Justificación del proyecto de investigación RESILIFE

Figura 1. Instituto de Ciencia y Tecnología del Hormigón (ICITECH)
Laboratorio de materiales del Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En un artículo anterior ya presentamos un resumen del proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo justificaremos brevemente la necesidad de este proyecto.

Entre 2003 y 2013, diversos desastres naturales (terremotos, tsunamis, tifones, deslizamientos e inundaciones) y provocados por el ser humano (explosiones, vertidos o impactos) ocasionaron más de 1,1 millones de muertes, afectaron a más de 2000 millones de personas y provocaron pérdidas estimadas en 1,5 billones de dólares (Hao y Li, 2019). Estos eventos, que siguen presentes en los últimos años, resaltan la urgencia de desarrollar estructuras resilientes, sostenibles y de alto rendimiento que protejan la vida y la economía. Además, los eventos extremos requieren adaptaciones eficaces y económicas en el diseño, construcción, reparación y mantenimiento de infraestructuras, lo que impulsa la investigación en construcción sostenible para reducir la huella de carbono y otros impactos.

Los eventos extremos, junto con errores de diseño, construcción y falta de mantenimiento, suelen provocar daños estructurales locales que pueden desencadenar el colapso progresivo del edificio (Adam et al., 2018). Caredda et al. (2013) determinaron que este tipo de colapso se debió a errores de construcción y diseño en el 65 % de los casos estudiados. Algunos eventos han demostrado que las intervenciones locales preventivas pueden salvar tanto vidas de usuarios como infraestructuras, resaltando así la importancia del mantenimiento. La falta de eficacia en las reparaciones de hormigón es uno de los principales problemas en ingeniería estructural. En Europa, solo el 50 % de las operaciones de restauración en edificaciones de hormigón es efectiva, a pesar de que la rehabilitación representa casi la mitad de las inversiones en construcción (Borghese et al., 2023).

El crecimiento económico, el aumento de la población y de la urbanización, así como el calentamiento global y el agotamiento de los recursos naturales implican que la construcción de estructuras deba considerar la sostenibilidad, la durabilidad y una gestión inteligente del ciclo de vida, además de la seguridad, el rendimiento y la resiliencia. Para ello, es necesario emplear materiales sostenibles y residuos industriales en la construcción; nuevas formas y diseños estructurales para controlar las vibraciones y mitigar los efectos de las cargas; tecnologías de prefabricación innovadoras mediante impresión 3D y construcción modular para minimizar las interrupciones en la obra y mejorar el control de calidad; así como nuevos conceptos de diseño y construcción, estructuras desplegables y estructuras de sacrificio para mejorar la resiliencia y la resistencia a cargas extremas.

La recuperación de estructuras dañadas implica recursos y emisiones considerables. Por tanto, el diseño y la construcción de estructuras deben enfocarse en la sostenibilidad, la durabilidad, la resistencia múltiple, la resiliencia y la monitorización inteligente del ciclo de vida. Este enfoque es esencial para cumplir los ODS de las Naciones Unidas y abordar los desafíos climáticos y ambientales.

No obstante, la modernización de las infraestructuras conlleva un coste prohibitivo, lo que resalta la necesidad de asignar eficazmente los limitados recursos presupuestarios. Ante la complejidad de este desafío, se plantean propuestas de optimización resiliente para facilitar la toma de decisiones considerando la aleatoriedad e incertidumbres inherentes. Por ejemplo, esto se aplica a las redes eléctricas, donde los apagones derivados de condiciones meteorológicas adversas generaron costes anuales de entre 18 000 y 33 000 millones de dólares entre 2003 y 2012 (Yuan et al., 2015).

Una estructura resiliente bien diseñada puede no requerir reparación o bien puede recuperarse con reparaciones menores después de un evento extremo, como puede ser el caso de puentes con resiliencia sísmica (Dong et al., 2022). Guaygua et al. (2023) revelaron la correlación entre los edificios prefabricados y aspectos como las conexiones secas, la disipación de energía, el diseño óptimo y el colapso progresivo. Los últimos avances en estructuras industrializadas pasan por mejoras en las uniones de las estructuras prefabricadas, que son los puntos más vulnerables ante los seísmos. De este modo, se están creando edificios que, a través de ingeniosos métodos de disipación de energía, están equiparando sus prestaciones y seguridad a las estructuras tradicionales sancionadas por la práctica. Sánchez-Garrido et al. (2023) detectan lagunas en la investigación, incluida la necesidad de aplicar más las estructuras innovadoras basadas en métodos modernos de construcción (Modern Methods of Construction, MMC). Asimismo, resaltan la importancia de abordar la mejora del entorno construido a través del paradigma del diseño regenerativo. Se necesita más investigación para comprender los sistemas de construcción interdependientes mediante el uso de gemelos digitales.

Las estructuras de acero se consideraban resistentes a los terremotos, pero esta percepción cambió tras los eventos de Northridge en 1994 y Kobe en 1995, que revelaron fracturas frágiles, especialmente en las conexiones viga-columna. Desde entonces, se ha explorado el uso de materiales emergentes y diseños innovadores para reducir el riesgo de fallo frágil temprano (Fang et al., 2022). Los cambios extremos de temperatura afectan a la resistencia y la rigidez de las estructuras de acero, por lo que es necesario aumentar el tamaño de la sección transversal para compensar la reducción de la rigidez y evitar fallos estructurales (Keles et al., 2024). Esta reducción de la capacidad resistente con la temperatura también ocurre con las estructuras de hormigón (Tang et al., 2023). Las vigas de acero híbridas optimizan la resistencia a la flexión y al cortante, y mejoran a los elementos de acero homogéneos. No obstante, la investigación debe cubrir las lagunas existentes en su aplicación a estructuras complejas y su capacidad de resistir acciones extremas (Terreros-Bedoya et al., 2023). Otra oportunidad son los materiales compuestos multifuncionales que se aplican en columnas y permiten reducir el peso y mejorar la resistencia en edificios altos y entornos agresivos. Estas innovaciones superan las limitaciones de las estructuras tradicionales de acero y hormigón, así como de las tecnologías convencionales de construcción (Sojobi et al., 2023).

No obstante, no todas las estructuras pueden diseñarse para resistir cualquier evento extremo, por lo que se tiende a incrementar su funcionalidad todo lo posible. El diseño de estructuras resilientes requiere esfuerzos colaborativos e interdisciplinarios para formular nuevos enfoques y métricas que consideren el rendimiento y los aspectos funcionales posteriores al evento. Las estructuras resilientes deben contemplar su vida útil en relación con los impactos de los desastres, las reparaciones, el mantenimiento y la evolución de las acciones sobre ellas. Actualmente no existen procedimientos explícitos para cuantificar la resiliencia de las estructuras e infraestructuras en el contexto de múltiples amenazas ni para comparar las estructuras y los sistemas en términos de su resiliencia (Khaloo y Mobini, 2016). Surge la oportunidad de implementar aspectos de la resiliencia estructural, como la funcionalidad técnico-socioeconómica, los principios de diseño basados en el riesgo probabilístico y la resiliencia, las dependencias ambientales y los sistemas de apoyo a la toma de decisiones basados en la resiliencia. Para ello, resulta fundamental integrar el proyecto estructural dentro del paradigma de modelos de información en la construcción (BIM) (Fernández-Mora et al., 2022).

Referencias

  • ADAM, J.M.; PARISI, F.; SAGASETA, J.; LU, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Struct., 173:122-149.
  • ALCALÁ, J.; NAVARRO, F. (2020). Viga en cajón mixta acero-hormigón. Patente P202030530, 4 junio 2020.
  • BORGHESE, V.; CONTIGUGLIA, C.P.; LAVORATO, D.; SANTINI, S.; BRISEGHELLA, B. (2023). Sustainable retrofits on reinforced concrete infrastructures. Bulletin of Geophysics and Oceanography, https://doi.org/10.4430/bgo00436
  • CAREDDA, G.; MAKOOND, N.; BUITRAGO, M.; SAGASETA, J.; CHRYSSANTHOPOULOS, M.; ADAM, J.M. (2023). Learning from the progressive collapse of buildings. Built Environ., 15:100194.
  • DONG, H.; HAN, Q.; DU, X.; ZHOU, Y. (2022). Review on seismic resilient bridge structures. Struct. Eng., 25(7):1565-1582.
  • FANG, C.; WANG, W.; QIU, C.; HU, S.; MacRAE, G.A.; EARTHERTON, M.R. (2022). Seismic resilient steel structures: A review of research, practice, challenges and opportunities. J Constr Steel Res, 191,107172.
  • FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Integration of the structural project into the BIM paradigm: a literature review. Build. Eng., 53:104318.
  • GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Constr., 142:104532.
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Multidiscip. Optim., 56(1):139-150.
  • GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58; 105598.
  • HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Power Spectral Density method performance in detecting damages by chloride attack on coastal RC bridge. Eng. Mech., 85(2):197-206.
  • HAO, H.; LI, J. (2019). Sustainable High-Performance Resilient Structures. Engineering, 5(2):197-198.
  • KELES, M.; ARTAR, M.; ERGÜN, M. (2024). Investigation of temperature effect on the optimal weight design of steel truss bridges using Cuckoo Search Algorithm. Structures, 59:105819.
  • KHALOO, A.; MOBINI, M. (2016). Towards resilient structures. Iran., 23(5), 2077-2080.
  • MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Discrete swarm intelligence optimization algorithms applied to steel-concrete composite bridges. Struct., 266:114607.
  • MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm. Multidiscip. Optim., 65:312
  • MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Multidiscip. Optim., 65:46.
  • MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879.
  • MORENO, J.D.; PELLICER, T.M.; ADAM, J.M.; BONILLA, M. (2018). Exposure of RC building structures to the marine environment of the Valencia coast. Build. Eng., 15: 109-121.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Struct Infrast Eng, 16(7): 949-967.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023a). Design optimization of welded steel plate girders configured as a hybrid structure. J Constr Steel Res, 211:108131.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023b). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023c). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Struct., 293:116657
  • ORTEGA, A.I.; PELLICER, T.M.; CALDERÓN, P.A.; ADAM, J.M. (2018). Cement-based mortar patch repair of RC columns. Comparison with all-four-sides and one-side repair. Constr Build Mater., 186: 338-350.
  • PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Struct., 209: 109968.
  • SALAS, J.; YEPES, V. (2022). Improved delivery of social benefits through the maintenance planning of public assets. Infrastruct. Eng., DOI:10.1080/15732479.2022.2121844
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725.
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Clean. Prod., 330:129724.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Clean. Prod., 176:521-534.
  • SOJOBI, A.O.; LIEW, K.M. (2023). Multi-objective optimization of high performance concrete columns under compressive loading with potential applications for sustainable earthquake-resilient structures and infrastructures. Struct., 315:117007.
  • TANG, Y.; WANG, Y.; WU, D.; CHEN, M.; PANG, L.; SUN, J.; FENG, W.; WANG, X. (2023). Exploring temperature-resilient recycled aggregate concrete with waste rubber: An experimental and multi-objective optimization analysis. Adv. Mater. Sci., 62(1):20230347.
  • TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Constr., 49:123-134.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Civ. Mech. Eng., 17(4):738-749.
  • YUAN, W.; WANG, J.; QIU, F.; CHEN, C.; KANG, C.; ZENG, B. (2016). Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters. IEEE Trans Smart Grid, 7(6):2817-2826.
  • ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Carbon impact assessment of bridge construction based on resilience theory. Civ. Eng. Manag., 29(6):561-576.
  • ZHOU, Z.; ZHOU, J.; ALCALÁ, J.; YEPES, V. (2024). Thermal coupling optimization of bridge environmental impact under natural conditions. Impact Assess. Rev., 104:107316.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Colocación y curado de hormigones ligeros

Figura 1. https://www.laterlite.es/productos/hormigones-estructurales-ligeros/latermix-beton-1600/

Las reglas básicas para el manejo del hormigón, ya abordadas en artículos anteriores, también se aplican al hormigón de áridos ligeros, sin especificaciones particulares adicionales. Sin embargo, es crucial tener en cuenta su mayor tendencia a la segregación. Por lo tanto, se deben extremar las precauciones en cuanto a la máxima caída libre, el uso de trompas y el hormigonado de elementos estrechos con bandas de plástico, entre otros aspectos.

La compactación del hormigón con áridos ligeros requiere una mayor energía de vibración en comparación con la de un hormigón normal. Por lo tanto, se debe reducir la separación entre los puntos de inmersión de los vibradores al 70% de la distancia utilizada para el hormigón convencional, ya que estos hormigones se dispersan menos lateralmente debido a su menor peso. Además, el radio de acción del vibrado es menor, por lo que es necesario colocar el hormigón en más puntos y distribuirlo manualmente en elementos horizontales, lo cual resulta más fácil que con los hormigones normales. El desplazamiento lateral mediante vibración es muy difícil y, además, conlleva el riesgo de segregación. Por otra parte, dado que algunos áridos ligeros tienden a flotar, es necesario tomar precauciones adicionales, como utilizar vibradores de superficie o rodillos que ayuden a introducir los áridos en el interior de la masa.

La vibración del hormigón con áridos ligeros debe realizarse con extremo cuidado para evitar la segregación y la separación de los áridos en capas de densidad variable. La compactación del hormigón ligero se realiza casi exclusivamente mediante vibradores. El menor peso de este hormigón amortigua el efecto del vibrado, ya que las ondas mecánicas se propagan mejor en materiales de mayor densidad. Además, los áridos porosos ligeros atenúan las vibraciones, reduciendo significativamente el radio efectivo del vibrador.

Como regla general, debe duplicarse el número de puntos de vibración interna o, en caso de utilizar vibradores externos, debe colocarse el doble de estos. Los vibradores internos deben introducirse al menos tres veces por metro. Debido a la limitada penetración de la vibración en este tipo de hormigón, no es necesario utilizar equipos muy potentes. Se recomienda emplear agujas vibradoras con diámetros de entre 50 y 700 mm y frecuencias de entre 150 y 200 Hz.

En elementos horizontales, es crucial evitar la segregación del hormigón. Mientras que en el hormigón normal el exceso de vibrado provoca que el mortero y la lechada migren hacia la superficie, dejando el árido grueso en el fondo, en el hormigón de áridos ligeros ocurre lo contrario: los áridos flotan y el cemento se acumula en el fondo. Por ello, se debe controlar cuidadosamente el tiempo de vibrado y aplicar la regla de vibrar en muchos puntos durante poco tiempo. Se recomienda usar hormigones con un asentamiento de cono entre 60 y 100 mm, ya que asentamientos mayores pueden causar la flotación del árido grueso y dificultar el acabado. El asentamiento del hormigón con áridos ligeros debe ser aproximadamente la mitad del recomendado para el hormigón con áridos normales, en cualquier aplicación específica.

El uso de aire ocluido y la cantidad mínima óptima de agua son esenciales para asegurar que estos hormigones ligeros tengan la trabajabilidad necesaria para un vertido y acabado adecuados, especialmente aquellos hechos con áridos triturados, angulares e intensamente vesiculares. De este modo, se minimizan el sangrado, la segregación y la flotación no deseada de las partículas de árido más grandes y menos densas hacia la superficie.

El riesgo de flotación del árido ligero aumenta con vibraciones excesivas. Para lograr un buen acabado superficial en la cara expuesta del hormigón, es fundamental utilizar herramientas adecuadas que presionen el árido ligero e integren adecuadamente en la masa, asegurando que quede recubierto por la lechada. El uso de reglas vibrantes proporciona buenos acabados superficiales, ya que hunden los áridos gruesos y cubren la superficie con una capa de pasta, lo que mejora el acabado y facilita el pulido posterior. En cambio, si se utiliza una regla normal entre los bordes del encofrado, los áridos gruesos superficiales pueden desplazarse, lo que provoca oquedades y defectos en la superficie.

En cuanto al curado, la capacidad de absorción de agua de los áridos hace que, en general, el hormigón disponga de suficiente agua para completar el proceso de hidratación sin necesidad de aporte externo, especialmente cuando se utilizan áridos saturados. Sin embargo, si se emplean áridos secos, es necesario extremar las condiciones de curado añadiendo agua para asegurar un adecuado proceso de hidratación. Además, se debe evitar la desecación superficial, al igual que en los hormigones normales, especialmente en condiciones de baja humedad relativa y altas temperaturas. Los tiempos de curado deben ser similares a los requeridos para los hormigones normales.

El curado del hormigón de áridos ligeros debe comenzar inmediatamente después de su colocación, con mayor rigor que en el caso del hormigón normal. La mayor difusión del vapor de agua provoca un secado más rápido, por lo que es fundamental extremar el curado para evitar la formación de grietas y los problemas derivados de la pérdida de agua durante la hidratación del cemento. Es necesario proteger las superficies expuestas, cubriéndolas con tejidos húmedos, láminas de plástico, añadiendo suficiente agua o utilizando membranas de curado.

Se recomienda mantener el curado durante 7 días si la temperatura supera los 10 °C.

En elementos prefabricados, también puede utilizarse el curado al vapor, aunque se deben tomar ciertas precauciones para evitar problemas derivados de una mayor absorción de agua por parte de los áridos, lo que podría calentar en exceso la masa de hormigón.

Diversos experimentos recomiendan que la temperatura en la cámara de vapor no supere los 60-65 °C. Esto implica un tiempo mínimo de espera de 3 horas antes de iniciar el tratamiento y una velocidad de calentamiento limitada a 20 °C por hora. Con estas restricciones y un tratamiento total de 12 a 18 horas, se logran las resistencias necesarias para proceder al destensado sin causar problemas posteriores.

Debido a la menor conductividad térmica de los áridos ligeros, estos hormigones tienden a liberar menos calor de hidratación. Sin embargo, dado que los áridos ligeros tienen un módulo de elasticidad menor, la microfisuración de la matriz resultante es, por lo general, menor que la de los hormigones normales.

Os dejo un vídeo ilustrativo al respecto de la puesta en obra de un hormigón ligero elaborado con arlita.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Coste del ciclo de vida de las baterías de NiZn mediante Optimización Multiobjetivo por Enjambre de Partículas

Acaban de publicarnos un artículo en la revista Sustainability, revista indexada en el JCR. El artículo de investigación se centra en la optimización de las funciones de coste del ciclo de vida (LCC) e impacto ambiental (LCA) de las baterías de níquel-zinc (NiZn) mediante el algoritmo de optimización por enjambres de partículas multiobjetivo (MOPSO). El proceso de optimización se centra en las fases de adquisición de materias primas y de fin de vida útil de las baterías de NiZn para mejorar sus indicadores clave de rendimiento (KPI) de sostenibilidad. La metodología, implementada en MATLAB, utiliza un modelo de formulación de LCC y LCA ambiental, e incorpora datos de la base de datos Ecoinvent, el software OpenLCA y otras bases de datos públicas. Los resultados obtenidos gracias a la optimización proporcionan información sobre las combinaciones de países más eficaces para obtener materias primas para la producción de baterías de NiZn y gestionar los residuos de las baterías que no se pueden reciclar. Los KPI de sostenibilidad, como el impacto del calentamiento global y los costes de capital, se vinculan automáticamente a los resultados, lo que garantiza su reproducibilidad en caso de actualizaciones de datos o cambios en las ubicaciones de producción y reciclaje establecidas inicialmente en París (Francia) y Krefeld (Alemania). El proceso de validación implica un análisis de sensibilidad para garantizar la solidez de los parámetros matemáticos y tener en cuenta las futuras variaciones del mercado, junto con el uso del proceso jerárquico analítico (AHP) para validar los resultados con interacciones humanas. En el futuro, se sugiere incluir las fases de fabricación y uso en el modelo de optimización para mejorar aún más la sostenibilidad y la eficiencia de las baterías de NiZn.

Como conclusiones más importantes de este trabajo, se pueden señalar las siguientes:

  • El estudio optimizó el ciclo de vida, el impacto ambiental y el costr de las baterías de NiZn, utilizando los datos más recientes disponibles de los principales productores y centros de tratamiento de residuos.
  • La optimización por enjambres de partículas multiobjetivo (MOPSO) se consideró más adecuada que el algoritmo genético (GA) para la optimización multiobjetivo, debido a su eficiencia y eficacia.
  • El análisis tuvo en cuenta 14 flujos de materiales, una línea de eliminación de residuos y varias ubicaciones del mundo con diferentes costes e impactos ambientales, lo que puso de relieve la complejidad del proceso de optimización.
  • Mediante el MOPSO, se identificaron las ubicaciones óptimas de los proveedores de materias primas con un coste e impacto medioambiental mínimos, así como las ubicaciones de eliminación de residuos de materiales no reciclables.
  • Se recomendaron países proveedores óptimos específicos para los diferentes materiales, haciendo hincapié en la importancia de tomar decisiones estratégicas de abastecimiento para reducir el impacto ambiental y los costes.
  • El modelo de IA demostró su solidez al alinearse con los resultados del proceso jerárquico analítico (AHP) y mostrar su resiliencia a las fluctuaciones del mercado en el análisis de sensibilidad.
  • El estudio hizo hincapié en la necesidad de contar con módulos de programación dinámicos para estimar los indicadores clave de rendimiento (KPI) de sostenibilidad y validar los resultados de la optimización, especialmente en las fases de adquisición de materias primas y eliminación de residuos.
  • La validación mediante el AHP reveló similitudes y diferencias entre la IA y los resultados de las encuestas de un panel de expertos, lo que puso de manifiesto la eficacia del modelo de IA en la toma de decisiones estratégicas para el abastecimiento y la gestión de residuos.
  • El documento concluyó destacando la importancia de incorporar las fases de fabricación y uso en los futuros modelos de optimización para mejorar aún más la sostenibilidad y la eficiencia de las baterías de NiZn.

Abstract:

This study aims to optimize the Environmental Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) of NiZn batteries using Pareto Optimization (PO) and Multi-objective Particle Swarm Optimization (MOPSO), which combine Pareto optimization and genetic algorithms (GA). The optimization focuses on the raw material acquisition and end-of-life phases of NiZn batteries to improve their sustainability Key Performance Indicators (KPIs). The optimization methodology, programmed in MATLAB, is based on a formulation model of LCC and the environmental LCA, using data from the Ecoinvent database, the OpenLCA software (V1.11.0), and other public databases. Results provide insights about the best combination of countries for acquiring raw materials to manufacture NiZn and for disposing of the waste of NiZn batteries that cannot be recycled. These results were automatically linked to some sustainability KPIs, such as global warming and capital costs, being replicable in case of data updates or changes in production or recycling locations, which were initially considered at Paris (France) and Krefeld (Germany), respectively. These results provided by an AI model were validated by using a sensitivity analysis and the Analytical Hierarchy Process (AHP) through an expert panel. The sensitivity analysis ensures the robustness of mathematical parameters and future variations in the market; on the other hand, the AHP validates the Artificial Intelligence (AI) results with interactions of human factors. Further developments should also consider the manufacturing and use phases in the optimization model.

Keywords:

LCCA; LCA; MOPSO; genetic algorithms; AHP; sustainability KPIs; AI; NiZn batteries

Reference:

MALVIYA, A.K.; ZAREHPARAST MALEKZADEH, M.; SANTARREMIGIA, F.E.; MOLERO, G.D.; VILLALBA-SANCHIS, I.; MARTÍNEZ-FERNÁNDEZ, P.; YEPES, V. (2024). Optimization of the Life cycle cost and environmental impact functions of NiZn batteries by using Multi-Objective Particle Swarm Optimization (MOPSO). Sustainability, 16(15):6425. DOI:10.3390/su16156425

Descargar (PDF, 2.03MB)

Amasado y transporte del hormigón ligero

Figura 1. Panteón de Agripa, con uso de hormigón ligero (áridos de roca volcánica). https://es.wikipedia.org/

El hormigón de áridos ligeros, comúnmente conocido como «hormigón ligero», tiene numerosas aplicaciones en el campo del hormigón estructural, tanto en elementos armados como pretensados. Se utiliza en estructuras de edificios, principalmente en losas, cubiertas laminares, puentes y elementos prefabricados. Su desarrollo ha estado ligado a la capacidad de fabricar áridos ligeros y, actualmente, la gama de resistencias que puede alcanzar es similar a la de los hormigones ordinarios.

La primera utilización documentada de hormigón ligero data del siglo II a. C., durante la construcción del Panteón de Roma (Figura 1). Para cubrir la bóveda de 44 m de diámetro, los ingenieros romanos emplearon una mezcla de argamasa y piedra pómez para reducir su peso.

El Código Estructural define en su Anejo 8 el hormigón con áridos ligeros (HL) como aquel hormigón de estructura cerrada, cuya densidad aparente, medida en condición seca hasta peso constante, es inferior a 2000 kg/m³, pero superior a 1200 kg/m³, y que contiene una cierta proporción de árido ligero, tanto natural como artificial. Se excluyen los hormigones celulares, tanto de curado estándar como curados en autoclave. Es importante resaltar que la densidad aparente (o peso unitario) en el estado fresco es superior a la del hormigón con árido normal y depende del grado de saturación del árido ligero y del contenido de agua de amasado.

El hormigón ligero es más caro que el hormigón ordinario como material. Sin embargo, el coste total de la estructura o construcción se reduce al emplear un material que genera menos cargas, lo que optimiza el armado y las cimentaciones. Básicamente, los áridos ligeros utilizados en hormigones estructurales son artificiales.

Figura 2. Hormigón ligero blanco. https://www.trasbordo.es/bachillerato-ohs-hormigon-ligero-estructural-blanco/

Un problema habitual durante el amasado, el transporte y la colocación de este hormigón es la segregación negativa. En este fenómeno, los áridos de mayor tamaño y menor densidad tienden a elevarse dentro de la masa, es decir, a flotar. Este efecto se vuelve especialmente pronunciado con ciertos áridos ligeros cuando el hormigón se vierte y se vibra.

La mayoría de los hormigones ligeros experimentan una retracción significativa o cambios volumétricos al endurecerse, especialmente cuando hay variaciones en la humedad ambiental. Estas variaciones pueden causar problemas importantes. La retracción hidráulica depende en gran medida del tipo de árido y de la dosificación de la mezcla, mientras que los cambios de volumen por variación de la humedad dependen de la permeabilidad del hormigón y de los áridos utilizados. El curado con vapor a presión reduce estos cambios de manera muy efectiva.

Las instalaciones de fabricación son fundamentales para lograr las características deseadas del hormigón ligero, así como para asegurar la constancia y la homogeneidad de sus propiedades, garantizando así la seguridad y la fiabilidad que el usuario requiere. Debido a las particularidades del hormigón ligero y de algunos de sus componentes, es esencial disponer de acopios bien definidos que eviten la contaminación de los áridos y de las instalaciones. Además, es necesario contar con balsas u otros sistemas que permitan la inmersión o el riego de los áridos para su adecuada humectación.

Amasado

El amasado del hormigón puede realizarse de manera seca o húmeda, siendo esta última la más recomendable debido a la mejor regularidad que se obtiene en el producto final. Además, es importante destacar que se debe aumentar el tiempo de amasado en comparación con el hormigón normal para controlar la absorción del árido y lograr un producto homogéneo.

Para el amasado, se pueden utilizar amasadoras de caída libre o de salida forzada, siendo estas últimas más efectivas, ya que presentan menos pérdida de conglomerante por adherencia.

Las amasadoras de caída libre tienden a formar adherencias de la pasta de cemento y los finos en las paredes del tambor, debido a que el efecto desincrustante de los áridos ligeros contra las paredes durante el amasado es mucho menor que el de los áridos normales. Esto es especialmente relevante en las mezclas con poca agua y algo de cemento, habituales en estos hormigones para alcanzar elevadas resistencias.

La secuencia de carga en la amasadora es otro aspecto crucial que debe tenerse en cuenta, ya que puede variar en función de los siguientes factores:

  • La densidad del árido ligero utilizado.
  • El grado de saturación de ese árido
  • El uso de aditivos o su ausencia.

En función de estos factores, se debe decidir si cargar y amasar primero el árido y la arena con el agua para evitar variaciones en el contenido de agua de amasado y, por ende, en la relación agua/cemento. También es importante evitar la absorción de aditivos por el árido, lo que podría reducir su efectividad.

Una opción es añadir toda el agua al principio para evitar estos problemas; sin embargo, es preferible utilizar amasadoras forzadas de alto rendimiento.

El amasado debe seguir esta secuencia: incorporar los áridos ligeros, poner en marcha la hormigonera y añadir al menos dos tercios del agua de amasado. Se debe mezclar durante 30 segundos a 1 minuto, luego añadir el cemento y el agua restante. Amasar durante dos minutos con la carga total. Si la amasadora se ha parado, dar diez vueltas a la velocidad de mezclado antes de descargar para evitar la segregación.

Los aditivos en polvo se deben añadir mezclados con el cemento, mientras que los aditivos líquidos se incorporan con la segunda carga de agua de amasado. Durante la primera carga de agua, los áridos absorben parte de ella, por lo que los aditivos no deben mezclarse en esta etapa, ya que serían absorbidos por los áridos y perderían efectividad. Lo mismo ocurre si se añade el cemento en seco, pues la lechada absorbida por los áridos reduciría su contenido. Por lo tanto, los aditivos no deben incorporarse hasta que los áridos hayan sido debidamente humedecidos.

Si se utilizan áridos secos, es necesario mezclar el árido grueso y la arena con una cantidad de agua equivalente al 40 %-60 % del total antes de añadir el cemento, durante al menos un minuto. Se debe calcular la cantidad total de agua añadiendo al agua efectiva para la pasta de cemento la cantidad que absorben los áridos en 30 minutos. Si se emplean áridos secados en horno, puede ser necesario mantener la hormigonera parada durante un tiempo tras la primera incorporación de agua, para permitir así una absorción uniforme. De no hacerlo, la trabajabilidad del hormigón podría disminuir rápidamente durante el amasado.

En el caso de utilizar áridos húmedos, es crucial determinar previamente su contenido de humedad y restarlo de la cantidad de agua absorbida en 30 minutos. Es importante destacar que la correcta adición de agua tiene un impacto significativo tanto en la resistencia como en la trabajabilidad del hormigón.

En general, el tiempo de amasado necesario para los hormigones con áridos ligeros es mayor que para los hormigones con áridos normales. Este tiempo adicional se utiliza para humedecer adecuadamente los áridos antes de añadir el cemento y para homogeneizar la mezcla después de incorporar el aditivo y de añadir toda el agua de amasado. Este proceso prolongado evita que la rápida absorción de agua y aditivo por parte del árido ligero reduzca la trabajabilidad del hormigón y la eficacia del aditivo. En general, se aconseja no superar los dos minutos de amasado para evitar la trituración de los áridos ligeros. Aunque en la práctica, tiempos de hasta tres minutos no suelen causar daños apreciables, no se recomienda exceder el tiempo indicado, especialmente con áridos de baja dureza y resistencia.

Transporte

El transporte del hormigón ligero se realiza con los mismos medios que se utilizan para los hormigones convencionales. Sin embargo, es importante evitar sistemas que favorezcan la segregación, como los camiones estacionarios o las cintas. En la práctica, el uso de estos sistemas ya está muy restringido incluso para los hormigones normales.

El transporte del hormigón debe realizarse en camiones hormigonera, pues esto permite corregir la disminución de la docilidad que ocurre durante el transporte. Asimismo, evita la tendencia a la segregación del árido ligero en hormigones de alta docilidad mediante un amasado previo al vertido. Es importante destacar que la consistencia del hormigón puede reducirse durante el transporte más que en el caso de los hormigones normales. Además, existe una mayor tendencia a la segregación, especialmente en hormigones más fluidos y con áridos de menor densidad. Por lo tanto, se recomienda utilizar aditivos o adiciones que reduzcan el contenido de agua y mejoren la estabilidad del hormigón.

El transporte por camión es un método habitual, ya que facilita el control de las precauciones técnicas y del equipo necesario, como la humedad de los áridos, el orden de amasado y las hormigoneras de salida forzada en la planta. Los tiempos de transporte son comparables a los de los hormigones convencionales, aunque durante el traslado puede producirse una pérdida de consistencia debido a la absorción de agua por los áridos ligeros. Para prevenir estos problemas, es crucial humedecer adecuadamente los áridos antes de su uso. La cantidad exacta de agua de amasado debe determinarse mediante ensayos previos, considerando la humedad de los áridos, el tiempo de transporte y la consistencia requerida en la obra. Se deben seguir las pautas de amasado establecidas y ajustar la consistencia en la obra, si es necesario, añadiendo agua adicional o un aditivo fluidificante. Este ajuste no afectará a la resistencia, siempre que se realice de manera controlada para alcanzar el asentamiento de cono especificado y compensar así el agua absorbida en exceso por los áridos. Sin embargo, se recomienda probar el procedimiento mediante ensayos previos.

El mezclado exclusivo en camión presenta problemas para estos hormigones debido a la formación de grumos de pasta en las paredes del tambor y debe evitarse. Es preferible realizar el amasado por completo en la planta y luego transportar el hormigón a la velocidad de giro del camión. Antes de descargar, se recomienda girar el tambor diez veces a la velocidad de amasado. No es necesario imponer limitaciones estrictas al número total de revoluciones durante el transporte para evitar la trituración de los áridos, ya que, en la práctica, este fenómeno no se ha observado.

Cuando se transporta hormigón con áridos ligeros por tubería, es crucial tener en cuenta cómo la presión de bombeo afecta a la absorción de agua por los áridos ligeros. Una presión elevada aumenta la absorción de agua, mientras que una disminución de esta presión puede provocar un exceso de agua en relación con el cemento. En el primer caso, se puede perder trabajabilidad y complicar la operación de bombeo, por lo que es esencial presaturar los áridos. En el segundo caso, la resistencia del hormigón se verá comprometida y su estructura interna perderá compacidad. Por lo tanto, es fundamental ajustar la dosificación para prever y mitigar estas alteraciones, limitando adecuadamente las distancias y alturas de bombeo. Por ello, se recomienda realizar pruebas de bombeo para verificar que las características del hormigón fresco no se vean afectadas de forma notable.

Se adjunta el Anejo 8 del Código Estructural sobre recomendaciones para la utilización de hormigón con áridos ligeros.

Descargar (PDF, 932KB)

Os dejo algunos vídeos que espero que os interesen.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Fabricación y puesta en obra del hormigón autocompactante

Figura 1. Hormigón autocompactante. https://www.construex.com.bo/

El hormigón autocompactante se define por su capacidad de fluir y consolidarse bajo su propio peso sin necesidad de vibración. Este material se desarrolló en los años 80 para mejorar el llenado de moldes en zonas de difícil acceso. Entre sus ventajas destacan la rapidez de ejecución, la reducción de mano de obra y el mejor acabado superficial. Para ello, es esencial el uso de aditivos superplastificantes y agentes modificadores de viscosidad. Este tipo de hormigón presenta una menor permeabilidad y mayor durabilidad, con una dosificación típica que incluye cemento, aditivos y áridos de tamaño controlado para asegurar su fluidez y cohesión.

En general, no se requieren equipos especiales para fabricar hormigón autocompactante; se pueden utilizar las amasadoras convencionales empleadas para el hormigón compactable por vibración. Sin embargo, es fundamental controlar continuamente el contenido de humedad de los áridos y ajustar el agua de amasado en función de los resultados de este control. Además, es necesario establecer un esquema de control casi continuo durante la elaboración de las primeras mezclas, ajustando los tiempos de amasado en función de los resultados. Cabe señalar que, por lo general, los tiempos de amasado para el hormigón autocompactante deben ser ligeramente mayores que para los hormigones convencionales.

Dado que el hormigón autocompactante no requiere compactación para su colocación y es capaz de fluir dentro del encofrado, llenando naturalmente su volumen y consolidándose bajo su propio peso, los rendimientos de colocación son mucho mayores que los del hormigón convencional. En elementos horizontales, como losas de piso, forjados, soleras o pavimentos, estos rendimientos son aún mayores, lo que permite reducir los tiempos de ejecución hasta en un 20 o 25 %, dependiendo de la naturaleza de la construcción. Esta reducción en los tiempos de ejecución va acompañada de una disminución del 50 % en la mano de obra necesaria para su colocación, lo cual compensa su mayor coste respecto a otros hormigones.

Otro factor a considerar es que se necesita menos equipo para colocar el hormigón autocompactante. Ya sea vertido directamente desde el camión mezclador o a través de un tubo flexible de goma cuando se utiliza un sistema de bombeo, no es necesario emplear equipos como palas y rastrillos para colocarlo ni llanas para acabarlo. Además, al eliminar la actividad de vibrado del material, se prescinde del uso de equipos de compactación necesarios para el hormigón convencional.

Figura 2. https://www.desarrolla.es/utilizacion-de-hormigon-autocompactante/

El momento en el que deben añadirse los aditivos, especialmente los superplastificantes, debe determinarse en consulta con el proveedor. Asimismo, una vez seleccionada la dosificación, cualquier problema con la consistencia de la masa debe resolverse preferiblemente ajustando la dosificación de los aditivos, particularmente la cantidad de superplastificante, siempre y cuando la relación agua/cemento permita realizar estas correcciones sin superar los límites establecidos en los ensayos de dosificación.

La fabricación del hormigón autocompactante es similar a la del hormigón convencional vibrado, pero requiere una mayor atención a la regularidad de la dosificación. Esto se debe a que el hormigón autocompactante es más exigente en términos de uniformidad de los materiales y precisión en la dosificación del agua. Debido a su mayor cohesión, es preferible amasar el hormigón autocompactante con dos tercios de la cantidad total de agua. Una vez que se haya logrado una buena homogeneización, se debe añadir el tercio restante de agua junto con los aditivos necesarios para completar el amasado.

Al suministrar el hormigón en la obra, puede ser conveniente volver a readitivar el material para asegurar que mantiene las condiciones de autocompactabilidad necesarias para su correcta colocación. La readitivación debe realizarse bajo la supervisión del fabricante del hormigón, quien determinará el tipo y la dosis exacta de aditivo necesarios, así como verificará que el tiempo de amasado en el camión después de la readitivación sea el adecuado.

Se recomienda el uso de la técnica de hormigonado con bomba para este tipo de hormigón. Para obtener mejores resultados, el hormigón debe bombearse desde la parte más baja del encofrado. Si se opta por el hormigonado por caída libre, la altura de vertido no debe superar los 5 m y la distancia horizontal de desplazamiento debe limitarse a un máximo de 10 m para evitar la segregación del material.

Los encofrados deben ser no absorbentes, y es fundamental prestar especial atención a su diseño, ya que el hormigón autocompactante ejerce presiones mayores durante su colocación. Dado que el hormigón autocompactante es un material muy fluido, los encofrados deben ser estancos. Esto evita que la lechada se filtre por las juntas y provoque la formación de «nidos de grava» una vez desencofrado el elemento.

El curado del hormigón autocompactante es similar al del hormigón convencional y se aplican los mismos procedimientos. Es importante comenzar el curado lo antes posible para evitar la pérdida de agua superficial por evaporación, lo que podría causar retracción plástica y asentamiento, especialmente en condiciones adversas como altas temperaturas, viento y baja humedad relativa. Estos factores son aún más críticos cuando se combinan. Además, dado que el hormigón autocompactante contiene más finos (cemento y aditivos) que el hormigón convencional, el curado adquiere mayor importancia.

Se pueden emplear los mismos procedimientos para el acabado de las superficies de hormigón autocompactante en términos de textura y color que los utilizados para el hormigón convencional.

En superficies sin tratamiento adicional, el hormigón autocompactante ofrece una mayor uniformidad y, por lo tanto, un mejor acabado en comparación con el hormigón convencional. Esto se debe a que, al evitar la vibración, se elimina el principal factor que provoca la falta de homogeneidad cromática en las caras visibles del hormigón. En el hormigón convencional, esta heterogeneidad se debe a la distribución aleatoria del agua en la mezcla, lo que genera diferentes procesos de hidratación con variadas proporciones de agua y cemento, que dan lugar a variaciones en el color del cemento hidratado. No obstante, hay que tener precaución con los niveles de acabado en las superficies libres, procediendo a su nivelación y acabado superficial con útiles especiales, dado que la aplicación de reglas metálicas resulta problemática en algunas ocasiones.

Os dejo, a continuación, algunos vídeos ilustrativos.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Proyecto de investigación RESILIFE (2024-2027)

Los desastres naturales y humanos ocasionan pérdidas humanas y económicas considerables. Las estructuras dañadas deben diseñarse para recuperar su funcionalidad lo antes posible, lo que implica recursos y emisiones significativas. Por tanto, el diseño y la construcción de estructuras deben enfocarse en la sostenibilidad, la durabilidad, la resistencia múltiple, la resiliencia y la monitorización inteligente del ciclo de vida. Los eventos extremos, junto con errores de diseño, construcción y falta de mantenimiento, suelen provocar daños estructurales locales que pueden desencadenar el colapso progresivo de las infraestructuras. RESILIFE afronta el reto social que suponen el mantenimiento y la reparación de estructuras frente a situaciones extremas, mediante la optimización de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas. La hipótesis de partida es que un diseño óptimo y la construcción con estructuras híbridas basadas en los modernos métodos de construcción, en especial las modulares, son efectivos desde el punto de vista social y ambiental, y resilientes ante eventos extremos. El reto será incorporar mejoras en el diseño para afrontar eventos extremos y equiparar estas estructuras en prestaciones y en seguridad a las estructuras tradicionales. La innovación central consiste en plantear procedimientos explícitos para cuantificar la resiliencia de las estructuras en el contexto de múltiples amenazas y comparar las estructuras y los sistemas en términos de resiliencia. Para ello, se aplicarán técnicas de inteligencia artificial para optimizar la resiliencia, lo que demostrará su eficacia en términos sociales y ambientales frente a eventos extremos. La novedad metodológica radica en la utilización de metaheurísticas híbridas emergentes y Deep Learning en la optimización multiobjetivo, así como de la teoría de juegos, con el fin de lograr la pronta recuperación de su funcionalidad con costes sociales y ambientales reducidos, evitando su colapso progresivo. Además, se pretende profundizar en las técnicas de decisión multicriterio emergentes, como la lógica neutrosófica y otras, como las redes bayesianas. Esto no solo mejora la calidad y la velocidad de cálculo en el diseño, el mantenimiento y la reparación de estructuras, sino que también aborda las incertidumbres del mundo real y propone una optimización resiliente basada en la fiabilidad y en diseños robustos. En este contexto, en el mundo real existen incertidumbres, imperfecciones o desviaciones respecto a los parámetros utilizados en los códigos. Una estructura óptima se encuentra cercana a la región de infactibilidad, por lo que es necesario incorporar las incertidumbres para proporcionar diseños más robustos y fiables. Por otra parte, la fuerte limitación presupuestaria presente en momentos de crisis compromete seriamente las políticas de creación y conservación de las infraestructuras, sobre todo si hay incrementos de costes al introducir la resiliencia en el diseño. Los resultados esperados, tras un análisis de sensibilidad de distintas políticas presupuestarias asociadas a un horizonte temporal, pretenden detallar qué tipologías, actuaciones concretas de reparación y conservación, y alternativas de demolición y reutilización son adecuadas para minimizar los impactos ambientales y sociales considerando la variabilidad.

Natural and human disasters cause considerable human and economic losses. Damaged structures must be designed to recover their functionality quickly, which involves significant resources and emissions. Therefore, the design and construction of structures must focus on sustainability, durability, multiple resistance, resilience, and intelligent life-cycle monitoring. Extreme events, design, construction, and lack of maintenance errors often cause local structural damage that can trigger the progressive collapse of infrastructures. RESILIFE addresses the social challenge of maintaining and repairing structures in extreme situations by optimizing the complex problems posed at the level of public and private decisions. The starting hypothesis is that optimal design and construction with hybrid structures based on modern construction methods, especially modular ones, are socially and environmentally effective and resilient to extreme events. The challenge will be to incorporate design improvements to cope with extreme events and to bring these structures on par with traditional structures regarding performance and safety. The central innovation is to develop explicit procedures to quantify the resilience of structures in the context of multiple hazards and to compare structures and systems in terms of resilience. To this end, artificial intelligence techniques will be applied to optimize resilience, demonstrating its effectiveness in social and environmental terms in the face of extreme events. The methodological novelty lies in using emerging hybrid metaheuristics and Deep Learning in multi-objective optimization and game theory to achieve early recovery of its functionality with reduced social and environmental costs, avoiding its progressive collapse. In addition, it is intended to deepen emerging multi-criteria decision techniques, such as neutrosophic logic, and others, such as Bayesian networks. This not only improves the quality and speed of computation in the design, maintenance, and repair of structures but also addresses real-world uncertainties and proposes resilient optimization based on reliability and robust designs. In this context, uncertainties, imperfections, or deviations from the parameters used in the codes exist in the real world. An optimal structure is close to the infeasibility region, so it is necessary to incorporate the uncertainties to provide more robust and reliable designs. On the other hand, the strong budget constraints present in times of crisis seriously compromise infrastructure creation and maintenance policies, especially if there are cost increases when introducing resilience in the design. After a sensitivity analysis of different budgetary policies associated with a time horizon, the expected results aim to detail which typologies, specific repair and conservation actions, and demolition and reuse alternatives are adequate to minimize environmental and social impacts considering variability.

PROYECTO DE INVESTIGACIÓN:

Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas. (RESILIFE). [Resilient life-cycle optimization of socially and environmentally efficient hybrid and modular structures under extreme conditions]. PID2023-150003OB-I00. Investigadores principales: Víctor Yepes y Julián Alcalá.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Fabricación, puesta en obra y consolidación de hormigones compactados con rodillo

Figura 1. Presa ejecutada con RCC. https://vietnamconstruction.vn/en/roller-compacted-concrete-properties-advantages-applications/

Los hormigones compactados con rodillo (HCR) (RCC, en sus siglas en inglés) son mezclas de cemento, áridos y agua en la cantidad justa para permitir la consolidación de la masa mediante rodillos compactadores.

Estos hormigones tienen una relación agua/cemento suficientemente baja para alcanzar altas resistencias, lo que les permite soportar las cargas de los equipos de consolidación. Sin embargo, esta relación no es tan baja como para impedir que la pasta se distribuya entre los áridos durante el proceso de amasado y compactación, logrando así su unión.

Esto garantizaría una consolidación efectiva, lo cual es crucial para lograr una densidad, resistencia (la resistencia a la compresión puede superar los 60 MPa), uniformidad y textura superficial satisfactorias. El hormigón seco compactado se construye sin juntas, encofrados, acabados, refuerzos de acero ni pasadores. Estas características hacen que el hormigón seco compactado sea sencillo, rápido y económico. Su economía se debe en gran medida a los métodos de construcción de alta velocidad y gran volumen.

Uno de los inconvenientes del HCR es su sensibilidad a las variaciones en la humedad durante el proceso de compactación. Un exceso o un defecto de agua, así como una densidad insuficiente, puede reducir considerablemente la resistencia mecánica y afectar negativamente a la uniformidad de la superficie. Por otro lado, una falta de humedad puede provocar riesgos de segregación en la superficie del hormigón. Sin embargo, el HCR presenta un cambio de volumen potencial debido a la pérdida de humedad o retracción por secado significativamente menor en comparación con el hormigón convencional, gracias a su menor contenido de agua en la mezcla.

El HCR surgió como una alternativa para la construcción de presas, con sus primeros antecedentes en la reparación de estructuras a finales de la década de 1970. Esta técnica respondió a los problemas de fisuración del hormigón tradicional causados por las elevadas temperaturas generadas durante la hidratación del cemento. Posteriormente, el método se perfeccionó para su aplicación en presas de gravedad, siendo la primera experiencia concreta la construcción de la presa de Willow Creek en 1982, en Oregón (Estados Unidos). Desde entonces, su uso se ha expandido rápidamente a nivel mundial. El HCR también se desarrolló como una solución económica para pavimentos, capaz de soportar grandes volúmenes de cargas pesadas y de resistir el daño provocado por ciclos de congelación y descongelación. El pavimento compactado con rodillo tiene la ventaja de que se puede abrir al tráfico al día siguiente y tiene un aspecto parecido al asfalto.

Lo que distingue a los HCR de los hormigones tradicionales es su mayor sequedad, lo que permite su colocación en obra con los equipos utilizados en la construcción de terraplenes y presas de materiales sueltos (Figura 2). A pesar de esta diferencia, una vez endurecidos, sus características son muy similares a las de los hormigones convencionales.

Figura 2. Colocación del hormigón HCR. https://hormigonaldia.ich.cl/novedades-tecnologicas/hormigon-compactado-con-rodillo-hcr-solucion-rapida-persistente-y-a-bajo-costo/

En los últimos tiempos, este tipo de hormigones ha despertado un creciente interés en obras en las que se realiza la colocación en capas delgadas, como en presas y pavimentos, en los que la superficie predomina sobre el espesor. Su estructura es similar a la de las gravas-cemento, aunque, debido a su mayor contenido de conglomerante y a las mayores resistencias que alcanzan, se asemejan más a los hormigones convencionales.

Las mezclas de estos hormigones deben tener una dosificación precisa de pasta, ya que un exceso puede causar un efecto «colchón», generando ondas en la capa que se está compactando frente al rodillo, especialmente si debajo ya hay capas compactadas. Por el contrario, una cantidad insuficiente de pasta provoca que los áridos se contacten entre sí y se trituren bajo la presión del rodillo.

Actualmente, se está avanzando en el desarrollo de plantas de dosificación y amasado específicamente diseñadas para la fabricación de hormigón seco compactado (HCR). Estas plantas utilizan tanto centrales clásicas discontinuas como sistemas de amasado continuo. La dosificación del HCR puede realizarse de varias maneras: mediante dosificación convencional por peso, dosificación continua por peso con cintas pesadoras o dosificación volumétrica continua, utilizando alimentadores de paletas o de banda estriada.

Si bien cada método de transporte tiene sus ventajas, cualquiera que sea el método utilizado, los equipos deben diseñarse para minimizar la segregación, que puede ser un problema, particularmente con mezclas menos trabajables con árido de tamaño máximo grande. Los camiones hormigonera son adecuados incluso para áridos de hasta 76 mm de tamaño máximo. Sin embargo, los camiones de cajón basculante no son recomendables para áridos mayores de 40 mm, ya que pueden surgir problemas de segregación.

En la construcción de presas, es esencial garantizar un suministro elevado de hormigón. Un rodillo vibrante de 4,5 m de ancho puede compactar hasta 260 m³ de hormigón en cuatro pasadas, a una velocidad de 3,75 km/h, con un espesor de 25 cm. Esto requiere el uso de centrales de gran capacidad y, en muchos casos, de amasado continuo para mantener el ritmo de trabajo.

Cuando las plantas de amasado están cerca de los lugares de colocación, se pueden utilizar cintas transportadoras, vagonetas, dúmperes, cubas y otros medios. En todo momento, el hormigón debe protegerse del viento y de la lluvia durante el transporte. Además, se recomienda limpiar los neumáticos de los dúmperes para evitar la entrada de terrones de arcilla y otros materiales contaminantes.

Entre la fabricación y la colocación del hormigón no debe transcurrir más de 45 minutos. Este tiempo puede variar en función del tipo de conglomerante utilizado y de la temperatura ambiente. La colocación de estos hormigones se realiza con los mismos equipos que en los movimientos de tierra, como buldóceres, camiones, motoniveladoras y palas mecánicas.

La compactación se lleva a cabo con rodillos autopropulsados, generalmente vibrantes. La selección de los rodillos debe basarse en su peso, maniobrabilidad, tamaño del cilindro y características de la vibración, como su amplitud y frecuencia. Los rodillos muy pesados, de 4 a 5 toneladas, no pueden acercarse a los encofrados ni a otros obstáculos; por lo tanto, los 25 cm más cercanos a estos se compactan con rodillos más ligeros.

El número de pasadas necesario para lograr una consolidación completa del hormigón varía en función de las características de la mezcla y el espesor de las capas que se van a compactar. El espesor habitual para la compactación es de 20 a 30 cm. Sin embargo, siempre es necesario realizar ensayos previos en tramos de prueba para determinar el número de pasadas necesario para alcanzar el peso específico deseado del hormigón.

La energía suministrada por los rodillos es tan alta que, incluso con mezclas secas bien dosificadas, puede aparecer humedad en la superficie de las capas después del paso de estos rodillos. Esta humedad tiende a evaporarse rápidamente antes de que comience el fraguado. El grado de compactación en obra se determina comparando el peso específico del hormigón colocado con el de la misma mezcla en el laboratorio. Los equipos portátiles para medir el peso específico son rápidos y muy adecuados para este tipo de trabajos.

La reducida humedad del hormigón compactado obliga a curarlo de forma eficaz. El curado de estos hormigones se realiza de la misma manera que con los hormigones tradicionales, manteniéndolos húmedos durante 7 días. Los productos filmógenos de curado no se utilizan en presas porque dificultarían la unión entre las capas de hormigón.

El revestimiento aguas arriba de las presas generalmente se realiza con hormigón convencional, utilizando encofrados o paneles prefabricados, con o sin membrana impermeabilizante. El revestimiento aguas abajo se lleva a cabo con paneles rigidizadores o con hormigón convencional colocado en encofrado, dejando un sobreancho que sirve como hormigón de sacrificio.

A continuación, os dejo algunos vídeos que espero que os resulten de interés.

También os dejo un documento sobre presas de hormigón compactado con rodillo.

Descargar (PDF, 6.73MB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Amasado del hormigón

Figura 1. Amasadora de hormigón. Imagen: V. Yepes

El amasado del hormigón tiene como objetivo recubrir los áridos con una capa de pasta de cemento y mezclar todos los componentes hasta obtener una masa uniforme. Este proceso se realiza en mezcladoras u hormigoneras. Es fundamental que la mezcla mantenga su uniformidad durante las operaciones de descarga, lo cual depende de la cohesión de la mezcla y del diseño de la hormigonera.

Este proceso puede llevarse a cabo utilizando amasadoras fijas o móviles, mediante uno de los siguientes procedimientos: completamente en una amasadora fija, comenzando y terminando en una amasadora fija o móvil, o iniciado en una amasadora fija y terminado en una móvil antes del transporte. Todas las amasadoras cuentan con componentes comunes, como una cuba, paletas y un cargador. El amasado se realiza según dos técnicas principales:

  • Mediante la elevación de los áridos y su caída libre, como en el caso de las hormigoneras y las mezcladoras de eje horizontal.
  • A través del empuje de los elementos con ayuda de paletas sobre el fondo horizontal de un cilindro, como en el caso del amasado forzado con mezcladoras de eje vertical.

Las hormigoneras se clasifican en tres tipos: basculantes o de eje inclinado, de eje horizontal y de eje vertical, consideradas tradicionales. Actualmente, para la producción de hormigón a gran escala se utilizan hormigoneras de doble tambor y amasadoras de ejes gemelos con paletas.

Un buen amasado es fundamental para garantizar la homogeneidad del hormigón, lo que influye directamente en la adecuada hidratación del cemento. Este proceso no solo implica la técnica de amasado, sino también factores como el tiempo de amasado y el tipo de máquina utilizada. En este contexto, numerosos parámetros influyen en un buen amasado (Tiktin, 1994):

  • Tipo de amasadora o mezcladora
  • Velocidad y duración del amasado
  • Capacidad de amasado
  • Número de amasadas por hora
  • Orden de carga de los componentes
  • Dosificación de agua mínima

La velocidad del amasado debe mantenerse por debajo de la velocidad crítica, definida como aquella en la que los materiales comienzan a centrifugarse. Si tomamos el diámetro de la cuba como parámetro, la velocidad crítica de amasado en r.p.m. se puede demostrar fácilmente con la fórmula n = 42√D. Además, el tiempo de amasado no debe ser demasiado corto, ya que los materiales no se mezclarían adecuadamente, ni demasiado largo, para evitar fenómenos de segregación, especialmente en hormigones secos o con áridos de gran tamaño.

El número de amasadas por hora depende de varios factores, como la duración del ciclo de trabajo de la instalación, los medios disponibles para la dosificación y alimentación de los componentes, y el sistema de transporte del hormigón. Generalmente, este número oscila entre 10 y 60 amasadas por hora. Como orientación pueden tomarse los siguientes datos de la Tabla 1.

Tabla 1. Número de amasadas/hora para distintos tipos de hormigoneras

TIPOS N.º amasadas/hora
Hormigoneras de cuba basculante, sin skip o cargador 10/15
Hormigoneras de cuba basculante con skip 15/20
Hormigoneras de tambor reversible con skip 20/30
Mezcladora con skip 30/40
Mezcladora sin skip, abastecida por torre 45/60

Es importante distinguir entre la capacidad de hormigón fresco y la capacidad necesaria de áridos, cuya relación es aproximadamente 0,70. Esta diferencia se debe a que, al introducir los materiales en el tambor en rotación, se llenan los huecos y se reduce el volumen.

La relación entre el volumen de los componentes antes del amasado y el volumen del hormigón fresco es aproximadamente 1,50. Los fabricantes de maquinaria suelen indicar dos valores: por ejemplo, una amasadora 750/500 puede recibir 750 litros de mezcla de áridos, cemento y agua, y suministrar 500 litros de hormigón fresco.

Además, es importante considerar que el hormigón colocado en estructura es un hormigón compacto que representa aproximadamente el 90 % del volumen del hormigón fresco.

Las hormigoneras tradicionales se caracterizan por tres capacidades principales: la capacidad total de su cuba (Vt), la capacidad máxima de carga de los componentes, excluyendo el agua (Vc), y la capacidad máxima de producción de hormigón fresco (Vf). Las relaciones entre Vc y Vt, así como entre Vf y Vt, suelen ser las indicadas en la Tabla 2.

Tabla 2. Relación de volúmenes en función del tipo de hormigonera (Fernández-Cánovas, 2007)

Relación de volúmenes Tipo de hormigonera
Eje basculante Eje horizontal Eje vertical
Vc / Vt 0,7 0,4 0,6 a 0,7
Vf / Vt 0,5 0,3 0,4 a 0,5

El orden de llenado de las hormigoneras varía en función de su tipo, aunque en las instalaciones automatizadas dicha carga es prácticamente simultánea. Siempre es recomendable comenzar introduciendo una parte del agua de amasado, seguida inmediatamente por los componentes sólidos, si fuera posible de manera simultánea con el resto del agua. Cuando se utilizan aditivos plastificantes o superplastificantes, estos deben añadirse al final de la carga, después de que la hormigonera haya girado varias veces para iniciar el amasado. En algunas mezclas secas, es beneficioso humedecer primero el árido grueso con una parte del agua y luego añadir el resto de los componentes.

Si las hormigoneras se alimentan de silos y se quiere mejorar la resistencia a flexotracción del hormigón, es conveniente introducir primero los áridos gruesos, seguidos de una parte de cemento y de agua. A continuación, se hace girar esta mezcla unas cuantas veces para que la pasta envuelva los áridos y, después, se añade la arena y el resto de cemento y agua. De esta forma, se consigue mejorar mucho la adherencia entre los componentes.

Es imprescindible respetar los tiempos mínimos de amasado para evitar la falta de homogeneidad en las masas parcialmente mezcladas. Estos tiempos dependen en gran medida de la velocidad de giro de las hormigoneras, es decir, de la raíz cuadrada del diámetro de la cuba. Se ha observado que, en hormigoneras tradicionales, tiempos de amasado inferiores a 90 segundos producen hormigones con una notable falta de homogeneidad, evidenciada por los coeficientes de variación obtenidos en ensayos de compresión. Por encima de un minuto y medio, los hormigones son uniformes y no muestran mejoras significativas. Es durante el primer minuto y cuarto cuando los componentes del hormigón se mezclan adecuadamente.

Figura 2. Influencia del tiempo de amasado en la homogeneidad del hormigón (Fernández-Cánovas, 2007)

El tiempo de amasado varía en función de la hormigonera utilizada, su volumen, la composición granulométrica de los áridos y la cantidad de agua en la mezcla. Se recomienda un tiempo mínimo de amasado de un minuto y cuarto, más quince segundos adicionales por cada fracción de 400 litros de exceso sobre los 750 litros de capacidad máxima de hormigón fresco de la hormigonera. Con experiencia, es posible determinar visualmente si la masa de hormigón está suficientemente amasada. Los hormigones con áridos gruesos se mezclan más rápido que aquellos con áridos finos, y los hormigones muy secos requieren más tiempo de amasado que los más fluidos. La dosificación mínima de agua determina el tipo de máquina que se debe utilizar. Si se busca alcanzar relaciones agua/cemento inferiores a 0,60, no se pueden utilizar hormigoneras y es necesario recurrir a mezcladoras.

A continuación, os dejo lo expresado en el artículo 51.2.4 sobre equipos de amasado del Código Estructural.

51.2.4 Equipos de amasado.

Los equipos pueden estar constituidos por amasadoras fijas o móviles capaces de mezclar los componentes del hormigón de modo que se obtenga una mezcla homogénea y completamente amasada, capaz de satisfacer los dos requisitos del grupo A y al menos dos de los del grupo B, de la tabla 51.2.4.

Estos equipos se examinarán con la frecuencia necesaria para detectar la presencia de residuos de hormigón o mortero endurecido, así como desperfectos o desgastes en las paletas o en su superficie interior, procediéndose, a comprobar anualmente el cumplimiento de los requisitos de la tabla 51.2.4, salvo que exista una reglamentación específica que marque una frecuencia mayor.

Las amasadoras, tanto fijas como móviles, deberán ostentar, en un lugar destacado, una placa metálica en la que se especifique:
— para las fijas, la velocidad de amasado y la capacidad máxima del tambor, en términos de volumen de hormigón amasado;
— para las móviles, el volumen total del tambor, su capacidad máxima en términos de volumen de hormigón amasado, y las velocidades máxima y mínima de rotación.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

14 de julio de 1824, 200 años del fallecimiento de Agustín de Betancourt

Agustín de Betancourt (1758-1824)

Hoy domingo 14 de julio de 2024 no podía dejar de escribir sobre Agustín de Betancourt y Molina, pues se cumplen 200 años de su fallecimiento en San Petersburgo. Agustín José Pedro del Carmen Domingo de Candelaria de Betancourt y Molina, que era su nombre completo, nació el 1 de febrero de 1758 en Puerto de la Cruz (Tenerife). Su padre, Agustín de Betancourt y Castro, mayorazgo de su casa, caballero de la Orden de Calatrava y teniente coronel de los Reales Ejércitos, se casó en 1755 en La Orotava con Leonor de Molina y Briones, hija de los marqueses de Villafuerte, nacida en Garachico.

La trayectoria de Agustín de Betancourt se desarrolló a través de una geografía singular. Desde La Laguna, se trasladó a Madrid y viajó en varias ocasiones a París e Inglaterra, donde pasó largas temporadas. Incluso planeó un viaje a Cuba que finalmente no se concretó. Sus últimos años de vida transcurrieron en Rusia. Este ilustre ingeniero llevó a cabo una extraordinaria labor en el ámbito de la ingeniería civil, obteniendo el reconocimiento de destacadas autoridades políticas y científicas de la Europa de las Luces. Trabajó para reyes y ministros y se relacionó con técnicos y emprendedores de distintos países. Estudió nuevas máquinas e inventó muchas otras. Fundó las primeras escuelas y museos de ingeniería en España y Rusia. Un aspecto determinante es su papel decisivo en la creación de un nuevo cuerpo profesional con gran proyección posterior: los ingenieros de caminos y canales.

Betancourt, junto con otras personalidades insignes, fue el propulsor del nacimiento de la Escuela de Ingenieros de Caminos. Este ilustre ingeniero venía propugnando su creación desde 1785 y había definido incluso las cualidades deseables de un Ingeniero de Caminos en la Memoria que presentó al Conde de Floridablanca sobre los medios para facilitar el comercio interior (año 1791).

Viajes, libros, inventos, proyectos y realizaciones desglosan las significativas contribuciones de Betancourt a la ingeniería civil y su posición en la Europa de la Ilustración. La excepcional trayectoria de Agustín de Betancourt mostró nuevos caminos que se abrieron entonces para las comunicaciones y las infraestructuras de abastecimiento, los mecanismos que permitieron que estas innovaciones se difundieran por todo el continente y los horizontes que se perseguían. A pesar de las tensiones de la Europa en la que vivió Betancourt, destaca el carácter cosmopolita de este personaje y su contribución a la formación de un amplio espacio geográfico por el que se transmitió y desarrolló el saber técnico y de la ingeniería.

El Colegio de Ingenieros de Caminos, Canales y Puertos inauguró la exposición sobre la figura de Agustín de Betancourt, que se pudo visitar en la Biblioteca Nacional entre el 7 de marzo y el 19 de mayo del 2024.

Os dejo un par de vídeos para esbozar, mínimamente, el gran calado de este personaje tan influyente en la ingeniería española. Espero que os gusten.

Primicia editorial: Nuevo Manual de Referencia sobre Estructuras Auxiliares en la Construcción

Estoy en proceso de revisión de las pruebas de imprenta del nuevo Manual de Referencia denominado: “Estructuras auxiliares de construcción: andamios, apeos, entibaciones, encofrados y cimbras”. Estará disponible en las librerías durante el mes de septiembre del 2024.

Este libro aborda de manera amplia las estructuras auxiliares utilizadas en la construcción, abarcando tanto el ámbito de la edificación como el de las obras de ingeniería civil. El libro trata de los aspectos relacionados con los apeos y apuntalamientos, las entibaciones, los andamios, los encofrados y las cimbras. La novedad de esta obra radica en el tratamiento constructivo de estas técnicas, donde las fotografías e ilustraciones añaden valor a las explicaciones realizadas en el texto. Además de incluir una amplia bibliografía, se aportan cuestiones de autoevaluación con respuestas para el aprendizaje de los conceptos más importantes, así como problemas resueltos. Es un libro de texto dirigido a estudiantes de ingeniería y arquitectura, con una fuerte orientación hacia la construcción. No obstante, también se estructura como un manual de consulta para los profesionales relacionados con el proyecto y la construcción de obras. Además, este libro complementa los aspectos constructivos de otro tipo de textos estructurales o geotécnicos, más orientados a la teoría y los problemas.

¿Qué es un Manual de Referencia en la Universitat Politècnica de València?

Colección de carácter multidisciplinar, orientada a la formación y al ejercicio profesional. Los contenidos han sido seleccionados por el comité editorial atendiendo a la oportunidad de la obra por su originalidad en el estudio y aplicación de una materia, el apoyo gráfico y práctico con ejercicios demostrativos que sustentan la teoría, la adecuación de su metodología y la revisión bibliográfica actualizada. Los títulos de la colección se clasifican en distintas series según el área de conocimiento y la mayoría de ellos están disponibles tanto en formato papel como electrónico.

Todos los títulos de la colección están evaluados por especialistas en la materia según el método doble ciego, tal como se recoge en la página web de la Editorial (http://www.upv.es/entidades/AEUPV/info/891747normalc.html), garantizando la transparencia en todo el proceso.

Para conocer más información sobre la colección, los títulos que la componen y cómo adquirirlos puede visitar la web, enlace a la página de la colección en www.lalibreria.upv.es

Referencia:

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

SOBRE EL AUTOR:

Víctor Yepes Piqueras. Catedrático de universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social de la UPV. Es investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE). Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.