Computación cuántica y gemelos híbridos digitales en ingeniería civil y edificación

La ciudad Estado de Singapur desarrolla una copia virtual de sí misma, un proyecto basado en big data, IoT, computación en la nube y realidad virtual. https://www.esmartcity.es/2019/03/22/singapur-gemelo-digital-posibilidades-ofrece-ciudad-inteligente-tener-copia-virtual-exacta

En menos de una década, gran parte de los ingenieros dejarán de hacer proyectos, tal y como lo conocemos ahora, y pasarán a ser gestores de gemelos híbridos digitales de infraestructuras.

Este podría ser un buen titular periodístico que, incluso podría parecer ciencia ficción, pero que tiene todos los visos de convertirse en realidad en menos tiempo del previsto. Se podría pensar que las tecnologías BIM o los modelos digitales actuales ya son una realidad, es decir, se trata de dar un nuevo nombre a lo que ya conocemos y está en desarrollo, pero de lo que estamos hablando es de un nuevo paradigma que va a revolver los cimientos de la tecnología actual en el ámbito de la ingeniería. Voy a desgranar esta conclusión explicando cada uno de los avances y los conceptos que subyacen al respecto.

La semana pasada tuve la ocasión de escuchar la conferencia magistral, en el Congreso CMMoST, de Francisco Chinesta, catedrático en la ENSAM ParisTech e ingeniero industrial egresado por la Universitat Politècnica de València. Trataba de un nuevo paradigma en la ingeniería basada en datos y no era otra que la de los gemelos híbridos digitales, un paso más allá de la modelización numérica y de la minería de datos. Este hecho coincidió con el anuncio en prensa de que Google había publicado en la prestigiosa revista Nature un artículo demostrando la supremacía cuántica, un artículo no exento de polémica, pues parece ser que se diseñó un algoritmo que tiene como objetivo generar números aleatorios mediante un procedimiento matemático muy complejo y que obligaría al superordenador Summit, que es actualmente el más potente del mundo gracias a sus 200 petaflops, a invertir 10.000 años en resolver el problema, que que el procesador cuántico Sycamore de 54 qubits de Google habría resuelto en tres minutos y 20 segundos.

Si nos centramos en la supuesta supremacía cuántica de Google, se debería matizar la noticia al respecto. En efecto, IBM ya se ha defendido diciendo que su ordenador Summit no se encuentra tan alejado, pues se ha resuelto un problema muy específico relacionado con generar números aleatorios y que parece que Sycamore sabe resolver muy bien. De hecho, IBM afirma que ha reajustado su superordenador y que ahora es capaz de resolver ese mismo problema en 2,5 días con un margen de error mucho menor que el ordenador cuántico. Aquí lo importante es saber si esta computación cuántica estará, sin trabas o límites, accesible a cualquier centro de investigación o empresa para resolver problemas de altísima complejidad computacional (problemas NP-hard como pueden ser los de optimización combinatoria). Tal vez los superordenadores convencionales servirán para resolver unos problemas específicos en tareas convencionales, y los cuánticos, imparables en resolver otro tipo de problemas. Todo se andará, pero parece que esto es imparable.

Por tanto, parece que el hardware necesario para la una computación ultrarrápida está o estará a nuestro alcance en un futuro no muy lejano. Ahora se trata de ver cómo ha cambiado el paradigma de la modelización matemática. Para ello podríamos empezar definiendo al “gemelo digital”, o digital twin. Se trata de un modelo virtual de un proceso, producto o servicio que sirve de enlace entre un ente en el mundo real y su representación digital que está utilizando continuamente datos de los sensores. A diferencia del modelado BIM, el gemelo digital no representa exclusivamente objetos espaciales, sino que también podría representar procesos, u otro tipo de entes sin soporte físico. Se trata de una tecnología que, según todos los expertos, marcarán tendencia en los próximos años y que, según el informe “Beyond the hype“, de KPMG, será la base de la cuarta Revolución Industrial.

https://www.geofumadas.com/por-que-usar-gemelos-digitales-en-la-construccion/

Sin embargo, el gemelo digital no es una idea nueva, pues a principios de este siglo ya la introdujo Michael Grieves, en colaboración con John Vickers, director de tecnología de la NASA. Esta tecnología se aplica al Internet de las Cosas, que se refiere a la interconexión digital de objetos cotidianos con internet. Además, se encuentra muy relacionada con la inteligencia artificial y con la minería de datosdata-mining“. Empresas como Siemens ya están preparando convertir sus plantas industriales en fábricas de datos con su gemelo digital, o General Electric, que cuenta ya con 800.000 gemelos digitales para monitorizar virtualmente la cadena de suministro.

Con todo, tal y como explicó el profesor Chinesta (Chinesta et al., 2018), existe actualmente un cambio de paradigma hacia los gemelos digitales híbridos que, extrapolando su uso, va a significar la gran revolución en la forma de proyectar y gestionar las infraestructuras, tal y como avancé al principio del artículo.

En efecto, los modelos utilizados en ciencia y en ingeniería son muy complejos. La simulación numérica, la modelización y la experimentación han sido los tres pilares sobre los que se ha desarrollado la ingeniería en el siglo XX. La modelización numérica, que sería el nombre tradicional que se ha dado al “gemelo digital” presenta problemas prácticos por ser modelos estáticos, pues no se retroalimentan de forma continua de datos procedentes del mundo real a través de la monitorización continua. Estos modelos numéricos (usualmente elementos finitos, diferencias finitas, volumen finito, etc.) son suficientemente precisos si se calibran bien los parámetros que lo definen. La alternativa a estos modelos numéricos son el uso de modelos predictivos basados en datos masivos big-data, constituyendo “cajas negras” con alta capacidad de predicción debido a su aprendizaje automáticomachine-learning“, pero que esconden el fundamento físico que sustentan los datos (por ejemplo, redes neuronales). Sin embargo, la experimentación es extraordinariamente cara y lenta para alimentar estos modelos basados en datos masivos.

El cambio de paradigma, por tanto, se basa en el uso de datos inteligentes “smart-data paradimg“. Este cambio se debe basar, no en la reducción de la complejidad de los modelos, sino en la reducción dimensional de los problemas, de la retroalimentación continua de datos del modelo numérico respecto a la realidad monitorizada y el uso de potentes herramientas de cálculo que permitan la interacción en tiempo real, obteniendo respuestas a cambios paramétricos en el problema. Dicho de otra forma, deberíamos poder interactuar a tiempo real con el gemelo virtual. Por tanto, estamos ante otra realidad, que es el gemelo virtual híbrido.

Por tanto, estamos ahora en disposición de centrarnos en la afirmación que hice al principio. La nueva tecnología en gemelos digitales híbridos, junto con la nueva capacidad de cálculo numérico en ciernes, va a transformar definitivamente la forma de entender, proyectar y gestionar las infraestructuras. Ya no se trata de proyectar, por ejemplo, un puente. Ni tampoco estamos hablando de diseñar un prototipo en 3D del mismo puente, ni siquiera de modelar en BIM dicha estructura. Estamos hablando de crear un gemelo digital que se retroalimentará continuamente del puente real, que estará monitorizado. Se reajustarán los parámetros de cálculo del puente con los resultados obtenidos de la prueba de carga, se podrán predecir las labores de mantenimiento, se podrá conocer con antelación el comportamiento ante un fenómeno extraordinario como una explosión o un terremoto. Por tanto, una nueva profesión, que será la del ingeniero de gemelos virtuales híbridos de infraestructuras será una de las nuevas profesiones que reemplazarán a otras que quedarán obsoletas.

Se tratará de gestionar el gemelo durante el proyecto, la construcción, la explotación e incluso el desmantelamiento de la infraestructura. Se podrán analizar cambios de usos previstos, la utilización óptima de recursos, monitorizar la seguridad, y lo más importante, incorporar nuevas funciones objetivo como son la sostenibilidad económica, medioambiental y social a lo largo del ciclo de vida completo. Este tipo de enfoque es el que nuestro grupo de investigación tiene en el proyecto DIMILIFE. Proyectos como puentes, presas, aeropuertos, redes de carreteras, redes de ferrocarriles, centrales nucleares, etc. tendrán su gemelo digital. Para que sea efectivo, se deberá prever, desde el principio, la monitorización de la infraestructura para ayudar a la toma de decisiones. Además, servirá para avanzar en la aproximación cognitiva en la toma de decisiones (Yepes et al., 2015).

Os paso a continuación un vídeo sobre el uso de los gemelos digitales en la ciudad de Singapur.

A continuación os pongo un vídeo sacado de la página de Elías Cueto, de la Universidad de Zaragoza, en la que vemos cómo se interactúa con un gemelo virtual de un conejo.

 

En este otro vídeo, el profesor Chinesta explica el cambio de paradigma del que hemos hablado anteriormente en el artículo.

¿Qué es la computación cuántica? Aquí tenemos un vídeo de Eduardo Sáenz de Cabezón:

Referencias:

Chinesta, F.; Cueto, E.; Abisset-Chavanne, E.; Duval, J.L. (2018). Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based Engineering and Engineered Data. Archives of Computational Methods in Engineering, DOI: 10.1007/s11831-018-9301-4

Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. DOI:10.1016/j.acme.2015.05.001

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Dúmperes extraviales rígidos

Dúmper extravial rígido. https://www.cat.com/es_ES/products/new/equipment/off-highway-trucks/off-highway-trucks/18256808.html

Son vehículos de transporte con caja basculante, cuyas características de cargas por eje[1] y dimensiones no le permiten circular por carreteras, circulando por tanto solo dentro de las obras o en explotaciones mineras. Todos sus elementos son robustos, sobre todo la suspensión, eje y bastidor, ya que circulan por pistas en mal estado. Tienen dos ejes, el delantero de dirección y el trasero de tracción, con ruedas gemelas. Necesitan trasladarse de una obra a otra mediante trailers.

Sus dimensiones pueden superar los 8 m. de anchura, 3.000 CV. de potencia y 360 t. de carga útil (el modelo más grande, Belaz 75710, puede llegar hasta 450 t.), aunque las habituales son una carga útil entre 10 y 75 t.[2], una potencia entre 130 y 700 CV. y una anchura máxima entre 2,50 y 5,00 m. Sus taras oscilan entre 7 a 60 t. y la distancia entre ejes varía de 1,15 a 1,95 veces del ancho de la vía. Pueden desplazarse a 50 o 60 km/h en pistas en buen estado, por lo que precisan motores potentes. Su dirección es hidráulica, con radios de giro mínimos y por tanto gran maniobrabilidad, mejor que la de los camiones.

Las cajas, robustas y construidas con aceros especiales de alta resistencia, suele tener su fondo en forma de “V” para bajar el centro de gravedad. Sus ruedas son de gran diámetro y anchura, que le da flotabilidad en terrenos blandos, con dibujos muy profundos y marcados para dar mayor adherencia.


[1]Su peso propio es del orden de 3 a 4 veces superior al de un camión normal, relación tara/carga equivalente a 0,75 mientras que en un camión es de 0,50.

[2]A partir de aquí ya no se usan en ingeniería civil, sino en minería.

Os paso a continuación algunos vídeos para que podáis comprobar el funcionamiento de este tipo de máquinas de acarreo.

 

Bueno, este par de vídeos que os dejo se salen un poco de los procedimientos constructivos:

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

DIMALIFE: Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes de alta eficiencia social y medioambiental bajo presupuestos restrictivos

 

 

DIMALIFE: Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes de alta eficiencia social y medioambiental bajo presupuestos restrictivos

Reliability-based robust optimum design and maintenance of high social and environmental efficiency of bridges under restrictive budgets

 

Víctor Yepes*, a, Eugenio Pellicer b, José V. Martí c, Moacir Kripka d

a Dr. Ingeniero de Caminos. Catedrático de Universidad. ICITECH, Universitat Politècnica de València.

b Dr. Ingeniero de Caminos. Catedrático de Universidad. Universitat Politècnica de València.

c Dr. Ingeniero de Caminos. Profesor Titular de Universidad. ICITECH, Universitat Politècnica de València.

d Dr. Ingeniero Civil. Catedrático de Universidad. Universidade de Passo Fundo, Brasil.

* Persona de contacto / Corresponding author

RESUMEN

El artículo expone los resultados alcanzados dentro del proyecto de investigación DIMALIFE. Se desarrolla una metodología que incorpora la variabilidad en los procesos de toma de decisiones en el ciclo completo de vida de puentes e infraestructuras viarias, de forma que se contemplen las necesidades e intereses sociales y ambientales con presupuestos restrictivos. La variabilidad inherente a los parámetros, variables y restricciones del problema resulta crítica si se dan por buenas soluciones optimizadas, que pueden encontrarse al borde de la infactibilidad. Se precisa introducir en el análisis la optimización multiobjetivo basada en fiabilidad y conseguir diseños óptimos robustos.

ABSTRACT

The article presents the results achieved within the DIMALIFE research project. It develops a methodology that incorporates variability in decision-making processes during the whole life cycle of bridges and highway infrastructures, so that social and environmental needs and interests are taken into account with restrictive budgets. The variability inherent in the parameters, variables and constraints of the problem is critical if they are given by good optimized solutions, which can be on the verge of infactibility. Multi-objective optimisation based on reliability needs to be introduced into the analysis and robust optimal designs achieved.

PALABRAS CLAVE: puentes, sostenibilidad, ciclo de vida, optimización multiobjetivo, fiabilidad.

KEYWORDS: bridges, sustainability, life cycle, multi-objective optimisation, reliability

 

INTRODUCCIÓN

Las vías de comunicación terrestre, y en especial los puentes, son infraestructuras básicas en el desarrollo económico, en el equilibrio territorial y en el bienestar social, cuya construcción, diseño, conservación y desmantelamiento se ven afectados significativamente cuando los presupuestos son restrictivos. Su deterioro y su incidencia en la seguridad son objeto de gran alarma social. Si además el mantenimiento es ineficiente, la reparación conlleva costes mayores. El objetivo principal del proyecto DIMALIFE consiste en desarrollar una metodología que permita incorporar la variabilidad en los procesos analíticos en la toma de decisiones en el ciclo completo de vida de puentes e infraestructuras viarias, incluyendo la licitación de proyectos de obra nueva y de mantenimiento de activos existentes, de forma que se contemplen las necesidades e intereses sociales y ambientales.

Una alternativa al proyecto secuencial de infraestructuras y del mantenimiento de las existentes es el diseño totalmente automático utilizando técnicas de optimización, capaces de incorporar múltiples funciones objetivo y cuyo resultado es la generación de un conjunto de soluciones eficientes. No obstante, esta metodología presenta limitaciones que el proyecto DIMALIFE pretende superar.

El empleo de técnicas de análisis del valor y toma de decisiones ha supuesto un gran avance en la definición de un indicador de sostenibilidad. Este enfoque se amplió en anteriores proyectos de investigación al considerar el ciclo completo de la vida de una estructura o el uso de hormigones de baja huella de carbono, incluyendo, asimismo en el proceso los aspectos sociales y medioambientales mediante técnicas analíticas de toma de decisiones multicriterio tanto de forma previa a los procesos de optimización multiobjetivo, como posteriormente en la priorización de las soluciones eficientes. Sin embargo, en el mundo real, las infraestructuras presentan una variabilidad inherente a los parámetros, variables y restricciones del problema. Este aspecto resulta crítico si se dan por buenas soluciones optimizadas, que pueden encontrarse al borde de la infactibilidad en cuanto se altera mínimamente alguno de los valores que definen el problema. Se precisa, por ello, introducir en el análisis la optimización multiobjetivo basada en fiabilidad y conseguir diseños óptimos robustos, tanto de infraestructuras nuevas como del mantenimiento de las existentes, considerando el ciclo de vida hasta su desmantelamiento. Para que este procedimiento sea abordable en tiempos de cálculo razonable se precisa el uso de metamodelos (redes neuronales, modelos Kriging, superficie de respuesta, etc.) dentro de las técnicas de optimización.

Por otra parte, la fuerte limitación presupuestaria presente en momentos de crisis compromete seriamente las políticas de creación y conservación de las infraestructuras. Los resultados esperados, tras un análisis de sensibilidad de distintas políticas presupuestarias asociadas a un horizonte temporal, pretenden detallar qué tipologías, actuaciones concretas de conservación y alternativas de demolición y reutilización son adecuadas para minimizar los impactos ambientales y sociales considerando la variabilidad. En este sentido, un aspecto importante consiste en determinar los criterios e indicadores clave para garantizar una efectiva integración de la sostenibilidad en la licitación de proyectos de obra y de mantenimiento de infraestructuras viarias.

ANTECEDENTES Y JUSTIFICACIÓN DEL PROYECTO

La sostenibilidad económica y social depende directamente del comportamiento fiable y duradero de sus infraestructuras [1]. La construcción y mantenimiento de las infraestructuras viarias y puentes afectan fuertemente en la actividad económica, el crecimiento y el empleo. Sin embargo, estas actividades impactan en el medio ambiente, presentan efectos irreversibles y pueden comprometer el presente y el futuro de la sociedad. El gran reto, por tanto, será disponer de infraestructuras que maximicen su beneficio social sin comprometer su sostenibilidad [2].

Por otra parte, el envejecimiento de las infraestructuras, la mayor demanda en su desempeño (aumento de tráfico, por ejemplo) o los riesgos naturales extremos afectan a su al rendimiento [3]. Si a ello añadimos la crisis financiera que ha afectado la economía de nuestro país, el panorama se complica. Las infraestructuras que se crearon con una financiación a largo plazo presentan actualmente déficits de conservación y es posible que las generaciones futuras tengan que hacer un esfuerzo adicional para actualizar los requisitos de seguridad y funcionalidad a su nivel de servicio previsto [4].

Existen dificultades cuando se emprende un análisis de ciclo de vida de una infraestructura debido a las incertidumbres presentes en la definición de las entradas y salidas del sistema. El reto implica un proceso de toma de decisiones que minimice los impactos sociales y medioambientales al coste más bajo posible [5]. Varios trabajos han tratado de cuantificar la sostenibilidad en los proyectos de puentes [6-8].

Con todo, la línea de investigación no puede quedarse en la mera optimización económica del hormigón estructural, que podría ser un objetivo a corto plazo de interés evidente para las empresas constructoras o de prefabricados. El proyecto DIMALIFE pretende superar algunas limitaciones en cuanto al alcance planteado hasta ahora. En primer lugar, los proyectos anteriores se centraban en la fase de diseño [9-12]. Sin embargo, este es un aspecto muy específico, siendo necesario abordar en mayor profundidad el análisis dual sobre la necesidad de nuevas infraestructuras o la mejora de las existentes para el mejor aprovechamiento del parque actual. En efecto, todo parece indicar que en una situación de restricción presupuestaria como la actual va a ser difícil que el grueso del presupuesto se dedique a nueva construcción, siendo razonable su empleo en el mantenimiento y rehabilitación [13]. En segundo lugar, las infraestructuras viarias incluyen no solo puentes: el abanico estructural contiene incluso el mantenimiento del pavimento; en este sentido, algunos trabajos afrontados recientemente por el grupo han abordado este aspecto con restricciones presupuestarias [14,15]. En tercer lugar, y aunque se han utilizado técnicas de decisión multicriterio para tratar aspectos complejos de sostenibilidad social y medioambiental [5,8] en el ámbito de las infraestructuras, existen limitaciones que se deben superar. Éstas tienen que ver con la sensibilidad que presentan las soluciones óptimas respecto a la variabilidad intrínseca de las variables y parámetros de los problemas estructurales, así como la influencia que presenta esta variabilidad en los resultados de los procesos de toma de decisiones. Por último, la toma de decisiones y la optimización multiobjetivo de los problemas reales conlleva un trabajo muy laborioso de programación de software propio que, en ocasiones, presenta tiempos de cálculo elevados que obliga a replantear las metodologías empleadas hasta el momento, a pesar de que las capacidades de cálculo de los ordenadores son cada vez mayores. Es el campo propicio para integrar metamodelos en los procesos de optimización, tal y como se ha empezado a realizar en algunos trabajos muy recientes del grupo en el caso de las redes neuronales [11].

En efecto, a pesar de que se ha avanzado fuertemente en la optimización multiobjetivo de las estructuras, en el mundo real existen incertidumbres, imperfecciones o desviaciones respecto a los valores de los parámetros utilizados en los códigos (propiedades del material, geometría, cargas, etc.). De hecho, los códigos estructurales consideran las incertidumbres de forma simplificada definiendo los valores característicos para las variables aleatorias como percentiles de sus distribuciones y especifican unos coeficientes parciales de seguridad. Una estructura óptima se encuentra cercana a la región de infactibilidad, por lo que cualquier pequeña variación puede hacer que la estructura no cumpla con algunos de los estados límites previstos. La necesidad de incorporar las incertidumbres ha estimulado el interés por procedimientos capaces de proporcionar diseños más robustos y fiables [16]. De todas formas, se diferencian dos enfoques que consideran la respuesta probabilista en el proceso de diseño óptimo: el diseño basado en fiabilidad y el diseño óptimo robusto. En el primero se incluyen los efectos de la incertidumbre por medio de probabilidades de fallo y de valores esperados [17], mientras que el segundo trata de determinar un diseño menos sensible a las incertidumbres de las variables y de los parámetros que intervienen en la respuesta estructural [18,19].

Uno de los grandes problemas de la optimización multiobjetivo al incorporar las incertidumbres es su elevado coste computacional. Este inconveniente ya se detectó en el caso de la optimización multiobjetivo basada en fiabilidad del mantenimiento de puentes [20] donde se tuvieron que emplear redes neuronales como metamodelos [11]. Los metamodelos, también llamados modelos subrogados, proporcionan una relación aproximada de las variables de diseño respecto a sus respuestas con un número moderado de análisis completos. Estas aproximaciones se utilizan para reemplazar los análisis informáticos costosos facilitando la optimización multiobjetivo. Entre otros, podemos distinguir el diseño de experimentos, la metodología de la superficie de respuesta, los métodos Taguchi, las redes neuronales, las funciones de base radial o los modelos Kriging [21,22].

Por último, un aspecto no tratado que se incorpora al proyecto es aprovechar las conclusiones de los análisis de optimización para incluir criterios y recomendaciones que mejoren la contratación pública sostenible de las infraestructuras, dado que se considera que este aspecto posee el potencial de influir fuertemente en las políticas futuras [23]. Es por ello que DIMALIFE pretende determinar, dentro de sus objetivos, criterios e indicadores clave que garanticen una integración efectiva de la sostenibilidad en la licitación de proyectos. Dichos desarrollos pretenden ser la base para la definición de una guía que facilite a las Administraciones incorporar la sostenibilidad en los procedimientos de licitación de una manera efectiva; de modo que se influya sobre las tres etapas clave del procedimiento de licitación: definición de criterios de selección, definición de criterios de adjudicación y definición de especificaciones técnicas y cláusulas de desempeño.

OBJETIVOS GENERALES DEL PROYECTO

La metodología habitual, tanto en el diseño como en el mantenimiento óptimo de puentes e infraestructuras viarias, puede conducir a soluciones cercanas a la infactibilidad. Por tanto, las incertidumbres deben considerarse en el diseño y el mantenimiento óptimo de infraestructuras basándose en la fiabilidad y en diseños robustos. Esta hipótesis debe extenderse a los procesos de toma de decisión multicriterio que atienda a la sostenibilidad social y ambiental del ciclo de vida, contemplando las fluctuaciones tanto de los parámetros como de los escenarios, especialmente en el caso de restricciones presupuestarias. Esta metodología presenta, no obstante, serias dificultades, por lo que se deben explorar metamodelos capaces de acelerar los complejos procesos de cálculo. Además, se contempla la hipótesis adicional que establece que la contratación pública de las infraestructuras públicas debe incluir criterios de sostenibilidad por su fuerte influencia potencial en los mercados.

El objetivo general perseguido en este proyecto se basa en afrontar el reto social que supone la creación y la conservación de las infraestructuras viarias en escenarios de fuertes restricciones presupuestarias, mediante la resolución de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas (puentes de hormigón pretensado prefabricados o “in situ”, puentes mixtos, puentes de acero, tipologías de muros, bóvedas y marcos de paso inferior). Para ello se precisa un salto científico que integre a los distintos actores y grupos de expertos en la toma de decisiones considerando criterios de sostenibilidad social y ambiental a lo largo de todo el ciclo de vida de las infraestructuras considerando la variabilidad inherente al mundo real. Para integrar las incertidumbres que afectan al sistema, se propone aplicar técnicas de optimización multiobjetivo basadas en fiabilidad, junto el empleo de metamodelos, aplicadas no solo al proyecto de nuevas infraestructuras, sino al mantenimiento de las actuales. Un estudio de sensibilidad de los escenarios presupuestarios y de las hipótesis tomadas en los inventarios del análisis del ciclo de vida proporciona conocimiento no trivial sobre las mejores prácticas. Esta metodología se aplica también a otro tipo de infraestructuras del transporte.

Los objetivos generales se desarrollan mediante los siguientes objetivos específicos:

  • Análisis de funciones de distribución para el diseño óptimo basado en fiabilidad que integre aspectos ambientales, sociales y económicos que sirva para la toma de decisión multicriterio
  • Determinación de los criterios e indicadores clave para garantizar una efectiva integración de la sostenibilidad en la licitación de proyectos de obra y de mantenimiento de infraestructuras viarias
  • Identificación de estrategias de mantenimiento robusto óptimo de puentes e infraestructuras viarias ya construidos
  • Formulación y resolución del problema de optimización multiobjetivo que contemple el ciclo completo de los puentes e infraestructuras viarias mediante metamodelos
  • Comparación del diseño robusto óptimo respecto a la optimización heurística considerando incertidumbres en los escenarios presupuestarios y en las hipótesis del análisis del ciclo de vida

Para alcanzar estos objetivos, se ha colaborado con los grupos de investigación de los profesores Frangopol y Moleenar (EE.UU.), del profesor Haukaas (Canadá), del profesor Kripka (Brasil), del profesor Partskhaladze (Georgia) y del profesor Sierra (Chile).

METODOLOGÍA

La investigación combina técnicas y disciplinas diversas tales como el análisis estructural, la toma de decisiones multicriterio, la optimización heurística multiobjetivo, el análisis del ciclo de vida, el análisis basado en fiabilidad, el diseño óptimo robusto, los metamodelos y las técnicas de minería de datos. Por tanto, se trata de una combinación integrada cuyo objetivo es la priorización del tipo de diseño, o bien de su mantenimiento, basándose en criterios de sostenibilidad social y ambiental bajo presupuestos restrictivos, considerando la variabilidad inherente a los problemas reales. Los trabajos desarrollados en proyectos anteriores se centraron en la optimización con múltiples objetivos, empleando técnicas sin información a priori del decisor. En este caso, la optimización proporciona alternativas eficientes al decisor. También ha utilizado técnicas con información a priori, donde el decisor informa sobre las preferencias al analista, que optimiza su modelo. En la metodología propuesta (Figura 1) se utiliza un enfoque mixto e interactivo, donde el decisor proporciona información sobre las preferencias al analista que, tras una optimización multiobjetivo basada en fiabilidad y metamodelos, aporta un conjunto de soluciones eficientes que el decisor debe evaluar antes de tomar su decisión. Por tanto, la novedad de la propuesta metodológica trifase se basa en la integración de técnicas de información a priori, donde el decisor (grupos de interés) informa de las preferencias al analista (en cuanto a tipologías, métodos constructivos, conservación, etc.), produciéndose con esta información una optimización multiobjetivo capaz de generar alternativas eficientes utilizando la variabilidad en los parámetros, variables y restricciones. La última fase pasa por un proceso de información a posteriori para que el decisor contemple aspectos no considerados en la optimización para dar la solución final completa.

Figura 1. Esquema metodológico diseñado para la realización del proyecto DIMALIFE

 

RESULTADOS

Aunque el proyecto de investigación empezó en el año 2018 y termina a finales del 2020, las aportaciones realizadas hasta el momento son significativas. La principal contribución es la incorporación de la variabilidad de los parámetros y restricciones del problema de optimización multiobjetivo basado en criterios de sostenibilidad social y medioambiental. Los resultados obtenidos se pueden clasificar en:

  1.  Formulación de una metodología de participación social que definan un proceso de decisión multicriterio, que integre aspectos objetivos y subjetivos, así como la aplicación de técnicas analíticas sistémicas (ANP) y análisis de valor, con inclusión expresa de la incertidumbre (técnicas fuzzy, modelos bayesianos, teoría neutrosófica) [24-37].
  2.  Propuesta de nuevas técnicas de optimización multiobjetivo basada en fiabilidad que integran metamodelos para acelerar la convergencia de cálculo considerando el ciclo de vida [38-50].
  3. Definición del tipo de política presupuestaria que perjudica en mayor medida la sostenibilidad social y ambiental a lo largo del ciclo de vida de puentes e infraestructuras viarias [51-53].
  4. Desarrollo de criterios para la Administración que potencie la incorporación de criterios sostenibles en los procedimientos de licitación de manera efectiva [54,55].

Como resultado del proyecto, también se menciona la culminación de cinco tesis doctorales [56-60], estando en marcha tres más.

CONCLUSIONES

El proyecto de investigación DIMALIFE ha profundizado en la optimización multiobjetivo en fase de diseño y construcción que incorporaban la visión social y el análisis completo del ciclo de vida. El objetivo ha sido incorporar a distintos actores y grupos de expertos en la toma de decisiones la variabilidad inherente al mundo real. Para integrar las incertidumbres que afectan al sistema, se han aplicado técnicas de optimización multiobjetivo basadas en fiabilidad, junto el empleo de metamodelos, al proyecto y mantenimiento de puentes e infraestructuras viarias.

El motivo de este planteamiento también constituye una necesidad social. En efecto, las incertidumbres relacionadas con la toma de decisiones, no solo en el diseño de nuevas infraestructuras, sino especialmente en el mantenimiento, que contemplen aspectos de sostenibilidad social y ambiental en situaciones extremas de restricciones presupuestarias, es un problema que afecta directamente a las infraestructuras viarias. El problema es altamente complejo cuando se realizan análisis basados en la fiabilidad. Se ha profundizado en el diseño robusto y el uso de metamodelos para asegurar que las soluciones optimizadas sean poco sensibles ante la variabilidad intrínseca de los parámetros. Se ha agregado la contratación pública sostenible, tanto de nuevas infraestructuras como de su mantenimiento, debido a su elevada influencia en el sector, con el fin de proponer políticas de actuación: las exigencias de las administraciones públicas serán de gran importancia futura para el diseño, construcción y mantenimiento de las infraestructuras, teniendo en cuenta las restricciones presupuestarias existentes.

Sin haber terminado el proyecto, de los resultados obtenidos y publicados hasta el momento, se puede concluir que la línea de investigación ofrece una amplia posibilidad de ramificaciones. Ello obliga a profundizar en aspectos complejos que, probablemente requieran de acuerdos de colaboración con otros grupos de investigación para conseguir resultados de mayor alcance.

AGRADECIMIENTOS

Este estudio ha sido financiado por el Ministerio de Economía, Industria y Competitividad, así como por fondos FEDER (BIA2017-85098-R).

REFERENCIAS

[1] D.M. Frangopol, Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges, Structure and Infrastructure Engineering. 7(6) (2011) 389–413.

[2] A. Aguado, A. del Caño, M.P. de la Cruz, D. Gómez, A. Josa, Sustainability assessment of concrete structures within the Spanish structural concrete code, Journal of Construction Engineering and Management. 138(2) (2012) 268–276.

[3] F. Biondini, D.M. Frangopol, Life-cycle of deteriorating structural systems under uncertainty: Review, Journal of Structural Engineering. 142(9) (2016) F4016001.

[4] J.K. Nishijima, D. Straub, M. faber, Ingergenerational distribution of the life-cycle cost of an engineering facility, Journal of Reliability of Structures and Materials. 1(3) (2007) 33–43.

[5] V. Penadés-Plà, T. García-Segura, J.V. Martí, V. Yepes, A review of multi-criteria decision making methods applied to the sustainable bridge design, Sustainability. 8(12) (2016) 1295.

[6] P.C. Spencer, C.R. Hendy, R. Petty, Quantification of sustainability principles in bridge projects, Proceedings of the Institution of Civil Engineers – Bridge Engineering. 165(2) (2012) 81–89.

[7] V. Yepes, J.V. Martí, T. García-Segura, A cognitive approach for the multi-objective optimization of RC structural problems, Archives of Civil and Mechanical Engineering. 15(4) (2015) 123–134.

[8] L.A. Sierra, E. Pellicer, V. Yepes, Method for estimating the social sustainability of infrastructure projects, Environmental Impact Assessment Review. 65 (2017) 41–53.

[9] J.V. Martí, V. Yepes, F. González-Vidosa., Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement, Journal of Structural Engineering. 141(2) (2015) 04014114.

[10]      T. García-Segura, V. Yepes, Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety, Engineering Structures. 125 (2016) 325–336.

[11]      T. García-Segura, V. Yepes, D.M. Frangopol, Multi-objective design of post-tensioned concrete road bridges using artificial neural networks, Structural and Multidisciplinary Optimization. 56(1) (2017) 139–150.

[12]      V. Yepes, J.V. Martí, T. García-Segura, F. González-Vidosa, Heuristics in optimal detailed design of precast road bridges, Archives of Civil and Mechanical Engineering. 17(4) (2017) 738–749.

[13]      M. Sánchez-Silva, D.M. Frangopol, J. Padgett, M. Soliman, Maintenance and operation of infrastructure systems: Review, Journal of Structural Engineering. 142(9) (2016) F4016004.

[14]      V. Yepes, C. Torres-Machí, A. Chamorro, E. Pellicer, Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm, Journal of Civil Engineering and Management. 22(4) (2016) 540–550.

[15]      C. Torres-Machí, E. Pellicer, V. Yepes, A. Chamorro, E. Pellicer, Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions, Journal of Cleaner Production. 148 (2017) 90–102.

[16]      J. Martínez-Frutos, P. Martí, Diseño óptimo robusto utilizando modelos Kriging: aplicación al diseño óptimo robusto de estructuras articuladas, Revista Internacional de Métodos Numéricos en Ingeniería. 30(2) (2014) 97–105.

[17]      Z.L. Huang, C. Jiang, Y.S. Zhou, J. Zheng, X.Y. Long, Reliability-based design optimization for problems with interval distribution parameters, Structural and Multidisciplinary Optimization. 55(2) (2017) 513–528.

[18]      I. Doltsinis, Z. Kang, Robust design of structures using optimization methods, Computer methods in applied mechanics and engineering. 193(23-26) (2004) 2221–2237.

[19]      H. Beyer, B. Sendhoff, Robust optimization – A comprehensive survey, Methods in Applied Mechanics and Engineering. 196(33-34) (2007) 3190–3218.

[20]      T. García-Segura, V. Yepes, D.M. Frangopol, D.Y. Yang, Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges, Engineering Structures. 145 (2017) 381–391.

[21]      T.W. Simpson, J.D. Poplinski, P.N. Koch, J.K. Allen, Metamodels for computer-based engineering design: Survey and recommendations, Engineering with Computers. 17(2) (2001) 129–150.

[22]      J.P.C. Kleijnen, Regression and Kriging metamodels with their experimental designs in simulation: A review, European Journal of Operational Research. 256(1) (2017) 1–16.

[23]      A. Sourani, M. Sohail, Barriers to addressing sustainable construction in public procurement strategies, Engineering Sustainability. ES4 (2010) 229–237.

[24]      M. Kripka, V. Yepes, C.J. Milani, Selection of sustainable short-span bridge design in Brazil, Sustainability. 11(5) (2019) 1307.

[25]      R. Martín, V. Yepes, The concept of landscape within marinas: Basis for consideration in the management, Ocean & Coastal Management. 179 (2019) 104815.

[26]      I.J. Navarro, V. Yepes, J.V. Martí, Social life cycle assessment of concrete bridge decks exposed to aggressive environments, Environmental Impact Assessment Review. 72 (2018) 50–63.

[27]      I.J. Navarro, V. Yepes, J.V. Martí, A review of multi-criteria assessment techniques applied to sustainable infrastructures design, Advances in Civil Engineering. (2019) 6134803.

[28]      I.J. Navarro, V. Yepes, J.V. Martí, Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights, Structure and Infrastructure Engineering. (2019) DOI: 10.1080/15732479.2019.1676791.

[29]      V. Penadés-Plà, J.V. Martí, T. García-Segura, V. Yepes, Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges, Sustainability. 9(10) (2017) 1864.

[30]      J.J. Pons, V. Penadés-Plà, V. Yepes, J.V. Martí, Life cycle assessment of earth-retaining walls: An environmental comparison, Journal of Cleaner Production. 192 (2018) 411–420.

[31]      J. Salas, V. Yepes, A discursive, many-objective approach for selecting more-evolved urban vulnerability assessment models, Journal of Cleaner Production. 176 (2018) 1231–1244.

[32]      J. Salas, V. Yepes, Urban vulnerability assessment: Advances from the strategic planning outlook, Journal of Cleaner Production. 179 (2018) 544–558.

[33]      J. Salas, V. Yepes, VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain, Sustainability. 11(8) (2019) 2191.

[34]      J. Salas, V. Yepes, MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems, Journal of Cleaner Production. 216 (2019) 607–623.

[35]      L.A. Sierra, V. Yepes, E. Pellicer, Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty, Environmental Impact Assessment Review. 67 (2017) 61–72.

[36]      L.A. Sierra, V. Yepes, T. García-Segura, E. Pellicer, Bayesian network method for decision-making about the social sustainability of infrastructure projects, Journal of Cleaner Production. 176 (2018) 521–534.

[37]      L.A. Sierra, V. Yepes, E. Pellicer, A review of multi-criteria assessment of the social sustainability of infrastructures, Journal of Cleaner Production. 187 (2018) 496–513.

[38]      J. Alcalá, F. González-Vidosa, V. Yepes J.V. Martí, Embodied energy optimization of prestressed concrete slab bridge decks, Technologies. 6(2) (2018) 43.

[39]      J.T. Boscardin, V. Yepes, M. Kripka, Optimization of reinforced concrete building frames with automated grouping of columns, Automation in Construction. 104 (2019) 331–340.

[40]      T. García-Segura, V. Penadés-Plà, V. Yepes, Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty, Journal of Cleaner Production. 202 (2018) 904–915.

[41]      P. Martínez-Fernández, I. Villalba-Sanchís, R. Insa-Franco, V. Yepes, A review of modelling and optimisation methods applied to railways energy consumption, Journal of Cleaner Production. 222 (2019) 153–162.

[42]      F. Molina-Moreno, J.V. Martí, V. Yepes, Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs, Journal of Cleaner Production. 164 (2017) 872–884.

[43]      F. Molina-Moreno, T. García-Segura, J.V. Martí, V. Yepes, Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms, Engineering Structures. 134 (2017) 205–216.

[44]      G. Partskhaladze, I. Mshvenieradze, E. Medzmariashvili, G. Chavleshvili, V. Yepes, J. Alcalá, Buckling Analysis and Stability of Compressed Low Carbon Steel Rods in Elasto-Plastic Region of Material, Advances in Civil Engineering. (2019) 7601260.

[45]      V. Penadés-Plà, T. García-Segura, J.V. Martí, V. Yepes, An optimization-LCA of a prestressed concrete precast bridge, Sustainability. 10(3) (2018) 685.

[46]      V. Penadés-Plà, T. García-Segura, V. Yepes, Accelerated optimization method for low-embodied energy concrete box-girder bridge design, Engineering Structures. 179 (2019) 556–565.

[47]      V. Penadés-Plà, V. Yepes, M. Kripka, Optimización de puentes pretensados mediante la metodología de la superficie de respuesta, Revista CIATEC-UPF. 11(2) (2019) 22–35.

[48]      V. Yepes, E. Pérez-López, J. Alcalá, T. García-Segura, Parametric study of concrete box-girder footbridges, Journal of Construction Engineering, Management & Innovation. 1(2) (2018) 67–74.

[49]      V. Yepes, M. Dasí-Gil, D. Martínez-Muñoz, V.J. López-Desfilís, J.V. Martí, Heuristic techniques for the design of steel-concrete composite pedestrian bridges, Applied Sciences. 9 (2019) 3253.

[50]      V. Yepes, E. Pérez-López, T. García-Segura, J. Alcalá, Optimization of high-performance concrete post-tensioned box-girder pedestrian bridges, International Journal of Computational Methods and Experimental Measurements. 7(2) (2019) 118–129.

[51]      I.J. Navarro, V. Yepes, J.V. Martí, Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides, Sustainability. 10(3) (2018) 845.

[52]      I.J. Navarro, V. Yepes, J.V. Martí, Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks, Journal of Cleaner Production. 196 (2018) 698–713.

[53]      I.J. Navarro, J.V. Martí, V. Yepes, Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective, Environmental Impact Assessment Review. 74 (2019) 23–34.

[54]      L. Montalbán-Domingo, T. García-Segura, M.A. Sanz, E. Pellicer, Social sustainability criteria in public-work procurement: an international perspective, Journal of Cleaner Production. 198 (2018) 1355–1371.

[55]      L. Montalbán-Domingo, T. García-Segura, M.A. Sanz, E. Pellicer, Social sustainability in delivery and procurement of public construction contracts, Journal of Management in Engineering. 35(2) (2018) 04018065.

[56]      L.A. Sierra, Evaluación multicriterio de la sostenibilidad social para el desarrollo de infraestructuras, Tesis Doctoral, Universitat Politècnica de València, 2017.

[57]      J. Salas, Vulnerabilidad urbana. Nueva caracterización y metodología para el diseño de escenarios óptimos, Tesis Doctoral, Universitat Politècnica de València, 2019.

[58]      L. Montalbán-Domingo, Social sustainability in public-work procurement, Tesis Doctoral, Universitat Politècnica de València, 2019.

[59]      I.J. Navarro, Life cycle assessment applied to the sustainable design of prestressed bridges in coastal environment, Tesis Doctoral, Universitat Politècnica de València, 2019.

[60]      V. Penadés-Plà, Toma de decisiones en la gestión del ciclo de vida de puentes pretensados de alta eficiencia social y medioambiental bajo presupuestos restrictivos, Tesis Doctoral, Universitat Politècnica de València, 2020.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Construcción del puente del Estrecho de Mackinac

Puente sobre el estrecho de Mackinac. Wikipedia.

El puente del Estrecho de Mackinac, también es conocido como puente de Mackinac o Big Mac, es un puente colgante de los Estados Unidos que atraviesa el estrecho de Mackinac, uniendo los lagos Hurón y Míchigan.

El primer diseño fue obra de Leon S. Moisseiff, pero la construcción no se llevó a cabo a causa de la Segunda Guerra Mundial. Después se prescindió de este diseño tras la desgracia del hundimiento del puente de Tacoma Narrows.

Steinmann, junto al puente del Estrecho de Mackinac. Wikipedia.

El puente actual fue obra de David B. Steinman, quien dispuso un canto desmesurado al tablero para asegurar el diseño (esbeltez de 1/100, mucho menor que los puentes colgantes americanos de la época). Este nuevo puente es un 50% más pesado que su predecesor, manteniendo las pilas originales. Esta estructura tiene una luz 1.158 m y dos compensaciones de 549 m, siendo el segundo de mayor luz tras el Golden Gate y el más largo entre anclajes, 2.256 m. Los trabajos de construcción comenzaron el 7 de mayo de 1954 por la ribera de St. Ignace y al día siguiente en la ciudad de Mackinac, siendo la empresa encargada de la construcción la American Bridge Company. El costo ascendió a la suma de 99 millones de dólares de la época y fue abierto a la circulación el 1 de noviembre de 1957. Unos lo llaman el Puente “Big Mac” o “Mighty Mac”. Las torres tienen una altura de 168 m, mientras que las dimensiones del tablero son de 21 m de ancho por 11,60 m de espesor.

A continuación os dejo varios vídeos de la época donde se explica su construcción.

Comunicaciones presentadas al CMMoST 2019. 5th International Conference on Mechanical Models in Structural Engineering

Durante los días 23 a 25 de octubre de 2019 se celebra en la Universidad de Alicante el congreso internacional CMMoST 2019 (5th International Conference on Mechanical Models in Structural Engineering). En la sesión de mañana, a las 12:00 horas, nuestro grupo de investigación presenta en la Sala de Grados, bajo la presidencia de Salvador Ivorra, cuatro comunicaciones.

El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València. Os dejo aquí las referencias y los resúmenes por si os resulta de interés.

MARTÍNEZ-MUÑOZ, D.; YEPES, V.; MARTÍ, J.V. (2019). Diseño de experimentos factorial completo aplicado al proyecto de muros de contención. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain.

ABSTRACT: This paper applies a complete factorial design to a five-meter wall to evaluate which variables most influence the response. This method is used for two target functions, CO2 emissions and the cost of the structure. To do this, 32 evaluations of the structure are performed using a computer program and a statistical analysis is carried out. The results of this analysis show that the most statistically representative factor is the thickness of the wall and the length of the toe is of little importance for both target functions. The result of the models considering only the variables without the interaction results in an R2 greater than 95%, so the interaction between variables, although it is proven to exist, is not relevant to the case study. This methodology allows to reduce the complexity of structural problems, reducing the number of variables.

PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2019). Metodología para valorar la sostenibilidad con baja influencia de los decisores. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain.

ABSTRACT: The goal of achieving sustainable structures involves a set of criteria that are usually opposed. This leads to the need to create a decision-making process. In every decision-making process there are subjective assessments that depend on the decision-maker. This is why decision-makers become an important part of the process because of their subjective assessment. This paper proposes a methodology in which the subjective assessment of the decision-maker in the assessment of sustainability in structures is reduced. Different processes are applied to reduce uncertainty in decision-making processes. In the first place the analysis of main components is applied, in the second place the optimization based on kriging, and finally the AHP method. All this is applied to a continuous concrete deck of beams for pedestrian walkways to achieve sustainable designs, reducing the complexity in making decisions on the most sustainable solution.

YEPES, V.; PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T. (2019). Aplicación de optimización Kriging para la búsqueda de estructuras óptimas robustas. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain.

ABSTRACT: All the structural problems have an associated variability or uncertainty. In the design of structures there are parameters such as the dimensions of the structure, the mechanical characteristics of the materials or the loads that can have variations with respect to the design value. The goal of the robust design optimization is to obtain the design that is optimum and is less sensitive to variations of these uncertain initial parameters. The main limitation of the robust design optimization is the high computational cost required due to the high number of optimizations that must be made to assess the sensitivity of the objective response of the problem. For this reason, kriging model is applied to carry out the optimization process more efficiently. In this work, it is going to apply the robust design optimization on a continuous pedestrian bridge of prestressed concrete and box section.

YEPES, V.; MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V. (2019). Optimización de muros de hormigón mediante la metodología de la superficie de respuesta. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain.

ABSTRACT: This study presents an application of the response surface methodology to optimize a 5 m high concrete wall. The objective of this research work is to obtain a design solution of a concrete wall, using the CO2 emissions as an objective function to reduce its impact. To reach this objective, a factorial experimental design has been carried out to reduce the number of variables. After this, a steepest descent method has been used to look for the optimum neighborhood. Once the region around the optimum has been found, a second order response surface has been adjusted to reach the minimum. The objective function has been modified to allow a penalty for solutions that do not meet the Ultimate Limit States or stability restrictions. With this methodology, a good solution has been obtained, while also allowing the identification of the geometric design variables that mainly affect CO2 emissions.

 

Motores térmicos de dos tiempos

Motor de dos tiempos. Wikipedia

El motor de dos tiempos, es un motor de combustión interna que realiza las cuatro etapas del ciclo termodinámico (admisión, compresión, explosión y escape) en dos movimientos lineales del pistón (una vuelta del cigüeñal). Este motor presenta, en condiciones similares de cilindrada, número de cilindros, etc., doble de potencia que el de cuatro, pero presenta el inconveniente de que su potencia queda algo disminuida por las deficiencias de barrido de los gases producidos en la combustión. Estos motores se caracterizan por su ligereza y bajo coste, no presentando válvulas, lo cual supone una eliminación de complicaciones mecánicas.

  • Primer tiempo: se produce la combustión, expansión de los gases y descenso del pistón; llega un momento en que éste descubre la lumbrera de escape, al mismo tiempo que comprime por su parte inferior los gases, empujándolos a través de la galería de trasiego o paso hacia el cilindro.
  • Segundo tiempo: sube el pistón, descubriéndose la lumbrera de admisión, si cono es normal no lleva válvulas. Se cierra a continuación la galería y la lumbrera de escape y se produce la compresión de los gases.

Para tener una visión más completa de este motor, os dejo el siguiente objeto de aprendizaje de la Universidad de La Laguna. Espero que os sea útil.

Otro vídeo explicativo es el siguiente:

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

 

 

Grúa araña

Las grúas araña (spider crane) constituyen máquinas muy compactas que, en los modelos actuales, ofrecen gran capacidad y alcance. Se trata de una solución de gran interés cuando el acceso a un recinto es restringido o el espacio de trabajo es limitado. Las más pequeñas tienen 600 mm de ancho y un peso de 1.050 kg, con potencias de carta desde 0,9 hasta 7,5 toneladas. Su accionamiento puede ser con gasolina, diésel o con funcionamiento eléctrico. También presentan accesorios específicos para la manipulación de cristales y ventosas especiales para su sujeción.

Os dejo a continuación un vídeo de una grúa araña Octopus, de 23 metros de alcance vertical.

Aquí otros vídeos de cómo se monta una grúa araña.

Os dejo un catálogo de este tipo de máquinas para que os sirva de referencia en cuanto a características y prestaciones, en este caso se trata de la empresa Transgruma.

Descargar (PDF, 4.97MB)

Referencia:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

 

Lógica neutrosófica aplicada al análisis de la sostenibilidad de puentes en ambientes marinos

Acaban de publicarnos un artículo en la revista Structure and Infrastructure Engineering (revista indexada en el JCR) sobre la aplicación de la lógica neutrosófica (una generalización de la lógica difusa y la lógica intuicionista) al diseño y mantenimiento de puentes en ambiente marino. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La metodología propuesta utiliza la lógica neutrosófica para obtener los pesos en un Proceso Analítico Jerárquico (AHP) que considerar la subjetividad de los expertos en el proceso de toma de decisión. Se ha aplicado al diseño sostenible de puentes y su mantenimiento considerando simultáneamente las tres dimensiones de la sostenibilidad.

El artículo se puede descargar gratuitamente en el siguiente enlace:

https://www.tandfonline.com/eprint/2KZDAHNK4BPJKPSY4XSF/full?target=10.1080/15732479.2019.1676791

ABSTRACT:

Essential infrastructures such as bridges are designed to provide a long-lasting and intergenerational functionality. In those cases, sustainability becomes of paramount importance when the infrastructure is exposed to aggressive environments, which can jeopardise their durability and lead to significant maintenance demands. The assessment of sustainability is however often complex and uncertain. The present study assesses the sustainability performance of 16 alternative designs of a concrete bridge deck in a coastal environment on the basis of a neutrosophic group analytic hierarchy process (AHP). The use of neutrosophic logic in the field of multi-criteria decision-making, as a generalisation of the widely used fuzzy logic, allows for a proper capture of the vagueness and uncertainties of the judgements emitted by the decision-makers. TOPSIS technique is then used to aggregate the different sustainability criteria. From the results, it is derived that only the simultaneous consideration of the economic, environmental and social life cycle impacts of a design shall lead to adequate sustainable designs. Choices made based on the optimality of a design in only some of the sustainability pillars will lead to erroneous conclusions. The use of concrete with silica fume has resulted in a sustainability performance of 46.3% better than conventional concrete designs.

.
.
REFERENCIA:
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7): 949-967. DOI:10.1080/15732479.2019.1676791

Últimas investigaciones sobre mantenimiento de puentes en ambiente marino

https://es.wikipedia.org/wiki/Costas_bonaerenses

Dentro de nuestro grupo de investigación, y dentro del proyecto DIMALIFE, se está ultimando la tesis doctoral de Ignacio J. Navarro sobre la evaluación del ciclo de vida aplicada al diseño sostenible de puentes pretensados en ambiente marino. Esta tesis, cuya lectura está programada para este mes de noviembre, la he codirigido con el profesor José V. Martí.

Por su interés, voy a sintetizar de forma muy breve las principales contribuciones de la tesis y las principales referencias de los artículos científicos publicados al respecto, por si os resultan útiles.

  • En el artículo [1] se realizó un análisis de los costes del ciclo de vida asociados a distintos diseños para tableros de puente en ambiente marino. Los impactos de la fase de mantenimiento en este tipo de ambientes pueden suponer más del 50% de los costes totales del ciclo de vida. Los diseños basados en tratamientos superficiales hidrófugos, adición de humo de sílice, o reducciones significativas de la relación agua/cemento proporcionan reducciones de los costes del ciclo de vida superiores al 45% respecto al diseño real tomado como referencia en el trabajo.
  • En el artículo [2] se proponen indicadores sociales aplicados a puentes, y se propone una metodología adaptada a las normas ISO ambientales para evaluar el impacto social a lo largo del ciclo de vida de una infraestructura. Se analizan los impactos sociales a lo largo del ciclo de vida de un puente en ambiente marino, derivados de su construcción y su mantenimiento. Además, en el artículo se optimiza el mantenimiento para maximizar el beneficio social.
  • En el artículo [3] se analizan 15 diseños alternativos de un tablero de puente en ambiente marino, y de sus impactos ambientales a lo largo de su ciclo de vida. Los impactos ambientales se evalúan atendiendo a la metodología Ecoindicador 99. En el trabajo se comprueba que los impactos ambientales durante la fase de mantenimiento son muy significativos. Además, la optimización del mantenimiento se revela fundamental para reducir impactos a lo largo del ciclo de vida.
  • En el artículo [4] se ha llevado a cabo la optimización del mantenimiento para distintos diseños alternativos en puentes en ambientes marinos considerando criterios ambientales y económicos. La optimización se ha llevado a cabo considerando criterios de fiabilidad estructural. Los diseños con hormigones con humo de sílice han resultado en el mejor comportamiento en términos económicos, con una reducción de costes de ciclo de vida del 76% respecto a un diseño con hormigón convencional. En lo ambiental, el uso de tratamientos superficiales hidrófugos ha dado lugar a una reducción de los impactos del ciclo de vida del puente de referencia del 82,8%.
  • En el artículo [5] se ha revisado cómo se evalúa la sostenibilidad en las infraestructuras, a la vista de la formulación de los Objetivos de Desarrollo Sostenible establecidos para 2030. Se ha detectado un importante déficit metodológico en la evaluación de la sostenibilidad de las infraestructuras.
  • Por último, en el artículo [6] se ha aplicado la lógica neutrosófica (una generalización de la lógica difusa y la lógica intuicionista) para obtener los pesos mediante la metodología AHP para considerar la subjetividad de los expertos en el proceso de toma de decisión. Se ha aplicado al diseño sostenible de puentes y su mantenimiento. Se comprueba que el diseño sostenible requiere la consideración simultánea de las tres dimensiones de la sostenibilidad.

Con todo, aún se encuentran en fase de redacción y envío un par de artículos científicos que complementan la tesis. En cuanto tengamos más noticias, os avisaré de lo que vamos haciendo. Os dejo, de momento, las referencias que he utilizado.

Referencias:

  1. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:3390/su10030845
  2. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:1016/j.eiar.2018.05.003
  3. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110
  4. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:1016/j.eiar.2018.10.001
  5. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multi-criteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803. DOI:10.1155/2019/6134803
  6. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, DOI: 10.1080/15732479.2019.1676791

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Motoniveladoras

Motoniveladora. Wikipedia

Son máquinas autopropulsadas sobre ruedas cuya función principal va a ser la de nivelación y refino del terreno, reperfilando el material de los pequeños montones altos y moviendo pequeñas cantidades del mismo a poca distancia. Consisten fundamentalmente en un tractor de neumáticos del que arranca un robusto puente-bastidor del que se suspende una hoja niveladora, que puede adoptar diversas posiciones en el espacio, y situada entre los ejes delantero y trasero, pero delante del motor.

Suele trabajar con motor diésel turboalimentado, situado tras la cabina del operador, esto es, en la parte zaguera de la unidad. Su potencia abarca una extensa gama que va desde 30 a 325 CV, siendo los modelos más usados en carreteras de 100 a 200 CV, con una velocidad de transporte que, en algunos modelos, puede llegar hasta los 45 km/h. La relación potencia/peso se sitúan entre 10 y 12 CV/t. La transmisión puede ser mecánica, hidrostática o hidrodinámica, siendo ésta última la normal, mediante convertidor de par. La caja de cambios es del tipo power shift, que permite cambios de marchas sin parar la máquina ni desembragar.

Como curiosidad, Humberto Acco, un contratista italiano, construyó en 1980 la que se considera la mayor motoniveladora del mundo. Construyó una máquina para el desierto de Libia, aunque no llegó a utilizarse por el embargo americano a Libia. La máquina se utilizó en algunos trabajos de explanación en Italia y esta plenamente operativa en las instalaciones de ACCO. Esta maquina pesa unas 200 t y monta dos motores Caterpillar uno de 1000 CV en la parte trasera y otro de 700 en la delantera, la cual pertenece a la cabeza tractora de una mototrailla Caterpillar 657. La hoja (cuchilla) tiene una longitud de 10 m.

La mayor motoniveladora del mundo. Vía http://ingenieriaycomputacion.blogspot.com

Os dejo unos cuantos vídeos sobre cómo funcionan estas máquinas. En el primero veréis cómo pueden recortarse taludes, en el segundo se aprecian bien los movimientos de la hoja y en el tercero no os perdáis cómo se hundió esta máquina (hacia el final del vídeo). Espero que os gusten y os aclaren ideas.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.