La improvisación musical como inspiración en el diseño sostenible de pasarelas peatonales

Analogía entre la improvisación musical y la optimización en ingeniería. Fuente: http://www.hindawi.com/journals/jam/2012/147950/fig1/

El proceso de improvisación musical supone una organización coherente de los sonidos y los silencios que da los parámetros fundamentales de la música, que son la melodía, la armonía y el ritmo. La simulación del proceso de improvisación musical puede servir a los calculistas de estructuras como inspiración en el diseño de algoritmos que permitan optimizar, por ejemplo, un puente. En esta comparación, el conjunto de músicos se podría asimilar a las variables de decisión; el rango de afinación, al rango de valores; la armonía; la estética, a la función objetivo; la práctica, a la iteración y la experiencia, a la matriz de memoria. A este algoritmo heurístico se le denomina harmony search.

En este post os dejo el resumen, la referencia y el enlace a un artículo que acaban de publicarnos en la revista Engineering Structures donde aplicamos esta metodología en la optimización sostenible del diseño de una pasarela peatonal formada por una viga cajón postesada. Esta investigación está financiada dentro del Proyecto HORSOST (BIA2011-23602) financiado por el Ministerio de Ciencia e Innovación.

Resumen: Este artículo tiene como objetivo el diseño sostenible de puentes viga peatonales de hormigón postesado de sección en cajón. Para ello se utiliza un algoritmo heurístico híbrido de búsqueda armónica (hybrid harmony search) con la aceptación por umbrales para encontrar la geometría y los materiales necesarios para que la suma de los costos y la huella de carbono sea lo más baja posible, cumpliendo con todas las restricciones de seguridad estructural y durabilidad. Para ajustar los parámetros del algoritmo se utilizó la metodología del diseño de experimentos. Se realizó asimismo un estudio paramétrico en pasarelas de 90 a 130 m de luz. Los resultados encontrados indican que la optimización con ambas funciones objetivo conducen a resultados similares en coste, si bien con soluciones diferentes. Los resultados sugieren que la reducción en las emisiones de CO2 conllevan mayores cantos, más pretensado y menores resistencias características del hormigón empleado.  La metodología presentada supone una propuesta detallada de las reglas de predimensionamiento de este tipo de estructuras teniendo en cuenta un enfoque medioambiental.

Fig 1

Palabras clave: Diseño sostenible, hormigón postesado, viga en cajón, pasarelas, optimización, búsqueda armónica.

Referencia: GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)

Ejecución de zanjas en el medio urbano

perforacion dirigidaSe puede definir una obra de zanja en zona urbana como el conjunto de operaciones de obra civil necesarias para albergar y disponer canalizaciones de servicios públicos en suelo de dominio público.

La apertura de zanjas en medio urbano es, quizás, una de las operaciones más habituales de obra civil. Son obras de corta duración, de ámbito reducido y de frecuentes interferencias de todo tipo: otras canalizaciones, tráfico, etc. La sociedad urbana cada vez es más sensible a las molestias que supone la apertura de zanjas en ciudades que generan colapsos circulatorios, ruido y suciedad. Estas zanjas sirven para todo tipo de canalizaciones: alcantarillado, agua potable, telecomunicaciones, electricidad y gas, entre otras muchas.

Se consideran zanjas superficiales las quepresentan menos de 0,50 m de profundidad respecto a la rasante del firme, considerándose como profundas las de más de 1,00 de profundidad. Aunque lo habitual es la ejecución de zanjas intermedias.

Una buena alternativa al procedimiento convencional de apertura de zanjas es la tecnología sin zanjas o trenchless, pero cuya descripción se escapa al objeto de este post.

Aconsejo la lectura del artículo de Vicente Belenguer “Recomendaciones técnicas sobre ejecución de zanjas en ámbito urbano”, cuya lectura la podemos ver directamente del número387 de la revista Cimbra. Os recomiendo encarecidamente su lectura.

Os paso a continuación algunos vídeos sobre este tipo de obras urbanas y sus molestias. En el primer vídeo podéis ver una zanjadora de disco con  picas. En el segundo, una noticia sobre obras molestas.

Referencia:

Belenguer, V. (2009). Recomendaciones técnicas sobre ejecución de zanjas en ámbito urbano. Cimbra: Revista del Colegio de Ingenieros Técnicos de Obras Públicas, 387:16-26. ISSN 0210-0479.

 

La optimización de estructuras

¿Cuándo empieza realmente la optimización de las estructuras? Difícil pregunta a resolver. Si bien los aspectos básicos relacionados con la optimización matemática se establecieron en los siglos XVIII y XIX con los trabajos de Lagrange o Euler, hay que esperar hasta los años 40 del siglo XX para que Kantorovich y Dantzing desarrollaran definitivamente los principios de la programación matemática.  Es a partir de la revolución informática de los años 70 cuando estas herramientas empiezan a ser empleadas habitualmente en numerosas aplicaciones en las ciencias, las ingenierías y los negocios. Sin embargo, el progreso de técnicas de optimización que no requieran derivadas y que se generen a través de reglas heurísticas, ha supuesto una auténtica revolución en el campo de la optimización de los problemas reales. En efecto, los métodos aproximados pueden utilizarse allí donde el elevado número de variables en juego impiden la resolución en un tiempo de cálculo razonable de los problemas mediante la programación matemática. A estos algoritmos de optimización aproximada, cuando su uso no está restringido a un solo tipo de problemas, la comunidad científica en el ámbito de la inteligencia artificial y la investigación operativa les ha dado el nombre de metaheurísticas. Este grupo incluye una amplia variedad de procedimientos inspirados en algunos fenómenos naturales, tales como los algoritmos genéticos, el recocido simulado o la optimización por colonias de hormigas . Liao et al. [1] presentan una revisión de la aplicación de los métodos heurísticos en el campo de la gestión del proyecto y de la construcción.

En relación con la optimización de las estructuras, si bien la información más antigua se remonta al siglo XV con los trabajos de Leonardo da Vinci y de Galileo Galilei sobre la disminución del peso de estructuras de madera, hay que esperar al siglo XIX con Maxwell y Levy, y a comienzos del siglo XX con Mitchell, para ver las primeras aportaciones en el diseño de mínimo peso de estructuras de arcos y cerchas metálicas. En 1994, Cohn y Dinovitzer [2] realizaron una amplia revisión de los métodos empleados en la optimización de estructuras, comprobando que la inmensa mayoría de las investigaciones llevadas a cabo hasta entonces se basaban en la programación matemática y en problemas más bien teóricos, con una preponderancia abrumadora de las estructuras metálicas frente a las estructuras de hormigón. Así, la aplicación de métodos heurísticos a la ingeniería estructural se remonta a los años 70 y 80 [3-5], siendo la computación evolutiva, y en especial los algoritmos genéticos, los métodos que más se han utilizado. La revisión de Kicinger et al. [6] proporciona un completo estado del arte de los métodos evolutivos aplicados al diseño estructural. Por otro lado, nuestro grupo de investigación, a través de su proyecto de investigación HORSOST, y más recientemente con el proyecto BRIDLIFE, ha presentado trabajos recientes de diseño automático y optimización de estructuras de hormigón armado con algoritmos genéticos [7] y con otras técnicas heurísticas [8-13], así como trabajos de optimización con hormigón pretensado [14,15] o de la optimización de las infraestructuras lineales [16].

Os dejo a continuación un vídeo tutorial donde se realiza una pequeña introducción al diseño optimización estructural. Espero que os sea de interés. Por cierto, si alguien se anima a hacer su tesis doctoral con nuestro grupo de investigación, será bien recibido.

Referencias:

[1] T.W. Liao, P.J. Egbelu, B.R. Sarker, S.S. Leu, Metaheuristics for project and construction management – A state-of-the-art review, Automation in Construction 20 (2011) 491-505.

[2] M.Z. Cohn, A.S. Dinovitzer, Application of structural optimization, ASCE Journal of Structural Engineering 120 (1994) 617-649.

[3] A. Hoeffler, U. Leysner, J. Weidermann, Optimization of the layout of trusses combining strategies based on Mitchel’s theorem and on biological principles of evolution, Proceedings of the Second Symposium on Structural Optimization (1973).

[4] M. Lawo, G. Thierauf, Optimal design for dynamic stochastic loading: a solution by random search, en: Optimization in structural design, University of Siegen, 1982, pp. 346-352.

[5] D.E. Goldberg, M.P. Samtani, Engineering optimization via genetic algorithms, Proceedings of the Ninth Conference on Electronic Computation ASCE (1986) 471-482.

[6] R. Kicinger, T. Arciszewski, K. De Jong, Evolutionary computation and structural design: A survey of the state-of-the-art, Computers & Structures 83 (2005) 1943-1978.

[7] F.J. Martinez, F. González-Vidosa, A. Hospitaler, V. Yepes, Heuristic optimization of RC bridge piers with rectangular hollow sections, Computers & Structures 88 (2010) 375-386.

[8] I. Paya-Zaforteza, V. Yepes, F. González-Vidosa, A. Hospitaler, On the Weibull cost estimation of building frames designed by simulated annealing, Meccanica 45 (2010) 693-704.

[9] V. Yepes, F. González-Vidosa, J. Alcala, P. Villalba, CO2-Optimization design of reinforced concrete retaining walls based on a VNS-Threshold acceptance strategy, Journal of Computing in Civil Engineering ASCE 26 (2012) 378-386.

[10] C. Perea, V. Yepes, J. Alcala, A. Hospitaler, F. González-Vidosa, A parametric study of optimum road frame bridges by threshold acceptance, Indian Journal of Engineering & Materials Sciences 17 (2010) 427-437.

[11] A. Carbonell, V. Yepes, F. González-Vidosa, Búsqueda exhaustiva por entornos aplicada al diseño económico de bóvedas de hormigón armado, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 27 (2011) 227-235.

[12] A. Carbonell, F. González-Vidosa, V. Yepes, Design of reinforced concrete road vaults by heuristic optimization, Advances in Engineering Software 42 (2011) 151-159.

[13] T. García-Segura, V. Yepes, J.V. Martí, J. Alcalá,  Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7) (2014) 1190 – 1205.

[14] J.V. Martí, F. González-Vidosa, Design of prestressed concrete precast pedestrian bridges by heuristic optimization, Advances in Engineering Software 41 (2010) 916-922.

[15] J.V. Martí, F. González-Vidosa, V. Yepes, J. Alcalá, Design of prestressed concrete precast road bridges with hybrid simulated annealing, Engineering Structures 48 (2013) 342-352.

[16] C. Torres-Machí, A. Chamorro, C. Videla, E. Pellicer, V. Yepes. An interative approach for the optimization of pavement maintenance mangement at the network level, The Scientific World Journal ID 524329 (2014).

[17] T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López. Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures 92 (2015) 112-122.

[18] J.V. Martí, V. Yepes, F. González-Vidosa. Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering ASCE 141(2) (2015) 04014114.

[19] V. Yepes, J.V. Martí, T. García-Segura. Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction 49 (2015) 123-134.

[20] V. Yepes, T. García-Segura, J.M. Moreno-Jiménez. A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4) (2015) 1024-1036.

[21] A. Luz, V. Yepes, F. González-Vidosa, J.V. Martí. Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540) (2015), e114.

[22] T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López. Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92 (2015) 112-122.

[23] J.V. Martí, T. García-Segura, V. Yepes. Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120 (2016) 231-240.

 

Gestión e Ingeniería de la Construcción: Curso a la carta para alumnos del Tecnológico de Monterrey (México)

IMG_0030Durante estos meses de julio y julio de 2016, la Universitat Politècnica de València, a través de su Centro de Formación Permanente, ha realizado un curso sobre Gestión e Ingeniería de la Construcción destinado a más de 30 alumnos del Instituto Tecnológico y de Estudio Superiores de Monterrey (México). Se trata de un curso de 50 horas presenciales, realizado a medida, basado en la metodología de la lección magistral, el estudio del caso, visitas de campo y ejercicios prácticos.

Los objetivos planteados pretenden conseguir que los alumnos entiendan la gestión como una herramienta básica para administrar los recursos, que sepan aplicar la gestión a la empresa como organización en la que se desenvuelven los ingenieros civiles, aplicar la gestión al proyecto, entender la contabilidad analítica y financiera como herramienta de control de costes en la empresa y en la obra y emplear los sistemas de información y las tecnologías de la información y la comunicación.

Se desarrollaron los siguientes temas en el programa:

  1. La toma de decisiones en la empresa
  2. La empresa constructora
  3. La producción en la empresa constructora
  4. Contabilidad de costes
  5. Construcción industrializada y prefabricación
  6. Herramientas de planificación de operaciones de construcción
  7. Tipología de infraestructuras en ingeniería civil

Además, se realizaron las siguientes visitas: variante de Monroyo, Pacadar, naves de Arcelor en Port de Sagunt y puerto de Valencia. Impartieron las clases los profesores Pascual Boquera, Jaime Jiménez, Víctor Yepes y Teresa Pellicer. Este curso se viene desarrollando en la Universitat Politècnica de València durante varios veranos, radicando el éxito en la personalización de la formación a las necesidades de los alumnos. Además, es una oportunidad magnífica para los alumnos mexicanos de conocer la ciudad de Valencia, nuestra universidad y las posibilidades de estudio de posgrado.

IMG_0001

 

Antecedentes y motivación del proyecto de investigación BRIDLIFE

BCH001La sostenibilidad constituye un enfoque que ha dado un giro radical a la forma de afrontar nuestra existencia. El calentamiento global debido a las emisiones de gases de efecto invernadero y las tensiones sociales derivadas de la presión demográfica y del reparto desequilibrado de la riqueza son, entre otros, los grandes retos que debe afrontar nuestra generación. La concentración de CO2, alcanzó un máximo sin precedentes en 2013, con el mayor incremento anual en 30 años (World Meteorological Organization, 2014), por lo que la economía baja en carbono se perfila como una línea estratégica de gran importancia. Las actividades humanas son las principales responsables de este problema, provocando un desarrollo alejado de satisfacer las necesidades de las generaciones presentes sin comprometer las necesidades de las generaciones futuras, que constituye el núcleo del paradigma de “desarrollo sostenible” (Brundtland, 1987).

La construcción juega un papel fundamental en el desarrollo de la sociedad. Influye fuertemente en la actividad económica, el crecimiento y en el empleo. Sin embargo, es una actividad que impacta significativamente en el medio ambiente (Marí, 2007), presenta efectos irreversibles y puede comprometer el presente y futuro de la sociedad. Este sector consume hasta un 60% de las materias primas extraídas (Vital Signs, 2005), generando su transformación sobre el 50% de todas las emisiones de CO2. En Europa, el 30% de los residuos proceden de la construcción y la demolición; consumiendo la industria y la construcción un 42% de la energía total de (Pacheco-Torgal y Jalali, 2011). Son datos que muestran la brecha de mejora posible en esta industria para acercarse a la sostenibilidad. No basta con construir de forma económica y eficiente, sino que debe ser socialmente aceptable, debe ahorrar recursos naturales no renovables y respetar el medio ambiente a largo plazo. Un paso en este sentido son herramientas como BREEAM, CASBEE, DGNB o LEED que certifican la sostenibilidad de las edificaciones usando parámetros objetivos. Continue reading “Antecedentes y motivación del proyecto de investigación BRIDLIFE”

¿Cuánto CO2 se emite cuando empleamos hormigón?

Cementera, http://www.coinref.com/
Cementera, http://www.coinref.com/

Una de las mayores preocupaciones actuales es el calentamiento del planeta debido a la emisión desmesurada de gases de efecto invernadero, entre los cuales está el CO2. Siempre se ha dicho que la construcción es uno de los sectores que más influye en dicho cambio climático fundamentalmente porque la fabricación de cemento Portland provoca un emisión considerable de CO2, que llega a ser el 5% del balance total de emisiones mundiales. Incluso determinados informes avisan de que la industria de la construcción, en su conjunto, podría ser responsable de generar entre el 40 y el 50% de todos los gases de efecto invernadero.

Simplificando, podemos decir que fabricar una tonelada de cemento Portland supone una emisión de una tonelada de CO2. Sin embargo, el uso de cementos con adiciones puede reducir drásticamente este tipo de emisiones, incluso a un 40%.

Sin embargo, no siempre tenemos en cuenta todos los factores que entran en juego. Recientemente, nuestro grupo de investigación realizó un ejercicio de análisis de ciclo de vida completo del hormigón empleado en fabricar un elemento estructural sencillo, como puede ser una columna de hormigón armado (García-Segura et al., 2014). Algunos resultados son de gran interés, especialmente los relacionados con los cementos con adiciones, la carbonatación y con la reutilización del material al terminar su ciclo de vida.

Efectivamente, de todos es conocido el fenómeno de la carbonatación, por la cual el hormigón captura CO2 y pierde la alcalinidad que protege de la corrosión a las armaduras, acortando por tanto la vida útil de la estructura. Aunque el fenómeno es perverso, también es cierto que dicha carbonatación supone un sumidero de gases de efecto invernadero. La cuantificación de este efecto, más la carbonatación última que puede tener lugar al final del ciclo de vida de las estructuras si usamos el hormigón, por ejemplo como árido machacado de relleno, puede hacer que el balance de CO2 completo sea diferente al que estamos acostumbrados.

Carbonatación del hormigón, que al bajar el Ph del hormigón, puede llevar a la corrosión de la armadura

Los cementos con adiciones utilizan ciertos subproductos de desecho para reemplazar el cemento Portland, el principal contribuyente a las emisiones de CO2 en la fabricación de hormigón. El objetivo de este estudio es determinar si la reducción de la durabilidad y la reducción de la carbonatación de los hormigones con cementos con adiciones compensan las menores emisiones en su producción. Este estudio evalúa las emisiones y la captura de CO2 en una columna de hormigón armado durante su vida útil y después de su demolición y reutilización como grava de relleno. El deterioro del hormigón debido a la carbonatación y la inevitable corrosión de las armaduras, terminan con la vida útil de la estructura. Sin embargo, la carbonatación continúa incluso después de la demolición, debido a la mayor superficie expuesta del material reciclado. Los resultados indican que los hormigones fabricados con cemento Portland, con adiciones de cenizas volantes silíceas (35% FA) y con escoria siderúrgicas granuladas de alto horno (80% BFS), capturan un 47, 41 y 20%, respectivamente, de las emisiones de CO2. La vida de servicio de cementos con altas cantidades de adiciones, como CEM III/A (50 % BFS), CEM III/B (80 % BFS), y CEM II/BV (35 % FA), es aproximadamente un 10 % más corta, debido al mayor coeficiente de velocidad de carbonatación. En comparación con el cemento Portland, y a pesar de una menor captura de CO2 y de vida útil, el CEM III/B emite un 20 % menos de CO2 al año. Se concluye que la adición de FA al cemento Portland, en lugar de BFS, conduce a menores emisiones, pues FA necesita menos procesamiento después de ser recogido, y las distancias de transporte son generalmente más cortas. Sin embargo, las mayores reducciones se lograron usando BFS, debido a que se puede reemplazar una cantidad mayor de cemento. Los cementos con adiciones emiten menos CO2 al año durante el ciclo de vida de una estructura, a pesar de que dicha adición reduce notablemente la vida útil. Si el hormigón se recicla como grava en relleno, la carbonatación puede reducir las emisiones de CO2 a la mitad. El caso estudiado demuestra cómo se pueden utilizar los resultados obtenidos.

Os dejo a continuación los resultados, en tablas, de dicho balance aplicados a distintos tipos de cementos, con más o menos adiciones. Podréis comprobar que se ha analizado el ciclo completo, desde la producción (incluido el transporte), la construcción, el uso, la demolición y tras la demolición. En el artículo de referencia tenéis los detalles del estudio.

 

Resultados interesantes:

  • La vida de servicio de cementos con altas cantidades de adiciones, como CEM III/A (50 % BFS), CEM III/B (80 % BFS), y CEM II/BV (35 % FA), es aproximadamente un 10 % más corta, debido al mayor coeficiente de velocidad de carbonatación.
  • CEM III/B emite un 20% menos de CO2 anual que el CEM Portland, a pesar de que tiene una vida útil menor y que recarbonata mucho menos. En valores de emisiones absolutas, CEM III/B emite un 28% menos que el CEM Portland. También es verdad que este cemento se recomienda en para hormigón en masa y armado de grandes volúmenes, como presas de hormigón vibrado o cimentaciones de hormigón armado. No es utilizable para hormigón de alta resistencia, hormigón prefabricado u hormigón pretensado.
  • Si el hormigón se recicla como grava en relleno, la carbonatación puede reducir las emisiones de CO2 a la mitad.
Grandes volúmenes de hormigón vibrado

De todos modos, no todos los tipos de cementos sirven para cualquier cosa. Os dejo estos enlaces que creo os serán útiles:

 

 

Referencias:

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI 10.1007/s11367-013-0614-0 (link)

Desarrollo y evaluación de la competencia transversal “pensamiento crítico” en el grado de ingeniería civil

Viaducto sobre el río Deba. Fuente: http://www.ideam.es/
Viaducto sobre el río Deba. Fuente: http://www.ideam.es/

Resumen: La comunicación presenta una metodología para el desarrollo y evaluación de la competencia transversal “pensamiento crítico” en el grado de ingeniería civil, en el ámbito de la asignatura “Procedimientos de Construcción II” de segundo curso. Se presenta una actividad de trabajo individual y en grupo basada en la discusión del procedimiento constructivo de un puente y de sus cimentaciones. Dicha actividad permite la evaluación de la competencia de “pensamiento crítico” basada en una rúbrica, así como la evaluación de competencias específicas de la asignatura. Se ha realizado un análisis estadístico, de correlación y de regresión lineal múltiple de las calificaciones obtenidas en la actividad y en la prueba de evaluación continua individual. Los resultados muestran como casi tres cuartas partes de los alumnos han alcanzado suficientemente la competencia. Sin embargo, también se evidencia cierta desconexión entre los resultados relativos a las competencias específicas y los relativos a la competencia transversal. Estas evidencias manifiestan que la adquisición de la competencia transversal del pensamiento crítico se ve favorecida por los trabajos de discusión en grupo. No obstante, la adquisición de competencias específicas por parte de los alumnos requiere no sólo de trabajos en grupo, sino también de trabajos individuales.

Palabras clave: competencias transversales, pensamiento crítico, ingeniería civil, grado, análisis multivariante

Referencia: YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2016). Desarrollo y evaluación de la competencia transversal “pensamiento crítico” en el grado de ingeniería civil. Congreso Nacional de Innovación Educativa y de Docencia en Red IN-RED 2016, Universitat Politècnica de València, 7 y 8 de julio, 14 pp.

Cm06VP_WgAAyEsf

Descargar (PDF, 2.18MB)