Hacia la sostenibilidad en la obra civil con soluciones prefabricadas de hormigón (I)

UNA PRIMERA APROXIMACIÓN HACIA LA SOSTENIBILIDAD EN LA OBRA CIVIL CON SOLUCIONES PREFABRICADAS DE HORMIGÓN (I)

Alejandro López-Vidal (ANDECE) y Víctor Yepes (Universitat Politècnica de València)

Introducción

Figura 1.- Ciclo de vida que ilustra el proceso complete de la construcción mediante el empleo de elementos Prefabricados de hormigón
Figura 1.- Ciclo de vida que ilustra el proceso completo de la construcción mediante el empleo de elementos prefabricados de hormigón

La mayoría de avances alcanzados relacionados con los métodos estandarizados para cuantificar la sostenibilidad de la construcción, están fundamentalmente enfocados a la edificación más que a las infraestructuras, especialmente en su variante residencial. El impacto global de la edificación residencial es el mayor de todos, pues implica a los tres ejes de la sostenibilidad: medioambiental (emisiones de gases de efecto invernadero, derivados de los consumos de calefacción y/o refrigeración para lograr unas condiciones interiores confortables), social (la vivienda es una primera necesidad para las personas) y económico (suele representar el mayor gasto que afronta una persona a lo largo de su vida).

Mientras tanto, la obra civil no ha evolucionado igualmente en esta materia. Aunque generalmente se trata de construcciones de mayor envergadura, los impactos sobre la sostenibilidad son mucho más difusos y no tienen una repercusión tan directa sobre la vida diaria de los ciudadanos.

Por estas razones, puede explicarse que los métodos de evaluación de la sostenibilidad para la obra civil no estén tan desarrollados como los existentes en la edificación, incluso con cierta dificultad para encontrar referencias sobre este campo. Esto puede implicar de alguna forma un obstáculo para la promoción técnica de los elementos prefabricados de hormigón, en un área que suele estar dominado por ingenieros que, en general, saben apreciar mejor las ventajas funcionales que esta metodología constructiva ofrece con respecto a otras.

Este artículo pretende describir las fortalezas que la construcción con prefabricados de hormigón tendrá en el inminente marco reglamentario sobre la sostenibilidad en la obra civil, como vía para mejorar sus posibilidades y lograr una mayor cuota de mercado. También se analizarán algunos de los indicadores de la sostenibilidad que ya aparecen en los borradores de normas actuales.

ala014

La razón de la sostenibilidad

Los conceptos de sostenibilidad y desarrollo sostenible se mencionan en casi cualquier actividad que esté relacionada con el uso de recursos, consumo de energía o el ambiente exterior. Pero ninguno de ellos son términos nuevos, habiendo evolucionado notablemente en las últimas décadas hasta el punto de tener una enorme importancia en muchas decisiones que se toman actualmente, especialmente en aquellos países o economías más avanzadas en las que existe una creciente preocupación por las consecuencias del cambio climático, la escasez de energía o el crecimiento demográfico.

La construcción tiene una tremenda influencia analizada desde los puntos de vista económicos (por su peso en el PIB), sociales (como generador de empleos, o como medio para resolver algunas necesidades básicas como la vivienda, o la creación de infraestructuras) y medioambiental (uso de recursos naturales, energía, o posibles daños al ambiente).

Las administraciones públicas son cada vez más conscientes acerca de que el modelo actual y reciente de construir puede (y debe) mejorar mucho:

  • Gases de efecto invernadero: ↓ 30 – 40%
  • Consumo de agua: ↓ 12 – 20%
  • Consumo de energía primaria: ↓ 35 – 40%
  • Consumo de materias primas: ↓ 30 – 40%
  • Ocupación del suelo: ↓ 20%

Es evidente que construyendo de forma más ecológica se conseguirá una notable reducción del impacto para lograr los objetivos marcados por los gobiernos y la sociedad en su conjunto. Sin embargo, la mayoría de los criterios calificados como sostenibles en la construcción no son nuevos, siendo muchos de ellos ya utilizados desde el pasado cuando seguramente se hacía un consumo más responsable de los recursos disponibles, bien porque no había otra posibilidad o bien porque no existía esa cultura que ha llevado a ciertos excesos arquitectónicos tan habituales en tiempos recientes.

Hay que remarcar igualmente que el enfoque sostenible puede correr cierto riesgo de ser malinterpretado, si se utiliza de manera desproporcionada. Vivimos una época en la que muchos productos de construcción son presentados directamente como el adalid de la sostenibilidad, algo que conlleva a pensar que debería realizarse un uso más moderado del término. Debemos ser muy cautos con la interpretación del término, así como con todo aquello que se nos presente como sostenible, debiendo ponerse siempre en el contexto adecuado. Es el caso, por ejemplo, de la madera que se presenta (casi) siempre como el material de construcción más sostenible, sin tener en consideración ningún otro factor como el marco climático, social, económico e incluso cultural del lugar donde se emplee, lo que provoca escepticismo en muchas ocasiones acerca de la validez del propio concepto.

Métodos de evaluación de la sostenibilidad

Existen ya un buen número de metodologías para evaluar cuánto tiene de sostenible un edificio o una infraestructura. Éstas pueden clasificarse como metodologías privadas o bajo procedimientos normalizados. Respecto a los sistemas privados de certificación, deben destacarse BREEAM [1] que fue el primer método de evaluación de la sostenibilidad de los edificios, desarrollado en el Reino Unido en 1990 por el Building Research Institute; y la herramienta LEED [2], desarrollada en 1996 y operada por el U.S. Green Building Council. Ambos sistemas de certificacion están expandidos a nivel mundial. Otros sistemas conocidos son el SBTool (Canada), HQE (Francia) o el DGNB (Alemania). Un aspecto común a todos ellos es que están orientados a edificación.

Respecto a modelos de evaluación de la sostenibilidad de infraestructuras, pueden destacarse los programas CEEQUAL y SUNRA.

La reciente proliferación de este tipo de procedimientos provoca cierta dificultad en realizar comparaciones comprensibles entre distintos programas, e incluso entre una construcción ecológica frente a la tradicional. Para hacer frente a esta gran cantidad de métodos de cuantificación de la sostenibilidad, las dos principales organizaciones mundiales de normalización, CEN (Europa) e ISO (Internacional) han comenzado a desarrollar sus propias normas. En el caso de ISO, los comités que tratan con aspectos de construcción sostenible son los TC207, ISO TC59 SC17 e ISO TC71SC8. En cuanto a CEN, se hace a través del comité TC 350, dividido en seis grupos de trabajo siendo el WG6 el dedicado a la obra civil

Los métodos de evaluación de la sostenibilidad en los tres ejes – medioambiental, social y económico – de las obras de ingeniería civil establecidos en las normas tienen en cuenta los aspectos de comportamiento y los impactos para que puedan ser cuantificados, sin lugar a interpretaciones subjetivas y conducentes a resultados claros de cada indicador que se evalúe.

Las normas ISO 21931-2 [3] y EN 15643-5 [4] son las que establecen el marco que definen los métodos de evaluación de la sostenibilidad de las infraestructuras. Ambas normas se encuentran todavía en fase de análisis, por lo que aún habrá que esperar 1 o 2 años hasta su aprobación.

En lo que se refiere a nivel de productos o elementos constructivos, se deben destacar las normas ISO 21930 [5] y EN 15804 [6]. Ambas normas presentan un esquema similar. Las dos proporcionan las reglas de categoría de producto (acrónimo en inglés, PCR) básicas para llevar a cabo las declaraciones ambientales (acrónimo en inglés, EPD) o etiquetas Tipo III de cualquier producto o servicio de construcción, definiendo los parámetros a declarar y la forma en que se recopilan y se consignan en los informes, las etapas del ciclo de vida de un producto que hay que considerar, o las reglas para el desarrollo de escenarios. Estas normas establecen la base para estimar los valores que corresponden a más de 20 indicadores ambientales, los cuales pueden organizarse en tres categorías:

  • Indicadores de impacto ambiental: potencial de calentamiento global; potencial de agotamiento de la capa de ozono estratosférica; potencial de acidificación de tierra y agua; etc.
  • Indicadores de uso de recursos: uso de energía primaria renovable; uso de energía primaria no renovable, uso neto de agua corriente; etc.
  • Indicadores que describen categorías de residuos: residuos peligrosos y no peligrosos vertidos; residuos radiactivos vertidos; etc.

En este sentido, hay que aclarar que la evaluación del comportamiento social y económico a nivel de producto todavía no está cubierta en las normas, al menos a nivel europeo.

Y de manera más particular, debe destacarse el hecho importante de que el Comité Europeo de Normalización para los productos prefabricados de hormigón, el CEN/TC 229, acaba recientemente de iniciar los trabajos que llevarán a definir una norma específica que establezca las reglas de categoría de producto para la emisión de declaraciones ambientales de producto tipo III para tales productos prefabricados.

Debe también remarcarse otro hecho significativo. Frente a la estrategia seguida por la mayoría de materiales de construcción que sólo declaran los parámetros medioambientales hasta el final del proceso productivo sin tener en cuenta los impactos del resto del ciclo de vida, lo que se conoce como de “cuna a puerta”, las declaraciones ambientales de los productos prefabricados de hormigón se basarán en el ciclo completo, es decir, la opción denominada “de cuna a tumba”, permitiendo que todos los consumidores conozcan todos los impactos obtenidos en el ciclo de vida total, incluso hasta la fase de demolición o deconstrucción de la obra, o la posible reutilización de elementos en otra construcción en el futuro.

Referencias

[1] BREEAM, Building Research Establishment Environmental Assessment

[2] LEED, Leadership in Energy and Environmental Design

[3] Draft ISO 21931-2 Sustainability in building construction — Framework for methods of assessment of the sustainability performance of construction works. Part 2: Civil Engineering Works

[4] Draft EN 15643-5 Sustainability of construction works – Sustainability assessment of buildings and civil engineering works – part 5: framework on specific principles and requirement for civil engineering works

[5] ISO 21930:2007 Sustainability in building construction – Environmental declaration of building products

[6] UNE-EN 15804:2012+A1:2014  Sostenibilidad en la construcción. Declaraciones ambientales de producto. Reglas de categoría de producto básicas para productos de construcción.

Sobre los autores:

Alejandro López-Vidal. Nacido en 1978. Ingeniero Industrial por la Universidad de León. Ha desempeñado diversos cargos en ANDECE (Asociación Española de la Industria del Prefabricado de Hormigón) desde 2008, pasando a ocupar el puesto de Director Técnico en 2013. Es miembro de varias organizaciones relacionadas con la industria del prefabricado de hormigón, como son las Comisiones Técnica y Medioambiental de BIBM, o siendo el delegado español en el Comité de Normalización Europeo CEN/TC 229. Es Coordinador del Primer Máster Internacional sobre Construcción con Prefabricados de Hormigón en lengua hispana. Como aspectos interesantes relativos a la construcción sostenible, es secretario técnico del comité espejo español del CEN/TC 350 para los temas de sostenibilidad en la edificación, y colabora actualmente con el Grupo de Trabajo 6.15 de la FIB que está desarrollando un nuevo documento sobre la sostenibilidad de las estructuras prefabricadas.

Víctor Yepes. Nacido en 1964. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático Acreditado por ANECA y Profesor Titular en la Universitat Politècnica de València. Actualmente está implicado en varios proyectos de investigación relacionados con la optimización y la evaluación del ciclo de vida de las estructuras de hormigón. Imparte clases sobre métodos de construcción, innovación y gestión de la calidad. Es además director del Máster en Ingeniería del Hormigón. También es investigador senior en el Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y dirige el Proyecto de investigación BRIDLIFE: “Toma de decisiones en la gestión del ciclo de vida de puentes pretensados en términos de eficiencia social y medioambiental, bajo presupuestos ajustados”.

Evolución histórica de los materiales

Puente de lianas. https://www.pxfuel.com/es/search?q=bamb%C3%BA-+planta&page=68

La ingeniería civil no podría entenderse sin su relación con los materiales de construcción. Históricamente, el desarrollo y la evolución de las sociedades ha estado relacionada con la capacidad de sus miembros para producir y conformar los materiales necesarios para satisfacer sus necesidades. Los materiales de construcción han  servido al hombre para mejorar su calidad de vida o simplemente para subsistir, y junto con la energía han sido utilizados por el hombre para mejorar su condición. Los prehistoriadores han encontrado útil clasificar las primeras civilizaciones a partir de algunos materiales usados: Edad de Piedra, Edad del Cobre, Edad de Bronce, Edad del Hierro. Esta última secuencia parece universal en todas las áreas, ya el uso del hierro requiere una tecnología más compleja que la asociada a la producción de bronce, que a su vez requiere mayor tecnificación que el uso de la piedra.  A lo largo de la historia se han ido empleando distintos materiales en su construcción, evolucionando estos hasta la utilización actualmente de materiales compuestos formados por fibras de materiales muy resistentes. Madera, piedra, hierro, hormigón, ladrillo y aluminio han sido los materiales utilizados con más frecuencia en la construcción de todo tipo de estructuras. Actualmente se prueban nuevos materiales para construir puentes con mayor resistencia específica que el acero. Son los denominados materiales compuestos, formados por fibras unidas con una matriz de resina y que se vienen utilizando desde hace años en diversos tipos de industrias (aeroespacial, aeronáutica, automóvil, etc.).

En la tabla que os dejo a continuación, tomada de Milliarium, tenéis un pequeño cuadro cronológico de los materiales que se han utilizado en el caso de los puentes.

Cronología de los materiales en la construcción de puentes
COMPRESIÓN FLEXIÓN TRACCIÓN
Prehistoria Arcilla
(tapial, adobe, ladrillo)
Madera Cuerdas
Historia clásica Piedra Madera Madera
Grapas metálicas
Siglo XIX Fundición Madera Cadenas de hierro
Primera mitad siglo XX Hormigón en masa
Acero laminado
Hormigón armado
Acero laminado
Cables de acero
Segunda mitad siglo XX Hormigones especiales
Acero laminado
Maderas laminadas
Hormigón pretensado
Acero laminado
Aleaciones ligeras
Cables de acero de alta resistencia, alto límite elástico y baja relajación

Sin embargo, la adopción de un nuevo material no ha supuesto un cambio inmediato y drástico en el diseño y concepción de las estructuras. A modo de ejemplo, cuando se utilizó por primera vez el hierro como material estructural en un puente en 1779, sobre el río Severn en Coalbrookdale (Inglaterra), su diseñador, Abraham Darby adoptó el mismo esquema estructural que los puentes de piedra.

Puente de Coalbrookdale, sobre el río Severn (Inglaterra)

El tema es, como veis, muy extenso como para explicarlo en un solo artículo. Por ello creo que lo mejor es que veamos un Polimedia del profesor David García Sanoguera donde nos explica dicha evolución histórica. Espero que os guste.

José Roselló Martí y el fallido ferrocarril entre Alicante y Alcoy

Puente de las Siete Lunas, Alcoy (Alicante)

Alcoy (Alicante) es la ciudad de los puentes. Es, posiblemente, uno de los pueblos donde han nacido más ingenieros de caminos, entre los que me incluyo. El post de hoy va dedicado a una obra de ingeniería fallida, la línea de ferrocarril entre Alicante y Alcoy. El proyecto de esta línea de ferrocarril corrió a cargo del ingeniero de caminos José Roselló Martí , destinado en 1927 a la 3ª jefatura de Estudios y Construcciones de Ferrocarriles del Sureste de España, donde se encargó de la redacción del proyecto del viaducto sobre el rio Polop y los de los barrancos  de Siete Lunas, Barchell, Uxola y Zinc, en Alcoy.

A finales de los años 20 del siglo XX se pudo materializar, tras no pocas dificultades, el trazado de la línea férrea que uniría Alicante y Alcoy. El último proyecto lo redactó Roselló el 13 de julio de 1929. De esta línea destacan los numerosos puentes y túneles que se tuvieron que hacer y que hoy sirven como ruta verde para el turismo de interior en estas comarcas.

La mayor parte de los viaductos se construyeron con tres elementos: arcos de medio punto de hormigón armado de 30 m de luz,  arcos de hormigón en masa de 12 m de luz y vigas rectas de hormigón armado de 17,60 m. El más grande y espectacular de los viaductos es el que salva el río Polop, situado al pie del Parque Natural de la “Font Roja”. Posee 230 m. de longitud y una altura máxima sobre el cauce de 46 m. Consta de cinco arcos de 30 m. de luz de hormigón armado y tres arcos de avenida de 12 m. de luz, más pequeños, de hormigón en masa. Las bóvedas tienen todas 3,60 m de anchura, 0,90 m de espesor en la clave y 1,40 m. en los arranques. Los tímpanos están aligerados por arquillos de 4 m. y arriostrados transversalmente por tirantes del mismo material. Dispone de miradores en los arcos pares.

Se utilizaron cerchas semirrígidas para el armado de los arcos, pues aún no se habían publicado los modelos oficiales de puentes para ferrocarril.  Consistía este sistema en el empleo de estructuras rígidas de acero, dimensionadas para sostener el peso propio de la bóveda durante la construcción. Colgado de las cerchas, y bien sujeto a las cabezas inferiores de las mismas, se colocaba un encofrado de madera siguiendo el intradós de la bóveda. Se complementaba este entablonado con unas paredes laterales de madera hasta la altura del trasdós, quedando así establecido el encofrado de las bóvedas, pudiendo de este modo suprimirse costosas cimbras y andamios. A esta armadura se le añadía las armaduras en aquellas zonas necesarias para resistir la flexión que ocasionaban las sobrecargas móviles de servicio del puente.

Asistimos, en las primeras décadas del siglo XX, al predominio de los puentes de hormigón armado en España, que poco a poco fueron desplazando a los puentes metálicos por su mayor economía frente al alto precio del acero y menores gastos de mantenimiento. El predominio del hormigón fue posible al desarrollo en nuestro país de la técnica con figuras como Juan Manuel Zafra o José Eugenio Ribera.

A continuación os dejo el enlace a la página de la Revista de Obras Públicas donde el propio autor nos explica la obra con mayor detalle. http://ropdigital.ciccp.es/detalle_articulo.php?registro=15217&anio=1929&numero_revista=2533

Valoración de la competencia transversal Pensamiento Crítico por los alumnos de GIOP (2015)

2016-05-12 18.54.09RESUMEN: La Universitat Politècnica de València ha puesto en marcha el proyecto institucional para la acreditación de las competencias transversales de los estudiantes egresados de la UPV. Se han establecido trece competencias transversales que abarcan las del conjunto de las principales agencias acreditadas. Estas competencias se evalúan en las nuevas titulaciones de Grado, asignándose para ello distintas asignaturas troncales o de especialidad. La competencia transversal denominada “Pensamiento Crítico”, para nivel de dominio I, se adjudica a la asignatura Tipologías y Procedimientos de las Construcciones que se cursa en 2º curso. La presente comunicación muestra los resultados de la percepción que tienen los alumnos que cursan dicha asignatura respecto al pensamiento crítico basado en los fundamentos de las tipologías constructivas. Se ha elaborado para ello una encuesta anónima utilizando para su valoración una escala Likert con 11 preguntas. Se ha realizado un análisis factorial mediante el método de componentes principales y se ha propuesto un modelo de regresión múltiple para explicar las variables más importantes. Los resultados han permitido el diseño de actividades basadas en metodologías activas para la evaluación del Pensamiento Crítico.

Palabras clave: Pensamiento crítico; Competencias transversales; Actitud crítica; Emitir juicio; Opiniones argumentadas.

Referencia:

MARTÍ, J.V.; YEPES, V. (2016). Valoración de la competencia transversal “Pensamiento Crítico” por los alumnos de GIOP (2015). XIV Jornadas de Redes de Investigación en Docencia Universitaria. Investigación, innovación y enseñanza universitaria: enfoques pluridisciplinares. Universidad de Alicante, 1 de julio, pp. 2824-2840.

 

Descargar (PDF, 591KB)

Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety

Sin título

ACCESO LIBRE AL ARTÍCULO:

The following personal article link, which will provide free access to your article, and is valid for 50 days, until September 14, 2016

http://authors.elsevier.com/a/1TROAW4G4Bhqk

Abstract: This paper presents a multiobjective optimization of post-tensioned concrete road bridges in terms of cost, CO2 emissions, and overall safety factor. A computer tool links the optimization modulus with a set of modules for the finite-element analysis and limit states verification. This is applied for the case study of a three-span continuous post-tensioned box-girder road bridge, located in a coastal region. A multiobjective harmony search is used to automatically search a set of optimum structural solutions regarding the geometry, concrete strength, reinforcing and post-tensioned steel. Diversification strategies are combined with intensification strategies to improve solution quality. Results indicate that cost and CO2 emissions are close to each other for any safety range. A one-euro reduction, involves a 2.34 kg CO2 emissions reduction. Output identifies the best variables to improve safety and the critical limit states. This tool also provides bridge managers with a set of trade-off optimum solutions, which balance their preferences most closely, and meet the requirements previously defined.

Keywords

  • Multiobjective optimization;
  • CO2 emissions;
  • Safety;
  • Post-tensioned concrete;
  • Box-girder bridge;
  • Multiobjective harmony search

Highlights

  • A multiobjective optimization of post-tensioned concrete road bridges is presented.
  • A computer tool combines finite-element analysis and limit states verification.
  • Output provides a trade-off between cost, CO2 emissions, and overall safety factor.
  • Near the optima, a one-euro reduction represents a 2.34 kg CO2 emissions reduction.
  • Results show the cheapest and most eco-friendly variables for improving safety.

Reference:

GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.

Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos

VigasArtesas_09

Esta es la versión post-print de autor. La publicación se encuentra en: http://hdl.handle.net/10251/46928, siendo el Copyright de Elsevier.

El artículo debe ser citado de la siguiente forma:

Martí, JV.; Yepes, V.; Gonzalez-Vidosa, F.; Luz, AJ. (2014). Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. 30(3):145-154. doi:10.1016/j.rimni.2013.04.010.

Descargar (PDF, 856KB)

La visión personal de Javier Manterola de los puentes

ManterolaEl Grupo Español de IABSE (International Association for Bridge and Structural Engineering) organizó, en colaboración con la Escuela de Ingenieros de Caminos, Canales y Puertos de Madrid – UPM, el Workshop on Bridge Design 2015, WoBD2015. Gracia a ello tenemos la ocasión de poder escuchar a Javier Manterola dando su visión personal sobre los puentes. Espero que os guste el vídeo.

 

Success factors for integration of sustainable practices at high performance building processes through AHP-based MCDM

Hanging gardens of One Central Park, Sydney. Wikipedia
Hanging gardens of One Central Park, Sydney. Wikipedia

Abstract: Much of the efforts towards low carbon built environment focus on the building energy performance and the relationship between occupant behavior and efficient supply facilities, arguing that impacts are higher during operational stage. However little progression has been The ongoing study aims to provide a simplifed method to decide upon constructive systems for structural slabs based on hierarchical multicriteria weights applied to a set of criteria through a value function: durability, resource depletion, climate impact, investment cost, user comfort and functional design. The main function of slabs as load distribution layers of the structural frame used to be the solely priority of design practice. Other functions of the building as a dynamic system interact within the environment and occupants along time. Currently dealing with sustainable materials and life cycle inventories we aim to provide with a reproducible method for early election of the type of slab by embedding environmental (resource efficiency) and social (durability and performance) criteria among the design criteria. First, we seek for a way to hierarchically distribute the criteria and sub-criteria among the goals against resource depletion and the diverse alternatives. AHP-based MCDM is chosen to build a multi-level hierarchical structure of objectives, criteria, subcriteria, and alternatives. The analysis outlines the expert preferences for factors of buildability and cost premium of implementation of high environmental value of project design. Further analysis will focus on interrelation among factors.

Keywords: 

AHP-based MCDM, value function, environmental impact, construction cost, resource depletion, functionality,   construction systems elicitation.

Reference:

MOLINA-MORENO, F.; YEPES, V. (2015). Success factors for integration of sustainable practices at high performance building processes through AHP-based MCDM. 23rd International Conference on Multiple Criteria Decision Making. 2nd-7th August 2015, Hamburg, Germany, 7 pp.

Descargar (PDF, 372KB)

Appraisal of infrastructure sustainability by graduate students using an active-learning method

file.FeedFileLoaderAppraisal of infrastructure sustainability by graduate students using an active-learning method

Abstract:

Currently many university programs in the construction field do not take sustainability into account from a holistic viewpoint. This may cause a lack of sensitivity from future professionals concerning sustainability. Academics in construction must endeavor to instill a culture of sustainability in the curricula of their students. Therefore, this study proposes an active-learning method that allows graduate students in the construction field to take into consideration infrastructure sustainability from a variety of perspectives in a participatory process. The students applied an analytical hierarchical process to determine the appraisal degree of each criterion. A cluster statistical analysis was carried out, aiming to identify the profiles that influence decision-making. This method was applied to two classes of graduate students enrolled in the Master of Planning and Management in Civil Engineering at the Universitat Politècnica de València. This method identified a correlation between the profiles toward sustainability and the characteristics of the chosen infrastructure. It was also found that the method fulfills educational purposes: most of the students obtained more than 65% of the target learning outcomes. This approach promotes awareness and sensitivity to different points of view of the sustainability in a participatory context. It can be replicated in other contexts so as to obtain appraisals regarding various criteria that help enhance decision-making.

Highlights

  • Proposal of a method that allows students to consider infrastructure sustainability.
  • Participatory learning method that promotes integral sustainability.
  • Students profiles’ identification influencing decision making toward sustainability.
  • The profiles of evaluators influence the prioritization among alternatives.

Reference:

PELLICER, E.; SIERRA, L.A.; YEPES, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113:884-896. DOI:10.1016/j.jclepro.2015.11.010

Os dejo a continuación la versión autor del artículo:

Descargar (PDF, 593KB)