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Abstract: This study aims to optimize the Environmental Life Cycle Assessment (LCA) and Life
Cycle Cost (LCC) of NiZn batteries using Pareto Optimization (PO) and Multi-objective Particle
Swarm Optimization (MOPSO), which combine Pareto optimization and genetic algorithms (GA). The
optimization focuses on the raw material acquisition phase and the end-of-life phase of NiZn batteries
to improve their sustainability Key Performance Indicators (KPIs). The optimization methodology,
programmed in MATLAB, is based on a formulation model of LCC and the environmental LCA,
using data available from the Ecoinvent database, the OpenLCA software (V1.11.0), and other
public databases. Results provide insights about the best combination of countries for acquiring
raw materials to manufacture NiZn and for disposing of the waste of NiZn batteries that cannot be
recycled. These results were automatically linked to some sustainability KPIs, such as global warming
and capital costs, being replicable in case of data updates or changes in production or recycling
locations, which were initially considered at Paris (France) and Krefeld (Germany), respectively. These
results provided by an AI model were validated by using a sensitivity analysis and the Analytical
Hierarchy Process (AHP) through an expert panel. The sensitivity analysis ensures the robustness of
mathematical parameters and future variations in the market; on the other hand, the AHP validates
the Artificial Intelligence (AI) results with interactions of human factors. Further developments
should also consider the manufacturing and use phases in the optimization model.

Keywords: LCCA; LCA; MOPSO; genetic algorithms; AHP; sustainability KPIs; AI; NiZn batteries

1. Introduction

The purpose of this study is to enhance the sustainability of NiZn batteries by op-
timizing their Environmental Life Cycle Assessment (LCA) and Life Cycle Cost (LCC)
through the implementation of Pareto Optimization (PO) and the Multi-objective Particle
Swarm Optimization (MOPSO) algorithm. These optimization techniques combine Pareto
optimization and genetic algorithms (GA) to improve certain Key Performance Indicators
(KPIs).

The evaluation of the environmental impact of consumer goods began in the 1960s
and 1970s, but it was between 1970 and 1990 that the LCA was conceived with differing
approaches, terminology, and results [1]. The 1990s saw a significant increase in scientific
and coordination activities worldwide, resulting in the organization of workshops and
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forums by SETAC (Society for Environmental Toxicology and Chemistry) and the produc-
tion of numerous LCA guides and handbooks [2,3]. The International Organization for
Standardization (ISO) has also been involved in the LCA since 1994 [4].

The first ISO standard for LCA methodology was published in 1997 [5]. Two years
later, Azapagic and Clift, in 1999, proposed a methodology of multi-objective optimization
(MOO) coupled with the LCA [6]. This methodology provides a powerful tool for balancing
environmental and economic performance, which enables choosing the best practicable
environmental option and the best available technique without excessive cost. The method-
ology was applied to mining and mineral processing operations, specifically for producing
several boron products from two mineral ores.

An extensive literature review was conducted to identify an evolutionary algorithm
based on the multi-objective optimization method. Finally, the MOPSO algorithm was used
to determine the optimum solution.

2. Literature Review and State of the Art

There is currently a lack of research on how to optimize the LCA and life cycle cost
analysis (LCCA) using various AI algorithms for batteries and energy storage devices.
However, some studies have been conducted on creating algorithms to calculate costs and
environmental impact in other fields, such as mining and construction. These algorithms
can optimize to determine the most appropriate variable values to minimize both produc-
tion and operations costs, as well as environmental impact throughout the life of the unit.
To gather information for the development of these formulas and optimization of variables,
data have been gathered from Google Scholar and ScienceDirect. According to statistics,
42.1% of publications related to multi-objective optimization are in the fields of engineering,
material science, environmental sciences, and energy [7].

The first methodology for the integration of the LCA and the economic analysis tool,
Life Cycle Costing (LCC), was proposed by Deng et al., 2008 to obtain the integrated evalu-
ation results [8]. In this framework of integration, a mathematical model for environmental
and economic subsystems was created, and Multidisciplinary Design Optimization (MDO)
was applied to optimize these models so that the initial product design could achieve
the best environmental and economic performance. Another study from the year 2015
by Bin Yu et al. [9] in which they developed a multi-objective optimization model that
combined four sub-models to integrate pavement performance, cost, and environmental
factors. The first sub-model assessed maintenance strategy effectiveness, the second cal-
culated life cycle maintenance costs, and the third compiled life cycle inventories (LCIs)
for various activities using the LCA. The fourth sub-model integrated and evaluated these
via an optimization algorithm. A simulation–optimization approach combining process
simulation, multi-objective optimization, and life cycle assessment was suggested to mini-
mize the LCA impact of thermodynamic cycles and identify optimal design and operating
conditions [10]. The utilization of multi-period scenarios in combined LCA and LCCA
optimization frameworks and the trend toward the development of generic theoretical LCA
frameworks with optimization methodologies were emphasized by Carla Pieragostini et al.
in 2011 [11]. However, this study does not provide a specific conclusion on the effectiveness
of integrating life cycle cost and the LCA into optimization. Bin Yu et al. implemented
their idea and provided a useful methodology for optimizing pavement maintenance plans
with the consideration of environmental and economic impacts in a study published in
2013 [12] and 2015 [9]. They introduced a methodology that integrates the LCA and LCCA
using the Dynamic Programming (DP) algorithm to optimize pavement maintenance plans,
considering Environmental Damage Costs (EDCs).

A single-objective and multi-objective genetic algorithm was used by Ribau et al. to
optimize the design of powertrain components [9,13]. The main objectives optimized in
this study were the minimization of cost, fuel consumption, and CO2-e emissions of fuel-
cell hybrid and plug-in hybrid urban buses. The multi-objective optimization problems
were transformed into a single-objective problem by assigning weight coefficients to each
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sub-objective. A multi-objective genetic algorithm was then implemented to optimize the
objectives simultaneously. Zahra et al. (2018) [14] utilized multi-objective optimization with
genetic algorithms to determine the most efficient approach for solid waste management
in Tehran. Their study considered environmental and economic factors to identify the
optimal solution. This study uses two-objective and three-objective optimization based on
genetic algorithms to minimize energy consumption and equivalent CO2 of greenhouse
gases (GHG) while also considering the cost function in the calculations.

The application of multi-objective optimization (MOO) in battery technologies based
on Cradle-to-Grave Life Cycle Analysis was found in the literature in a study conducted
by Wang et al., 2018 [15]. This study uses the LCA to identify key processes and materials
for lead acid, lithium manganese, and lithium iron phosphate batteries, assessing their
environmental impacts. Based on the findings, it proposes optimization suggestions
for production processes to reduce pollution and promote sustainable development in
the battery industry. An Optimized consequential life cycle assessment (O-C-LCA) is a
methodology suggested by Elzein et al., 2018 that combines a time-variant analysis and an
LCA employing an optimization method to investigate the dynamic operation of energy
storage systems (ESSs) in a power grid [16]. The consequential approach was convenient
for studying how environmentally relevant physical flows respond to changes in a system’s
life cycle. The O-C-LCA methodology evaluates the entire life cycle costs of batteries,
including their use phase, assesses changes in power grids, and emphasizes deployment
benefits.

A combined LCA and LCCA approach was suggested to find the environmental and
economic optima for home solar system design. Rossi et al., 2020 [17] found that the
environmental optimum has a low impact but a high cost compared to the grid, while
the economic optimum has low impacts and costs compared to the grid. This study also
explores the impact of adding batteries to SHSs (Solar Home Systems) and discusses
strategies for mitigating the environmental impact of the economic optimum, such as
reducing technology costs and varying energy tariffs. In another study published by Rossi
et al., 2022 [17], they propose an optimization model based on Material Flow Analysis
and prospective Life Cycle Assessment to suggest the types of batteries to be produced
and recycled [18]. This study used a two-step approach, combining prospective Life Cycle
Assessment and mixed integer linear programming (MILP) optimization, to evaluate and
minimize the environmental impact of battery production and recycling. The objective was
to optimize these processes for electric mobility using Material Flow Analysis and Life Cycle
Assessment. The recently published study in 2023 by Fahimi et al. 2023 aimed to optimize
the leaching conditions for recovering critical metals from spent lithium-ion batteries while
minimizing environmental impact through a statistical optimization method [19].

In all of these literature review studies, the focus has been primarily on the processes
involved in creating equations and optimizing information. More specifically, four literature
review studies were selected, with each one corresponding to a specific step in the battery
life cycle (raw material acquisition, battery assembly, usage scenarios, and end-of-life
considerations). For the first step, the chosen study was “Environmental Optimization
Model for Material Flow” [18]. This work focuses on analyzing how the environmental
impact of the emissions produced in the processes of acquisition and extraction of raw
materials for electric car batteries varies. Secondly, for the manufacture of batteries, the
study “Process optimization of batteries based on life cycle assessment” was used [15].
This study identifies and quantifies the main substances generating environmental impact
in battery production, proposing a sensitivity analysis. Measures are then suggested to
replace these substances with alternatives that have a lower environmental impact. For
the third phase of the battery life cycle, “Optimized Life Cycle Assessment Method help
evaluate the use phase of energy storage system”, a complete optimization process is
presented [16]. This is the only study that demonstrates the application of formulas for
calculating equipment power in a specific scenario. For our study in this paper, optimal
power generation was sought at a minimum cost. The information from “recovering critical
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materials from spent lithium-ion batteries through statistical optimization” [19] was used
for the modeling of the end of the life (EoL) phase of NiZn of the battery.

The current status of NiZn batteries is still in the research and development phase,
which suggests that their widespread adoption may be limited in comparison to more
established technologies like lithium-ion batteries. Despite this, NiZn batteries are notable
for their high energy density and show promise for use in various sectors, including
automotive, renewable energy storage, and grid-level energy storage. It is worth noting
that technical challenges persist with NiZn batteries due to their early stage of development,
and there are limited data available from laboratory-scale observations. This implies that
challenges related to ramping up production, optimizing performance, and ensuring
reliability may be present.

3. Methodology
3.1. Exploring Evolutionary Algorithms and Particle Swarm Optimization

There are many techniques, such as constraint programming, mathematical program-
ming, metaheuristics, local search, machine learning algorithms, and evolutionary algo-
rithms like genetic algorithms and simulated annealing, that are used to solve complex
optimization problems [20]. Heuristics is an approach used in mathematical optimization,
computer science, and several other fields to solve problems more quickly when traditional
approaches are either too slow to discover a precise solution or fail to find any exact answer
at all. This is accomplished by trading speed for efficacy, completeness, accuracy, or preci-
sion [21]. A metaheuristic is a higher-level heuristic procedure designed to find, generate,
tune, or select a heuristic that may provide a sufficiently good solution to an optimization
problem or a machine learning problem, especially with incomplete or imperfect infor-
mation or limited computation capacity. Evolutionary algorithms (EA), particle swarm
optimization (PSO), differential evolution (DE), ant colony optimization (ACO), and their
variants are some examples in the field of nature-inspired metaheuristics [22].

Evolutionary algorithms (EAs) are an abstract model of biological evolution in which
a population of candidate solutions is iteratively exposed to analogs of natural selection
and genetic variation. The fundamental steps of an EA are as follows: a random sample of
search points is used as the initial population; search points with low objective values are
then eliminated by a selection mechanism; and variation operators create new search points
from the search points that are left over. The process of selection and variation is then
continued until an optimal solution is identified or another termination criterion is satisfied;
at this point, the new population replaces the prior population [23]. The larger category
of evolutionary algorithms (EA) includes the genetic algorithm (GA), a metaheuristic that
takes its cues from the process of natural selection. Genetic algorithms were developed by
John Holland and his colleagues in 1975 [24,25].

Particle Swarm Optimization “PSO” has significant commonalities with EAs and has
very close ties with GAs, including the use of population-based search and intermediate
search [23,26]. Unlike an EA, each search point is explicitly associated with a search process,
which also has a velocity and a memory of the best point it has seen so far. For each
iteration, each search process updates its velocity so that its path veers slightly toward the
best solutions seen by a subset of the search processes. It then applies this velocity to its
current search point to derive a new search point.

3.1.1. Multi-Objective Evolutionary Algorithms (MOEA)

Contrary to popular belief, the theory of multi-objective optimization is not new. It is
an important aspect of economic equilibrium, and as a result, it has existed since Adam
Smith’s masterpiece The Wealth of Nations was published in 1776. The development of
multi-objective optimization’s mathematical foundations can be traced back to the years
1895 to 1906 [27]. The potential of evolutionary algorithms for solving multi-objective
optimization problems was hinted at as early as the late 1960s by Rosenberg in his PhD
thesis [27,28]. The first actual implementation of what is now called a multi-objective
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evolutionary algorithm (or MOEA, for short) is credited to David Schaffer, who proposed
the Vector Evaluation Genetic Algorithm (VEGA) [22] in 1984 for his PhD thesis [27].
Finding the best solution to a single objective function is known as single-objective opti-
mization, whereas finding the best solutions to two or more objectives simultaneously is
known as multi-objective optimization. Usually, the objectives compete, so improving one
could make another worse. This leads to a wide range of optimal solutions with various
trade-offs between the objectives. Due to their ability to consider numerous solutions
simultaneously while executing (also known as population), evolutionary algorithms (EA)
are excellent choices for solving multi-objective problems (MOP). Multi-Objective Evolu-
tionary Algorithms (MOEA) are evolutionary algorithms that have been modified to handle
multi-objective problems (MOP) [29]. Many day-to-day problems possess a multi-objective
nature, where two objectives conflict. Often, there is no single optimal solution but rather a
set of alternative solutions. These solutions are optimal in the wider sense that no other
solutions in the search space are superior to them when all objectives are considered. They
are known as Pareto-optimal solutions [30]. Therefore, multi-objective optimization is also
termed Pareto optimization [31].

A multi-objective problem (MOP) is defined as the minimization (or maximization) of
multiple objective functions, where each objective function represents a different criterion
or goal to be optimized. A maximization of MOP can be converted to a minimization
problem by multiplying each objective function by −1.

A multi-objective problem can be defined as Equation (1).

maximise OR minimise x fm(x) m = 1, 2, . . . M
subject to gj(x) ≥ 0 j = 1, 2, . . . .J

hk(x) = 0 k = 1, 2, . . . .K
x ∈ Ω

(1)

A solution x is a vector of n, decision variables x = (x1, x2, . . . .xn)
T ∈ Ω. Ω will be

referred to as decision space. The vector f (x) = ( f1(x), f2(x), . . . .. fm(x))T captures the
values of each of the M objective functions w.r.t the solution x. The space containing this
vector will be referred to as objective space [29,30].

3.1.2. Pareto Terminology

Pareto Optimal: A solution is considered Pareto optimal if there is no other solution
that can improve one objective without worsening at least one other objective. Pareto
optimal solutions provide a trade-off between conflicting objectives and offer a range of
options for decision-makers to choose from. Pareto optimal solutions are also termed
non-inferior, admissible, or efficient solutions, and their corresponding vectors are termed
non-dominated [27].

Pareto dominance: It is used to determine the superiority of solutions in multi-objective
optimization problems, where the goal is to find a set of solutions that are not dominated
by any other solution. A vector u is said to dominate another vector v if and only if, for
every objective, u is better than or equal to v, and for at least one objective, u is strictly
better than v. This is denoted as u dominates v (u v).

Pareto Front: The set of solutions that are non-dominated by any other solution in the
decision space of a problem are referred to as the Pareto Optimal Space of the problem.
The corresponding set of vectors of the Pareto Optimal Set in the objective space will be
referred to as the Pareto Front. In Figure 1, an imaginary curve joining all the red star
points is called Pareto Front [27,29]. The normal procedure to generate the Pareto front is
to compute many points in Pareto space and their corresponding function of Pareto space.
When there are enough of these, it is then possible to determine the non-dominated points
and to produce the Pareto front [27].
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In mathematical terms,
If a MOP is defined as

f (x) = ( f1(x), f2(x), . . . .. fm(x)) (2)

then its Pareto Optimal Set is the following:

P* = {x ∈ Ω|∄x′ ∈ Ω : f
(
x′
)
≼ f (x)

}
(3)

And the Pareto Front of the given MOP is

PF* = { f (x)|x ∈ P*} (4)

3.1.3. MOPSO Approach

The PSO developed by Kennedy & Eberhart [32] was adopted by Carlos et al. for han-
dling multi-objective optimization problems; consequently, they proposed the first concept
of MOPSO [26]. Drawing an analogy between PSO and evolutionary algorithms highlights
the potential of employing a Pareto ranking system to effectively tackle multi-objective op-
timization challenges [25]. Storing previously generated non-dominated solutions based on
an individual or particle’s historical performance mirrors the concept of elitism commonly
employed in evolutionary multi-objective optimization. By incorporating global attraction
mechanisms and maintaining an archive of previously discovered non-dominated vectors,
we can encourage the convergence toward globally non-dominated solutions. In essence,
this approach underscores the simplicity and effectiveness of extending PSO’s capabilities
in handling complex optimization problems with multiple objectives.

In this paper, concepts and methods of the MOPSO algorithm proposed by Carlos et al. [26]
and implemented in MATLAB by taking inspiration from the repositories of Heris et al. [33]
were adopted. MOPSO is generally simpler to implement, can converge to a solution more
quickly, often involves less computational burden, and has mechanisms like crossover and
mutation, which can help it escape local optima and potentially lead to better solutions [34–36].

The application of the MOPSO approach must be performed in four main stages and
several sub-stages. The main four stages are as follows:

• Main Algorithm
• External Repository
• Use of a Mutation Operator
• Constraint Handling
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3.1.4. Main Algorithm

The main algorithm of MOPSO has to be performed in 7 steps, and the 8th step closes
the loop.

1. Initialization of population POP:

FOR i = 0 TO MAX/ ∗ MAX = Number o f Particles ∗ /

Initialize POP(i)

2. Initialize the speed of each particle:

FORi = 0 TO MAX

VEL(i) = 0

3. Evaluate each of the particles in POP.
4. Store the positions of the particles that represent non-dominated vectors in the reposi-

tory REP.
5. Construct hypercubes within the explored search space and employ them as a coordi-

nate system. Position particles within these hypercubes are based on their objective
function values as coordinates.

6. Set up each particle’s memory as a navigation guide within the search space, also
storing this memory in the repository.

FOR i = 0 TO MAX

PBEST(i) = POP(i)

7. WHILE maximum number of cycles has not been reached DO

(a) Compute the speed of each particle using the following expression:

VEL(i) = W × VEL(i) + R1 × (PBEST(i)− POP(i)) + R2 × (REP(h)− POP(i)) (5)

where W (Inertia weight) in Equation (5) takes a value of 0.4. R1 and R2 are random
numbers in the range [0, 1]. PBESTS(i) is the best position that the particle i has had.
REP(h) is a value that is taken from a repository. h is the index selected in the following
way: those hypercubes containing more than one particle are assigned a fitness equal to the
result of dividing any number x > 1 by the number of particles that they contain. This aims
to decrease the fitness of those hypercubes that contain more particles, and it can be seen as
a form of fitness sharing. Once the hypercube has been selected, we apply roulette-wheel
selection using these fitness values to select the hypercube from which we will take the
corresponding particle. POP(i) is the current value of the particle i. The use of random
numbers and fitness sharing helps to prevent particles from getting stuck in local optima
and encourages exploration of the search space.

(b) Equation (6) computes the new positions of the particles, adding the speed produced
from the previous step.

POP(i) = POP(i) + VEL(i) (6)

(c) If the particles cross their borders, keep them inside the search space (avoid producing
solutions that do not correspond to a valid search space). When a decision variable
crosses its limits, we take two actions: (1) The decision variable is multiplied by (−1)
to search in the opposite direction; (2) The value of its associated boundary (either the
higher or lower boundary) is taken by the decision variable.
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(d) Evaluate each of the particles in POP.
(e) Update the REP contents and the hypercubes’ spatial representation of the particle

population. This update involves adding all of the non-dominated areas to the
repository. In the procedure, any dominating places from the repository are removed.
Since the repository’s size is limited whenever it fills up, we implement a second
retention criterion that prioritizes particles in sparser regions of objective space over
those in densely populated ones.

(f) When the particle’s current position is superior to the position stored in its memory,
the position of the particle is updated using.

PBEST(i) = POP(i)

Applying Pareto dominance is the only way to determine which memory position
should be kept. This means that if the memory position is dominated by the current
position, the memory position is kept; otherwise, the current position replaces the memory
position; if neither of them is dominated by the other, we choose one at random.

(g) Increment the loop counter.

8. END WHILE

3.1.5. External Repository

Keeping a historical record of the non-dominated vectors obtained during the search
process is the primary goal of the external repository or archive. The archive controller and
the grid are the two primary components of the external repository. Archive Controller:
The archive controller’s job is to determine whether or not a given solution belongs in
the archive. The following is the decision-making procedure. The non-dominated vectors
obtained at each iteration in the primary population of our algorithm are compared (one-
by-one) with the external repository’s contents, which will initially be empty. The existing
solution is allowed if the external archive is empty (Case 1, Figure 2).

A new solution is instantly dismissed if it is dominated by someone from the external
archive (Case 2, Figure 2). Otherwise, if none of the components in the external population
dominate the solution that is trying to enter, the solution is archived outside. If the new
element completely dominates any existing solutions in the archive, those solutions are
deleted (Cases 3 and 4, Figure 2). The adaptive grid approach is then used if the external
population has reached its maximum permitted capacity (Case 5, Figure 2).

Grid: Our method makes use of a modified version of the adaptive grid introduced
by Knowles et al. 2000 [37] to generate well-distributed Pareto fronts. The fundamental
concept is to keep all of the solutions that are non-dominated concerning the contents
of the archive in an external archive. Objective function space is segmented into the
archive, as depicted in Figure 3. It should be noted that the grid must be recalculated,
and each individual within it must be moved if the individual placed into the external
population is outside the present borders of the grid depicted in Figure 3. In reality, the
adaptable grid is a space made of hypercubes. Such hypercubes consist of many parts as
they perform functional tasks. Each hypercube can be thought of as a region of the earth
with an infinitely small population. The adaptive grid’s key benefit is that it costs less to
compute than niching [37]. If the grid needed to be modified after every generation, that
would be the lone exception. The computational complexity of the adaptable grid would
then be equivalent to that of niching. The greatest number of hypercubes are uniformly
distributed using the adaptive grid. This objective requires the provision and acquisition of
specific, problem-dependent information, such as the number of grid subdivisions [26].

In Figure 3 the letters (A, B, C, D,. . .) represents individual solutions from the population.
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3.1.6. Use of a Mutation Operator

PSO is well renowned for having a rapid rate of convergence. A PSO-based algorithm
may converge to a false Pareto front, which is the equivalent of a local optimum in global
optimization, which can be detrimental in the context of multi-objective optimization [26].
This inspired the creation of a mutation operator that starts the search by attempting to
explore every particle. The number of particles affected by the mutation operator should
thereafter rapidly decrease relative to the number of repetitions (Figure 4). It must be noted
that the same variation function should be used to apply the mutation operator to the range
of each design variable of the problem to be solved as well as the swarm’s particles [26].

This covers the entire range of each design variable at the outset of the search, then,
over time, using a nonlinear function, narrows the range covered. As seen in Figure 3, the
mutation operator initially has an impact on every particle in the population as well as
the entire range of the choice variables. This aims to provide the algorithm with a very
explorative nature. The impact of the mutation operator diminishes with the number.

The suggested approach to coding the mutation operator by Carlos et al. [26] has been
depicted in the algorithm in Section 3.1.4.
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3.1.7. Constraint Handling

Constraint handling has been incorporated into a relatively simple approach. When
two individuals are compared, we look at their constraints. Non-dominance is immediately
applied to determine the winner if both are feasible. If one appears feasible while the other
is not, the possible wins. The one with the least level of constraint violation prevails over
the other if both are impractical. This strategy was first put forth to deal with restrictions in
the microgenetic method for multi-objective optimization [38].

4. Formulation Models of LCCA and LCA of NiZn Batteries for MOPSO Application

Based on the methodology established in the previous section, the objective func-
tions of life cycle environmental impact and the cost are modeled. The constraints are
defined, and data are collected from the studies performed in [38] and internet databases.
The complete life cycle of the NiZn battery has been split into six steps to obtain a clear
understanding of material and energy inputs and waste generated to conceptualize the
cost and environmental impact in Figure 1 of reference [38]. The cost and environmental
impact objective function has been modeled for each of the steps shown [39]. The stan-
dard documents ISO 14040 and 14044 provide a concept of the LCA approach, whereas
following the international standard IEC 60300-3-3: 2017 [40], life cycle costing assessment
is specified [5,41].

4.1. LCCA Modeling

The life cycle cost of the energy storage system is calculated in terms of Levelized Cost
of Energy (LCOE) [42–44], which is the ratio of the total cost of the energy storage system
to the amount of stored energy [38]. Taking into consideration the customer perspective,
five stages in four phases of the product life have been included in the model, making it a
cradle-to-grave study that is given by Equation (7) [45].

OE =

∑L
t=0

[
CI

(
1 − SG

100

)
∗ 1000 + CO&M

(1+ r
100 )

t +
CEoL

(1+ r
100 )

t

]
∑L

t=0
E

(1+ r
100 )

t

(7)

where
CI = Acquisition or Capital or Investment cost (EUR/Wp)
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SG = Subsidy by the government (%)
CO&M = Operation and Maintenance cost (EUR/kWh)
CEoL = Cost of end of life (EUR/kWh)
E = Stored or Discharged Energy from the battery (kWh)
Wp = Watt peak
L = duration of the lifetime of the battery in years
r = Discount rate (%)
The LCOE quantifies the life cycle cost of energy generation technology more accu-

rately [46]. The Levelized Cost of Storage (LCOS) is the most appropriate term used for the
estimation of the life cycle cost of electricity storage systems and, hence, for the battery storage
systems. The LCOS method is derived from the LCOE method with very few corrections, which
differentiates electricity generation systems and electricity storage systems.

4.1.1. Capital Cost (CI)

The total capital cost of an energy storage system consisting of batteries should be
estimated by combining three cost components, i.e., cost of power electronics, cost of battery,
and cost of balance of power [47]. Kendall et al. 2020 [48] suggest estimating the capital cost
of the electrochemical energy system in EUR/kWh. For batteries, the capital cost applies to
the procurement of Direct Current (DC) energy storage units and does not include power
conversion units and balance of power costs. We model the estimation of capital cost for
NiZn batteries considering the cost of raw materials and the cost of manufacturing the
battery (see Equations (8) and (9)) [38]

Capital Cost CI = Cost o f raw materials(C1)
+Cost o f manu f aturing(Cm)

(8)

C1
= Total cost o f materials purchase(CTm)
+Total cost o f t ransportation o f purchased materials(CTt)
+Total cost o f storage o f inventory(CTs)

C1 =
I

∑
i=1


(

J
∑

j=1
mi,j ∗ Cv,i + Ri ∗ Cr,i

)
+(

J
∑

j=1
mi,j ∗ di,j ∗ Ct,i,j

)
+

(
S
∑

s=1
ms,i ∗ Cs,i

)
 (9)

where
i = number of materials coming in
j = number of suppliers at different locations
s = number of storage facilities

4.1.2. Manufacturing Cost (Cm)

Ahmed et al., 2019 [49] suggest that battery manufacturing costs can be modeled
considering the cost of cell manufacturing. The manufacturing cost modeling is based
on plant design and economics for chemical engineers developed by Prof. Peters and
Timmerhaus, in 1991 [49]. The NiZn battery pack prototype with a rated power of 10 kW
and a rated capacity of 100 Ah is considered for the cost estimation in our study [38,50].

Manufacturing Cost Cm =Total Variable Cost (Cvc ) + Fixed Expenses (CFE ) + Profit
(

Pf ) + Warranty (Cwar

)
(10)

The Equation (10) can be written as Equation (11) [38]:

Manu f acturing Cost Cm =
1.05

[
C1+Cutm + 1.75 ∗ CDL + 1.9 ∗ CDep + Pro f it

] (11)
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where
C1 = Capital Cost (Equation (9))
Cutm = Utility Cost
CDL = Direct Label Cost
CDep = Depreciation

4.1.3. Cost of Operation and Maintenance (CO&M)

A good number of studies have been conducted on the estimation of energy storage
costs. Rahman et al., 2021 [51] developed a techno-economic model for electrochemical
energy storage. The use and service cost of energy storage systems has always been referred
to as operation and maintenance cost in terms of levelized cost [43,45,52], which is the cost
that the operator or owner is willing to pay per year for the service of the energy storage
system in EUR/kW-year, or it can be converted in EUR/kWh using the number of hours
operated per day [52]. The Operation and Maintenance cost can be written as the sum of
operation costs (COP) and fixed (CM f ) and variable (CMv ) components of maintenance costs
(Equation (12)) [53].

Co&M = COP + CM f + CMv (12)

The final model for the operation and maintenance cost in EUR/cycle [38] is as follows
(see Equation (13)):

Co&M =
P ∗ DoD ∗ Ho

ηroundtrip
∗ Ce +

(
CM f + p f ail ∗ n ∗ CMcell

)
∗ P (13)

4.1.4. End-of-Life Cost (CEoL)

The end-of-life (EoL) cost of batteries consists of four components. The cost of trans-
portation of spent battery packs collected the dismantling cost of battery packs at the
recycling facility, the cost of recycling, and the cost of disposal of remains [54]. Depend-
ing on the recycling process and the materials used for the pack, the materials recovered
from the cells are sold again. Therefore, in addition to expenses, revenues must also be
considered when calculating the cost of recycling batteries [49,54,55] (see Equation (14)).

CEoL = Transportation cost
(
CTR

)
+ Dismantling Cost

(
CDisR

)
+Recycling Cost(CRec) + Disposal Cost(CDis)
−Revenue

(14)

Finally, the end-of-life cost of the NiZn battery can be translated into Equation (15) [38]:

CEoL = ∑m ∑l Distancem,l×unitcostl
Ebatt

+
Clabor,J∗∑S

n=1(td,n+ti,n)
P +

1.05
[
CRM,J+CR,utm,J+1.75∗CDL,J+1.9∗CDep

]
N∗Ebatt

+
∑j ∑i mdi

∗Cdi,j
P − ∑i mi,batt×Cr,i,j

Ebatt

(15)

m = mode of transport
l = length of segment (in km) for transport mode m
Substituting the expressions from Equations (9), (11), (13), and (15) into Equation (7)

will give us the Life Cycle cost objective function for our multi-objective problem.

4.2. LCA Modeling

In this section, we have established mathematical models through an extensive lit-
erature review for the estimation of the life cycle environmental impact of a novel NiZn
battery from the cradle-to-grave approach. The models established in this section will
serve as second objective functions for heuristic optimization of cost and environmental
impact of NiZn battery. The methodology for this study has been prepared as per the rec-
ommendation of ISO standards for Life cycle costing and life cycle analysis. The standard
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documents ISO 14040 and 14044 provide a concept of the LCA approach [41]. The complete
life cycle of the NiZn battery has been split into six steps to obtain a clear understanding of
the material (M) and energy (E) inputs and waste (W) generated to conceptualize the cost
and environmental impact [38,39].

The ReCiPe 2008 [56] method of LCA provides the recipe to calculate life cycle im-
pact category indicators and harmonizes the choices and modeling principles to offer
results at both midpoint and endpoint levels. It comprises eighteen impact categories with
associated characterization factors at the midpoint level [56]. Each impact category was cal-
culated in our last study [39] by performing traditional LCA using openLCA version 1.11.0
(https://www.openlca.org/, accessed on 18 June 2024) software based on material and
energy flow through each process. The input matrix of the environmental impact function
is the values of these eighteen impacts from each stage of the life cycle of the NiZn battery.

Eventually, this model, which optimizes two functions of cost and environmental
impact at the same time, will work on the next variables, which, at the end of the day,
depend on the location. In most situations, environmental impact categories employ CO2-e
for GHG emissions, which include other GHGs such as methane (CH4), nitrous oxide (N2O),
chlorofluorocarbons (CFCs), and hydrochlorofluorocarbons (HCFCs). Different emissions,
such as CO2 and CH4, might have the same qualitative environmental impact while having
a different quantitative impact. One kilogram of CH4 has a 34-fold greater global warming
effect than one kilogram of CO2. As a result, one kilogram of CH4 emitted equals 34 kg of
CO2-e in terms of GHG emissions [57]. The objective function of environmental impact has
been modeled as Equation (16).

EA = EMA + Em + EO&M + EEoL (16)

where, EMA Environmental Impact produced during material aquation, similarly Em for
manufacturing, EO&M for operation and maintenance and EEoL is for the end of the life of
the NiZn battery.

4.2.1. Environment Impact from Raw Material Acquisition (EMA)

The following figure (Figure 5) [38] shows the flow of material needed for the NiZn
battery. Here, it shows that the material i can be supplied by j number of suppliers from
different locations.
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The definition of variables used in the modeling of the environment impact function
is below [58]:

1. . ...i. . ...I = Number of materials coming in.
1. . ...j. . ...J = Number of suppliers from different locations.
1. . ...s. . ..S = Number of storage facilities.
ton: metric ton (tonne) = 1000 kg

https://www.openlca.org/
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E(v,i) = Impact created by the acquisition of virgin material i (ton CO2-e).
E(r,i) = Impact created by the acquisition of recovered material i (ton CO2-e).
E(t,i) = Impact created transportation of material i (ton CO2-e per ton of material).
E(S,i) = Impact created storage of material i (ton CO2-e per ton of material).
m(i,j) = Amount (mass) of material i supplied from supplier j (ton).
d(i,j) = Transport distance of material i supplied from supplier j by all modes of

transport (km).
m(i,s) = Amount (mass) of material i allocated to storage site s (ton).
D(i,j) = Maximum demand of material i from supplier j (ton).
Mi = Total supply of material i (ton).
Ri = Amount (mass) of material i recovered from recycling (ton).
The environmental impact produced during material acquisition can be modeled as

Equation (17).

EMA =
I

∑
i=1


(

J
∑

j=1
mi,j ∗ Ev,i + Ri ∗ Er,i

)
+

(
J

∑
j=1

mi,j ∗ di,j ∗ Et,i,j

)
+

(
S
∑

s=1
ms,i ∗ Es,i

)
 (17)

4.2.2. Environmental Impact from Manufacturing (Em)

The environmental impact produced during manufacturing is modeled based on the
EverBatt model suggested by Argonne National Laboratory [49].

The Manufacturing environmental impact model is in Equation (18),

Em = ∑
k

Ek = ∑
k

(
∑

i
mi × Ei,k + ∑

j
Qj × Ej,k + Pk

)
(18)

where
mi = Mass of the material i consumed in kg.
Ek = Environmental Impact category k [56].
Ei,k = Environmental Impact category k for 1 kg of material i consumed in the process.
Qj = Quantity of Energy type j consumed in MJ.
Pk = GHG emission from the process.

4.2.3. Environmental Impact from Operation and Maintenance (EO&M)

During its operational life, the battery only uses electricity to get charged; therefore,
the environmental impact produced during the use phase of the battery will be easily
modeled as the sum of environmental impacts due to sources of electricity generation. If
there are j types of energy mix used in the electric grid for supply, then environmental
impact during the operation and maintenance of NiZn battery will be estimated through
Equation (19).

EO&M = ∑
K

∑
j

Qj.Ej,k (19)

where
Ej,k = Environmental Impact category k for the type of energy mix j in the supply to

the grid.
Qj = Quantity of Energy type j consumed in MJ.

4.2.4. Environmental Impact of End-of-Life (EEoL)

When batteries retire from service and are sent for dismantling at recycling facilities,
it is not always possible to recover all the materials from spent batteries for reuse. Some
parts of battery materials need to be disposed of through different methods like dumping
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them into landfills, incineration, etc. The recycling process and disposal of residuals both
produce an environmental impact, and they can be modeled as Equation (20).

EEoL =
I

∑
i=1

Erecl,i +
I

∑
i=1

Edisp,i (20)

where Erecl,i denotes environmental impact due to the recycling of materials i, and Edisp,i
denotes environmental impact due to transport and disposal of material I (see Equation (21)).

Erec,i = (Ev,i − Erecov,i) ∗
(

1 − RRi ∗ Yi

1 − (RRi ∗ Yi)
n

)
+ Erecov,i (21)

where
n = number of times the recovered material can be recycled.
Erecov,i = Environmental Impact for recovering the material “i”.
E(v, i) = Impact created by the acquisition of virgin material i (ton CO2-e).
RRi = Recovery rate of material i = amount o f material recovered

amount o f material obtained

Yi = Yelding rate of material i = amount o f material reprocessed
amount o f material recovered

5. Optimizing LCCA and LCA of NiZn Batteries by MOPSO
5.1. Assumptions and Limitations

For simplicity, MOPSO was applied to phase I) “raw material acquisition” and phase
IV) “end-of-life” in Figure 1 of Ref. [38]. Phase II) “Manufacturing” and Phase III) “Opera-
tion & Maintenance” are considered constant functions at the moment in the study, while
costs and environmental impacts in Phase III) “Operation & Maintenance” will depend
on where the user of the NiZn battery is located, and they are considered constant at the
moment by the study for simplicity. As an example, Paris (France) was considered the
place where NiZn batteries are manufactured, and Krefeld (Germany) was the place to
recycle after EoL. The names of the materials and compositions are not disclosed in this
paper due to confidentiality.

5.2. Data Related to the LCCA of NiZn Batteries

The cost data in EUR/kg of material considered for phase I) “raw material acquisition”
was collected based on the top five countries around the world suppliers of these materials
in the year 2021 (last information available) according to the Observatory of Economic
Complexity (OEC) (https://oec.world/, accessed on 18 June 2024). According to Equation
(9), this cost considers both the raw material acquisition cost (Cvi) and the transportation
cost (Ct, I, j) of this raw material from the original country to Paris (France) as the location
of the manufacturing site.

Cvi was calculated by using material supplier databases and literature. This informa-
tion has been collected from Ecoinvent 3.8, Agribalyse V 1.3, Ecoinvent 3.7, and Worldsteel
2020. On the other hand, the data collected from internet sources came from Chemanalyst,
WITS (World Integrated Trade Solution), and Leonland. Meanwhile, Ct, I, j was calculated
by multiplying the distance from the original country of the raw material to the manufactur-
ing site (Paris-France) and the “Transport unit cost“ according to Table 1. The multimodal
journey with the lowest total cost was selected. This transportation cost was increased by
15% [57–59] in case the material is considered a dangerous good [59–61].

https://oec.world/
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Table 1. “Transport unit cost” per each mode of transport.

EUR/kg × km References about the “Transport Unit Cost”

Road 0.000027 [62–72]

Rail 0.000036 [73–77]

Ship 0.0000065 [72,75–78]

Air 0.00019 [71,72,76–81]

The costs in EUR/kg of material considered for phase iv) “end-of-life” are shown
in Table 2. According to Equation (15), these costs are considering both the “disposal
treatment fee” and the “transport costs” from the recycling site (Krefeld, Germany) to the
country of disposal:

Table 2. Cost of “end-of-life” per material and country.

Countries EUR/kg of Waste

USA 0.147

China 0.236

India 0.150

Brazil 0.174

Japan 0.205

Table 2 was generated based on the top five countries around the world that are
treating waste from batteries in Kg/year according to the following:

1. The World Bank: data and reports on environmental and waste management.
2. United Nations Environment Programme (UNEP): UNEP reports and data on global

environmental issues, including waste management.
3. National environmental agencies and ministries.
4. Environmental organizations: Environmental Protection Agency (EPA) in the United

States.

For the case of the calculation of the “disposal treatment fee” for the top five countries,
the USA, China, India, Brazil and Japan, the references of [72,79–82] have been used,
respectively.

The “Transport unit costs” per each mode of transport for the calculation of the “trans-
port costs” from the recycling site (Krefeld, Germany) to the country of disposal was
considered the same as for phase i) “raw material acquisition“ (Table 1); and the methodol-
ogy to calculate these transportation costs was the same, in which garbage produced was
considered as a dangerous good.

5.3. Data Related to the LCA of NiZn Batteries

The environmental impact data in kg CO2-e/kg of battery mass for phase I) “raw
material acquisition”, according to Equation (17), considers both the environmental impact
created by the acquisition of virgin material, which was calculated by using OpenLCA
(V1.11.0) in Ref. [39], and the environmental impact generated by the transport of this raw
material from the original country to the manufacturing site (Paris-France), calculated from
the GLEC guidelines version 3 [83] considering the multimodal journey from each original
country to Paris with the lowest emission of CO2 (Table 3) [47,56]. The environmental
impact created by the acquisition of virgin material is a constant in the optimization model,
as it is independent of the original country, while Em linked to transport depends on the
original country.
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Table 3. Environmental impact of “end-of-life” per material and country [47,56].

Country GARBAGE (kg CO2-e/kg Battery)

Brazil 0.190

China 0.287

India 0.176

Japan 0.292

United States 0.139

5.4. Results of Applying MOPSO to Optimize the LCA and LCCA of NiZn Batteries

An initial population of 1000 individuals, each one with a combination of two “Gens”
(Material, Country), was randomly generated. Two parameters: The cost, jointly with the
environmental impact, were assigned to each pair of “Gens” [47,78,79].

MOPSO algorithms were executed in MATLAB to obtain more and better individuals
regarding these two parameters as defined in Equations (22) and (23).

Cost Individual i = ∑n
j=1

(
C1 j + CEoL i

)
(22)

EI Individual i = ∑n
j=1

(
EMA j + EEoL i

)
(23)

where

• “j” is a Gen (Material, Country) belonging to the individual “i”, and n = the total
number of the gens (Material, Country) defining the individual.

• C1 j = Cost of raw material acquisition and transportation belonging to the couple
(Material, Country) number “j” for the individual “i”

• CEoL = Cost of final disposal of waste and transportation belonging to the couple
(Garbage, Country) for the individual “i”.

• EMA = Environmental impact of the raw material acquisition and transport belonging
to the couple (Material, Country) number “j” for the individual “i”

• EEoL = Environmental impact of final disposal of garbage and transportation belonging
to the couple (Garbage, Country) for the individual “i”.

One thousand iterations were executed with a mutation rate = 0.5 to obtain new and
better individuals “i” by using a screening process of keeping good individuals and removing
the bad ones based on the Pareto optimal frontier by depicting all created individuals in a graph
with two axes, “Cost” and “EI”, as defined in Equations (22) and (23). The values of other
MOPSO parameters such as Intertia weight (w) = 1, Damping Rate (wdamp) = 0.99, Local
learning Coefficient (c1) = 1, Global learning Coefficient (c2) = 1, Inflation Rate (alfa) = 0.1,
Leader Selection pressure (beta) = 2 and, Deletion Selection Pressure (gamma) = 2 has been
adopted as per suggestions in literature [62,63].

After these 1000 iterations, Table 4 shows the optimized combination of raw material
suppliers and waste residual disposal location for NiZn batteries, and their corresponding
values are presented in Table 5. Taking into account MOPSO parameters, we can receive up
to 10 optimal solutions. Tables 4 and 5 show 10 optimal solutions obtained from MOPSO,
which are numbered 1 to 10 for combined understanding.

Figure 6 depicts the actual Pareto fronts obtained. In each iteration, from the initial
population of 1000 individuals, non-dominated solutions were saved in the repository,
and with mutation, new and better populations were generated. In further iterations,
among the mutated population generated in the immediate last iteration, if there are better
non-dominated individuals were found, the already existing non-dominated individual
stored in the repository had been replaced; otherwise, the individual in the repository
remains the same. This search operation stops at the 1000th iteration. The black circles
in the Pareto front shown in Figure 6 are those individuals who have survived after
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1000 mutations, and the red stars are those non-dominated solutions saved in the repository
during the process of 1000 mutations.

Table 4. Combinations “Material–Country” in the Pareto optimal frontier from cradle to grave.

Solutions
Serial
Num-

ber

Mat. 1 Mat. 2 Mat. 3 Mat. 4 Mat.
5 Mat. 6 Mat. 7 Mat. 8 Mat. 9 Mat. 10 Mat. 11 Mat. 12 Mat. 13 Mat. 14

Landfill
of

Residual

1 BELGIUM’ BELGIUM’ BELGIUM’ NORWAY’ RUSSIA’
UNITED
KING-
DOM’

GERMANY’ SOUTH
KOREA’ BELGIUM’

UNITED
KING-
DOM’

NETHERLANDS’ CANADA’ NETHERLANDS’ BELGIUM’ UNITED
STATES’

2 BELGIUM’ BELGIUM’ MALAYSIA’ NORWAY’ RUSSIA’
UNITED
KING-
DOM’

GERMANY’ SOUTH
KOREA’ BELGIUM’

UNITED
KING-
DOM’

NETHERLANDS’ CANADA’ NETHERLANDS’ BELGIUM’ UNITED
STATES’

3 MALAYSIA’ BELGIUM’ BELGIUM’ NORWAY’ RUSSIA’
UNITED
KING-
DOM’

GERMANY’ GERMANY’ BELGIUM’
UNITED

KING-
DOM’

NETHERLANDS’ CANADA’ NETHERLANDS’ BELGIUM’ UNITED
STATES’

4 BELGIUM’ BELGIUM’ BELGIUM’ NORWAY’ RUSSIA’
UNITED
KING-
DOM’

GERMANY’ SAUDI
ARABIA’ BELGIUM’

UNITED
KING-
DOM’

NETHERLANDS’ CANADA’ NETHERLANDS’ BELGIUM’ UNITED
STATES’

5 MALAYSIA’ BELGIUM’ BELGIUM’ NORWAY’ RUSSIA’
UNITED
KING-
DOM’

GERMANY’ SAUDI
ARABIA’ BELGIUM’

UNITED
KING-
DOM’

NETHERLANDS’ CANADA’ NETHERLANDS’ BELGIUM’ UNITED
STATES’

6 BELGIUM’ BELGIUM’ MALAYSIA’ NORWAY’ RUSSIA’
UNITED
KING-
DOM’

GERMANY’ SAUDI
ARABIA’ BELGIUM’

UNITED
KING-
DOM’

NETHERLANDS’ CANADA’ NETHERLANDS’ BELGIUM’ UNITED
STATES’

7 MALAYSIA’ BELGIUM’ MALAYSIA’ NORWAY’ RUSSIA’
UNITED
KING-
DOM’

GERMANY’ SAUDI
ARABIA’ BELGIUM’

UNITED
KING-
DOM’

NETHERLANDS’ CANADA’ NETHERLANDS’ BELGIUM’ UNITED
STATES’

8 MALAYSIA’ BELGIUM’ MALAYSIA’ NORWAY’ RUSSIA’
UNITED
KING-
DOM’

GERMANY’ SOUTH
KOREA’ BELGIUM’

UNITED
KING-
DOM’

NETHERLANDS’ CANADA’ NETHERLANDS’ BELGIUM’ UNITED
STATES’

9 BELGIUM’ BELGIUM’ BELGIUM’ NORWAY’ RUSSIA’
UNITED
KING-
DOM’

GERMANY’ GERMANY’ BELGIUM’
UNITED

KING-
DOM’

NETHERLANDS’ CANADA’ NETHERLANDS’ BELGIUM’ UNITED
STATES’

10 MALAYSIA’ BELGIUM’ BELGIUM’ NORWAY’ RUSSIA’
UNITED
KING-
DOM’

GERMANY’ SOUTH
KOREA’ BELGIUM’

UNITED
KING-
DOM’

NETHERLANDS’ CANADA’ NETHERLANDS’ BELGIUM’ UNITED
STATES’

Table 5. Ten optimal Cost and EI values of NiZn F2 obtained and presented in Pareto front.

Serial Number of Individual Production and Waste Disposal COST
(EUR/kg of Battery Mass)

Production and Waste Disposal EI (kg
CO2-e/kg of Battery Mass)

1 7.439 0.088
2 7.431 0.094
3 7.266 0.098
4 7.439 0.085
5 7.258 0.100
6 7.431 0.092
7 7.250 0.106
8 7.249 0.109
9 7.447 0.084
10 7.258 0.102
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6. Validation of the Model
6.1. Sensitivity Analysis

In the following table (Table 6), the results of the sensitivity analysis are presented.
This table describes an analysis according to the original results derived from AI (MOPSO),
a 5% increase and decrease in cost and environmental impact, and finally, the percentage
of matching results. As a result, the average value for sensitivity analysis in this study is
equal to 80%. This sensitivity analysis shows the robustness of the AI model developed in
this study.

Table 6. Results of sensitivity analysis.

Material Original Results Results after 5%
Increase Results after a 5% Decrease

Percentage of
Matching

Results

Material 1
Belgium Belgium Malaysia

50%Malaysia Malaysia Netherlands

Material 2 Belgium Belgium Belgium 100%

Material 3
Belgium Belgium Belgium

100%Malaysia Malaysia Malaysia

Material 4 Norway Norway Norway 100%

Material 5 Russia Russia Russia 100%

Material 6 United Kingdom United Kingdom United Kingdom 100%

Material 7 Germany Germany Germany 100%

Material 8
South Korea Saudi Arabia Saudi Arabia

70%Germany
South Korea South KoreaSaudi Arabia

Material 9 Belgium Belgium Belgium 100%

Material 10 United Kingdom United Kingdom Italy 0

Material 11 Netherlands Netherlands Netherlands 100%

Material 12 Canada Canada Canada 100%

Material 13 Netherlands Netherlands Netherlands 100%

Material 14 Belgium Belgium Netherlands 0

The overall percentage of matching results: 80%

6.2. Robustness Regarding the Mathematical Parameters

In the sensitivity analysis, five tests were performed with 1000 iterations and 100
initial populations and five tests with the same parameters and the number of iterations as
before, but this time with 1000 initial populations and one test with the same parameters
and number of iterations but 10,000 initial populations. The idea behind several tests with
an increased initial population was to realize the accuracy of results while repeating the
tests. We compared the results obtained from these tests with the final result (Table 4)
mentioned per each material and supplier country. By performing these repeated tests, we
have realized that although small variations in the MOPSO parameters are not affecting
the final results in our case, increasing the numbers of initial populations increases the
accuracy of results on the cost of increased runtime of the MATLAB algorithm.

The MATLAB algorithm runtime was 3–4 min per test when the initial number of
populations was 100 individuals. The five results obtained on this set of parameters are
compared and concluded that for Mat. 1, Table 4 suggested the most economical and
environmentally friendly suppliers are Malaysia and the Netherlands 5 times each in 10
optimum solutions. The sensitivity analysis, Tests 1, 4, and 5 suggested Malaysia and the
Netherlands each 50–50% times, whereas Tests 2 and 3 suggested Malaysia and Belgium
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each an equal number of times (50–50%). Therefore, considering the results from all 5 tests,
we obtained a total of 48 optimum solutions, of which (For Mat. 1) 50% were Malaysia,
31.25% were the Netherlands, and 18.75% of the results suggested Belgium. For Mat. 2,
all the optimum solutions from Tests 1 to 4 have suggested Belgium, and all the optimum
solutions from Test 5 have suggested the United States. In total, 38 out of 48 (79.16%)
optimal solutions suggested Belgium, which is also suggested in Table 4. Therefore, we can
conclude that the accuracy of results is around 80% when tests are repeated after taking the
initial populations of 100 individuals.

The other set of five tests with an initial population of 1000 individuals takes 15–17 min
runtime per test, but the accuracy of results improved significantly. A total of 49 optimal
solutions were obtained by these five results and presented in Table 4. For material Mat. 1,
considering all five results, 25 optimal solutions have suggested Belgium, and the other 24
have suggested Malaysia (51–49%), which is very similar to the final result in Table 4, which
suggested Belgium–Malaysia 5–5 time each in those 10 optimal solutions. Comparing
the optimal locations for Mat. 3, the Belgium–Malaysia pair has been suggested 22 times
each in all 49 optimal solutions from five tests, which is 45%, and the other five solutions
have suggested the United Kingdom, whereas Table 4 suggested 60% Belgium and 40%
Malaysia. Comparing the results from Table 4 with the Test 1 results of sensitivity analysis,
we observed more than 95% similarities in the results. The last test with 10,000 initial
populations took a huge 3 h and 22 min runtime and had around similarity in the optimal
solutions obtained in Table 4 and Test 1 results of sensitivity analysis.

6.3. Validation through the AHP

The qualitative validation of MOPSO results has been performed by applying the
AHP (Analytic Hierarchy Process) and through an expert panel as per the suggested
methodology in the literature [84–86]. The AHP is applied to obtain a weighted hierarchy
of factors with an influence on the goal [87–89] “Choosing the best Origin for the NiZn
batteries’ raw material from an environmental, economic, and business perspective”.

To optimize the effort from the expert panel by filling multiple pairwise comparison
matrixes, the AHP analysis is focused on the three raw materials that represent more than
50% of the weights of batteries (Material 6, 13, and 5) and three materials according to the
optimization of cost and environmental impacts through the AI model (Material 1, 3, and
8) in ten solutions. This analysis is performed to determine which countries are the most
appropriate according to the global weights to establish the most efficient supply chain for
battery materials (see Table 7).

Table 7. List of raw materials of NiZn batteries and their associated countries.

NiZn Raw Materials List of Countries

Material 6 A1-Canada, A2-China, A3-Japan, A4-United Kingdom, A5-Australia

Material 13 A1-Australia, A2-Canada, A3-Netherlands, A4-South Korea,
A5-Spain

Material 5 A1-Chile, A2-Japan, A3-Kazakhstan, A4-Congo, A5-Russia

Material 1 A1-Belgium, A2-Chinese Taipei, A3-Malaysia, A4-Netherlands,
A5-South Korea

Material 3 A1-Belgium, A2-China, A3-Germany, A4-Malaysia, A5-United
Kingdom

Material 8 A1-Germany, A2-Saudi Arabia, A3-South Korea, A4-United Arab
Emirates, A5-USA

A hierarchical model in two levels was prepared (see Figure 7) with factors generated
and validated by a multidisciplinary panel shaped by the following:
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1. Entity: Orange, Country: France, Position of the member: Engineer in charge of
energy storage studies

2. Entity: Chaowei Power Co. LTD, Country: China, Position of the member: Vice
President‘s Assistant

3. Entity: Naval Group, Country: France, Position of the member: Research and Innova-
tion Manager

4. Entity: EDP LABELEC, Country: Portugal, Position of the member: R&D Engineer
and Project Manager

5. Entity: ZSW, Country: Germany, Position of the member: Scientist and team leader
6. Entity: SUNERGY, Country: France, Position of the member: R&D Deputy Manager
7. Entity: SUPERGRID, Country: France, Position of the member: Research and devel-

opment engineer
8. Entity: UNIGE, Country: Italy, Position of the member: Researcher and Assistant Professor

This hierarchical model is applied to all six materials presented in Table 7 individually.
After the expert panel validated the hierarchical models, pairwise comparison matrices

were introduced. The aim of preparing this matrix is to compare the importance between
criteria levels 1 and 2. This matrix aims to assess the expert panel‘s technical opinion to
determine which criteria are more important in achieving the main goal and how much
this ratio is according to the scale of Saaty [90,91]. The AHP analysis is focused on the three
raw materials that represent more than 50% of the weights of batteries and another three
materials according to the optimization of cost and environmental impacts through the AI
model in ten solutions. This analysis is performed to evaluate which countries are the most
appropriate according to the global weights to establish the most efficient supply chain
for battery materials. The criteria, which are presented in Figure 7, were determined by
microscopic analysis of technical and business risks affecting the security of the supply of
NiZn battery raw materials.
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Figure 7. AHP (Analytic Hierarchy Process) hierarchical model per each of six materials.

Taking into account the results derived from MOPSO output for six raw materials of
Materials 6, 13, 5, 1, 3, and 8 and combinations “Material–Country” in the Pareto optimal
frontier from cradle to grave (Table 4) and consequently comparing this result with the
result of AHP analysis, the following findings have been achieved. As per Table 8, the
list of countries chosen by AI and AHP has similarities. However, for the case of the data
collected for Material 5, the AI chose Russia. The main reason for this selection was that
the data used and applied in AI (MOPSO) were collected before the invasion of Ukraine by
Russia. On the other hand, as it is presented by the results of AHP, for Material 5, Russia
is placed in the fifth rank. This is due to the fact that the results of pairwise comparison
matrices were collected after the invasion, and the expert panel preferred to give low scores
to Russia. In this case, instead of Russia, Japan, which is placed in the first rank, can be
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chosen as an appropriate alternative [92]. It is important to note that the AHP is primarily
focused on validating the results obtained from AI algorithms rather than on proving or
gaining new insights from data or analyzing the data.

Table 8. Deviation between AI outputs and AHP analysis.

Materials
Countries Chosen by

AI (MOPSO)

Countries Chosen by AHP (Human Factor)

Country Weight Rank

Material 6 United Kingdom

Canada 0.225 1
United Kingdom 0.222 2

Japan 0.196 3
China 0.191 4

Australia 0.167 5

Material 13 Netherlands

Netherlands 0.245 1
Spain 0.231 2

Australia 0.191 3
Canada 0.185 4

South Korea 0.147 5

Material 5 Russia

Japan 0.260 1
Chile 0.254 2

Kazakhstan 0.175 3
Congo 0.169 4
Russia 0.142 5

Material 1
Belgium

Belgium 0.306 1
Netherlands 0.263 2
South Korea 0.158 3

Malaysia Malaysia 0.149 4
Chinese Taipei 0.125 5

Material 3
Belgium

Belgium 0.266 1
Germany 0.226 2

China 0.190 3

Malaysia United Kingdom 0.183 4
Malaysia 0.134 5

Material 8

South Korea
Germany 0.393 1

South Korea 0.180 2

Germany USA 0.173 3
Saudi Arabia 0.128 4

Saudi Arabia United Arab Emirates 0.126 5

7. Improvement of Some Sustainability KPIs

The sustainability KPIs selected in this study to assess the impact of the optimization
model were the following: “capital cost (EUR/kWh)”, “storage cost (EUR/kWh)”, “end-of-
life cost (EUR/kWh)”, and “global warming potential (GWP)” (kg-CO2-e/MWh) [93]. The
evolution of these sustainability KPIs before and after the optimization model is presented
in Table 9. Results showed an 11.96% reduction in capital cost and storage cost and a
26.8% decrease in GWP. With the application of MOPSO, the optimized waste disposal cost
decreased by 37.75%. Since the contribution of waste disposal cost to the total amount of
EoL cost is 10.6%, a 3.65% decrease in the net EoL cost KPI has therefore been achieved.
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Table 9. Evolution of relevant sustainability KPIs during the Lolabat project included in the optimiza-
tion model [38,39].

KPIs Before Applying the
Optimization Model

After Applying the
Optimization Model Achieved Results Target

Capital cost
(EUR/kWh) 0.0511 EUR/kWh 0.0450 EUR/kWh 11.96% 20–30% decrease

Storage cost
(EUR/kWh)

0.000638
(EUR/kWh)

0.000562
(EUR/kWh) 11.96% 20–35% decrease

End-of-life cost
(EUR/kWh) 0.00549 (EUR/kWh) 0.00529 (EUR/kWh) 3.65% 10% decrease

Global Warming
Potential

(kg-CO2-e/MWh)
7.168 kg-CO2-e/MWh 5.241 kg-CO2-e/MWh 26.88% 15% decrease

8. Limitations and Assumptions

Finally, before concluding our study, it is worth mentioning that certain limitations and
assumptions have been made to simplify the modeling process. These limitations emerge
from the fact that the NiZn battery is still in the research and development stage and that
there are only laboratory-scale observations available. The primary life cycle inventory
(LCI) data for cradle-to-gate production was gathered from a pilot-scale production that
solely used electricity. As a result, the energy demand was significantly higher than that of
a regulated and mature production, which was used as a comparative basis for this study.
And this is the reason, as mentioned in Section 5, that we consider the manufacturing and
operational phase of the battery as constant in the optimization algorithm. However, the
programming of these phases has been made dynamic so that in the future, we will have
enough data to consider it. Due to the confidentiality of the patent [94], we reframed to
disclose the name of materials and their composition in nickel-zinc batteries in Table 4 of
this paper.

9. Conclusions

This study has attempted to optimize the life cycle, environmental impact, and cost of
NiZn battery, taking into account the latest data available. Environmental impact and cost
data used in this study have been adopted from the development according to Refs. [38,39].
Initially, the genetic algorithm (GA) was proposed for optimization, but it was found to be
slow with many variables. After comparing available algorithms, the study concluded that
MOPSO is more suitable for multi-objective optimization than GA.

This study uses constant battery parameters like material composition, energy density,
and cycle life while adopting the latest data from NiZn batteries. The environmental impact
(Global Warming Potential) and cost of raw materials from the top five producers and waste
treatment locations are considered variables. Manufacturing is set in Paris, France, and
recycling in Krefeld, Germany, as constraints. The analysis includes 14 material streams
and one waste disposal line from 36 different global locations, each with varying costs and
environmental impacts.

The MOPSO results identify optimal supplier locations for raw materials with mini-
mal cost and environmental impact, as well as optimal waste disposal locations for non-
recyclable materials. Among the ten optimal solutions, a single solution is recommended
for 11 out of 14 materials, as well as for waste disposal and treatment locations.

Based on all ten optimal solutions and given that NiZn’s production location is in
Paris, it can be concluded that Belgium would be the best supplier for Mat. 2, Mat. 9, and
Mat. 14. The United Kingdom is the preferred supplier of Mat. 6 and Mat. 10, whereas the
Netherlands must be preferred for Mat. 13 and Mat. 11. For Mat. 5, Mat. 4, Mat. 7, and
Mat. 12, Russia, Norway, Germany, and Canada are the preferred suppliers, respectively.
Residual wastes obtained from spent batteries can be best treated in the United States. The
Netherlands and Malaysia are two optimal suppliers for Mat. 1, whereas Belgium and
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Malaysia would be better suppliers for Mat. 3. Three options were considered optimal for
the supply of Mat. 8; they are Germany, Saudi Arabia, and South Korea. The algorithm
developed in this study can be used for further formulations of NiZn batteries to obtain
optimum cost and environmental impact by just providing the battery parameters.

A comparison between the countries that were chosen by AI (MOPSO) and the coun-
tries that were chosen in AHP analysis by an expert panel survey has been performed in
this study, and it has been found that there is a significant similarity in the results of the
countries chosen by both methods. The AI model in this study demonstrates robustness
through coherence with AHP analysis and resilience to market fluctuations in the sensitivity
analysis. Post-optimization, significant reductions in NiZn‘s global warming potential
validate the AI model‘s effectiveness.

The manufacturing, operation, and maintenance aspects of the NiZn battery life cycle
are currently treated as constant in AI algorithms. As further developments are made to
optimize the life cycle environmental impacts and costs of NiZn batteries, it is important to
include these aspects in the programming modules as dynamic for estimating sustainability
Key Performance Indicators (KPIs) and for the AHP validations, similar to how it has been
done for raw material acquisition and waste disposal phases.
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