Valencia frente a la amenaza de una nueva inundación: análisis, antecedentes y estrategias para mitigar el riesgo

https://www.rtve.es/noticias/20241030/catastrofico-temporal-valencia-lluvia-dana/16310046.shtml

Ante los acontecimientos catastróficos que estamos viviendo en Valencia como consecuencia de la DANA, he querido publicar un resumen de un informe del año 2014 denominado “Actualización del Plan Sur de Valencia. Estudio informativo acerca de los riesgos de que Valencia experimente una nueva inundación catastrófica“. Este resumen resalta los riesgos de que Valencia experimente una nueva inundación catastrófica basándose en el análisis del «Plan Sur de Valencia» y en las características geográficas, climáticas e históricas de la ciudad y su entorno. Aunque es de 2014, creo que no ha perdido vigencia, aunque estoy convencido de que en estos últimos 10 años se ha mejorado la información al respecto. El conocimiento se tiene y está claro lo que hay que hacer. Falta la voluntad de priorizar las actuaciones públicas.

Introducción y antecedentes

Valencia ha sido históricamente vulnerable a las inundaciones debido a su ubicación geográfica y la morfología de su entorno. Desde su fundación en el año 138 a. C., en una terraza del río Turia cercana a su desembocadura en el Mediterráneo, la ciudad ha soportado las crecidas de su principal cauce fluvial. Este asentamiento, que proporcionaba ventajas en términos de acceso al agua y a tierras cultivables, también expuso a la ciudad al riesgo de avenidas debido al régimen torrencial del Turia. Las crecidas y la sedimentación del río han modelado la región, elevando el suelo de Valencia en más de cinco metros y configurando un entorno altamente vulnerable.

Las primeras crónicas detalladas de inundaciones en Valencia datan del siglo XIV, cuando los registros empezaron a documentar las crecidas del Turia y sus efectos devastadores en la ciudad y las áreas circundantes. En estos registros se identifican 24 episodios de inundaciones graves entre 1321 y 1957, con un periodo de recurrencia aproximado de 27 años. Este historial de avenidas sugiere que, en ausencia de intervenciones significativas, la probabilidad de nuevas inundaciones se mantiene elevada.

Tras la gran riada de 1957, que causó cientos de muertes y pérdidas materiales significativas, las autoridades emprendieron la construcción de un nuevo cauce del río Turia con el fin de desviar el flujo de agua y reducir los riesgos de inundación en la ciudad. Sin embargo, estudios recientes del grupo «Impulso a Valencia» indican que las medidas adoptadas, aunque efectivas en parte, podrían ser insuficientes ante una avenida similar o superior a la de 1957.

Climatología y fenómeno de la gota fría

La Comunidad Valenciana posee un clima mediterráneo con marcada variabilidad en las precipitaciones, influido tanto por la orografía de la región como por las condiciones atmosféricas del Mediterráneo. La disposición de las montañas en la franja litoral y prelitoral intensifica el efecto de convección y precipitación en ciertos episodios. Así, Valencia se ve expuesta a lluvias torrenciales, que se concentran principalmente en los meses de otoño.

Una característica fundamental del clima valenciano son los episodios de «gota fría» o DANA (Depresión Aislada en Niveles Altos). Este fenómeno se produce cuando masas de aire frío en altura interactúan con aire cálido y húmedo del Mediterráneo, lo que genera precipitaciones intensas en cortos intervalos de tiempo. La situación se agrava cuando las lluvias coinciden con fuertes temporales marinos, que elevan el nivel del mar y dificultan la evacuación del caudal fluvial en la desembocadura del Turia.

Durante el periodo 1971-2000, la región registró más de 300 días con lluvias superiores a 100 mm y 16 episodios con precipitaciones que superaron los 300 mm en 24 horas. Estas intensas precipitaciones son capaces de desbordar el cauce del Turia, cuya capacidad máxima actual se estima en 3700 m³/segundo. Estos episodios de lluvias extremas, junto con el cambio climático, que eleva las temperaturas del mar, aumentan la frecuencia y la gravedad potencial de estos eventos.

Además, Valencia ocupa el tercer puesto a nivel mundial en exposición a lluvias torrenciales, después de dos áreas tropicales. Esta situación climatológica particular exige una infraestructura adecuada para mitigar los riesgos de inundación y proteger a la población ante el impacto de una avenida extrema.

Hechos históricos de inundación en Valencia

Desde tiempos romanos, las crecidas del Turia han sido un elemento constante en la vida de la ciudad. Ya en la época medieval, la distribución espacial del agua desbordada afectaba a zonas como Campanar, Marxalenes y el centro urbano. A lo largo de la historia, las murallas y defensas de la ciudad se construyeron tanto para proteger Valencia de los ataques como para contener las aguas del Turia. Durante la época de Pedro el Ceremonioso, se levantó una muralla septentrional con el propósito de evitar la entrada de las aguas en la ciudad, pero las grandes crecidas, como la de 1589, mostraron que incluso estas defensas eran insuficientes.

Entre 1321 y 1957 se documentaron 24 grandes avenidas, que devastaron el entorno urbano y las poblaciones cercanas. La riada de 1957 se recuerda como la peor, cuyo caudal inundó extensamente el área urbana y dejó Valencia sin un abastecimiento adecuado durante días. Este suceso marcó un punto de inflexión en la gestión del riesgo de inundación, lo que dio lugar a la construcción del «Nuevo Cauce» en 1969.

Sin embargo, el Plan Sur y el nuevo trazado del cauce, aunque eficaces en parte, no garantizan la protección completa. El informe estima que el actual cauce del Turia podría no soportar una riada de la magnitud de la de 1957, lo que vuelve crítica la necesidad de fortalecer las defensas fluviales y estudiar a fondo la capacidad de avenamiento actual.

Análisis de la Riada de 1957

La riada de 1957 es un evento de referencia para comprender la magnitud del riesgo al que Valencia está expuesta. En un día de octubre, las intensas lluvias descargaron precipitaciones sin precedentes sobre la cuenca del Turia, y el caudal del río alcanzó los 3700 m³/segundo, según cálculos de la época, aunque se estima que pudo haber sido incluso mayor. Las inundaciones resultantes cubrieron grandes extensiones de la ciudad, causando la pérdida de vidas, el desplazamiento de miles de personas y la destrucción de infraestructuras básicas.

El «Nuevo Cauce» se diseñó para un caudal de 5000 m³/segundo; sin embargo, su capacidad actual se ha recalculado en 3700 m³/segundo, lo que iguala el caudal de la riada del 57, según los registros de la Confederación Hidrográfica del Júcar. Así, si una avenida semejante o mayor ocurriera, el cauce del Turia se desbordaría, lo cual podría provocar una inundación a gran escala en la zona urbana y poner en riesgo nuevamente a miles de personas y una vasta área de la ciudad.

Propuestas de actuación para la mitigación de riesgos

El informe sugiere una serie de propuestas para mitigar los riesgos de inundación y aumentar la resiliencia de Valencia ante avenidas extremas:

  1. Reevaluación del cauce y mejoras estructurales: el primer paso consiste en analizar la capacidad real de drenaje del Turia desde Loriguilla hasta su desembocadura. Esto requiere actualizar las infraestructuras, con un énfasis especial en el tramo de Quart de Poblet, donde comienza el nuevo cauce. Además, sería necesario reforzar la mota que separa el viejo cauce del nuevo, pues si esta barrera fuera sobrepasada o se rompiera, Valencia quedaría gravemente expuesta a una nueva riada.
  2. Laminación de avenidas y protección ambiental: en la cuenca baja del Turia, se propone un plan de reforestación y mantenimiento de barrancos que ayude a regular las avenidas y reducir la velocidad de escorrentía. Una infraestructura de laminación, como un lago fluvial o un embalse en Vilamarxant, permitiría controlar el caudal y reducir los picos de crecida que llegan a Valencia. Este enfoque, que combina obras de infraestructura con medidas de protección ambiental, busca no solo proteger la ciudad, sino también minimizar el impacto en los ecosistemas y la zona agrícola de la cuenca baja.
  3. Mejoras en la desembocadura y mitigación del efecto dique: es necesario rediseñar la desembocadura del Turia para reducir el «efecto dique» que ocurre cuando el temporal marino obstruye la evacuación del agua hacia el mar. Este fenómeno, en el que las olas del Mediterráneo superan los cinco metros de altura, impide que el cauce fluya libremente y aumenta el riesgo de inundación en las zonas bajas de la ciudad. Un rediseño adecuado de la desembocadura permitiría una evacuación más eficiente del caudal fluvial incluso en condiciones de temporal.
  4. Red de monitorización y sistema de alerta temprana: dada la velocidad y fuerza de las avenidas en Valencia, es crucial establecer una red de estaciones pluviohidrológicas en toda la cuenca del Turia que permita un monitoreo constante y en tiempo real. Este sistema debería estar integrado con un mecanismo de alerta temprana, de modo que las autoridades y la población puedan tomar medidas de protección antes de que ocurra un evento catastrófico. La experiencia de la riada del 57 mostró que muchas víctimas fueron sorprendidas sin tiempo de reacción, de ahí la importancia de la preparación y la comunicación.
  5. Actualización de los planes de protección civil y simulacros de emergencia: los planes de emergencia y protección civil deben ser revisados y adaptados a la realidad climática actual y a las capacidades de infraestructura del río. Estos planes incluyen rutas de evacuación, centros de acogida y protocolos de comunicación, que son fundamentales para reducir el riesgo de pérdidas humanas y materiales en caso de una avenida.
  6. Evaluación y recurrencia admisible de crecidas: finalmente, el informe recomienda que se determinen los intervalos de recurrencia aceptables para futuras crecidas, considerando distintos escenarios de magnitud. Esta evaluación permitirá a las autoridades decidir sobre el diseño y las inversiones necesarias en infraestructura según el nivel de riesgo que la ciudadanía de Valencia está dispuesta a asumir.

Conclusión

La ciudad de Valencia se enfrenta a un riesgo significativo de sufrir otra inundación catastrófica, debido a sus condiciones climáticas, al cambio climático y a la infraestructura fluvial actual. Los sucesos catastróficos se evidencian con el actual desastre de finales de octubre de 2024. Las propuestas del informe «Impulso a Valencia» subrayan la importancia de tomar medidas preventivas y estructurales, y adaptar las capacidades de la ciudad para responder a episodios extremos. Sin embargo, es fundamental que la ciudadanía sea consciente de este riesgo y participe activamente en los sistemas de alerta y en los planes de emergencia para reducir las posibles pérdidas en el futuro.

Referencia:

VV.AA. (2014). Actualización del Plan Sur de Valencia. Estudio informativo acerca de los riesgos de que Valencia experimente una nueva inundación catastrófica. Ateneo Mercantil de Valencia, Grupo de Análisis “Impulso a Valencia”, 52 pp.

Descargar (PDF, 1.95MB)

 

Innovador método para planificar el mantenimiento de infraestructuras públicas optimiza los beneficios sociales y el desarrollo urbano

Un estudio reciente de Jorge Salas y Víctor Yepes, publicado en la prestigiosa revista Structure and Infrastructure Engineering, ha propuesto un enfoque innovador para la planificación del mantenimiento de infraestructuras públicas con el objetivo de mejorar la entrega de beneficios sociales en el contexto urbano. Esta investigación parte de la premisa de que el estado de conservación de las infraestructuras críticas (hidráulicas, energéticas, de comunicaciones) y las instalaciones públicas, como escuelas, hospitales, parques y viviendas sociales, influye directamente en la calidad de vida de las comunidades y, en consecuencia, en el desarrollo urbano sostenible (SUD, por sus siglas en inglés). Sin embargo, el mantenimiento de estas infraestructuras plantea retos significativos, dado que las autoridades locales se enfrentan a restricciones presupuestarias que les impiden acometer todas las reparaciones necesarias de manera simultánea.

El problema de la priorización en el mantenimiento público

En su trabajo, Salas y Yepes destacan la dificultad que enfrentan los municipios al tener que decidir qué instalaciones deben recibir mantenimiento de forma prioritaria. La falta de una planificación eficiente puede llevar a que muchas infraestructuras públicas entren en un estado de deterioro que reduce su capacidad para ofrecer beneficios sociales, como el acceso a la educación, la salud o espacios recreativos. Así, los autores plantean un marco de decisión para planificar y programar el mantenimiento correctivo, que combina un análisis multicriterio con una evaluación económica, con el objetivo de maximizar los beneficios sociales y minimizar los costes.

La metodología CRISDUSEC

La metodología propuesta, implementada en un software llamado CRISDUSEC, se basa en la evaluación de diferentes criterios para priorizar las acciones de mantenimiento. Estos criterios incluyen el tipo de infraestructura social, su estado de conservación y el coste de restaurarla. Además, se tiene en cuenta el impacto que cada instalación tiene en el desarrollo sostenible de la comunidad a la que pertenece. La innovación de este enfoque radica en la integración de diferentes variables en un marco analítico que permite a los planificadores urbanos tomar decisiones más informadas y eficientes.

El software CRISDUSEC, utilizado en el caso de estudio de la región de Valencia, permite a los expertos evaluar el impacto de la infraestructura pública en el desarrollo sostenible en función de su estado de mantenimiento y su tipo. Una de las principales conclusiones del estudio es que las infraestructuras como los hospitales y los mercados públicos, así como las infraestructuras críticas, debido a su mayor sensibilidad a su estado de conservación, generan un impacto social más negativo cuando no están en condiciones óptimas, en comparación con los parques o las áreas recreativas, que son más tolerantes al deterioro. Esto implica que el mantenimiento de ciertos tipos de infraestructuras debe ser priorizado por su importancia crítica en la vida diaria de los ciudadanos.

Resultados y recomendaciones

Los resultados del estudio destacan que, mediante una planificación adecuada basada en esta metodología, es posible maximizar los beneficios sociales derivados del mantenimiento de las infraestructuras públicas, especialmente en las zonas urbanas que requieren una regeneración urgente. Por ejemplo, en el caso de Valencia, los hospitales y los centros educativos fueron identificados como infraestructuras clave cuya restauración genera el mayor retorno social. En cambio, otras infraestructuras, como parques y áreas deportivas, aunque importantes, presentan un impacto menor en el desarrollo urbano sostenible cuando se encuentran en un estado de mantenimiento deficiente.

Otra conclusión relevante es que la metodología permite diseñar planes estratégicos a medio y largo plazo que ayudan a los gobiernos locales a programar las acciones correctivas de manera más eficiente, optimizando la distribución de recursos y minimizando los retrasos en la entrega de prestaciones sociales a la ciudadanía. Este enfoque también se alinea con los Objetivos de Desarrollo Sostenible (ODS) de las Naciones Unidas, que promueven la inversión en infraestructuras sociales como un pilar para mejorar la calidad de vida en las ciudades.

Implicaciones y aplicaciones futuras

Este trabajo representa una herramienta valiosa para los gestores públicos y los planificadores urbanos que buscan equilibrar las demandas sociales con las restricciones presupuestarias. Además, el estudio sienta las bases para futuras investigaciones que exploren la adaptación de este marco a otros contextos regionales o nacionales, así como la inclusión de nuevas variables, como el impacto ambiental, que podrían enriquecer aún más el análisis.

 

En conclusión, la investigación de Salas y Yepes ofrece una solución práctica para los desafíos actuales en materia de mantenimiento de infraestructuras públicas, ya que proporciona un enfoque claro y bien fundamentado para maximizar el retorno social de las inversiones en mantenimiento, garantizando así un desarrollo urbano más justo y sostenible.

Referencia:

SALAS, J.; YEPES, V. (2024). Improved delivery of social benefits through the maintenance planning of public assets. Structure and Infrastructure Engineering, 20(5):699-714. DOI:10.1080/15732479.2022.2121844

Métodos multicriterio: la clave para rehabilitar edificios vulnerables en zonas sísmicas

Un equipo de investigadores de la Universitat Politècnica de València y la Universidad Central del Ecuador ha llevado a cabo un análisis exhaustivo sobre los métodos de toma de decisiones multicriterio (MCDM) aplicados a la evaluación, selección y rehabilitación de edificios. Publicado en la prestigiosa revista Journal of Civil Engineering and Management, este artículo aborda una problemática clave en la ingeniería civil actual: cómo hacer frente al envejecimiento del parque de edificios, muchos de los cuales se construyeron siguiendo normativas de seguridad y sostenibilidad ya obsoletas.

La necesidad de abordar esta cuestión es urgente, dado que muchos edificios existentes no cumplen con los estándares actuales de seguridad, en particular respecto a su vulnerabilidad sísmica. Este factor es especialmente relevante en países con un alto riesgo, donde recientes terremotos han demostrado la fragilidad de las infraestructuras más antiguas. Además de las posibles pérdidas humanas, el impacto económico y social de estos eventos puede ser devastador.

Esta investigación es el resultado de una colaboración internacional realizada en el marco de los proyectos HYDELIFE y RESILIFE, cuyo investigador principal es Víctor Yepes, y es fruto de una colaboración internacional entre investigadores de Ecuador y España.

Contexto de la investigación

El envejecimiento del parque de edificios es un problema global que afecta tanto a países desarrollados como en vías de desarrollo. Muchos edificios antiguos se construyeron siguiendo normativas obsoletas que no tenían en cuenta los estándares de seguridad modernos, especialmente en lo que respecta al riesgo sísmico. A esto se suma la necesidad de hacer frente a desafíos medioambientales, como el impacto de la construcción en el consumo energético y las emisiones de CO₂. Ante esta situación, surge la necesidad de adoptar estrategias de rehabilitación que combinen la seguridad estructural con la sostenibilidad. La integración de factores sociales, económicos y ambientales en la toma de decisiones sobre la rehabilitación de edificios es fundamental para avanzar hacia un entorno construido más seguro y sostenible.

Metodología

La investigación se basa en una revisión bibliométrica de la literatura sobre los métodos MCDM aplicados a la evaluación y rehabilitación de edificios. Se analizaron 91 artículos publicados entre 2008 y 2023, utilizando bases de datos especializadas como Web of Science y SCOPUS. Los estudios seleccionados abordan tanto la evaluación de la vulnerabilidad de los edificios como la selección de estrategias de rehabilitación, con un enfoque particular en edificios escolares y patrimoniales, que suelen estar más expuestos a riesgos debido a su antigüedad o importancia cultural.

Se evaluaron las tendencias en el uso de los métodos MCDM y se identificaron investigaciones clave que han logrado evaluar de manera conjunta el consumo energético y la vulnerabilidad sísmica. Estas investigaciones destacan la necesidad de contar con metodologías que permitan evaluar múltiples factores de manera simultánea y en contextos de incertidumbre, especialmente cuando se trata de estructuras vulnerables, como las escuelas y los edificios patrimoniales, que requieren un enfoque especializado tanto por su valor cultural como por su complejidad estructural. Los investigadores clasificaron los diferentes métodos MCDM más utilizados, como el Proceso de Análisis Jerárquico (AHP), el Simple Additive Weighting (SAW) y el TOPSIS. Cada método se evaluó en función de su capacidad para integrar criterios contradictorios, como la seguridad estructural, el impacto económico, social y ambiental.

Resultados

El estudio revela la prevalencia de ciertos métodos clásicos en la investigación científica, como el ya mencionado AHP, que se ha combinado en muchos estudios con TOPSIS, un enfoque que permite identificar soluciones óptimas al considerar tanto la distancia a una solución ideal como a una no ideal. Este enfoque se ha aplicado tanto a la selección de edificios que requieren intervenciones urgentes como a la identificación de estrategias de rehabilitación más eficaces. Estos métodos permiten ponderar diversos criterios y encontrar soluciones que maximicen la seguridad y la sostenibilidad. Entre los principales hallazgos destacan:

  • Evaluación de la vulnerabilidad: Se ha aplicado MCDM para evaluar la vulnerabilidad de los edificios en zonas urbanas, con un enfoque particular en las escuelas y los edificios patrimoniales. En muchos casos, los estudios integraron criterios de vulnerabilidad sísmica con aspectos socioeconómicos y ambientales.
  • Selección de estrategias de rehabilitación: El estudio identificó tres enfoques principales en la rehabilitación de edificios: la intervención en componentes individuales, la adición de elementos de resistencia y la reducción de demandas estructurales mediante dispositivos suplementarios. La combinación de sostenibilidad y seguridad ha sido un aspecto clave en estos estudios.
  • Sostenibilidad: Si bien muchos estudios ya integran criterios de sostenibilidad, solo un porcentaje menor (15 %) incorpora análisis del ciclo de vida (LCA), una herramienta crucial para medir el impacto ambiental de las intervenciones a largo plazo.

Implicaciones

Las conclusiones de este trabajo tiene importantes implicaciones tanto para la práctica de la ingeniería civil como para las políticas públicas. La aplicación de métodos MCDM permite a los ingenieros y a los responsables de la toma de decisiones considerar una variedad de factores antes de seleccionar una estrategia de rehabilitación para un edificio. Esto es particularmente relevante en áreas con alto riesgo sísmico, donde la rehabilitación de edificios vulnerables puede salvar vidas y reducir las pérdidas económicas.

Además, la integración de criterios de sostenibilidad subraya la importancia de las políticas que promuevan rehabilitaciones que no solo refuercen la seguridad, sino que también reduzcan el impacto ambiental. Los resultados del estudio sugieren que las futuras investigaciones deberían centrarse en la creación de metodologías más avanzadas que manejen mejor la incertidumbre y que logren una verdadera integración de los pilares de sostenibilidad (económico, social y ambiental) con los criterios de seguridad estructural.

En resumen, este estudio ofrece una perspectiva innovadora sobre la forma en que los métodos MCDM pueden ayudar a afrontar los retos actuales en la rehabilitación de edificios. Su aplicación no solo mejora la seguridad de las infraestructuras, sino que también permite avanzar hacia un modelo de construcción más sostenible y eficiente. Sus recomendaciones son claras: es necesario seguir investigando para mejorar las soluciones de toma de decisiones que integren de manera efectiva la seguridad estructural y la sostenibilidad. Esto es fundamental no solo para garantizar la seguridad de los edificios, sino también para asegurar que las futuras generaciones puedan disfrutar de un entorno construido que sea resiliente, seguro y sostenible.

Referencia:

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2024). A review of multi-criteria decision-making methods for building assessment, selection, and retrofit. Journal of Civil Engineering and Management, 30(5):465-480. DOI:10.3846/jcem.2024.21621

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 1.66MB)

Nueva investigación cuantifica por primera vez el valor económico de los paisajes en la gestión de los puertos deportivos

Puerto deportivo Marina del Este. Imagen: R. Martín

Un estudio innovador, titulado «Valuation of landscape intangibles: Influence on the marina management» recientemente publicado en la prestigiosa revista Ocean and Coastal Management, aborda un tema de gran relevancia en la gestión de los puertos deportivos: la valoración económica de los intangibles paisajísticos, un factor clave pero a menudo subestimado en la planificación y sostenibilidad de las infraestructuras costeras.

La investigación, liderada por Ricardo Martín y Víctor Yepes, de la Universidad Politécnica de Valencia, emplea un enfoque innovador para cuantificar cómo las características no tangibles del paisaje, como las vistas al mar, la tranquilidad y la exclusividad, influyen en el valor económico de los puertos deportivos y su entorno.

Contexto de la investigación

Las áreas costeras albergan una interacción compleja entre los elementos naturales y las actividades humanas, generando paisajes únicos que combinan belleza escénica y oportunidades económicas, particularmente en sectores como el turismo náutico. Los puertos deportivos, además de ofrecer servicios para embarcaciones, actúan como puntos de entrada para descubrir el entorno costero, lo que convierte el paisaje en un activo fundamental para su gestión y rentabilidad. Sin embargo, hasta ahora no existía una metodología clara para poner en valor los elementos intangibles del paisaje, como las vistas o la serenidad de una ubicación, que no se transaccionan directamente en el mercado.

El propósito de esta investigación es llenar ese vacío, proporcionando un enfoque cuantitativo para medir estos intangibles paisajísticos y su impacto en el valor global de los puertos deportivos. Este trabajo se desarrolla en la Marina del Este, en La Herradura (Granada), un enclave que combina el atractivo natural del Mediterráneo con una ubicación estratégica entre montañas y el mar.

Metodología empleada

La investigación utilizó el método de precios hedónicos (HPM, por sus siglas en inglés) para estimar el valor económico de los elementos paisajísticos intangibles de la Marina del Este. Los precios hedónicos permiten desglosar el valor de una propiedad en función de atributos específicos, tanto estructurales (número de habitaciones, tamaño de la terraza, presencia de aire acondicionado) como intangibles (proximidad a la playa, vistas panorámicas al mar o a las montañas). Se recopilaron datos sobre las transacciones inmobiliarias de la zona durante el año 2023, analizando un total de 97 propiedades.

Además de las características físicas de las viviendas, se tuvieron en cuenta factores como la distancia al mar, la tranquilidad del entorno y la exclusividad de la zona. Estos factores, aunque no se comercializan directamente, influyen en las decisiones de compra y en el valor percibido de las propiedades.

Puerto deportivo Marina del Este. Imagen: R. Martín

Resultados

Los resultados del estudio indican que los elementos intangibles del paisaje, como las vistas al mar y la cercanía a la playa, son factores determinantes a la hora de valorar las propiedades costeras. Los compradores valoran altamente estas características, lo que incrementa notablemente el precio de las viviendas que cuentan con ellas. Por ejemplo, la proximidad a la playa puede aumentar el precio de una vivienda en un 0,21 % por cada 1 % que se reduce la distancia, y las vistas amplias al mar pueden incrementar su valor hasta en un 14 %.

El análisis reveló que los activos intangibles paisajísticos representan más de 2,4 millones de euros, lo que equivale al 7,91 % del valor total de la marina. Este valor destaca la importancia económica de elementos intangibles que a menudo se pasan por alto en la gestión tradicional de infraestructuras costeras.

Implicaciones

Esta investigación tiene importantes implicaciones tanto para los gestores de los puertos deportivos como para los responsables de políticas paisajísticas. Los gestores pueden utilizar esta metodología para cuantificar el valor de los elementos intangibles del paisaje en sus decisiones de planificación y desarrollo. Si no se preservan adecuadamente, estos elementos pueden provocar una disminución en el valor del puerto deportivo, lo que afectaría tanto a su atractivo como a sus posibles ingresos.

Por otro lado, los responsables de las políticas paisajísticas y urbanísticas tienen en este estudio una herramienta clave para medir el impacto económico de sus decisiones sobre el entorno costero. La conservación de los paisajes y sus características intangibles no solo es esencial para preservar el atractivo turístico y el bienestar de los residentes, sino también para impulsar el desarrollo económico sostenible de las zonas costeras.

En conclusión, este estudio aporta una perspectiva novedosa sobre la importancia de los intangibles paisajísticos en la valoración y gestión de los puertos deportivos. Al demostrar que estos factores influyen de manera significativa en el valor económico de estas infraestructuras, abre nuevas vías para integrar la sostenibilidad y la valoración del paisaje en la toma de decisiones en el ámbito costero.

Referencia:

MARTÍN, R.; YEPES, V. (2024). Valuation of landscape intangibles: Influence on the marina management. Ocean & Coastal Management, 259, 107416. DOI:10.1016/j.ocecoaman.2024.107416

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 4.28MB)

Impacto social y económico de los resultados previstos del proyecto de investigación RESILIFE

Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En varios artículos anteriores ya presentamos muchos de los aspectos que justifican el proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo queremos resaltar la línea de trabajo del grupo de investigación y las razones por las cuales este proyecto supone un salto cualitativo.

Entre los Objetivos de Desarrollo Sostenible (ODS) para 2030, destaca la necesidad de construir infraestructuras resilientes. Entre 2003 y 2013, los desastres naturales y humanos causaron más de 1,1 millones de muertes, afectaron a más de 2000 millones de personas y generaron pérdidas de 1,5 billones de dólares. Los apagones en las redes eléctricas por condiciones meteorológicas adversas costaron entre 18 000 y 33 000 millones de dólares entre 2003 y 2012. Los errores de construcción y diseño indujeron el 65 % de los casos de colapso progresivo. En Europa, solo la mitad de las reparaciones de los edificios de hormigón fueron efectivas, a pesar de que los costes de rehabilitación suponen casi la mitad de las inversiones anuales en construcción. El mercado mundial de construcción de infraestructuras, valorado en 2,242 mil millones de dólares en 2021, se proyecta a 3,267 mil millones para 2027, con un crecimiento anual del 6,48 %.

Ante este panorama, un diseño adecuado y medidas preventivas locales son cruciales para salvar vidas e infraestructuras, pero, además de reducir el riesgo, son una fuente de creación de empleo especializado que debe formarse en estas técnicas. Por tanto, se espera un impacto social y económico relevante del proyecto RESILIFE. Publicaciones previas del grupo de investigación centradas en la optimización multiobjetivo (sin considerar la toma de decisiones multicriterio derivada de la participación social) muestran ahorros de entre el 10 y el 50 % en costes, ahorro de materiales, reducción de emisiones de CO₂ y consumo de energía. Por otra parte, en proyectos anteriores se hizo hincapié en los aspectos sociales de la optimización de las infraestructuras. Ello supuso incluir aspectos relativos a la seguridad de las personas, la equidad social intergeneracional, aspectos relacionados con la salud, la educación, la integración del análisis de género, etc., que ahora se incluyen en este proyecto. El grupo dispone de la metodología para su inclusión en la construcción industrializada modular y las estructuras híbridas. En este sentido, la construcción modular industrializada (también llamada off-site) ofrece ventajas significativas, ya que permite ahorros de hasta el 50 % en los plazos, reduce el desperdicio, se fabrica con tolerancias estrictas y mejora la seguridad al estandarizar los procesos en fábrica. Permite ahorros de hasta el 50 % en los plazos, reduce el desperdicio, se fabrica con tolerancias estrictas y mejora la seguridad al estandarizar los procesos en fábrica. Además, la pandemia ha demostrado, por ejemplo, en la construcción de dos hospitales de campaña en Wuhan (China) en solo 12 días, que este tipo de construcción modular puede solucionar graves problemas de alto impacto social y económico en situaciones de crisis futuras. También, existe una creciente demanda social de vivienda que, en países como Suecia o Japón, ha utilizado la construcción modular de forma masiva.

Los resultados del proyecto RESILIFE pretenden profundizar en las ventajas sociales y económicas. Basta con observar cómo los desastres naturales y, por desgracia, los conflictos bélicos actuales están destruyendo las viviendas e infraestructuras de forma masiva, afectando principalmente a las mujeres y los niños. El esfuerzo por diseñar estructuras capaces de resistir alguno de estos eventos extremos, o en su caso, facilitar la reparación de forma rápida y eficaz, permite reducir considerablemente el sufrimiento de las personas. Además, optar por soluciones que minimicen el colapso progresivo de los edificios y mejoren la eficiencia de la rehabilitación puede tener un impacto significativo. Mejorar el diseño resiliente de las infraestructuras para reducir el impacto en un 10 % supondría una disminución de al menos 15 000 millones de dólares y 10 000 muertes anuales a nivel mundial. Asimismo, los resultados obtenidos por la optimización resiliente vendrían a completar la línea de investigación realizada en el ICITECH por el profesor José M. Adam y su equipo para evitar el colapso progresivo de las estructuras, investigación que cuenta con una fuerte inversión en modelización física y numérica. Esta especialización en la investigación del ICITECH sitúa a nuestro país en una posición tecnológica de gran importancia en el ámbito de la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Salto cualitativo del proyecto de investigación RESILIFE respecto a resultados previos

Figura 1. Instituto de Ciencia y Tecnología del Hormigón (ICITECH)
Laboratorio de materiales del Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En varios artículos anteriores ya presentamos muchos de los aspectos que justifican el proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo queremos resaltar la línea de trabajo del grupo de investigación y las razones por las cuales este proyecto supone un salto cualitativo.

El equipo de investigación presenta una trayectoria que respalda su capacidad para abordar este nuevo reto, con experiencia en proyectos previos. En efecto, el IP1 del proyecto RESILIFE también fue IP en los 4 proyectos anteriores y dirigió 17 tesis doctorales relacionadas. El IP2 participó en todos estos proyectos. Los resultados obtenidos han sido consistentemente significativos y progresivos. El proyecto HORSOST (BIA2011-23602) generó 15 artículos JCR, 5 Q1, y de ellos, 2 D1. BRIDLIFE (BIA2014-56574-R) produjo 20 artículos JCR, 15 de ellos en la categoría Q1 y, de estos, 7 en la categoría D1. DIMALIFE (BIA2017-85098-R) produjo 33 artículos JCR, 20 de ellos Q1 y, de estos, 12 D1. HYDELIFE (PID2020-117056RB-I00) ha producido hasta ahora 42 artículos JCR, 26 de ellos Q1 y 15 D1. En estos proyectos se concedieron cuatro contratos predoctorales, tres de los cuales culminaron con éxito y el último está en ejecución. También existe una patente (Alcalá y Navarro, 2020) sobre vigas en cajón mixtas de acero y hormigón.

Objetivos y resultados ya alcanzados en proyectos previos

Antes de resumir los resultados de proyectos previos, queremos destacar que nuestra línea de investigación va más allá de la simple optimización económica del hormigón estructural, un objetivo atractivo a corto plazo para las empresas constructoras o de prefabricados. En proyectos anteriores, se abordó el diseño eficiente de estructuras con hormigones no convencionales, utilizando criterios sostenibles multiobjetivo y técnicas de minería de datos. También se analizó la toma de decisiones en la gestión del ciclo de vida de puentes pretensados, priorizando la eficiencia social y medioambiental con presupuestos ajustados. Para ello, se emplearon metamodelos, diseño óptimo robusto y fiabilidad para generar diseños automáticos de puentes e infraestructuras, considerando hormigones con baja huella de carbono y abordando aspectos de durabilidad, consumo energético, huella de carbono y seguridad a lo largo del ciclo de vida. Se utilizaron técnicas de decisión multicriterio para elegir la mejor tipología constructiva de un puente y decidir entre las opciones resultantes de la frontera de Pareto. Se incorporaron técnicas emergentes de aprendizaje profundo (DL) en la hibridación de metaheurísticas y se exploró la construcción industrializada modular en edificación y obra civil. Además, se analizaron en detalle puentes mixtos y estructuras híbridas frente a soluciones de hormigón en un análisis de ciclo de vida completo que incluye la sostenibilidad social y medioambiental.

La producción científica de estos proyectos fue significativa (ver algunos artículos en las referencias aportadas). Se abordó la optimización multiobjetivo (coste, CO2 y energía) en puentes con vigas artesa y cajón, así como en el mantenimiento de puentes y redes de pavimento. También se exploró la sostenibilidad social de las infraestructuras y se aplicaron metodologías innovadoras, como la lógica neutrosófica y las redes bayesianas en la toma de decisiones. La optimización se respaldó en metamodelos de redes neuronales, modelos kriging y análisis de fiabilidad. Se propusieron indicadores para evaluar la sostenibilidad social y ambiental. Además, se aplicó diseño robusto a puentes, se analizó la resiliencia de las infraestructuras y se realizaron análisis del ciclo de vida para estructuras óptimas. Se obtuvo la patente «Viga en cajón mixta de acero y hormigón, P202030530».

Sin embargo, para avanzar es necesario abordar las limitaciones y el alcance de estos proyectos. El proyecto RESILIFE busca dar un salto cualitativo en nuestra línea de investigación y superar algunas de las limitaciones actuales en cuanto al alcance. Para respaldar la innovación propuesta y plantear este nuevo proyecto, nuestro grupo llevó a cabo seis estudios sobre el estado del arte en relación con BIM en estructuras (Fernández-Mora et al., 2022), la aplicación de la inteligencia artificial a la construcción (García et al., 2022), sobre estructuras modulares (Sánchez-Garrido et al., 2023), sobre estructuras prefabricadas frente a sismo (Guaygua et al., 2023), sobre estructuras híbridas de acero (Terreros-Bedoya et al., 2023) y sobre metamodelos (Negrín et al., 2023). Esto ha permitido detectar la oportunidad de optimizar el ciclo de vida de las estructuras incorporando, desde el diseño, la ocurrencia de eventos extremos, de forma que dichas estructuras pudieran recuperar su funcionalidad en el menor tiempo posible y con el menor coste social y ambiental. Tanto las estructuras híbridas de acero como las basadas en MMC tienen el potencial de mejorar la resiliencia estructural, siendo estos campos de investigación fecundos y de gran repercusión social. Además, el uso de la inteligencia artificial, la toma de decisiones multicriterio que consideran incertidumbres, el uso de metamodelos, la incorporación de la teoría de juegos en la optimización multiobjetivo y el empleo del BIM y la realidad virtual en la modelización suponen barreras que superar en la investigación de estas estructuras. A ello hay que añadir el uso de técnicas no destructivas para detectar daños en dichas estructuras (Hadizadeh-Bazaz et al., 2023), así como tecnologías de reparación eficiente de estructuras (Ortega et al., 2018).

Por tanto, RESILIFE pretende superar una serie de limitaciones en la investigación:

  • Análisis del ciclo de vida de estructuras híbridas de acero basadas en Modernos Métodos de Construcción (MMC) ante situaciones extremas (aumento de temperatura, explosiones, seísmos, etc.), de forma que aumente la resiliencia.
  • En el diseño óptimo, prever la reparación y el mantenimiento de las MMC ante eventos extremos, de forma que los elementos estructurales no se dañen o se puedan reparar de manera eficiente y rápida, centrándose en los problemas sociales y ambientales.
  • Utilizar metaheurísticas híbridas basadas en la inteligencia artificial, metamodelos y la teoría de juegos para mejorar la calidad de las soluciones al incorporar el aprendizaje profundo en la base de datos generada en la búsqueda de los algoritmos y reducir los tiempos de cálculo.
  • Explorar el efecto de la aleatoriedad de los parámetros con la incorporación del diseño óptimo resiliente y basado en fiabilidad para evitar que los proyectos reales optimizados sean infactibles ante pequeños cambios.
  • Profundizar en el estudio de la distribución de los impactos sociales y ambientales en las estructuras MMC.
  • Analizar la sensibilidad de las políticas presupuestarias poco sensibles a la realidad del sector en la gestión de las estructuras.

Lo indicado hasta ahora se podría sintetizar en los siguientes aspectos:

  1. El tema de la investigación se ha ido profundizando en cada uno de los proyectos realizados, de acuerdo con los objetivos previstos.
  2. Los estudios anteriores se basaban en la optimización multiobjetivo, la toma de decisiones a lo largo del ciclo de vida, el diseño robusto y basado en la fiabilidad y la incorporación del aprendizaje profundo. Ahora es el momento de ampliar la investigación a nuevas construcciones industrializadas modulares y estructuras híbridas optimizando su resiliencia ante eventos extremos.

Referencias

  • ADAM, J.M.; PARISI, F.; SAGASETA, J.; LU, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Struct., 173:122-149.
  • ALCALÁ, J.; NAVARRO, F. (2020). Viga en cajón mixta acero-hormigón. Patente P202030530, 4 junio 2020.
  • BORGHESE, V.; CONTIGUGLIA, C.P.; LAVORATO, D.; SANTINI, S.; BRISEGHELLA, B. (2023). Sustainable retrofits on reinforced concrete infrastructures. Bulletin of Geophysics and Oceanography, https://doi.org/10.4430/bgo00436
  • CAREDDA, G.; MAKOOND, N.; BUITRAGO, M.; SAGASETA, J.; CHRYSSANTHOPOULOS, M.; ADAM, J.M. (2023). Learning from the progressive collapse of buildings. Built Environ., 15:100194.
  • DONG, H.; HAN, Q.; DU, X.; ZHOU, Y. (2022). Review on seismic resilient bridge structures. Struct. Eng., 25(7):1565-1582.
  • FANG, C.; WANG, W.; QIU, C.; HU, S.; MacRAE, G.A.; EARTHERTON, M.R. (2022). Seismic resilient steel structures: A review of research, practice, challenges and opportunities. J Constr Steel Res, 191,107172.
  • FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Integration of the structural project into the BIM paradigm: a literature review. Build. Eng., 53:104318.
  • GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Constr., 142:104532.
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Multidiscip. Optim., 56(1):139-150.
  • GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58; 105598.
  • HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Power Spectral Density method performance in detecting damages by chloride attack on coastal RC bridge. Eng. Mech., 85(2):197-206.
  • HAO, H.; BI, K.; CHEN, W.; PHAM, T.M.; LI, J. (2023). Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures. Struct., 277:115477.
  • HAO, H.; LI, J. (2019). Sustainable High-Performance Resilient Structures. Engineering, 5(2):197-198.
  • KELES, M.; ARTAR, M.; ERGÜN, M. (2024). Investigation of temperature effect on the optimal weight design of steel truss bridges using Cuckoo Search Algorithm. Structures, 59:105819.
  • KHALOO, A.; MOBINI, M. (2016). Towards resilient structures. Iran., 23(5), 2077-2080.
  • MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Discrete swarm intelligence optimization algorithms applied to steel-concrete composite bridges. Struct., 266:114607.
  • MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm. Multidiscip. Optim., 65:312
  • MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Multidiscip. Optim., 65:46.
  • MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879.
  • MORENO, J.D.; PELLICER, T.M.; ADAM, J.M.; BONILLA, M. (2018). Exposure of RC building structures to the marine environment of the Valencia coast. Build. Eng., 15: 109-121.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Struct Infrast Eng, 16(7): 949-967.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023a). Design optimization of welded steel plate girders configured as a hybrid structure. J Constr Steel Res, 211:108131.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023b). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023c). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Struct., 293:116657
  • ORTEGA, A.I.; PELLICER, T.M.; CALDERÓN, P.A.; ADAM, J.M. (2018). Cement-based mortar patch repair of RC columns. Comparison with all-four-sides and one-side repair. Constr Build Mater., 186: 338-350.
  • PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Struct., 209: 109968.
  • SALAS, J.; YEPES, V. (2022). Improved delivery of social benefits through the maintenance planning of public assets. Infrastruct. Eng., DOI:10.1080/15732479.2022.2121844
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725.
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Clean. Prod., 330:129724.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Clean. Prod., 176:521-534.
  • SOJOBI, A.O.; LIEW, K.M. (2023). Multi-objective optimization of high performance concrete columns under compressive loading with potential applications for sustainable earthquake-resilient structures and infrastructures. Struct., 315:117007.
  • TANG, Y.; WANG, Y.; WU, D.; CHEN, M.; PANG, L.; SUN, J.; FENG, W.; WANG, X. (2023). Exploring temperature-resilient recycled aggregate concrete with waste rubber: An experimental and multi-objective optimization analysis. Adv. Mater. Sci., 62(1):20230347.
  • TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Constr., 49:123-134.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Civ. Mech. Eng., 17(4):738-749.
  • YUAN, W.; WANG, J.; QIU, F.; CHEN, C.; KANG, C.; ZENG, B. (2016). Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters. IEEE Trans Smart Grid, 7(6):2817-2826.
  • ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Carbon impact assessment of bridge construction based on resilience theory. Civ. Eng. Manag., 29(6):561-576.
  • ZHOU, Z.; ZHOU, J.; ALCALÁ, J.; YEPES, V. (2024). Thermal coupling optimization of bridge environmental impact under natural conditions. Impact Assess. Rev., 104:107316.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Metodología del proyecto de investigación RESILIFE

Figura 1. Instituto de Ciencia y Tecnología del Hormigón (ICITECH). http://congress.cimne.com/SAHC2020/frontal/JoseM.Adam.asp

En varios artículos anteriores ya presentamos el resumen, la justificación, las hipótesis de partida y los objetivos del proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo justificaremos brevemente la metodología de este proyecto.

El análisis del estado de la técnica, desarrollado específicamente por el grupo para formular este proyecto, reveló la existencia de importantes lagunas de investigación. Por un lado, no se ha abordado de manera integral la optimización del diseño de estructuras híbridas y basadas en MMC que incorporan daños por eventos extremos, lo que dificulta una recuperación rápida y la minimización de impactos sociales y ambientales. Estas estructuras presentan un alto potencial (Terreros-Bedoya et al., 2023; Sánchez-Garrido et al., 2023), pero aún no se han explorado metaheurísticas híbridas con DL y teoría de juegos en la optimización de su resiliencia. Además, la lógica neutrosófica y las redes bayesianas abren puertas en el ámbito de la decisión multicriterio. Estas innovaciones se fusionan en nuestra metodología con técnicas, como el análisis del ciclo de vida, el análisis basado en la fiabilidad, el diseño óptimo robusto, los metamodelos y las técnicas de minería de datos. La metodología propuesta busca priorizar el diseño de estructuras, su reparación o mantenimiento, considerando criterios de sostenibilidad social y ambiental dentro de restricciones presupuestarias, teniendo en cuenta la variabilidad inherente a los desafíos prácticos.

La Figura 2 muestra el esquema metodológico propuesto para RESILIFE, vinculando las fases con los objetivos específicos. Se adopta un enfoque mixto e interactivo en el que el decisor proporciona información sobre sus preferencias al analista. Posteriormente, mediante una optimización multiobjetivo basada en la fiabilidad y los metamodelos, el analista genera un conjunto de soluciones eficientes que el decisor evalúa antes de tomar una decisión. Por tanto, la novedad de la propuesta metodológica trifase se basa en la integración de técnicas de información a priori, en las que el decisor (grupos de interés) informa de las preferencias al analista, abarcando métodos constructivos, reparación, conservación, etc. La optimización multiobjetivo, apoyada en la variabilidad de parámetros, variables y restricciones, produce alternativas eficientes. La última fase implica un proceso de información a posteriori para que el decisor considere aspectos no contemplados en la optimización, que da como resultado la solución final completa.

Figura 2. Esquema metodológico diseñado para RESILIFE en relación con los objetivos

La metodología se aplicará, como mínimo, a los siguientes casos de estudio. En primer lugar, a la optimización de pórticos de edificios altos con estructura de acero híbrido y de hormigón armado sometida a un incremento fuerte de temperatura. De hecho, Keles et al. (2024) optimizan estructuras de acero tradicional, en las que la temperatura altera las propiedades mecánicas, y Negrín et al. (2023a) comparan las ventajas de las estructuras híbridas frente a las tradicionales. El segundo caso se aplica a pórticos de edificios, tanto de hormigón armado como de estructuras híbridas, donde se optimiza suponiendo el fallo completo de uno o varios de los soportes, de forma que el entramado siga manteniendo su funcionalidad. Esto permite, con ligeros cambios en el diseño, mantener cierta funcionalidad estructural capaz de evacuar a las personas con seguridad y, a su vez, realizar tareas de reparación o mantenimiento de los elementos dañados. El objetivo es mejorar no solo la optimización, sino también los aspectos de diseño que impidan el colapso progresivo. Un aspecto similar ha sido estudiado por Negrín et al. (2023c) para el caso de fuertes interacciones suelo-estructura. Otro caso de estudio es la optimización resiliente de viviendas sociales prefabricadas en zonas sísmicas, que deben resistir acciones extremas y, además, poder reparar rápidamente los daños (Guaygua et al., 2023). Otro caso previsto es la optimización resiliente del mantenimiento y la reparación de patologías resultantes de eventos extremos. Los casos anteriores, que se centran en gran medida en viviendas, también se extenderán en este proyecto a otras estructuras, como puentes híbridos o estructuras modulares, en consonancia con la experiencia previa del equipo de investigación. La optimización siempre es multiobjetivo y se apoya en técnicas de deep learning a lo largo del ciclo de vida, con la novedad del uso de la teoría de juegos.

Referencias

  • GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58; 105598.
  • KELES, M.; ARTAR, M.; ERGÜN, M. (2024). Investigation of temperature effect on the optimal weight design of steel truss bridges using Cuckoo Search Algorithm. Structures, 59:105819.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023a). Design optimization of welded steel plate girders configured as a hybrid structure. J Constr Steel Res, 211:108131.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023b). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023c). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Struct., 293:116657
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725
  • TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mejora del diseño estructural de cerchas metálicas pretensadas mediante optimización multiobjetivo y toma de decisión multicriterio

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. El documento Mejora del diseño estructural de cerchas metálicas pretensadas mediante optimización multiobjetivo y MCDM. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Estas son las principales contribuciones descritas en el artículo:

  • Marco integrado para la optimización: La investigación presenta un marco integral que integra algoritmos de optimización multiobjetivo (MOO) y técnicas de toma de decisiones multicriterio (MCDM). Este marco no solo es aplicable a las cerchas pretensadas, sino también a varios diseños estructurales, lo que mejora la toma de decisiones en ingeniería estructural.
  • Algoritmos de optimización avanzados: el estudio emplea tres algoritmos MOO avanzados (NSGA-III, CTAEA y SMS-EMAO) para optimizar el diseño estructural de las cerchas arqueadas pretensadas. Este enfoque permite evaluar de forma sólida los diferentes objetivos del diseño, como la minimización del peso, el rendimiento de carga y la capacidad de construcción.
  • Métricas de evaluación integrales: el documento incorpora una serie de visualizaciones analíticas y métricas de evaluación exhaustivas para comprender la variabilidad de las diferentes variables en el contexto de Pareto. Esto ayuda a ilustrar las ventajas y desventajas que conllevan las distintas estrategias de optimización y proporciona una visión más clara del proceso de diseño.
  • Evaluación del rendimiento de los algoritmos: la investigación evalúa el rendimiento de los algoritmos de optimización utilizando métricas de distancia generacional (GD) y distancia generacional invertida (IGD). Los resultados indican que el NSGA-III supera a los demás algoritmos en términos de convergencia con respecto a Pareto, lo que proporciona información valiosa sobre la eficacia de cada algoritmo.
  • Validación estadística de los resultados: el artículo emplea la prueba de Kruskal-Wallis para validar las diferencias de rendimiento entre los algoritmos. Esto añade credibilidad a los hallazgos y resalta las ventajas y limitaciones de cada enfoque de optimización, que es crucial para las futuras aplicaciones de optimización estructural.
  • Implicaciones prácticas para la construcción: Las innovaciones presentadas en el documento mejoran el rendimiento estructural, reducen el consumo de recursos y mejoran la capacidad de construcción y la seguridad. Estas contribuciones demuestran las implicaciones prácticas para unas prácticas de construcción más eficientes y sostenibles, y abordan la complejidad de los métodos de diseño tradicionales.

En resumen, este documento promueve significativamente la comprensión y la aplicación de las cerchas pretensadas al proporcionar un marco sólido para la optimización y la toma de decisiones, junto con información práctica para mejorar las prácticas de construcción.

Abstract:

The structural design of prestressed arched trusses presents a complex challenge due to the need to balance multiple conflicting objectives such as structural performance, weight, and constructability. This complexity is further compounded by the interdependent nature of the structural elements, which necessitates a comprehensive optimization approach. Addressing this challenge is crucial for advancing construction practices and improving the efficiency and safety of structural designs. The integration of advanced optimization algorithms and decision-making techniques offers a promising avenue for enhancing the design process of prestressed arched trusses. This study proposes the use of three advanced multi-objective optimization algorithms: NSGA-III, CTAEA, and SMS-EMOA, to optimize the structural design of prestressed arched trusses. The performance of these algorithms was evaluated using Generational Distance and Inverted Generational Distance metrics. Additionally, the non-dominated optimal designs generated by these algorithms were assessed and ranked using multiple Multi-Criteria Decision-Making techniques, including SAW, FUCA, TOPSIS, PROMETHEE, and VIKOR. This approach allowed for a robust comparison of the algorithms and provided insights into their effectiveness in balancing the different design objectives. The results of the study indicate that NSGA-III exhibited superior performance with a GD value of 0.215, reflecting a closer proximity of its solutions to the Pareto front, and an IGD value of 0.329, indicating a well-distributed set of solutions across the Pareto front. In comparison, CTAEA and SMS-EMOA showed higher GD values of 0.326 and 0.436, respectively, suggesting less convergence to the Pareto front. However, SMS-EMOA demonstrated a balanced performance in terms of constructability and structural weight, with an IGD value of 0.434. The statistical significance of these differences was confirmed by the Kruskal-Wallis test, with p-values of 2.50×10−15 for GD and 5.15×10−06 for IGD. These findings underscore the advantages and limitations of each algorithm, providing valuable insights for future applications in structural optimization.

Keywords:

Multi-objective optimization; multi-criteria decision-making; NSGA-III; CTAEA; SMS-EMOA; SAW; FUCA; TOPSIS; PROMETHEE; VIKOR

Reference:

RUIZ-VÉLEZ, A.; GARCÍA, J.; PARTSKHALADZE, G.; ALCALÁ, J.; YEPES, V. (2024). Enhanced Structural Design of Prestressed Arched Trusses through Multi-Objective Optimization and MCDM. Mathematics, 12(16), 2567. DOI:10.3390/math12162567

Descargar (PDF, 2.8MB)

Objetivos del proyecto de investigación RESILIFE

Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En artículos anteriores ya presentamos el resumen, la justificación y las hipótesis de partida del proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo expondremos los objetivos generales y específicos de este proyecto.

El objetivo general perseguido consiste en afrontar el reto social y ambiental que supone el proyecto, el mantenimiento y la reparación de estructuras híbridas y MMC frente a situaciones extremas, mediante la optimización de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas. Para alcanzar este objetivo, es necesario avanzar en la ciencia, integrando a diversos actores y grupos de expertos en la toma de decisiones, con el fin de tener en cuenta criterios de sostenibilidad social y ambiental a lo largo de todo el ciclo de vida de las estructuras, teniendo en cuenta la variabilidad inherente al mundo real. Para abordar las incertidumbres que afectan al sistema, se propone la aplicación de metamodelos y metaheurísticas híbridas basadas en fiabilidad. Estas se aplicarán no solo al diseño de nuevas estructuras, sino también al mantenimiento y la reparación de las existentes. Un análisis de sensibilidad de los escenarios presupuestarios y de las hipótesis de los inventarios del ciclo de vida proporcionará conocimientos significativos sobre las mejores prácticas. Cabe destacar que esta metodología podrá adaptarse a otros tipos de infraestructuras.

El objetivo general se desarrollará mediante los objetivos específicos mostrados en la Figura 2 y que se describen a continuación, de los cuales serán responsables los investigadores principales:

• OE-1: Análisis de las funciones de distribución de eventos extremos para el diseño óptimo basado en la fiabilidad que integre aspectos ambientales, sociales y económicos para la toma de decisiones multicriterio.
• OE-2: Cuantificación de la resiliencia de las estructuras ante múltiples amenazas con el fin de garantizar la integración de la sostenibilidad en el diseño, mantenimiento y reparación de estructuras híbridas de acero y modulares.
• OE-3: Identificación de estrategias de reparación y mantenimiento robusto óptimo de estructuras híbridas de acero y modulares resilientes.
• OE-4: Formulación y resolución del problema de optimización multiobjetivo que contemple el ciclo completo de estructuras híbridas de acero y modulares mediante metaheurísticas híbridas.
• OE-5: Comparación de las estructuras y los sistemas en términos de su resiliencia respecto a la optimización heurística, teniendo en cuenta incertidumbres presupuestarias en su ciclo de vida.
• OE-6: Difusión de resultados y redacción de informes.

Figura 2. Objetivos específicos del proyecto RESILIFE

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hipótesis de partida del proyecto de investigación RESILIFE

ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Universitat Politècnica de València

En artículos anteriores ya presentamos un resumen y la justificación del proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo justificaremos las hipótesis de partida de este proyecto.

La hipótesis principal de partida de RESILIFE es que un diseño óptimo y una construcción con estructuras híbridas basadas en los modernos métodos de construcción (MMC) son efectivos desde el punto de vista social y ambiental, y resilientes ante eventos extremos. La novedad radica en el empleo de la inteligencia artificial para optimizar la resiliencia y la sostenibilidad, con el fin de hacer frente a eventos extremos y evitar el colapso progresivo, protegiendo así la vida y la economía. De hecho, las estructuras híbridas de acero y las estructuras modulares son tipologías con elevadas posibilidades de generación de conocimiento (Sánchez-Garrido et al., 2023; Terreros-Bedoya et al., 2023). Además, existe un déficit de investigaciones que incorporen metaheurísticas híbridas emergentes y aprendizaje profundo (deep learning, DL) en la optimización multiobjetivo resiliente de este tipo de estructuras. Estas técnicas extraen información no trivial de las inmensas bases de datos procedentes de la optimización y mejoran la calidad y el tiempo de cálculo. Otra novedad en este proyecto es el uso de la teoría de juegos en la optimización multiobjetivo, empleada en la última tesis doctoral del grupo. Con esta propuesta metodológica se pretende abordar las incertidumbres del mundo real, planteando la optimización resiliente basada en la fiabilidad y en diseños robustos. Esta hipótesis debe extenderse a la toma de decisiones multicriterio que atienda a la sostenibilidad social y ambiental del ciclo de vida completo, que contemple las fluctuaciones tanto de los parámetros como de los escenarios posibles, especialmente con fuertes restricciones presupuestarias. La resolución del problema planteado presenta serias dificultades, por lo que se deben explorar metamodelos y DL capaces de acelerar el cálculo (Negrín et al., 2023).

Para alcanzar los objetivos del proyecto se basan en determinadas hipótesis:

  • Hipótesis 1: Es rentable diseñar estructuras innovadoras, resilientes y robustas frente a eventos extremos, que se puedan reparar cuando se optimizan a lo largo de su ciclo de vida.
  • Hipótesis 2: Las estructuras modulares permiten instaurar o restaurar infraestructuras rápidamente tras un evento extremo, y son eficientes desde el punto de vista social y ambiental.
  • Hipótesis 3: Las estructuras de acero híbridas mejoran las prestaciones de las estructuras de acero convencionales, mejorando la resiliencia ante eventos extremos, con niveles óptimos de sostenibilidad.
  • Hipótesis 4: Las metaheurísticas mejoran la calidad de las soluciones y reducen el tiempo de cálculo cuando se combinan con el aprendizaje profundo (DL).
  • Hipótesis 5: La optimización multiobjetivo de las estructuras híbridas de acero reduce los impactos sociales y ambientales a lo largo del ciclo de vida, siendo la teoría de juegos una técnica efectiva.
  • Hipótesis 6: La optimización multiobjetivo puede dar lugar a soluciones inviables con pequeñas variaciones en los parámetros o en las restricciones.
  • Hipótesis 7: Tanto el diseño óptimo basado en fiabilidad como el diseño óptimo robusto conducen a soluciones menos sensibles a la variabilidad y a los cambios en los escenarios (especialmente presupuestarios), pero se basan en funciones de probabilidad poco realistas por falta de datos.
  • Hipótesis 8: Es posible utilizar metamodelos y DL en el diseño óptimo robusto y en el diseño basado en fiabilidad para el proyecto y para el mantenimiento de estructuras híbridas y modulares.
  • Hipótesis 9: Las soluciones de mantenimiento óptimo de estructuras híbridas y modulares son diferentes si el análisis del ciclo de vida se incluye o no en la fase de proyecto.
  • Hipótesis 10: Dado un horizonte temporal para una estructura, es posible encontrar un diseño y una gestión posterior de dicho activo que mejore otras alternativas, incluso con presupuestos restrictivos.
  • Hipótesis 11: Las medidas de proyecto y preventivas derivadas de un sistema de apoyo a la toma de decisiones son preferibles por su menor coste social y ambiental a la reparación severa de las estructuras. La dimensión social incluye la integración del análisis de género en la investigación (IAGI).
  • Hipótesis 12: Es posible encontrar buenas prácticas en el diseño, la conservación, el mantenimiento y el desmantelamiento de estructuras híbridas y modulares que sean robustas ante cambios presupuestarios y resilientes ante eventos extremos.

Referencias

  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725.
  • TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.