de decisiones multicriterio para estimular la investigación e innovación científica y divulgar trabajos científicos de elevada calidad en esta disciplina.

El Grupo Español de Decisión Multicriterio, se constituyó en Madrid en noviembre de 1997 con una vocación claramente multidisciplinar y aglutinadora de todo el panorama español de Decisión Multicriterio. Además, en 1999 se creó un Grupo de Trabajo en Decisión Multicriterio (http://mcdm.seio.es/) dentro de la Sociedad Española de Estadística e Investigación Operativa (SEIO).

En la actualidad el Grupo lo componen alrededor de 180 investigadores de más de una veintena de Universidades españolas, pertenecientes a muy diversas áreas de conocimiento (Estadística e Investigación Operativa, Economía Aplicada, Métodos Cuantitativos para la Economía y Empresa, Ciencias de la Computación e Inteligencia Artificial, Ingeniería de Proyectos, Organización de Empresas, Economía Agraria, etc.).

Me es grato comunicaros que tribunal de la Segunda Edición de los Premios a las mejores Tesis Doctorales en Decisión Multicriterio ha resuelto la concesión de los mismos. Las tesis doctorales premiadas son las siguientes:

PRIMER PREMIO

Título: Life cycle assessment applied to the sustainable design of prestressed bridges in coastal environments
Autor: Ignacio Javier Navarro Martínez
Directores: Víctor Yepes Piqueras y José V. Martí Albiñana
Universidad: Universidad Politécnica de Valencia
Año: 2019

SEGUNDO PREMIO “EX AEQUO”

Título: Building composite indicators from a multicriteria approach: an empirical application for the performance appraisal and efficiency of the Spanish Public Higher Education System
Autora: Samira El Gibari Ben Said
Directores: Trinidad Gómez Núñez y Francisco Ruiz de la Rúa
Universidad: Universidad de Málaga
Año: 2020

Título: Ordinal treatment of ordered qualitative scales: analysis, methods and applications
Autora: Raquel González del Pozo
Director: José Luis García Lapresta
Universidad: Universidad de Valladolid
Año: 2020

En la próxima reunión del Grupo Español de Decisión Multicriterio en Julio en San Sebastián habrá una sesión especial en la que se presentarán las tres tesis premiadas y se hará entrega de los diplomas.

Cabe destacar que Ignacio Javier recibió recientemente el Premio al Ingeniero Joven 2020, otorgado por la Junta Rectora de la Demarcación de la Comunidad Valenciana del Colegio de Ingenieros de Caminos, Canales y Puertos.

Os paso a continuación la relación de artículos científicos indexados que han sido fruto de la tesis doctoral de Ignacio J. Navarro, y otras que han sido desarrolladas tras la defensa de su tesis.

Referencias:

  1. SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homesEnvironmental Impact Assessment Review, 89:106572. DOI:10.1016/j.eiar.2021.106572
  2. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2021). Neutrosophic completion technique for incomplete higher-order AHP comparison matrices. Mathematics, 9(5):496. DOI:10.3390/math9050496
  3. NAVARRO, I.J.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; REMPLING, R.; YEPES, V. (2020). Life cycle sustainability assessment for multi-criteria decision making in bridge design: A review. Journal of Civil Engineering and Management, 26(7):690-704. DOI:10.3846/jcem.2020.13598
  4. PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265
  5. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7): 949-967. DOI:10.1080/15732479.2019.1676791
  6. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multi-criteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803. DOI:10.1155/2019/6134803
  7. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:10.1016/j.eiar.2018.10.001
  8. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110
  9. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:10.1016/j.eiar.2018.05.003
  10. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:10.3390/su10030845