Vivienda social sostenible: un enfoque integrador de ciclo de vida y evaluación multicriterio

Acaban de publicar un artículo nuestro en Sustainable Cities and Society, una de las revistas de mayor impacto científico, ubicada en el primer decil del JCR. En este trabajo se propone un enfoque integrador basado en el ciclo de vida y en métodos de evaluación multicriterio para analizar la vivienda social sostenible. La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo.

Los principales resultados revelan que el sistema Light Steel Frame (LSF) es la alternativa más sostenible, ya que logra un equilibrio superior entre la eficiencia en el uso de los recursos, la durabilidad y la reducción del mantenimiento. Un descubrimiento crucial es el papel de la dimensión social, que representó casi el 40 % del peso total en la evaluación, por encima de las dimensiones económica y medioambiental. El análisis causal identifica el coste de construcción, la funcionalidad y los agentes de la cadena de valor como los principales factores que condicionan el rendimiento sostenible del resto del sistema.

El artículo presenta un marco metodológico integrador que combina evaluaciones basadas en el ciclo de vida —análisis de ciclo de vida (LCA), análisis de coste del ciclo de vida (LCC) y análisis de ciclo de vida estocástico (S-LCA)— con técnicas avanzadas de decisión multicriterio: método mejor-peor (BWM), análisis DEMATEL difuso y análisis MARCOS. Esta integración permite incorporar ponderaciones de expertos, modelar relaciones causales entre criterios y sintetizar resultados frente a soluciones ideales o anti-ideales, lo que aumenta la transparencia en la priorización de alternativas constructivas. Este enfoque se ha aplicado a un caso real de vivienda social en Perú, en el que se han comparado cinco sistemas estructurales representativos: LSF, LBSPS, RCW, RCF-M y RCF-CP. El estudio ha proporcionado pruebas empíricas sobre los costes del ciclo de vida, los impactos ambientales y las prestaciones sociales que respaldan las decisiones de diseño y las políticas.

El estudio analiza cinco sistemas constructivos adaptados a contextos de urbanización rápida (específicamente en Lima, Perú), que van desde métodos convencionales hasta industrializados:

Entre las aportaciones metodológicas, la combinación de BWM con una agregación basada en credenciales profesionales reduce la carga de comparación y atenúa los sesgos en la agregación de juicios, mientras que la extensión difusa de DEMATEL permite identificar los criterios que funcionan como impulsores del sistema y los que actúan como receptores. Esta capacidad para distinguir entre causas y efectos permite aclarar qué palancas hay que modificar para lograr efectos amplificados en la sostenibilidad. Por último, la validación cruzada con otros métodos de MCDM y los ensayos de sensibilidad aumentan la confianza en la estabilidad de los resultados.

Discusión de resultados

Los análisis económicos muestran que, en un horizonte de 50 años y por metro cuadrado, los sistemas basados en acero ligero (LSF) tienen los menores costes totales de ciclo de vida, mientras que algunas alternativas prefabricadas, como el LBSPS, tienen los mayores costes de construcción. Estos datos implican que si solo se tiene en cuenta la inversión inicial, se pueden tomar decisiones subóptimas, ya que no se consideran el mantenimiento y el fin de vida.

En términos ambientales, la evaluación con ReCiPe (endpoint) sitúa al LSF como el sistema con el menor impacto agregado, principalmente debido a su menor intensidad material. Por el contrario, las soluciones con mayor presencia de hormigón y ladrillo presentan una carga superior, especialmente en la dimensión de recursos. Esta diferenciación pone de manifiesto la influencia del perfil material y del proceso de fabricación en la huella medioambiental de la vivienda y sugiere que, en la práctica profesional, se deben priorizar medidas que reduzcan la demanda de materiales energéticamente intensivos en la fase de fabricación.

La S-LCA revela una tensión entre la industrialización y la exposición social: las alternativas más industrializadas, como el LSF y el LBSPS, presentan mayores valores de exposición laboral y de funcionalidad exigente, mientras que las tipologías convencionales de hormigón muestran menores riesgos sociales, medidos en Medium Risk Hours. Este resultado indica que la adopción de sistemas industrializados exige prestar atención explícita a la gestión del trabajo, la formación y la coordinación de la cadena de suministro para evitar que los impactos negativos se transfieran al personal y a la comunidad.

La síntesis mediante MARCOS ubica a LSF como la alternativa mejor valorada en el escenario analizado, seguida de RCW y RCF-M. Los sistemas LBSPS y RCF-CP quedan en posiciones inferiores. Las pruebas de sensibilidad (variación de los pesos de ±15 %, escenarios de distancia de transporte y estratificación de expertos) muestran que el orden general se mantiene, lo que indica cierta robustez frente a perturbaciones razonables en los supuestos. Estos resultados permiten extraer una conclusión práctica: en contextos con características similares a las del caso estudiado, las soluciones ligeras industrializadas pueden mejorar la relación entre coste, impacto ambiental y rendimiento técnico, siempre que se gestionen adecuadamente los aspectos sociales y de ejecución.

Un aspecto metodológico de interés es la identificación de los criterios causales. La técnica DEMATEL identifica el coste de construcción, la funcionalidad y las interacciones con la cadena de valor como criterios que inciden en el resto del sistema, mientras que los indicadores ambientales, como la salud humana y la conservación de los ecosistemas, se presentan principalmente como efectos. Esto sugiere que las intervenciones en los costes de construcción y en la organización funcional pueden provocar mejoras indirectas en la sostenibilidad ambiental y social, lo cual resulta relevante al diseñar políticas y contratos que incentiven las prácticas integradas.

Futuras líneas de investigación

Una línea de trabajo inmediata consiste en ampliar la diversidad y el tamaño del panel de agentes consultados para captar las variaciones en las prioridades y las competencias profesionales. Esto permitiría evaluar la sensibilidad de las ponderaciones y mejorar la representatividad social del proceso. Otra opción es trasladar y recalibrar el marco a otros contextos geográficos y tipologías constructivas, como viviendas de mayor altura o equipamientos públicos, para evaluar la transferibilidad de la clasificación y de la estructura causal identificada en este estudio.

En el ámbito técnico, utilizar datos primarios de obras reales en lugar de bases de datos secundarias aumentará la fiabilidad de la evaluación del ciclo de vida (LCA) y del análisis del ciclo de vida (S-LCA) y mejorará la precisión de los modelos de coste del ciclo de vida (LCC). La incorporación de enfoques dinámicos, como la LCA dinámica o las simulaciones acopladas a plataformas BIM, puede facilitar las evaluaciones en etapas iniciales y permitir análisis de sensibilidad más detallados relacionados con la sustitución de componentes, las reparaciones y las evoluciones tecnológicas. Asimismo, explorar técnicas de optimización multiobjetivo que vinculen explícitamente las restricciones económicas con las metas ambientales y sociales podría proporcionar soluciones de diseño más operativas para promotores y organismos públicos.

Desde la perspectiva social, investigar intervenciones concretas de capacitación, reorganización de procesos y de contratos que reduzcan la exposición de los trabajadores a los sistemas industrializados aportará pruebas sobre cómo mantener los beneficios ambientales y económicos sin incrementar los impactos sociales. Por último, el estudio de la interacción entre políticas públicas, incentivos financieros y la adopción tecnológica ofrecerá información útil para diseñar instrumentos que favorezcan soluciones constructivas más equilibradas en el marco de los programas de vivienda social.

Conclusión

El estudio proporciona un marco metodológico replicable y sólido que combina la evaluación del ciclo de vida con técnicas multicriterio capaces de representar las interdependencias y la incertidumbre. Los resultados empíricos indican que, en el caso analizado, las soluciones ligeras industrializadas presentan ventajas en términos de coste y de huella ambiental, aunque se requieren medidas específicas para reducir los riesgos sociales derivados de su ejecución. La metodología y los resultados obtenidos sientan las bases para orientar las políticas y las decisiones de los proyectos y ponen de manifiesto la necesidad de ampliar los datos primarios, diversificar la muestra de expertos y conectar el análisis con herramientas digitales de diseño y gestión.

Referencia:

LUQUE CASTILLO, X.; YEPES-BELLVER, L.; YEPES, V. (2026). Towards Sustainable Social Housing: An Integrative Life Cycle and Multi-Criteria ApproachSustainable Cities and Society, 137, 107164. DOI:10.1016/j.scs.2026.107164

Dejo a continuación el artículo completo, ya que está publicado en abierto.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pánico, secreto y vientos diagonales: La crisis de 59 pisos que casi colapsa el Citigroup Center

Base del Citigroup Center junto a la Iglesia de San Pedro, lo que obligó a una disposición inusual de las columnas. https://es.wikipedia.org/wiki/Citigroup_Center

Introducción: El gigante con pies de barro.

Los rascacielos son monumentos a la permanencia. Se elevan sobre nuestras ciudades como símbolos de ingenio, poder y estabilidad estructural. Sin embargo, en 1978, el Citigroup Center, uno de los edificios más innovadores y reconocibles de Nueva York, ocultaba un secreto aterrador. Inaugurado con gran fanfarria en 1977, este hito de la ingeniería estaba, de hecho, peligrosamente cerca del colapso.

La ironía central de esta historia es casi cinematográfica: el fallo catastrófico se descubrió gracias a la pregunta de una estudiante universitaria, y la persona que cometió el error de cálculo que puso en peligro a miles de personas fue la misma que se convirtió en el héroe que los salvó. Esta es la historia de cómo una combinación de error humano, ética profesional y una suerte increíble evitó uno de los mayores desastres arquitectónicos de la historia moderna.

1. No bastó con un solo error; se necesitaron dos para poner en jaque al gigante.

El fallo que puso en jaque al Citigroup Center no fue un simple descuido, sino la combinación de dos errores críticos que se multiplicaron entre sí.

El primero fue un error de cálculo cometido por William LeMessurier, el ingeniero jefe. Siguiendo el código de construcción de la época, calculó las cargas de viento que incidían perpendicularmente en las caras del edificio. Sin embargo, debido al diseño único de la torre, que estaba apoyada sobre cuatro enormes pilares situados en el centro de cada lado en lugar de en las esquinas, pasó por alto que los vientos diagonales (conocidos como quartering winds) ejercían una tensión mucho mayor. Este descuido incrementó la carga en las uniones estructurales clave en un 40 %.

El segundo error agravó fatalmente el primero. Durante la construcción, la empresa constructora Bethlehem Steel propuso sustituir las uniones soldadas, que eran más resistentes pero también más costosas, por uniones atornilladas, más económicas. Basándose en los cálculos originales de vientos perpendiculares, este cambio parecía una modificación rutinaria y segura, por lo que la oficina de LeMessurier lo aprobó sin que él revisara personalmente las implicaciones. En aquel momento, fue una decisión técnicamente sólida, pero con el paso del tiempo se consideró fatal.

La combinación de un error oculto y una decisión que parecía segura resultó devastadora. La carga adicional del 40 % de los vientos diagonales aplicada a las uniones atornilladas más débiles provocó un aumento catastrófico del 160 % en la tensión de las conexiones. Esto significaba que una tormenta que ocurre cada 55 años podría ser desastrosa. Sin embargo, el peligro real era aún mayor: si el amortiguador de masa sintonizado del edificio, que dependía de la electricidad, fallaba durante un apagón —algo muy probable durante un huracán—, una tormenta mucho más común, de las que golpean Nueva York cada dieciséis años, podría derribarlo.

2. El «héroe» de la historia fue el ingeniero que cometió el error.

Tras descubrir el fallo, William LeMessurier se enfrentó a un dilema ético devastador. Años después, relataría que consideró todas las opciones, desde guardar silencio y arriesgar miles de vidas hasta el suicidio para escapar de la desgracia profesional.

Sin embargo, LeMessurier tomó la decisión más honorable: asumir toda la responsabilidad. Consciente de que esto podría significar el fin de su carrera, la bancarrota y la humillación pública, se puso en contacto con los directivos de Citicorp para informarles de que su flamante rascacielos de 175 millones de dólares era fundamentalmente inseguro. En ese momento, su mentalidad no se limitaba al deber, sino que también reflejaba un profundo sentido de su posición única, como él mismo describió:

«Tenía información que nadie más en el mundo poseía. Tenía en mis manos el poder de influir en eventos extraordinarios que solo yo podía iniciar».

Para su sorpresa, la reacción de los ejecutivos de Citicorp, liderados por el presidente Walter Wriston, no fue de ira, sino de una calma pragmática. En lugar de buscar culpables, Wriston se centró de inmediato en la solución. Pidió un bloc de notas amarillo, empezó a redactar un comunicado de prensa y bromeó: «Todas las guerras se ganan con generales que escriben en blocs amarillos». Este gesto de liderazgo, enfocado y sereno, sentó las bases para la increíble operación de rescate que estaba a punto de comenzar.

El Citigoup Center. https://es.wikipedia.org/wiki/Citigroup_Center

3. Una llamada casual de una estudiante lo desencadenó todo.

Toda esta crisis existencial y de ingeniería se desencadenó en junio de 1978 por un hecho tan improbable como una simple llamada telefónica. Al otro lado de la línea estaba Diane Hartley, una estudiante de ingeniería de la Universidad de Princeton que analizaba la estructura del Citigroup Center para su tesis.

Hartley llamó a LeMessurier con preguntas sobre la estabilidad del edificio frente a vientos diagonales. Confiado en su diseño, LeMessurier le explicó pacientemente por qué la estructura era sólida. Sin embargo, la llamada de Hartley sembró una semilla. No porque tuviera una preocupación inmediata, sino porque la conversación lo inspiró, LeMessurier decidió que el tema sería un excelente ejercicio académico para la conferencia que preparaba para sus propios estudiantes de Harvard.

Fue durante este recálculo, realizado por pura curiosidad intelectual, cuando descubrió con horror su error original. La llamada casual de Hartley no le dio la respuesta, pero le hizo la pregunta correcta en el momento adecuado, lo que supuso el golpe de suerte que reveló una vulnerabilidad mortal y activó la carrera contrarreloj para evitar una catástrofe inimaginable.

4. Una operación secreta, un huracán y una huelga de prensa lo mantuvieron en secreto.

La reparación del Citigroup Center fue una operación clandestina de alta tensión. Bajo el nombre en clave «Proyecto SERENE», los equipos trabajaban con una precisión coreografiada. Cada noche, los carpinteros llegaban a las 17:00 h para construir recintos de madera contrachapada alrededor de las juntas que había que reparar. Entre las 20:00 y las 04:00, con el sistema de alarma contra incendios desactivado, los soldadores trabajaban para reforzar más de doscientas uniones atornilladas con placas de acero de dos pulgadas de espesor. Finalmente, un equipo de limpieza eliminaba todo rastro del trabajo antes de la llegada de los primeros empleados a las 8 a. m., ajenos al peligro que se cernía sobre ellos.

El drama alcanzó su punto álgido a principios de septiembre de 1978, cuando el huracán Ella, una tormenta muy intensa, se dirigía directamente hacia la ciudad de Nueva York. Con las reparaciones a medio terminar, el edificio seguía siendo vulnerable. En secreto, las autoridades elaboraron planes para evacuar la torre y una zona de diez manzanas a su alrededor.

Entonces, la suerte intervino de nuevo. A pocas horas de la posible catástrofe, el huracán Ella viró inesperadamente hacia el Atlántico, salvando a la ciudad. El suspiro de alivio fue inmenso. Y, como si esto no fuera suficiente, un último golpe de fortuna mantuvo todo en secreto: justo cuando la historia estaba a punto de filtrarse, comenzó una huelga de periódicos en toda la ciudad que duró varios meses. La huelga enterró la noticia por completo y el casi desastre permaneció oculto al público durante casi veinte años, hasta que fue revelado en un artículo de The New Yorker en 1995.

Conclusión: la delgada línea entre el desastre y la ética.

La historia del Citigroup Center es un poderoso recordatorio de la fragilidad que puede esconderse tras una apariencia de fortaleza. Una combinación de error humano, profunda ética profesional, liderazgo decisivo y una buena dosis de suerte evitó lo que podría haber sido uno de los peores desastres arquitectónicos de la historia. El ingeniero que cometió el error lo afrontó con una valentía que salvó incontables vidas y, paradójicamente, reforzó su reputación.

La historia del Citigroup Center nos recuerda que incluso los símbolos de la permanencia pueden ser frágiles. Nos deja con una pregunta: ¿cuántos otros secretos se esconden en las estructuras que nos rodean, esperando a que una simple pregunta los saque a la luz?

En esta conversación puedes escuchar las ideas más interesantes sobre este asunto.

Aquí puedes ver un vídeo que resume bien el contenido del artículo.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigones líquidos: innovación y aplicación estructural

El hormigón de consistencia líquida es una innovación que destaca por su elevada fluidez y su capacidad de moldeado en la construcción moderna. En otros artículos ya hemos hablado del hormigón autocompactante en relación con este tipo de hormigón. A diferencia del hormigón tradicional, este material requiere muy poco vibrado, lo que optimiza la mano de obra, reduce el ruido y previene afecciones físicas en los trabajadores.

La dosificación de este tipo de hormigón exige un alto contenido de finos, así como el uso de aditivos superfluidificantes y áridos de tamaño reducido para evitar la segregación. Gracias a su facilidad de bombeo, es ideal para estructuras con armaduras densas, revestimientos de túneles y proyectos arquitectónicos complejos. En definitiva, no solo mejora la productividad en la obra, sino que también garantiza una mayor durabilidad y calidad en los acabados finales.

 

Introducción: el hormigón que fluye como un líquido.

Cuando pensamos en hormigón, nos viene a la mente una masa densa, pesada y difícil de trabajar, que requiere un gran esfuerzo para compactarla. Sin embargo, la ingeniería de materiales ha desarrollado una innovación que desafía esta idea: el hormigón líquido. Este material avanzado fluye con facilidad y se adapta a cualquier molde sin esfuerzo. En realidad, se trata de toda una familia de hormigones de alta fluidez que van desde los fluidos hasta los autocompactantes, diseñados para cada necesidad específica. Entonces, ¿cómo es posible que un hormigón que se comporta como un líquido sea clave para construir estructuras más rápidas, seguras y duraderas? La respuesta radica en una serie de ventajas que trascienden su apariencia superficial.

Los puntos clave del hormigón líquido

A continuación, exploramos las cuatro ventajas fundamentales que explican por qué el hormigón líquido se está convirtiendo en el nuevo estándar del sector.

1. La paradoja del coste: es más caro, pero el proyecto total resulta más barato.

A primera vista, el hormigón líquido parece una opción más costosa. Su precio por metro cúbico es entre un 5 % y un 10 % superior al del hormigón convencional. Sin embargo, esta cifra no lo es todo. El verdadero ahorro se revela al analizar el coste global del proyecto.

La fluidez del material permite una puesta en obra mucho más rápida, lo que reduce el plazo de ejecución en aproximadamente un tercio. A esto hay que sumar que se necesita menos mano de obra para la compactación y que los costes de acabado son más bajos gracias a su superficie más homogénea, lo que compensa con creces el mayor precio del material. En grandes obras de ingeniería civil, como el Viaducto de Bergara de la Y Vasca, esta aceleración es fundamental y demuestra que el proyecto resulta más ventajoso en términos económicos.

2. Su mayor fortaleza no radica en el estado endurecido, sino en su puesta en obra.

Aunque sus propiedades finales son excelentes, las características más competitivas de este hormigón se manifiestan durante su colocación. El principal enemigo de la durabilidad del hormigón convencional son los errores humanos durante su colocación, como un vibrado deficiente o excesivo. De hecho, se ha comprobado que los defectos de compactación pueden aumentar la permeabilidad del hormigón tradicional hasta en diez veces, lo que debilita la estructura desde el primer día.

El hormigón líquido minimiza drásticamente estos errores. Su capacidad para rellenar los encofrados por su propio peso garantiza una compactación óptima con un esfuerzo mínimo, asegurando la calidad y la durabilidad de la estructura desde el principio.

«La necesidad de garantizar la calidad del hormigón y obtener estructuras duraderas es una de las causas fundamentales del desarrollo del hormigón con consistencia líquida».

3. Una revolución silenciosa para la salud y la seguridad laborales.

El proceso de vibrado del hormigón es esencial, pero también conlleva riesgos. Genera niveles de ruido muy elevados y somete a los trabajadores a vibraciones constantes que, a largo plazo, pueden causarles dolores, fatiga, rigidez articular e incluso una afección circulatoria conocida como «dedos blancos», que provoca la pérdida de sensibilidad.

Al reducir drásticamente la necesidad de vibración, el hormigón líquido transforma el entorno de trabajo. Las obras son más silenciosas y se minimizan los riesgos para la salud de los trabajadores. Esto resulta especialmente valioso en aplicaciones como el revestimiento de túneles, donde el ruido se amplifica en espacios confinados, lo que crea un entorno laboral más seguro y sostenible.

4. Mejor que el original: un producto final con propiedades superiores.

Aunque su principal ventaja es la facilidad de uso, el hormigón líquido endurecido también supera al convencional. El secreto radica en unos aditivos superfluidificantes de alta tecnología que permiten reducir el volumen de agua en la mezcla sin que esta pierda fluidez. Esta simple mejora provoca una serie de beneficios: al utilizar menos agua, el hormigón es más impermeable y, por tanto, más duradero.

Las conclusiones del proyecto de investigación europeo Brite/EURam son claras: para una misma relación agua/cemento, el hormigón líquido consigue:

  • Mayores resistencias mecánicas.
  • Una microestructura más densa y menos porosa.
  • Menor permeabilidad al agua y a otros agentes externos.
  • Una adherencia superior a las armaduras de acero.

Esta menor permeabilidad se traduce en una mayor durabilidad, ya que protege las armaduras de acero internas de la corrosión y alarga la vida útil de puentes, edificios y túneles. Además, esta calidad se manifiesta en acabados superficiales superiores, lo que permite crear hormigones arquitectónicos con formas esbeltas y elegantes, como las observadas en rascacielos emblemáticos, como la Torre Iberdrola.

Conclusión: el nuevo estándar de la construcción.

El hormigón líquido ha dejado de ser una tecnología experimental para convertirse en una realidad técnica que se extiende por todo el mundo en aplicaciones que van desde los cimientos más profundos y la prefabricación hasta los rascacielos más emblemáticos y las estaciones de tratamiento de aguas. Su capacidad para optimizar la productividad, garantizar una calidad superior y mejorar la seguridad en las obras lo posiciona no como una alternativa, sino como el futuro estándar de la construcción. Sus ventajas son tan contundentes que invitan a una reflexión final: ¿será este material el pilar sobre el que construiremos las ciudades más eficientes y sostenibles del mañana?

En esta conversación puedes escuchar aspectos interesantes sobre el tema tratado, que te serán de utilidad para comprenderlo mejor.

Este vídeo condensa de manera efectiva las ideas principales sobre los hormigones líquidos.

Os dejo un documento con algunas de las ideas más importantes.

Pincha aquí para descargar

Podéis acceder a la Guía Técnica de hormigones líquidos de IECA en este enlace: https://www.ieca.es/producto/hormigones-liquidos-pdf/

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cómo se construye la confianza: claves del control de calidad en las estructuras de edificación

Introducción: El sistema nervioso invisible de un edificio.

Cualquiera que haya pasado junto a una obra habrá visto la escena: grúas que se elevan hacia el cielo, un esqueleto de armaduras de acero esperando el hormigón y un ir y venir constante de los trabajadores. Vemos el progreso físico, la estructura que crece día a día. Pero ¿te has parado a pensar en los procesos invisibles que garantizan que ese gigante de hormigón y acero no solo se mantenga en pie, sino que también sea seguro durante décadas?

Detrás de cada pilar, viga y forjado existe una meticulosa red de control, un sistema nervioso que garantiza la integridad de toda la estructura. En España, el manual que rige estas normas es el Código Estructural. Este reglamento garantiza que la calidad y la seguridad no se dejan al azar, sino que son el resultado de un plan riguroso y sistemático.

Este artículo revela tres aspectos sorprendentes extraídos directamente de los procedimientos de este código. Son tres verdades sobre el control de calidad que cambiarán tu forma de ver los edificios que te rodean y demostrarán que, al igual que un rascacielos, la confianza se construye paso a paso y con una supervisión implacable.

1. El control se realiza mediante dos llaves: el constructor se autovigila y un supervisor lo supervisa.

En la construcción de una estructura, la responsabilidad no recae en una sola persona, sino en un sistema de doble verificación. Piénsalo como un sistema de doble llave, en el que se requieren dos validaciones para proceder. El Código Estructural establece un mecanismo de control con dos capas fundamentales que garantizan la máxima fiabilidad.

La primera capa es el «autocontrol» del constructor. La propia empresa constructora tiene la obligación de inspeccionar y registrar de forma sistemática la calidad de su trabajo. No es una opción, sino una exigencia. Deben seguir un plan de inspección y dejar constancia de que cada proceso cumple con las especificaciones del proyecto.

La segunda capa es el «control de contraste», que realiza una entidad independiente: la dirección facultativa (el equipo técnico de arquitectos e ingenieros que dirige la obra y actúa como supervisor en nombre del propietario y de la normativa). Este equipo no da por bueno el trabajo del constructor sin más, sino que realiza sus propias comprobaciones para verificar que el autocontrol se ha llevado a cabo correctamente y que los resultados son conformes.

Para comprender la rigurosidad de este sistema, veamos las frecuencias mínimas de inspección de un elemento como el pilar. Según las tablas de inspección del código, el constructor debe comprobar el 50 % de los pilares de un lote, mientras que la dirección facultativa debe realizar un control de contraste del 10 % de dichos pilares. Esta redundancia no es burocracia, sino una red de seguridad diseñada para que nada importante pase desapercibido. Esta redundancia deliberada no solo sirve para detectar errores, sino que forma parte de una filosofía pragmática que reconoce que, en proyectos de esta complejidad, la perfección es imposible, pero garantizar la corrección es posible.

2. La perfección no existe, pero la corrección sí: los errores forman parte del plan.

Podríamos pensar que el objetivo de un sistema de control tan estricto es evitar cometer errores, pero no es así. Sin embargo, la realidad de una obra es compleja y el Código Estructural adopta un enfoque más pragmático y eficaz: asume que se producirán desviaciones, pero exige un proceso robusto para detectarlas, documentarlas y corregirlas antes de que se conviertan en un problema.

Cada vez que una inspección detecta una «no conformidad» (un aspecto que no cumple con el proyecto), se registra en una «Ficha de registro de control». En esta ficha se detalla el problema y, lo más importante, la «decisión adoptada» para solucionarlo. Los ejemplos extraídos de un proyecto real son muy reveladores:

  • Ejemplo 1 (ficha n.º 6): durante una comprobación de cotas, se detectó que el pilar n.º 20 se había hormigonado 7,5 cm por encima de lo especificado. Un error así habría impedido la correcta colocación de las armaduras de acero del forjado superior. La solución fue directa y contundente: se ordenó demoler el hormigón sobrante hasta alcanzar la cota correcta.
  • Ejemplo 2 (ficha n.º 3): las barras de acero de espera de un pilar (es decir, las que conectan con el pilar del piso superior) estaban mal posicionadas. Esto comprometía el «recubrimiento», es decir, la capa mínima de hormigón que debe proteger el acero de la corrosión. En este caso, se hizo valer el criterio de ingeniería: en lugar de optar por la demolición, que habría supuesto un enorme coste y un retraso, se tomó una decisión más inteligente. Se aceptó la desviación dentro de las tolerancias y se ordenó modificar la forma final del pilar para garantizar el recubrimiento mínimo y salvar el elemento, sin comprometer en absoluto la seguridad.
  • Ejemplo 3 (ficha n.º 4): tras retirar el encofrado de un pilar, se observó una fisura horizontal. Aunque resultó alarmante a primera vista, demostró la importancia de un diagnóstico preciso. La inspección determinó que se trataba de una fisura superficial causada por el «asiento plástico» del hormigón fresco, un fenómeno conocido que no tiene impacto estructural. En lugar de provocar una alarma innecesaria, se aplicó una solución precisa: picar la zona afectada y repararla con un mortero especial.

Este enfoque sistemático de la gestión de errores es lo que construye la verdadera seguridad. No se trata de no cometer nunca un error, sino de tener un plan infalible para corregir cada uno de ellos y dejar un registro completo de cada decisión.

3. Lo que se llama «simplificado» resulta sorprendentemente complejo.

El Código Estructural ofrece una «opción simplificada» para el control de la ejecución en obras de edificación con ciertas características. El nombre puede engañar al sugerir un proceso más laxo o básico. Nada más lejos de la realidad.

Esta modalidad «simplificada» sigue siendo un método extraordinariamente metódico y riguroso. Para empezar, obliga a dividir toda la estructura en «lotes de ejecución». Un lote no es una división arbitraria, sino que está perfectamente definido. Por ejemplo, en el caso de pilares y forjados, un lote equivale a un máximo de 250 m² de superficie construida o dos plantas. De este modo, se asegura una inspección granular y manejable de la obra.

Para cada uno de estos lotes, se despliega un plan de inspección que abarca una larga lista de procesos de ejecución. No solo se comprueba si el hormigón se ha vertido correctamente, sino que el control abarca desde la «gestión de acopios» (verificar que los materiales que llegan a la obra son los correctos) y los «replanteos» (asegurar que cada elemento estructural se ubica en su posición exacta según los planos), hasta el «acabado» final de los elementos.

La clave es que en ingeniería estructural no hay atajos. Incluso el camino «simplificado» es un testimonio de una cultura en la que el rigor metodológico es el estándar mínimo para garantizar la seguridad pública.

Conclusión: una nueva mirada sobre las estructuras que nos rodean.

Detrás del hormigón y el acero que vemos tomar forma en una obra, existe una arquitectura invisible de procesos: una coreografía de comprobaciones, registros y correcciones planificadas. Este sistema nervioso invisible de control y corrección es lo que confiere resiliencia a un edificio, permitiéndole nacer conforme a las reglas más estrictas.

No se trata de la ausencia de errores, sino de la certeza de que se corregirán, lo cual nos da tranquilidad. La próxima vez que entres en un edificio, ¿te acordarás de la inmensa red de controles y decisiones de ingeniería que garantizan que el edificio se mantenga firme y seguro sobre tu cabeza?

En esta conversación se exponen varias ideas relacionadas con este tema.

Este vídeo condensa los puntos clave de la opción simplificada del control de calidad, tal y como se establece en el Código Estructural.

Aquí os dejo un resumen que creo que os puede ayudar, ya que os será de gran utilidad para resolver vuestras dudas.

Pincha aquí para descargar

La Fundación Musaat ofrece una monografía que podéis descargar a continuación, que creo que es muy útil para adentrarse en los entresijos del Código Estructural en relación con la opción simplificada del control de ejecución de estructuras de hormigón.

Pincha aquí para descargar

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Evaluación multidimensional de losas aligeradas con plástico reciclado.

Acaban de publicar un artículo nuestro en Environmental Impact Assessment Reviewuna de las revistas de mayor impacto científico, dentro del primer decil del JCR. En este trabajo se sintetizan los resultados de un estudio exhaustivo sobre un sistema constructivo innovador: las losas biaxiales de hormigón armado aligeradas con esferas o discos de plástico 100 % reciclado (Losa Aligerada, VS). La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo y de la información de contexto.

La investigación aborda la necesidad crítica de reducir el impacto ambiental del sector de la construcción, responsable de casi la mitad del consumo mundial de materias primas y de más de un tercio del consumo de energía. El estudio integra un análisis estadístico multivariado basado en datos empíricos de 67 edificios reales, así como una evaluación del ciclo de vida ambiental (E-LCA) y una evaluación del ciclo de vida social (S-LCA), para ofrecer una valoración multidimensional completa.

Hallazgos clave:

  • Modelo predictivo robusto: se desarrolló un modelo estadístico de alta precisión (R² ajustado = 98,26 %) para el predimensionamiento del espesor de las losas aligeradas, utilizando como variables clave el canto del aligerante, la sobrecarga de uso y el cuadrado de la luz. Este modelo ofrece una herramienta práctica para optimizar el diseño en las etapas iniciales.
  • Ahorro sustancial de materiales: en comparación con un sistema de losa reticular convencional con bloques de EPS (losas convencionales), el sistema VS reduce el consumo de hormigón entre un 23 % y un 33 % y el de acero de refuerzo hasta un 29 %.
  • Beneficios ambientales cuantificados: el sistema VS demuestra una reducción media del 25 % en el impacto ambiental total a nivel de punto final. El potencial de calentamiento global (PCG) se reduce en media en un 24 %, alcanzando un 30 % en luces de seis metros. El hormigón sigue siendo el principal contribuyente de emisiones en ambos sistemas.
  • Mejoras en el desempeño social: la S-LCA revela que el sistema VS disminuye los riesgos sociales hasta en un 20 % en la categoría de «Comunidad local» y en un 19 % en la de «Trabajadores». Estas mejoras se deben a una menor demanda de mano de obra en obra, a la reducción de los movimientos de materiales pesados y a una mayor seguridad laboral.

En conclusión, el estudio demuestra empíricamente que el sistema de losas aligeradas con plástico reciclado es una alternativa materialmente eficiente y sostenible que promueve los principios de la economía circular. Los resultados proporcionan una base de pruebas sólida que respalda la adopción de esta tecnología, informa sobre el desarrollo de códigos de construcción y guía las políticas públicas hacia prácticas constructivas más resilientes y con bajas emisiones de carbono.

1. Contexto: El desafío de la sostenibilidad en la construcción.

El sector de la construcción es un importante motor económico a nivel mundial, pero también uno de los principales contribuyentes al cambio climático y al agotamiento de los recursos. Es responsable de aproximadamente el 50 % del uso de materiales y del 36 % del consumo total de energía a nivel mundial. Solo la producción de cemento representa entre un 5 % y un 7 % de las emisiones globales de CO₂. Se prevé que la demanda de materiales superará los 90 mil millones de toneladas para 2050, por lo que resulta imperativo alinear las prácticas constructivas con los Objetivos de Desarrollo Sostenible (ODS) en el marco de la Economía Circular (EC).

Dentro de los edificios, los forjados y las losas estructurales son los elementos que más impacto ambiental tienen debido a la gran cantidad de hormigón y acero que se emplea en su fabricación. Las innovaciones en los sistemas de losas, como los métodos modernos de construcción (MMC), son fundamentales para la descarbonización. Sin embargo, la adopción de estas tecnologías se ve obstaculizada por la falta de marcos de evaluación estandarizados que integren de manera coherente las tres dimensiones de la sostenibilidad: ambiental, social y económica. En particular, la dimensión social a menudo se pasa por alto.

2. Análisis de sistemas constructivos.

El estudio realiza una evaluación comparativa entre un sistema de losa innovador (VS) y otro convencional (CS) desde un enfoque de ciclo de vida integral.

Sistema innovador: losa aligerada biaxial (VS).

  • Descripción: consiste en una losa plana de hormigón armado bidireccional y sin vigas, aligerada mediante la inclusión de elementos huecos. Dichos aligerantes son esferas o discos fabricados con polietileno de alta densidad (HDPE) reciclado al 100 %. El sistema está diseñado para ser totalmente reciclable al final de su vida útil.
  • Configuración: Los discos se utilizan en losas de entre 16 y 28 cm de espesor, mientras que las esferas se emplean en losas de entre 28 y 42 cm de espesor. Al eliminar el hormigón no estructural del núcleo de la losa, el peso propio se reduce hasta un 35 % respecto a una losa maciza.
  • Ventajas: permite luces más largas, reduce las cargas sísmicas, simplifica los encofrados, acelera la ejecución y puede disminuir la altura total del edificio.
Losa aligerada biaxial (VS) mediante la inclusión de elementos huecos.

Sistema de referencia: losa convencional (CS).

  • Descripción: se define como una losa reticular bidireccional (también llamada «waffle») de hormigón armado, aligerada con bloques de poliestireno expandido (EPS).
  • Configuración: Este sistema se apoya sobre vigas y presenta nervios visibles en su cara inferior (intradós), ya que los bloques de EPS que conforman dichos nervios quedan expuestos.

3. Metodología de evaluación integrada.

El estudio emplea un marco metodológico triple para evaluar y comparar exhaustivamente los sistemas de losas. El análisis abarca «de la cuna a la tumba» y la unidad funcional se define como 1 m² de losa diseñada para 50 años de servicio.

3.1. Análisis estadístico multivariado.

Para compensar la ausencia de códigos de diseño estandarizados para el sistema VS, se ha desarrollado un modelo predictivo para dimensionar su espesor.

  • Base de datos: El análisis se basa en datos empíricos de 75 tipos de losas procedentes de 67 edificios reales construidos principalmente en Argentina. El conjunto de datos abarca luces de entre 5,2 y 15 metros y espesores de entre 16 y 42 centímetros.
  • Proceso: se realizó un análisis de regresión multivariado en tres etapas, comenzando por una regresión lineal simple y avanzando hasta un modelo más complejo que considera múltiples variables predictoras.
  • Validación: La solidez del modelo final se verificó mediante pruebas estadísticas, como la prueba de Durbin-Watson (para detectar autocorrelación), el análisis de residuos estudiantados (para detectar valores atípicos) y la comprobación de la homocedasticidad y la normalidad de los residuos.

3.2. Evaluación del ciclo de vida ambiental (E-LCA)

  • Metodología: se utilizó el método ReCiPe 2016 con una perspectiva jerárquica (H), evaluando los impactos a nivel de punto medio (18 categorías específicas) y de punto final (agrupados en tres áreas de daño: salud humana, ecosistemas y disponibilidad de recursos).
  • Bases de datos y software: el inventario del ciclo de vida se modeló con el programa informático OpenLCA, utilizando la base de datos Ecoinvent v3.2.
  • Asignación de cargas: para el plástico reciclado, se aplicó el método de asignación «cut-off», según la norma ISO 14044. Esto significa que los aligerantes de HDPE reciclado solo heredan las cargas ambientales de su propio proceso de reciclaje y no las de la producción de plástico virgen.

3.3. Evaluación del ciclo de vida social (S-LCA).

  • Metodología: el análisis se realizó siguiendo las directrices de UNEP/SETAC y utilizando un modelo coherente con el de la E-LCA.
  • Bases de datos y software: se utilizó la base de datos SOCA v2, una ampliación de Ecoinvent que adapta el marco de PSILCA (Evaluación del ciclo de vida del impacto social de los productos).
  • Indicadores y grupos de interés: los riesgos sociales se cuantificaron mediante el indicador de Riesgo Medio por Hora (MRH). Se evaluaron cuatro grupos de interés (trabajadores, comunidades locales, sociedad y actores de la cadena de valor) mediante veinte subcategorías relevantes para el sector de la construcción.

4. Resultados clave y hallazgos

4.1. Modelo predictivo para el predimensionamiento de losas VS.

El análisis estadístico culminó en un modelo de regresión múltiple robusto y preciso para estimar el espesor de la losa (t).

  1. Precisión del modelo: el modelo final (ecuación 3) alcanzó un coeficiente de determinación ajustado (R²) del 98,26 %, lo que indica un poder explicativo excepcional.
  2. Variables significativas: las variables con mayor influencia estadística en el espesor de la losa fueron las siguientes:
    – Canto del aligerante de plástico (He).
    – Cuadrado de la luz principal (L²).
    – Sobrecarga de uso característica (Q₁).

Fórmula simplificada: para facilitar su aplicación práctica en el diseño preliminar, se derivó una fórmula simplificada (ecuación 4) que reemplaza los coeficientes decimales por fracciones simples, manteniendo una alta precisión con un margen conservador.

Ecuación refinada (3): 𝑡 (cm) = 6,0064 + (0,7717 ∙ 𝐻𝑒) + (0,3679 ∙ 𝑄1) + (0,0553 ∙ 𝐿2)

Ecuación simplificada (4): 𝑡 (cm) = 6 + (4/5 ∙ 𝐻𝑒) + (2/5 ∙ 𝑄1) + (𝐿/√18)²

4.2. Resultados de la evaluación ambiental (E-LCA)

La E-LCA demuestra claras ventajas ambientales del sistema VS frente al CS.

Indicador clave Reducción lograda por el sistema VS Observaciones
Ahorro de hormigón 23 % – 33 % La mayor reducción se observa en luces más cortas (6 m).
Ahorro de acero Hasta 29 % La mayor reducción se observa en luces de 6 m.
Potencial de calentamiento global (PCG) 24 % (promedio), hasta 30 % (luz de 6 m) El hormigón es el principal contribuyente (53,5 % en VS, 55,8 % en CS).
Impacto ambiental total (punto final) 25 % (promedio) Reducciones de hasta el 29 % en salud humana y del 31% en recursos.
Etapa del ciclo de vida dominante Fabricación Representa el 89 % del impacto total en ambos sistemas.
  • Análisis de punto medio: el sistema VS muestra un mejor rendimiento en 17 de las 18 categorías de impacto evaluadas. La única excepción es la categoría «Ocupación de suelo agrícola», ya que la base de datos Ecoinvent atribuye el uso del suelo a los plásticos (incluidos los reciclados). Las reducciones más notables se observan en el agotamiento de fósiles (29 %) y en la formación de oxidantes fotoquímicos (28 %).

4.3. Resultados de la evaluación social (S-LCA)

El sistema VS también genera beneficios sociales cuantificables, principalmente gracias a su eficiencia en el uso de materiales y a la simplificación de los procesos de construcción.

  • Principales reducciones del riesgo social:
    • Comunidad local: reducción de hasta un 20 % (para una luz de 6 m).
    • Trabajadores: reducción de hasta un 19 % a una altura de 6 m.
  • Causas de las mejoras: estas reducciones se deben a la disminución de las horas de trabajo en obra, a la reducción del transporte y del movimiento de materiales pesados y a una menor exposición a riesgos laborales.
  • Focos de riesgo del sector: para ambos sistemas, las categorías con mayor riesgo social son:
    • Trabajadores: factores relacionados con la carga de trabajo, como las contribuciones a la Seguridad Social, los riesgos de trabajo infantil y los gastos sindicales (77 % del impacto en el VS).
    • Sociedad: la falta de educación es el factor predominante (76 % del impacto en ambos casos)

5. Implicaciones, limitaciones y conclusiones

Este estudio aporta una validación empírica rigurosa que demuestra que el sistema de losas aligeradas con plástico reciclado constituye un avance significativo hacia una construcción circular y de bajo carbono.

Implicaciones clave:

  • Para diseñadores e ingenieros, el modelo de predimensionamiento ofrece una herramienta fiable para acelerar la toma de decisiones en las primeras fases del diseño, optimizar el uso de materiales sin comprometer la seguridad.
  • Para la industria y los reguladores, los datos cuantitativos sobre los beneficios ambientales y sociales pueden informar la creación de nuevos códigos de construcción, guías de diseño y políticas de compra pública verde que incentiven la adopción de la construcción modular.
  • Contribución a la economía circular: el sistema no solo reduce el consumo de materiales vírgenes, sino que también otorga un uso de alto valor a los residuos de plástico HDPE, inmovilizándolos de forma segura en la estructura del edificio durante décadas y evitando que contaminen los ecosistemas.

Limitaciones reconocidas:

  • Análisis económico: no se realizó una evaluación del coste del ciclo de vida (LCCA) debido a la falta de datos económicos detallados, lo cual es crucial para su adopción en el mercado.
  • Contexto geográfico: la mayoría de los casos de estudio (63 de 67) provienen de Argentina, por lo que los resultados reflejan las prácticas constructivas y la combinación energética de este país. Para extrapolar los resultados a otras regiones, sería necesario validarlos con datos locales.
  • Alcance del análisis: el estudio se centra en el componente (1 m² de losa) y no cuantifica los impactos per cápita según la tipología de vivienda.

Conclusión final:

El sistema de losas aligeradas (VS) con plástico reciclado es una tecnología superior en términos de sostenibilidad multidimensional en comparación con un sistema convencional. Al combinar un análisis estructural empírico con una evaluación medioambiental y social exhaustiva, esta investigación aporta las pruebas necesarias para superar las barreras normativas y acelerar la transición hacia un entorno construido más eficiente en el uso de los recursos, socialmente responsable y alineado con los objetivos de sostenibilidad global.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2026). Multivariate Environmental and Social Life Cycle Assessment of Circular Recycled-Plastic Voided Slabs for Data-Driven Sustainable Construction. Environmental Impact Assessment Review, 118, 108297. DOI:10.1016/j.eiar.2025.108297

En esta conversación se pueden escuchar algunas de las ideas más importantes del trabajo.

Este vídeo sintetiza algunos de los conceptos y resultados del artículo.

Aquí os dejo un documento de síntesis.

Pincha aquí para descargar

Dejo para su descarga el artículo completo, ya que está publicado en abierto.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

5 lecciones sorprendentes de la IA para construir puentes más sostenibles y económicos.

La tesis doctoral leída recientemente por Lorena Yepes Bellver se centra en la optimización del diseño de puentes de losa de hormigón pretensado para pasos elevados con el fin de mejorar la sostenibilidad económica y ambiental mediante la minimización de costes, energía incorporada y emisiones de CO₂. Con el fin de reducir la elevada carga computacional del análisis estructural, la metodología emplea un marco de optimización de dos fases asistido por modelos sustitutos, en el que se destaca el uso de Kriging y redes neuronales artificiales (RNA).

En concreto, la optimización basada en Kriging condujo a una reducción de costes del 6,54 % al disminuir significativamente el consumo de hormigón y acero activo sin comprometer la integridad estructural. Si bien las redes neuronales demostraron una mayor precisión predictiva global, el modelo Kriging resultó más eficaz para identificar los óptimos locales durante el proceso de búsqueda. El estudio concluye que las configuraciones de diseño óptimas priorizan el uso de altos coeficientes de esbeltez y suponen una reducción del hormigón y del acero activo en favor del acero pasivo, con el fin de mejorar la eficiencia energética. Finalmente, la investigación integra la toma de decisiones multicriterio (MCDM, por sus siglas en inglés) para evaluar de manera integral los diseños en función de sus objetivos económicos, estructurales y ambientales.

Cuando pensamos en la construcción de grandes infraestructuras, como los puentes, suele venirnos a la mente la imagen de proyectos masivos, increíblemente caros y con un gran impacto ambiental. Son gigantes de hormigón y acero que, aunque necesarios, parecen irrenunciablemente vinculados a un alto coste económico y ecológico.

Sin embargo, ¿y si la inteligencia artificial nos estuviera mostrando un camino para que estos gigantes de hormigón fueran más ligeros, económicos y respetuosos con el planeta? Una reciente tesis doctoral sobre la optimización de puentes está desvelando hallazgos impactantes y, en muchos casos, sorprendentes. Este artículo resume esa compleja investigación en cinco lecciones clave y a menudo sorprendentes que no solo se aplican a los puentes, sino que anuncian una nueva era en el diseño de infraestructuras.

1. La sostenibilidad cuesta mucho menos de lo que crees.

Uno de los descubrimientos más importantes de la investigación es que la idea de que la sostenibilidad siempre implica un alto sobrecoste es, en gran medida, un mito. La optimización computacional demuestra que la viabilidad económica y la reducción del impacto ambiental no son objetivos opuestos.

La tesis doctoral lo cuantifica con precisión: un modesto aumento de los costes de construcción (inferior al 1 %) puede reducir sustancialmente las emisiones de CO₂ (en más de un 2 %). Este dato es muy relevante, ya que demuestra que con un diseño inteligente asistido por modelos predictivos se puede conseguir un beneficio medioambiental significativo con una inversión mínima. La sostenibilidad y la rentabilidad pueden y deben coexistir en el diseño de las infraestructuras del futuro.

2. El secreto está en la esbeltez: cuanto más fino, más eficiente.

En el diseño de un puente, la «relación de esbeltez» es un concepto clave que define la proporción entre la altura del tablero (su grosor) y la longitud del vano principal. Tradicionalmente, podríamos pensar que «más robusto es más seguro», pero la investigación demuestra lo contrario.

El estudio identificó una relación de esbeltez óptima para minimizar el impacto ambiental. Concretamente, el estudio halló una relación de esbeltez de aproximadamente 1/30 para optimizar las emisiones de CO₂ y de aproximadamente 1/28 para optimizar la energía incorporada. Esto significa que, en lugar de construir puentes masivos por defecto, los modelos de IA demuestran que un diseño más esbelto y afinado no solo es estructuralmente sólido, sino también mucho más eficiente en el uso de materiales. Este diseño más esbelto se logra no solo usando menos material en general, sino también mediante un sorprendente reequilibrio entre los componentes clave de la estructura, como veremos a continuación.

3. El equilibrio de materiales: menos hormigón, más acero (pasivo).

Quizás uno de los descubrimientos más sorprendentes es que el diseño más sostenible no consiste simplemente en utilizar menos cantidad de todos los materiales. La solución óptima es más un reequilibrio inteligente que una simple reducción general.

La investigación revela que los diseños optimizados lograron reducir el uso de hormigón en un 14,8 % y de acero activo (el acero de pretensado que tensa la estructura) en un 11,25 %. Sin embargo, este descenso se compensa con un aumento de la armadura pasiva (el acero convencional que refuerza el hormigón). Esto resulta contraintuitivo, ya que la intuición ingenieril a menudo favorece una reducción uniforme de los materiales. Sin embargo, los modelos computacionales identifican un complejo intercambio —sacrificar un material más barato (hormigón) por otro más caro (acero pasivo)— para alcanzar un diseño globalmente óptimo en términos de coste y emisiones de CO₂, un equilibrio que sería extremadamente difícil de lograr con métodos de diseño tradicionales.

4. Precisión frente a dirección: El verdadero poder de los modelos predictivos.

Al comparar diferentes modelos de IA, como las redes neuronales artificiales y los modelos Kriging, la tesis doctoral reveló una lección fundamental sobre su verdadero propósito en ingeniería.

El estudio reveló que, si bien las redes neuronales ofrecían predicciones absolutas más precisas, el modelo Kriging era más eficaz para identificar las regiones de diseño óptimas. Esto pone de manifiesto un aspecto crucial sobre el uso de la IA en el diseño: su mayor potencial no radica en predecir un valor exacto, como si fuera una bola de cristal, sino en guiar al ingeniero hacia la «región» del diseño donde se encuentran las mejores soluciones posibles. La IA es una herramienta de exploración y dirección que permite navegar por un universo de posibilidades para encontrar de forma eficiente los diseños más prometedores.

5. La optimización va directo al bolsillo: reducción de costes superior al 6 %.

Más allá de los objetivos medioambientales, la investigación demuestra que estos modelos de IA son herramientas muy potentes para la optimización económica directa. Este descubrimiento no se refiere al equilibrio entre coste y sostenibilidad, sino a la reducción pura y dura de los costes del proyecto.

La tesis doctoral muestra que el método de optimización basado en Kriging consigue una reducción de costes del 6,54 %. Esta importante reducción se consigue principalmente minimizando el uso de materiales: un 14,8 % menos de hormigón y un 11,25 % menos de acero activo, el acero de pretensado más especializado y costoso. Esto demuestra de forma contundente que los modelos sustitutivos no solo sirven para alcanzar metas ecológicas, sino que también son una herramienta de gran impacto para la optimización económica en proyectos a gran escala.

Conclusión: Diseñando el futuro, un puente a la vez.

La inteligencia artificial y los modelos de optimización han dejado de ser conceptos abstractos para convertirse en herramientas prácticas que permiten descubrir formas novedosas y eficientes de construir la infraestructura del futuro. Los resultados de esta investigación demuestran que es posible diseñar y construir puentes que sean más económicos y sostenibles al mismo tiempo.

Estos descubrimientos no solo se aplican a los puentes, sino que abren la puerta a una nueva forma de entender la ingeniería. Si la IA puede rediseñar algo tan grande como un puente para hacerlo más sostenible, ¿qué otras grandes industrias están a punto de transformarse con un enfoque similar?

En este audio podéis escuchar una conversación sobre este tema.

Este vídeo resume las ideas principales.

Aquí tenéis un documento resumen de las ideas básicas.

Pincha aquí para descargar

Referencias:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Predictive modeling for carbon footprint optimization of prestressed road flyovers. Applied Sciences15(17), 9591. DOI:10.3390/app15179591

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. Social Life Cycle Assessment of Railway Track Substructure AlternativesJ. Clean. Prod. 2024450, 142008.

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450. DOI:10.3390/su16198450

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización multiobjetivo de pasarelas mixtas: un equilibrio entre sostenibilidad y protección frente al fuego

Acaban de publicar un artículo nuestro en Structural Engineering and Mechanicsuna de las revistas de referencia del JCR. Este trabajo sintetiza los resultados de un estudio en el que se presenta un marco de optimización multiobjetivo innovador para el diseño de pasarelas peatonales con estructuras mixtas de acero y hormigón.

La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo y de la información contextual.

El objetivo principal de esta investigación ha sido equilibrar la eficiencia económica y medioambiental con la seguridad estructural y el confort del usuario, integrando de manera única la resiliencia ante incendios. A diferencia de investigaciones previas, este trabajo incorpora seis escenarios distintos de exposición al fuego, desde 320 hasta 720 segundos, para evaluar el rendimiento de la estructura en condiciones extremas.

Los resultados revelan una relación directa y lineal entre el coste y las emisiones de CO₂, lo que demuestra que por cada dólar estadounidense (1 USD) ahorrado en el coste por metro de la estructura, se reduce la emisión de 0,7727 kg de CO₂. Este descubrimiento posiciona la optimización de costes como una estrategia que favorece la sostenibilidad económica y medioambiental.

Un descubrimiento clave es que se pueden lograr mejoras sustanciales en la seguridad contra incendios con inversiones moderadas. Un aumento del 23 % en el coste permite que la estructura resista casi 8 minutos (460 segundos) de exposición al fuego antes de colapsar, mientras que incrementos menores, del 3,91 % y 15,06 %, aseguran la estabilidad durante 320 y 400 segundos, respectivamente. El estudio también pone de manifiesto un cambio fundamental en la configuración del diseño óptimo: mientras que los diseños esbeltos son más eficientes en términos de coste y emisiones en condiciones normales, las configuraciones más compactas son necesarias para garantizar la seguridad en caso de exposición prolongada al fuego. Estos resultados ofrecen directrices prácticas para el desarrollo de infraestructuras urbanas más seguras, resilientes y sostenibles.

1. Marco de optimización multiobjetivo.

El estudio aborda una brecha crítica en ingeniería estructural: la falta de investigaciones que apliquen métodos de optimización a infraestructuras reales, integrando simultáneamente criterios de sostenibilidad (económicos, medioambientales y sociales) y de seguridad, especialmente en condiciones extremas, como la exposición al fuego.

1.1. Metodología aplicada

El análisis se centra en una pasarela peatonal de estructura mixta de acero y hormigón, con una luz de 17,5 metros, ubicada en el sur de Brasil. Con el fin de hallar las soluciones óptimas, se empleó un algoritmo de Búsqueda de Armonía Multiobjetivo (MOHS, por sus siglas en inglés), desarrollado a medida en Python. El proceso de optimización busca minimizar simultáneamente tres funciones objetivo:

  • Coste: coste de los materiales necesarios para construir la estructura, basado en los precios del mercado brasileño.
  • Emisiones de CO₂: el impacto ambiental, medido por las emisiones de CO₂ asociadas a la producción de los materiales, para lo que se han utilizado indicadores específicos de la región objeto de estudio.
  • Aceleración vertical máxima: medida del confort de los peatones, calculada a partir de las vibraciones inducidas por su movimiento.

El modelo tiene en cuenta ocho variables de diseño discretas, como el espesor de la losa de hormigón y las dimensiones de las vigas de acero, lo que da como resultado un espacio de búsqueda de 7×10¹¹ soluciones posibles.

Ilustración de la pasarela mixta

1.2. Escenarios de exposición al fuego.

Una de las innovaciones centrales del estudio es incorporar la resiliencia al fuego en el proceso de optimización. Se ha simulado un escenario de incendio de un vehículo debajo de una pasarela utilizando una curva tiempo-temperatura específica, desarrollada a partir de pruebas experimentales realizadas en puentes no confinados. Además de la condición a temperatura ambiente (0 segundos), se analizaron seis periodos de exposición al fuego que provocaron una degradación significativa de las propiedades mecánicas del acero.

Periodo de exposición al fuego (s) Temperatura del acero (°C) Factor de reducción (límite elástico) Factor de reducción (módulo de elasticidad)
0 20 1,00 1,00
320 200 1,00 0,90
400 300 1,00 0,80
460 400 1,00 0,70
510 500 0,78 0,60
560 600 0,47 0,31
720 700 0,23 0,13

2. Hallazgos clave y análisis de resultados.

El proceso de optimización generó un frente de Pareto tridimensional que muestra los equilibrios entre coste, emisiones y confort en los distintos escenarios de incendio.

2.1. Relación lineal entre el coste y las emisiones de CO₂.

Se identificó una relación directa y consistente entre el coste de fabricación y las emisiones de CO₂ en todos los escenarios analizados. Los datos demuestran que cada real brasileño (R$) ahorrado mediante la optimización equivale a una reducción de 0,1358 kg de CO₂. Convertido a dólares estadounidenses, esto equivale a una reducción de 0,7727 kg de CO₂ por cada dólar estadounidense ahorrado por metro de pasarela.

Esta correlación confirma que la optimización económica es una herramienta eficaz para promover la sostenibilidad medioambiental, especialmente en regiones que necesitan desarrollar infraestructuras sin sacrificar la eficiencia económica.

2.2. Intercambio entre la resistencia al fuego y el coste.

Como era de esperar, aumentar la resistencia de la estructura al fuego implica un mayor coste y, por tanto, más emisiones. Sin embargo, el estudio demuestra que es posible lograr mejoras significativas en la seguridad con incrementos de coste relativamente bajos o moderados.

  • Un incremento del 3,91 % en el coste permite que la estructura resista durante 320 segundos (5 minutos) de fuego.
  • Un incremento del 15,06 % extiende la resistencia a 400 segundos (6,5 minutos).
  • Un incremento moderado del 23 % evita el colapso durante casi ocho minutos (460 segundos), lo que proporciona un tiempo valioso para la evacuación.
  • Diseñar para resistir un incendio de 12 minutos (720 segundos) incrementa el coste en más del 400 %, por lo que resulta inviable en la mayoría de los casos.

2.3. Impacto en el confort de los peatones.

Los objetivos de coste y confort son conflictivos: un mayor confort (menor aceleración vertical) exige una mayor rigidez estructural, lo que se traduce en un mayor consumo de materiales.

  • Pasar de un nivel de confort «mínimo» a «medio» implica un aumento del coste promedio del 44 %.
  • Mejorar el nivel de confort de «medio» a «máximo» solo requiere un aumento promedio del 6 % en el coste, lo que sugiere que es una inversión factible en la mayoría de los escenarios.
  • La excepción es el escenario de 12 minutos de fuego, en el que alcanzar el nivel de confort «máximo» supone un 68 % más que el «medio», debido a la grave degradación del rendimiento del acero.

3. Implicaciones prácticas y configuraciones óptimas de diseño.

El análisis de las variables de diseño de las soluciones óptimas revela patrones claros y ofrece implicaciones prácticas para la ingeniería.

3.1. Evolución del diseño en función de la exposición al fuego.

La configuración geométrica óptima de la pasarela varía drásticamente según el tiempo de exposición al fuego considerado.

  • En ausencia de fuego o con una exposición breve, la solución más eficiente es un diseño de alta esbeltez, con vigas de acero altas y delgadas que se acercan a los límites normativos. Así se minimiza el consumo de material, lo que reduce costes y emisiones.
  • Con una exposición prolongada al fuego (es decir, superior a 510 segundos), la solución óptima se desplaza hacia configuraciones más compactas y menos esbeltas. Se observa un aumento considerable del espesor del alma y de las alas de las vigas de acero.

Este cambio se debe a que, a altas temperaturas, el límite de esbeltez (que depende del módulo de elasticidad y del límite elástico del acero) disminuye considerablemente. En los escenarios más extremos, el límite de esbeltez deja de ser una restricción activa y el algoritmo prioriza la robustez geométrica para cumplir con otros requisitos de diseño.

Periodo de exposición (s) Esbeltez óptima / Límite de esbeltez
0 99,17 %
460 99,54 %
560 68,45 %
720 46,98 %

3.2. Estrategias de materiales.

  • Preferencia por el acero: el estudio revela que, para aumentar la seguridad contra incendios, es más rentable y sostenible incrementar el consumo de acero (a pesar de la degradación de sus propiedades) que aumentar la rigidez mediante una losa de hormigón más gruesa.
  • Interacción total: en todas las soluciones óptimas de menor coste, el grado de interacción entre la viga de acero y la losa de hormigón es del 100 % (α = 1,0), lo que indica que el comportamiento compuesto completo es la opción más eficiente.

4. Conclusiones principales

El estudio presenta un marco sólido para el diseño de pasarelas mixtas de acero y hormigón y demuestra que es posible equilibrar sostenibilidad, economía y seguridad. Las conclusiones más relevantes son las siguientes:

  • Sostenibilidad y coste vinculados: existe una relación lineal y cuantificable entre la reducción de costes y la disminución de las emisiones de CO₂, por lo que la optimización económica puede utilizarse como herramienta para la sostenibilidad ambiental.
  • Seguridad contra incendios asequible: es posible mejorar significativamente la seguridad de una pasarela ante un incendio con incrementos de coste moderados y económicamente viables.
  • El diseño se adapta al riesgo: la configuración óptima de una estructura no es universal; los diseños esbeltos son ideales para condiciones normales, pero las configuraciones compactas son cruciales para la resiliencia en escenarios de incendio prolongados.
  • Implicaciones para el diseño: los resultados subrayan la importancia de incorporar escenarios de riesgo extremo en las primeras fases del diseño estructural para crear infraestructuras más seguras y resilientes sin comprometer desproporcionadamente los recursos.

Estas conclusiones se aplican únicamente a la tipología de estructura y al escenario de incendio estudiados, así como a los costes y a los factores de emisión regionales. Por tanto, se requieren más investigaciones para validar y extender estos resultados a otros contextos.

Referencia:

TRES JUNIOR, F.L.; DE MEDEIROS, G.F.; KRIPKA, M.; YEPES, V. (2025). Designing for Safety and Sustainability: Optimization of Fire-Exposed Steel-Concrete Composite Footbridges. Structural Engineering and Mechanics, 96 (4):337-350. DOI:10.12989/sem.2025.96.4.337

En esta conversación puedes escuchar información interesante sobre este tema.

En este vídeo se resumen las ideas más importantes de esta investigación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cómo construían en Pompeya: la mezcla en caliente y la química oculta de los morteros romanos

En esta ocasión comparto con los lectores una entrevista que me han realizado a propósito de un reciente estudio publicado en Nature CommunicationsVaserman, E., Weaver, J.C., Hayhow, C. et al. (2025), An unfinished Pompeian construction site reveals ancient Roman building technology— que ha generado un notable interés tanto en la comunidad científica como en los medios. El trabajo ha sido también objeto de un artículo en El País (“Así construían los albañiles de la Antigua Roma”, disponible en: https://elpais.com/ciencia/2025-12-09/asi-construian-los-albaniles-de-la-antigua-roma.html), en el que se recoge mi valoración sobre sus implicaciones para la ingeniería civil y la comprensión de las técnicas constructivas romanas. Presento aquí la entrevista completa, con el fin de profundizar en los aspectos técnicos y arqueológicos que hacen de este estudio un caso excepcional para el análisis de los materiales históricos.

  1. El artículo sostiene que en Pompeya se empleaba con cierta frecuencia la mezcla en caliente con cal viva, ¿cómo interpreta esta afirmación?

El trabajo presenta una serie de análisis microestructurales y químicos que indican claramente que en la Domus IX 10,1 se utilizó un procedimiento basado en la mezcla de cal viva con materiales puzolánicos en estado seco. Los resultados son coherentes con esta hipótesis y están bien fundamentados en este contexto arqueológico, especialmente debido al hallazgo de montones de material premezclado seco que contenían gránulos de cal viva. No obstante, desde la perspectiva de la ingeniería civil, conviene subrayar que se trata de una evidencia localizada en un momento de reconstrucción posterior al terremoto del año 62 d. C., por lo que no es posible extrapolarla automáticamente a todo el ámbito del Imperio romano. La diversidad de materiales y prácticas constructivas descrita por autores como Vitruvio, quien abogaba por el apagado previo de la cal, hace recomendable interpretar este estudio como una muestra de la coexistencia de métodos alternativos al canon clásico, pero no como una descripción universal.

  1. El estudio plantea que los morteros podrían haber experimentado procesos de autorreparación a muy largo plazo. ¿Cómo valora usted esta idea?

Los datos indican que ciertos clastos de calcita pudieron seguir reaccionando durante un periodo prolongado, actuando como fuente de calcio reactivo. Esto habría favorecido el relleno de microfisuras mediante la recristalización de carbonato cálcico en sus polimorfos de calcita y aragonito. Este comportamiento es interesante desde el punto de vista científico, ya que permite comprender mejor la evolución mineralógica en la interfaz entre los áridos volcánicos y la matriz cementante. No obstante, desde el punto de vista de la ingeniería estructural moderna, es importante tener en cuenta su contexto, ya que se trata de un proceso geoquímico lento, con efectos localizados y condicionado por los ciclos de humedad ambiental. Esta característica ayuda a explicar la durabilidad observada, pero no tiene una equivalencia directa con los mecanismos de reparación activa inmediata que se investigan actualmente en la obra civil.

  1. ¿Podría interpretarse la presencia de clastos de cal como un indicio de una mezcla defectuosa?

En determinadas obras históricas, la presencia de grumos de cal puede deberse a procesos de mezcla incompletos o a un apagado insuficiente. Sin embargo, en este caso particular, los análisis de espectroscopía infrarroja y de isótopos estables de carbono y oxígeno indican que estos grumos se formaron durante un proceso térmico y químico compatible con la utilización deliberada de cal viva. Los investigadores documentan, además, la segregación intencionada de materiales: montones de premezcla con cal viva para muros estructurales frente a ánforas con cal apagada para acabados. Por tanto, las pruebas apuntan a una técnica constructiva específica (hot mixing) y no a una ejecución negligente.

  1. ¿Cree que estos resultados pueden considerarse representativos del conjunto de la construcción romana?

Los datos corresponden a un escenario muy concreto, que se conserva excepcionalmente bien gracias a la ceniza volcánica de la erupción del 79 d. C., lo que permite analizar materiales «congelados» en plena fase de obra. Precisamente por su carácter singular, lo más prudente es entender que este estudio aporta información específica sobre la logística de una obra doméstica en Pompeya del siglo I, sin que ello implique que todos los constructores romanos actuaran de la misma manera en obras de infraestructura pública o en otras provincias. Para avanzar en esta cuestión, será necesario realizar estudios comparativos con metodologías similares en otros yacimientos u enclaves imperiales.

  1. El artículo distingue entre morteros estructurales y de acabado. ¿Considera acertada esa diferenciación?

Esta diferenciación es coherente con lo que cabría esperar en cualquier tradición constructiva con un mínimo grado de especialización. El estudio documenta el uso de cal apagada almacenada en ánforas recicladas, presumiblemente destinada a morteros de reparación o revestimientos pictóricos, mientras que la cal viva se reservaba para la mampostería estructural. Las propiedades requeridas para un muro de carga no son idénticas a las necesarias para un acabado fino y el análisis químico (ratios Ca/Si) del artículo parece respaldar que se ajustaban las formulaciones según la función. La propuesta es razonable y encaja con el análisis logístico del flujo de trabajo en la obra.

  1. ¿Qué aspectos de este trabajo pueden interesar a la ingeniería civil actual, especialmente en relación con los hormigones modernos?

Este estudio contribuye a una comprensión más completa de la evolución de ciertos morteros históricos a lo largo del tiempo, lo que puede resultar inspirador para el desarrollo de nuevos materiales de restauración compatibles y con menor huella de carbono. El uso de la reactividad residual de los clastos de cal para sellar fisuras es un principio valioso para la sostenibilidad. No obstante, los materiales actuales ofrecen prestaciones y un nivel de control muy superiores. Disponemos de cementos compuestos y de normativas de seguridad que permiten diseñar con una fiabilidad estandarizada que no existía en la antigüedad. Por tanto, los morteros romanos son un referente histórico y una fuente de inspiración, pero no un modelo que pueda utilizarse directamente en las grandes infraestructuras contemporáneas.

  1. Algunos autores han sugerido que parte de los carbonatos observados podría ser producto de procesos posteriores a la construcción. ¿Cómo valora la argumentación del estudio?

El artículo describe una serie de observaciones que indican que parte de los carbonatos se formaron durante la vida útil inicial del material. Concretamente, el análisis de isótopos permite distinguir entre la carbonatación rápida en condiciones de mezcla en caliente (fraccionamiento cinético) y la carbonatación lenta en equilibrio. Esto permite a los autores argumentar que los clastos no son únicamente producto de la degradación postdeposicional. No obstante, en materiales con tantos siglos de antigüedad, es razonable tener en cuenta también la influencia del entorno. El estudio aborda este aspecto mediante el análisis de los bordes de reacción de los áridos volcánicos, donde se observa una remineralización continua. Desde un enfoque técnico, el estudio aporta pruebas sólidas para distinguir ambas fases.

  1. Desde su perspectiva como catedrático de ingeniería de la construcción, ¿qué aportación considera más destacable y qué limitaciones observa?

El estudio destaca por ofrecer una visión muy detallada de un proceso constructivo interrumpido, lo que supone una oportunidad excepcional. La identificación de herramientas in situ (plomadas, azadas, pesas) junto con los materiales permite reconstruir el flujo de trabajo real, algo que rara vez se conserva. La principal limitación es su naturaleza localizada, ya que describe un caso concreto de una domus privada en reparación, lo que no permite, por sí solo, establecer conclusiones de alcance general sobre la gran ingeniería pública romana. También sería interesante complementar estas investigaciones en el futuro con datos de resistencia mecánica comparada para realizar una valoración más completa desde el punto de vista de la ingeniería estructural.

En este audio se puede escuchar una conversación que trata sobre este artículo recientemente publicado

Las ideas más interesantes del artículo se puede ver en este vídeo.

En esta presentación se resumen las ideas más importantes.

Pincha aquí para descargar

Referencia:

Vaserman, E., Weaver, J.C., Hayhow, C. et al. An unfinished Pompeian construction site reveals ancient Roman building technologyNat Commun 16, 10847 (2025). https://doi.org/10.1038/s41467-025-66634-7

El artículo está publicado en abierto, y se puede leer aquí:

Pincha aquí para descargar

Europa premia a la UPV por revolucionar el diseño estructural con Inteligencia Artificial

La Universitat Politècnica de València (UPV) ha obtenido un reconocimiento destacado europeo al ganar el premio al mejor proyecto en la categoría «AI for Sustainable Development» de la European Universities Competition on Artificial Intelligence, organizada por la HAW Hamburg.

El trabajo galardonado, desarrollado en el ICITECH por el doctorando Iván Negrín, demuestra cómo la inteligencia artificial puede transformar el diseño estructural para hacerlo más sostenible y resiliente, con reducciones de hasta un 32 % en la huella de carbono respecto a los sistemas convencionales. Este logro posiciona a la UPV como un referente europeo en innovación ética e impacto y reafirma su compromiso con la búsqueda de soluciones frente al cambio climático y al desarrollo insostenible.

El trabajo se enmarca en el proyecto de investigación RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. La tesis doctoral de Iván la dirigen los profesores Víctor Yepes y Moacir Kripka.

Introducción: El dilema de la construcción moderna.

La industria de la construcción se enfrenta a un reto monumental: edificar las ciudades del futuro sin agotar los recursos del presente. El enorme impacto medioambiental de los materiales y procesos tradicionales, especialmente las emisiones de CO₂, es uno de los problemas más acuciantes de nuestra era.

¿Y si la solución a este problema no radicara en un nuevo material milagroso, sino en una nueva forma de pensar? ¿Y si la inteligencia artificial (IA) pudiera enseñarnos a construir de manera mucho más eficiente y segura?

Esa es precisamente la hazaña que ha logrado un innovador proyecto de la Universitat Politècnica de València (UPV). Su enfoque es tan revolucionario que acaba de ganar un prestigioso premio europeo, lo que demuestra que la IA ya no es una promesa, sino una herramienta tangible para la ingeniería sostenible.

Clave 1: una innovación europea premiada al más alto nivel.

Este no es un proyecto académico cualquiera. La investigación, dirigida por el doctorando Iván Negrín del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) de la UPV, ha recibido el máximo reconocimiento continental.

Inicialmente seleccionado como uno de los diez finalistas, el proyecto tuvo que defenderse en una presentación final ante un jurado de expertos. Tras la deliberación del jurado, el proyecto fue galardonado como el mejor en la categoría «AI for Sustainable Development Projects» de la competición «European Universities Competition on Artificial Intelligence to Promote Sustainable Development and Address Climate Change», organizada por la Universidad de Ciencias Aplicadas de Hamburgo (HAW Hamburg). Este reconocimiento consolida la reputación del proyecto en el ámbito de la innovación europea.

Clave 2: adiós al CO₂: reduce la huella de carbono en más del 30 %.

El resultado más impactante de esta investigación es su capacidad para abordar el principal problema medioambiental del sector de la construcción: las emisiones de carbono. La plataforma de diseño asistido por IA puede reducir la huella de carbono de los edificios de manera significativa.

En concreto, consigue una reducción del 32 % de la huella de carbono en comparación con los sistemas convencionales de hormigón armado, que ya habían sido optimizados. Esta reducción abarca todo el ciclo de vida del edificio, desde la extracción de materiales y la construcción hasta su mantenimiento y su eventual demolición.

En un sector tan difícil de descarbonizar, un avance de esta magnitud, impulsado por un diseño inteligente y no por un nuevo material, supone un cambio de paradigma fundamental para la ingeniería sostenible.

Clave 3: Rompe el mito: más sostenible no significa menos resistente.

Uno de los aspectos más revolucionarios del proyecto es la forma en que resuelve un conflicto histórico en ingeniería: la sostenibilidad frente a la resiliencia. La IA ha superado la barrera que obligaba a elegir entre usar menos material para ser sostenible o más material para ser resistente.

En una primera fase, el modelo optimizó estructuras mixtas de acero y hormigón (denominadas técnicamente RC-THVS) para que fueran altamente sostenibles, aunque con una resiliencia baja. Lejos de detenerse, la IA iteró sobre su propio diseño y, en una evolución posterior (RC-THVS-R), logró una solución altamente sostenible y resiliente frente a eventos extremos.

La metodología desarrollada permite compatibilizar la sostenibilidad y la resiliencia, superando el tradicional conflicto entre ambos objetivos.

Clave 4: Ahorro desde los cimientos. Menos costes, energía y materiales.

Los beneficios de esta IA no solo benefician al planeta, sino también al bolsillo y a la eficiencia del proyecto. La optimización inteligente de las estructuras se traduce en ahorros tangibles y medibles desde las primeras fases de la construcción.

Los datos demuestran un ahorro significativo en múltiples frentes:

  • -16 % de energía incorporada.
  • -6 % de coste económico.
  • – Reducción del 17 % de las cargas transmitidas a columnas y cimentaciones.

Este último punto es clave. Una menor carga en los cimientos no solo supone un ahorro directo de materiales, sino que tiene un efecto cascada en materia de sostenibilidad: al usar menos hormigón, se reduce la cantidad de cemento empleado, uno de los principales generadores de CO₂ a nivel mundial.

Clave 5: un enfoque versátil para las ciudades del futuro (y del presente).

La aplicación de esta metodología no se limita a los grandes edificios de nueva construcción. Su versatilidad la convierte en una herramienta estratégica para el desarrollo urbano integral.

Puede aplicarse a infraestructuras de transporte, como puentes y pasarelas, para minimizar su impacto ambiental. También es fundamental para la rehabilitación de estructuras existentes, ya que permite optimizar su seguridad y reducir las emisiones asociadas a los refuerzos.

Este enfoque se alinea con los Objetivos de Desarrollo Sostenible (ODS) de la ONU, concretamente con los ODS 9 (Industria, innovación e infraestructura), 11 (Ciudades y comunidades sostenibles) y 13 (Acción por el clima).

Conclusión: construyendo un futuro inteligente.

Este proyecto de la UPV demuestra que la inteligencia artificial ha dejado de ser una tecnología futurista para convertirse en una herramienta imprescindible en la ingeniería civil. Ya no se trata de promesas, sino de soluciones prácticas que resuelven problemas reales, medibles y urgentes.

La capacidad de diseñar estructuras más baratas, ecológicas, seguras y resistentes abre un nuevo capítulo en la construcción.

¿Estamos a las puertas de una nueva era en la ingeniería en la que la sostenibilidad y la máxima seguridad ya no son objetivos contrapuestos, sino aliados inseparables gracias a la inteligencia artificial?

En futuros artículos, explicaremos con más detalle el contenido de este proyecto ganador. De momento, os dejo una conversación que lo explica muy bien y un vídeo que resume lo más importante. Espero que os resulte interesante.

Os dejo un documento resumen, por si queréis ampliar la información.

Pincha aquí para descargar

Referencias:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Environmental Life-Cycle Design Optimization of a RC-THVS composite frame for modern building construction. Engineering Structures, 345, 121461. DOI:10.1016/j.engstruct.2025.121461

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Manufacturing cost optimization of welded steel plate I-girders integrating hybrid construction and tapered geometry. International Journal of Advanced Manufacturing Technology, 140, 1601-1624DOI:10.1007/s00170-025-16365-2

NEGRÍN, I.; CHAGOYÉN, E.; KRIPKA, M.; YEPES, V. (2025). An integrated framework for Optimization-based Robust Design to Progressive Collapse of RC skeleton buildings incorporating Soil-Structure Interaction effects. Innovative Infrastructure Solutions, 10:446. DOI:10.1007/s41062-025-02243-z

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Design optimization of a composite typology based on RC columns and THVS girders to reduce economic cost, emissions, and embodied energy of frame building construction. Energy and Buildings, 336:115607. DOI:10.1016/j.enbuild.2025.115607

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Metamodel-assisted design optimization of robust-to-progressive-collapse RC frame buildings considering the impact of floor slabs, infill walls, and SSI implementationEngineering Structures, 325:119487. DOI:10.1016/j.engstruct.2024.119487

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2024). Optimized Transverse-Longitudinal Hybrid Construction for Sustainable Design of Welded Steel Plate Girders. Advances in Civil Engineering, 2024:5561712. DOI:10.1155/2024/5561712.

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Multi-criteria optimization for sustainability-based design of reinforced concrete frame buildingsJournal of Cleaner Production, 425:139115. DOI:10.1016/j.jclepro.2023.139115

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Design optimization of welded steel plate girders configured as a hybrid structure. Journal of Constructional Steel Research, 211:108131. DOI:10.1016/j.jcsr.2023.108131

TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631. DOI:10.1016/j.istruc.2023.04.006

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cómo se construyen los puentes por voladizos sucesivos: ingeniería en el aire.

Figura 1. Construcción por voladizos sucesivos. By Störfix [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], from Wikimedia Commons

Al cruzar un gran viaducto que se alza sobre un profundo valle, es inevitable preguntarse cómo se construye una estructura de esa magnitud sin apoyos en el suelo. No hay andamios que se eleven cientos de metros hasta alcanzar el tablero. La respuesta reside en un método constructivo que, a primera vista, parece desafiar la gravedad: la construcción mediante voladizos sucesivos.

El sistema de construcción por voladizos sucesivos in situ es un método avanzado para la construcción de puentes de hormigón pretensado desarrollado en la década de 1950. Está diseñado específicamente para superar grandes luces, de entre 60 y más de 200 metros, un rango en el que las soluciones tradicionales con cimbradas o empujadas no son viables. El principio fundamental consiste en construir el tablero del puente de manera progresiva y simétrica a ambos lados de una pila. El tablero se divide en segmentos denominados «dovelas», que se hormigonan in situ y se anclan a la sección previamente construida mediante cables de pretensado.

A continuación, desvelamos cinco claves que explican cómo la ingeniería hace posible levantar estos gigantes de hormigón «en el aire».

1. El equilibrio perfecto: construir hacia el vacío.

El principio esencial de este sistema es el equilibrio. En lugar de avanzar desde el terreno hacia arriba, el puente se construye hacia los lados desde la parte superior de cada pilastra, extendiéndose en voladizo en ambas direcciones simultáneamente. Cada nuevo segmento, o dovela, se añade alternativamente en ambos sentidos, manteniendo las cargas compensadas. Así, la pila actúa como un eje de un balancín: si un lado crece, el otro debe crecer también para mantener la estabilidad.

Figura 2. Esquema del principio de la construcción por voladizos. Dibujo: V. Yepes

Cuando, por necesidades de la obra, se avanza más en un extremo que en otro, se instalan apoyos provisionales para garantizar la seguridad. Por lo general, cada ciclo constructivo permite ejecutar un par de dovelas por semana. Estas piezas se fijan a la parte ya construida mediante pretensado, tensando cables de acero internos que comprimen el hormigón y le confieren una gran resistencia.

2. Las máquinas colgantes: los carros de avance.

La construcción en voladizo es posible gracias a unas máquinas tan ingeniosas como espectaculares: los carros de avance. Estas estructuras móviles se suspenden del tablero ya construido y sirven como plataformas de trabajo desde las cuales se colocan las armaduras, el encofrado y el hormigón fresco del siguiente tramo.

Históricamente, se empleaban dos tipos: los de vigas superiores y los de vigas inferiores. Los primeros, más ligeros, tendían a deformarse bajo el peso del hormigón, lo que podía provocar fisuras en las juntas. Los segundos resolvían este problema, pero requerían tensiones de pretensado mayores. La evolución tecnológica ha llevado a los carros autoportantes, sistemas más rígidos y precisos en los que el propio encofrado actúa como estructura indeformable. En la actualidad, son auténticas fábricas colgantes que avanzan paso a paso sobre el vacío construyendo el puente del que dependen.

Figura 3. Carro de avance moderno, anclado al tablero. http://www.sten.es/encofrados/viaductos/

3. El puente no es «un» puente hasta el final.

Durante gran parte del proceso, el puente no existe como estructura continua. Cada pila soporta dos voladizos independientes que se acercan sin tocarse. Solo al final del proceso se unen mediante dos operaciones críticas. En primer lugar, se ejecuta la dovela de cierre, es decir, el segmento que une físicamente los extremos de los voladizos. Sin embargo, en ese momento, la estructura aún se comporta como dos piezas simplemente apoyadas. La verdadera transformación se produce con el tesado de continuidad: se introducen nuevos cables de acero a lo largo del eje del tablero y se tensan, de modo que el conjunto se convierte en una viga continua. Tras este paso, el puente empieza a comportarse como una unidad estructural, aunque el proceso de ajuste no termina ahí. Con el tiempo, el hormigón experimenta una redistribución lenta de esfuerzos debido a la fluencia, una deformación progresiva que lleva la estructura a su estado de equilibrio final.

4. La dovela más compleja: el punto de partida.

Aunque una pareja de dovelas estándar puede ejecutarse en una semana, la dovela 0 —la primera— requiere una atención especial. Se construye directamente sobre la pila y sirve de base para instalar los carros de avance. A diferencia del resto, no se ejecuta con el sistema en voladizo, sino mediante procedimientos convencionales en tres fases: losa inferior, almas y losa superior.

Además, incorpora riostras interiores robustas para resistir las grandes cargas iniciales. Su ejecución puede prolongarse hasta cuatro semanas, a las que hay que sumar otro mes para el montaje de los equipos auxiliares. Es un proceso lento, pero esencial para que el resto del proceso se desarrolle con rapidez y seguridad.

5. Apuntar alto para acabar recto: el arte de la contraflecha.

A medida que el tablero avanza, su propio peso hace que los voladizos tiendan a descender ligeramente. Para compensar este efecto, los ingenieros aplican una contraflecha: cada dovela se construye unos milímetros por encima de su posición final. Cuando la estructura está terminada y las cargas se equilibran, el puente alcanza la alineación horizontal perfecta.

Este ajuste requiere un control predictivo extraordinario. Hay que tener en cuenta variables como el peso de cada dovela, la posición de los carros, la magnitud del pretensado, la fluencia del hormigón, la relajación de los cables y las deformaciones diferidas. Durante toda la obra se realiza un control topográfico continuo que compara la posición real con los cálculos previstos. Si se detectan desviaciones, se corrigen en el ciclo siguiente. Gracias a esta precisión, las dos mitades del puente que avanzan desde pilas opuestas pueden encontrarse en el centro del vano perfectamente alineadas y a la cota prevista.

La ingeniería invisible que nos sostiene.

Cada gran viaducto que vemos como una estructura estática es, en realidad, el resultado de una compleja coreografía de equilibrio, maquinaria y cálculo. La construcción mediante voladizos sucesivos combina precisión geométrica, control estructural y un profundo conocimiento del comportamiento del hormigón. La próxima vez que cruces un gran puente, quizá recuerdes que, durante meses, hubo bajo tus pies una auténtica danza de ingeniería suspendida en el aire.

Os dejo esta conversación en la que se habla sobre esta técnica de construcción de puentes.

En este vídeo tenéis un resumen de las ideas básicas, explicadas de forma divulgativa.

Referencias:

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.