Pavimentos bicapa de hormigón

Los pavimentos bicapa de hormigón son una solución eficiente y duradera para las infraestructuras viales. Compuestos por una capa inferior estructural que soporta las cargas de tráfico y una capa superior de rodadura que proporciona funcionalidad y seguridad, estos pavimentos son una alternativa sostenible frente a los pavimentos monocapa. Su desarrollo se remonta a la crisis energética de los años setenta, cuando se buscaban opciones menos dependientes de materiales bituminosos, lo que impulsó la adopción de pavimentos rígidos.

El diseño de los pavimentos bicapa requiere una evaluación exhaustiva de las cargas y la selección adecuada de materiales. La capa estructural emplea hormigón de alta resistencia, mientras que la de rodadura se optimiza para garantizar su durabilidad y comodidad. Las juntas de contracción y expansión, junto con conectores de acero, garantizan la estabilidad y reducen el riesgo de grietas causadas por cambios térmicos y de carga.

El proceso de construcción implica una cuidadosa preparación de la explanada y un riguroso control de calidad en cada una de las etapas, desde el extendido y el acabado hasta el curado de la superficie. En la gestión, se presta especial atención a la regularidad superficial y a la calidad de los materiales empleados para garantizar la durabilidad y la resistencia. En cuanto a la conservación, los pavimentos bicapa requieren menos intervenciones y suponen un menor coste de mantenimiento a largo plazo.

Además, desde el punto de vista ambiental, presentan ventajas como la reducción de emisiones y un menor efecto de calor urbano debido a su reflectancia. Proyectos de demostración en España han confirmado su viabilidad y sus ventajas en términos de sostenibilidad, eficiencia y confort. La adopción de estos pavimentos, junto con una formación técnica adecuada, puede revolucionar la construcción de infraestructuras viales y proporcionar carreteras más seguras, duraderas y sostenibles.

1. Introducción a los pavimentos bicapa de hormigón

Los pavimentos de hormigón surgieron como una solución duradera para responder a la creciente demanda de carreteras resistentes y con menor necesidad de mantenimiento. Las primeras pruebas en España se realizaron a principios del siglo XX, cuando se desarrollaron técnicas innovadoras como el uso de encofrados deslizantes y hormigón armado. La crisis energética de 1973 incentivó la búsqueda de alternativas menos dependientes del petróleo, lo que impulsó el uso de pavimentos rígidos de hormigón y, con el tiempo, favoreció la aplicación de pavimentos bicapa en diversos tipos de vías.

Los pavimentos bicapa de hormigón están compuestos por dos capas diferenciadas: una capa inferior o estructural, destinada a soportar las cargas principales del tráfico, y una capa superior o de rodadura, que proporciona una superficie de contacto segura, duradera y cómoda para el tráfico de vehículos. Este diseño bicapa ofrece ventajas significativas, como una mayor durabilidad, un mejor desempeño acústico y propiedades superficiales específicas, como resistencia a la abrasión y mayor reflectancia, lo que contribuye al confort y la seguridad en las vías.

Los pavimentos bicapa de hormigón presentan varias ventajas frente a los monocapa, entre las que destaca su sostenibilidad, ya que reducen la necesidad de reposiciones frecuentes y, por tanto, disminuyen el uso de recursos materiales y energéticos a largo plazo. Además, ofrecen un mayor confort y seguridad gracias a sus mejores acabados superficiales, mayor regularidad y menor sonoridad. Aunque la inversión inicial es mayor, los costes de mantenimiento y funcionamiento se reducen significativamente, por lo que resultan más rentables a largo plazo.

En España no se han llevado a cabo experiencias significativas con pavimentos de hormigón bicapa construidos con dos tipos de hormigón diferentes adaptados a las características requeridas para cada capa. Sin embargo, la Instrucción Española 6.1-IC sobre secciones de firmes y el PG-3 permiten esta opción. Es importante destacar que el procedimiento constructivo es exigente y requiere la duplicación de los equipos de extendido y de las centrales de hormigón preparado.

2. Bases teóricas del diseño de pavimentos bicapa

El diseño estructural de pavimentos bicapa se basa en la evaluación de cargas y en el análisis de las exigencias del tráfico pesado para estimar el espesor y la resistencia necesarios en la capa inferior. También se tiene en cuenta la distribución de la presión a lo largo de la estructura para garantizar la integridad del pavimento con el paso del tiempo. La capa estructural asume la carga del tráfico, mientras que la capa de rodadura protege el hormigón de base y facilita una conducción suave. Para ello, se calculan los esfuerzos de tensión y compresión en ambas capas mediante modelos de elasticidad y resistencia estructural.

Para la selección de materiales en pavimentos bicapa, se recomienda utilizar hormigón de alta resistencia para la capa inferior, que debe tener bajo contenido de aire, buena cohesión y agregados gruesos y uniformes que maximicen la resistencia estructural. En cuanto a la capa superior o de rodadura, es importante emplear un hormigón con características específicas de textura superficial y reflectancia. También se puede añadir un aditivo polímero si es necesario mejorar la resistencia a la abrasión o hacer frente a condiciones climáticas extremas.

En el diseño de pavimentos bicapa, los aspectos clave incluyen la clasificación del tráfico, ya que identificar el tipo e intensidad del mismo permite determinar la resistencia necesaria para ambas capas. Se recomienda un diseño más robusto en vías de alto tráfico para evitar el desgaste prematuro. Además, es fundamental verificar la estabilidad de la explanada, ya que es necesario garantizar su capacidad de soporte mediante pruebas del módulo de compresibilidad y de deflexión patrón. Por último, el diseño de juntas es esencial para permitir la dilatación y prevenir agrietamientos, para lo cual hay que calcular la disposición de juntas de contracción y expansión, así como juntas longitudinales y transversales, en función de las tensiones térmicas y de carga en cada segmento de pavimento.

3. Proceso de construcción del pavimento bicapa

Los pavimentos de hormigón pueden ejecutarse en dos capas. Se coloca una capa de rodadura de hormigón de pequeño espesor (entre 4 y 5 cm) sobre otra capa de hormigón que se extiende junto con la anterior para que funcionen como una sola capa, creando así el pavimento descrito. Esto permite utilizar áridos de peor calidad en la capa inferior y reservar los de mayor calidad para la capa de rodadura, que debe cumplir estrictas exigencias de resistencia al desgaste y al pulimento. También es posible limitar la disminución del tamaño máximo del árido en la capa superior, lo que da como resultado un pavimento menos ruidoso (aunque requiere una mayor cantidad de cemento).

Las etapas de construcción de pavimentos bicapa comienzan con la preparación de la explanada, donde se debe nivelar y compactar el suelo de apoyo para recibir la capa estructural de hormigón, lo que puede incluir una capa de regularización para corregir cualquier irregularidad del terreno. A continuación, se extiende el hormigón de la capa estructural mediante un proceso de nivelación mecánica, para lo que se utilizan vibradores y rodillos compactadores con el fin de lograr una densificación adecuada que asegure una buena cohesión y resistencia. Finalmente, se aplica la capa de rodadura de manera continua sobre la capa inferior para evitar la formación de juntas frías y mejorar la durabilidad del pavimento.

La instalación de juntas y conectores es esencial para la durabilidad de los pavimentos bicapa, ya que las juntas de contracción y expansión previenen las grietas causadas por movimientos térmicos y de carga, mientras que los conectores de acero, como barras de atado y pasadores, facilitan la transferencia de carga entre las losas y garantizan la alineación estructural. Además, en las áreas de transición, como los carriles de desaceleración o la conexión con puentes, se utilizan sistemas de transición que minimizan las discontinuidades entre los diferentes tipos de pavimentos, mejorando la continuidad y el rendimiento general del sistema.

El proceso de curado y acabado en la construcción de pavimentos bicapa incluye la aplicación de inhibidores de fraguado y curado, que consisten en un curador químico destinado a evitar la evaporación del agua y asegurar un fraguado controlado, lo que reduce la formación de fisuras y aumenta la durabilidad del pavimento. Además, se realiza un acabado de la superficie mediante equipos especializados que ajustan la textura y la regularidad, eliminando cualquier irregularidad y garantizando así la seguridad y el confort del usuario.

4. Gestión de calidad en la construcción

El control de calidad de los materiales empleados en la construcción de pavimentos bicapa incluye la realización de pruebas de calidad del hormigón en fábrica, donde se verifica que cumpla con las especificaciones de resistencia y durabilidad mediante el análisis de la resistencia a la compresión y el contenido de aire. Además, se lleva a cabo un riguroso control de los componentes de las juntas para garantizar que los materiales de sellado y las barras de conexión cumplan con las normas específicas de elasticidad y resistencia, lo que es crucial para la integridad y funcionalidad del pavimento.

El control de la ejecución y el acabado en la construcción de pavimentos bicapa incluye la verificación de la alineación y el espesor de las capas, lo que es fundamental para garantizar que se coloquen según las especificaciones diseñadas y asegurar así la durabilidad y resistencia del pavimento. Además, se utilizan equipos de perfilometría para medir la rugosidad y la regularidad de la superficie, lo que permite ajustar la textura superficial con el fin de reducir el ruido y mejorar la tracción, lo que contribuye a un mejor rendimiento y seguridad en las vías.

5. Conservación y mantenimiento de pavimentos bicapa

La gestión de la conservación de pavimentos bicapa se basa en estrategias de conservación preventiva y correctiva que incluyen el control de las condiciones y el mantenimiento periódico. Un plan preventivo puede contemplar aplicaciones de sellado para evitar la entrada de agua en las juntas y reducir el desgaste. Además, se utilizan bases de datos y sistemas de gestión para registrar el estado del pavimento, lo que facilita el seguimiento y la planificación de intervenciones futuras, y asegura la prolongación de su vida útil.

Las intervenciones y renovaciones en pavimentos bicapa abarcan el mantenimiento superficial y la reparación de juntas, lo que incluye el sellado de juntas y la reparación de grietas superficiales. En casos de desgaste significativo, se puede aplicar una nueva capa de rodadura. Además, en situaciones en las que el pavimento estructural haya fallado, puede ser necesario realizar un refuerzo o incluso una rehabilitación completa del mismo. Estas intervenciones se planifican cuidadosamente para minimizar la afectación al tráfico, garantizando así la seguridad y la funcionalidad de la vía.

6. Sostenibilidad y análisis ambiental

La evaluación de impacto ambiental de los pavimentos bicapa destaca su eficiencia energética, ya que reducen la dependencia de materiales bituminosos y, por tanto, disminuyen las emisiones de gases durante su producción y transporte. Además, su capacidad de reflectancia contribuye a reducir la temperatura en entornos urbanos, lo que ayuda a mitigar el fenómeno de las islas de calor y a promover un ambiente más sostenible y saludable.

Los aspectos económicos y sociales de los pavimentos bicapa reflejan una relación coste-beneficio a largo plazo, ya que, aunque su coste inicial es más elevado, su durabilidad y sus bajos requerimientos de mantenimiento pueden generar ahorros significativos con el tiempo. Además, la calidad de la superficie de rodadura ofrece un mayor confort y seguridad para el usuario, ya que proporciona una experiencia de conducción más cómoda, con un menor riesgo de deslizamientos y una mayor resistencia al frenado. Esto contribuye a la seguridad vial en general.

7. Conclusiones

En conclusión, la adopción de pavimentos bicapa ofrece numerosas ventajas, como la construcción de carreteras más sostenibles y la reducción de costes operativos a largo plazo. Para futuros proyectos, se recomienda fomentar la formación de ingenieros y técnicos en esta tecnología, así como llevar a cabo estudios piloto en regiones donde el pavimento bicapa aún no se ha implementado ampliamente, lo que facilitaría su adopción y contribuiría a la mejora de la infraestructura vial.

A continuación, os dejo un vídeo de IECA sobre la construcción de un pavimento bicapa de hormigón con terminación de árido visto en un tramo de la autovía C-17, en Barcelona. Espero que os guste.

Referencias:

AGUADO, A.; CARRASCÓN, S.; CAVALARO, S.; PUIG, I.; SENÉS, C. (2010). Manual para el proyecto, construcción y gestión de pavimentos bicapa de hormigón. Universitat Politècnica de Catalunya, 204 pp.

Curso:

Curso de fabricación y puesta en obra del hormigón.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los sistemas de pretensado en las estructuras de hormigón

Figura 1. Viga postesada. https://prodac.pe/edificaciones/soluciones-para-la-industria-de-prefabricados/alambre-pretensado/

El pretensado es una técnica que aumenta la capacidad del hormigón para soportar cargas al someterlo previamente a esfuerzos de compresión. Esta técnica crea una resistencia adicional a los esfuerzos de tracción, lo que permite construir estructuras más resistentes y duraderas. Se utiliza ampliamente en la construcción de puentes, vigas, losas y otros elementos sometidos a cargas significativas, tanto en estructuras prefabricadas como en construcciones in situ.

En esencia, el sistema de pretensado consiste en instalar y tensar armaduras activas, como cables, alambres o cordones de acero de alta resistencia, dentro del hormigón antes de que este se someta a las cargas de servicio. Al tensar estas armaduras, se generan fuerzas internas que comprimen el hormigón y contrarrestan las fuerzas externas a las que estará sometido. De esta manera, el hormigón precomprimido es más efectivo para soportar tensiones, lo que previene problemas como las fisuras y mejora la estabilidad de la estructura.

El proceso comienza con la elección de las armaduras activas y el almacenamiento adecuado del acero para protegerlo de la corrosión y la contaminación. A continuación, se colocan y tesan las armaduras, para lo que se utilizan equipos especializados, como enfiladoras, gatos hidráulicos y centrales de presión. Estos equipos permiten tensar las armaduras de forma controlada y precisa, y aseguran que se logren los niveles de tensión adecuados según el diseño estructural.

Los anclajes cumplen una función fundamental, ya que fijan los extremos de las armaduras tensadas al hormigón y aseguran la transmisión de las fuerzas de compresión. Existen dos tipos de anclajes: activos o móviles, que se colocan en el extremo de tensado, y pasivos o fijos, situados en el extremo opuesto. Los empalmes permiten extender los tendones cuando la estructura lo requiere y garantizan la continuidad y la alineación. Por su parte, los conectadores permiten aplicar tensión en puntos intermedios de tendones cerrados o de acceso limitado.

Las vainas son otros componentes esenciales del sistema, ya que alojan los tendones en el hormigón y permiten inyectar adecuadamente materiales adherentes o protectores. Los productos de inyección, como lechadas de cemento para sistemas adherentes, betunes y grasas para sistemas no adherentes, protegen los tendones contra la corrosión y aumentan la adherencia en el caso de los sistemas adherentes. Esto es esencial para garantizar la durabilidad y eficacia del pretensado.

El sistema de pretensado es muy eficiente, pero requiere precisión en su ejecución y un control estricto de la calidad, ya que cualquier fallo en el tensado o en los materiales puede afectar a la integridad estructural del proyecto. Si se implementa adecuadamente, el pretensado permite construir estructuras seguras y resistentes que maximizan las ventajas del hormigón y lo convierten en un material adecuado para una amplia gama de aplicaciones de ingeniería.

Introducción a los sistemas de pretensado

El pretensado es una técnica avanzada de construcción que consiste en aplicar esfuerzos de compresión al hormigón antes de que el elemento estructural soporte su carga de servicio, con el fin de mejorar su resistencia. En este método, se induce una compresión interna en el hormigón, lo que permite que la estructura soporte mejor los esfuerzos de tracción y aumente su capacidad para resistir cargas elevadas y deformaciones excesivas. Este sistema, ampliamente utilizado en proyectos de construcción como puentes, edificios de gran altura, cubiertas y elementos prefabricados, se basa en el uso de armaduras activas, normalmente de acero, que se tensan y anclan en el interior de la estructura para transferir la fuerza de compresión al hormigón.

En este artículo se describen en detalle los distintos elementos y equipos que intervienen en los sistemas de pretensado. Cada componente, desde los tendones y los anclajes hasta las vainas y los equipos de tesado, cumple una función específica en el éxito del sistema de pretensado y en la calidad final de la estructura de hormigón.

1. Armaduras activas: suministro y almacenamiento

Las armaduras activas son el componente principal del sistema de pretensado y están fabricadas principalmente con acero de alta resistencia. Estas armaduras se tensan previamente para introducir esfuerzos de compresión en el hormigón, lo que aumenta su capacidad para soportar tracciones sin agrietarse ni sufrir otras deformaciones no deseadas.

1.1 Tipos de armaduras activas

  • Alambres: suelen entregarse en rollos y su diámetro de bobinado no debe ser inferior a 250 veces el diámetro del alambre para evitar deformaciones.
  • Barras: se entregan en tramos rectos, lo que garantiza su resistencia y evita daños durante el transporte.
  • Cordones: existen cordones de 2, 3 o 7 alambres, que se utilizan según el diseño estructural y los requisitos de carga. Los cordones de 2 o 3 alambres se entregan en rollos con un diámetro mínimo de 600 mm, mientras que los de 7 alambres se suministran en bobinas o carretes de 750 mm de diámetro interior o mayor.
Figura 2. Unidades de anclaje de 3 y 5 cordones en forjado postesado. http://www.freyssinet.es/freyssinet/wfreyssinetsa_sp.nsf/sb/soluciones.construccion..pretensado-(cordones)

1.2 Requerimientos de suministro

Para que las armaduras activas mantengan sus propiedades mecánicas y estén protegidas contra factores externos, deben almacenarse y transportarse siguiendo unas medidas específicas. El acero debe protegerse de la humedad y de la contaminación por polvo, grasas y otros agentes que puedan alterar su comportamiento estructural.

1.3 Almacenamiento de armaduras activas

El almacenamiento de las armaduras es esencial para garantizar su durabilidad y su correcto funcionamiento en la obra. Las principales recomendaciones son las siguientes:

  • Ventilación adecuada: las armaduras deben almacenarse en locales ventilados, lejos de la humedad del suelo y las paredes.
  • Clasificación y limpieza: es importante que las armaduras estén libres de grasa, aceite, polvo u otras materias que puedan afectar a su adherencia. También deben clasificarse por tipo y lote.
  • Inspección de la superficie: antes de ser utilizadas, las armaduras deben inspeccionarse para detectar cualquier deterioro en la superficie, y garantizar que cumplen las condiciones de uso.

2. Sistemas de pretensado: componentes y función de los elementos

Un sistema de pretensado es un conjunto de elementos estructurales y dispositivos especializados diseñados para aplicar y mantener la tensión en las armaduras activas y transmitirla de forma segura y eficiente al hormigón.

2.1 Componentes principales del sistema de pretensado

Los principales elementos del sistema de pretensado son los anclajes, los empalmes, los conectadores y las vainas. Estos componentes cumplen funciones específicas, como asegurar los tendones, extender su longitud o permitir la transmisión uniforme de fuerzas.

  • Los anclajes son dispositivos esenciales en los sistemas de pretensado, ya que aseguran los tendones y transmiten las fuerzas de tensión al hormigón. Existen dos tipos principales de anclajes: el anclaje activo o móvil, que está situado en el extremo del tendón por donde se aplica la tensión, y el anclaje pasivo o fijo, que está situado en el extremo opuesto del tendón, donde no se aplica tensión. Este tipo de anclaje permite que los cables de acero se tensen según el diseño estructural y soporten las fuerzas aplicadas. El otro tipo de anclaje es el pasivo o fijo, que está situado en el extremo opuesto del tendón, donde no se aplica tensión. Este anclaje asegura la estabilidad del tendón y permite que el esfuerzo de compresión se transmita eficazmente al hormigón. Dentro de estos tipos, destacan varios modelos de anclaje adaptados a diferentes necesidades y geometrías, como los anclajes activos tipo L y los anclajes pasivos tipo S, que se emplean en vigas y elementos lineales. Cada anclaje está diseñado para resistir esfuerzos específicos y asegurar una adecuada transmisión de fuerzas al hormigón.
  • Los empalmes son elementos que dan continuidad a los tendones cuando estos requieren extensiones adicionales debido al tamaño del proyecto o al método de construcción. Los empalmes se clasifican en: empalme fijo, que mantiene los tendones en posición fija y asegura su continuidad sin movimientos adicionales, y empalme móvil, que permite cierta movilidad a los tendones, facilita el alineado de las armaduras y reduce los esfuerzos durante el tensado. Ambos tipos de empalme son esenciales para estructuras de grandes dimensiones y en casos en que el tendón debe dividirse en varias secciones.
  • Los conectadores permiten aplicar tensión en puntos intermedios o en elementos cerrados (como tuberías o silos) a los que es difícil acceder por sus extremos. Estos conectadores proporcionan puntos adicionales de anclaje en estructuras grandes o con geometrías complejas y aseguran la transferencia uniforme de las fuerzas.

    Figura 3. Selección del tipo de anclaje o conector a utilizar en el hormigón pretensado

2.2 Elementos de aseguramiento y distribución

También existen elementos auxiliares que colaboran en la distribución uniforme de las fuerzas y la fijación de las armaduras activas en el sistema de pretensado:

  • Cuñas: estas piezas metálicas fijan los extremos de las armaduras activas en las placas de anclaje.
  • Placas de anclaje: placas perforadas con forma cónica donde se alojan las cuñas, lo que permite sujetar el tendón de manera efectiva.
  • Placas de reparto: dispositivos situados entre la placa de anclaje y el hormigón que distribuyen las fuerzas en la zona de contacto y evitan sobrecargas.
  • Trompetas de empalme: estas piezas, troncocónicas o cónicas, enlazan las placas de anclaje con las vainas y facilitan la transferencia de tensión en las armaduras activas.

 

Figura 4. Placa de anclaje.De Störfix – Fotografía propia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=296999

3. Vainas y accesorios

Las vainas son conductos de pretensado que albergan los tendones en su interior. Estos conductos pueden estar fabricados de metal, plástico u otros materiales, y son esenciales para proteger y guiar las armaduras postesas en el interior del hormigón, evitando así el contacto directo con este y facilitando el proceso de inyección.

3.1 Vainas metálicas

Las vainas metálicas son las más comunes, especialmente por su resistencia al aplastamiento y su capacidad para soportar el peso del hormigón fresco. Además, la superficie corrugada de las vainas mejora la adherencia con el hormigón y su rigidez estructural. Las características principales de las vainas metálicas son las siguientes:

  • Resistencia mecánica: deben ser suficientemente robustas para soportar el peso y la presión del hormigón fresco sin deformarse.
  • Estanqueidad: las vainas deben ser herméticas para evitar la infiltración de agua o lechada de cemento en su interior y mantener las armaduras activas protegidas.
  • Diámetro adecuado: el diámetro interno de la vaina debe ser el apropiado para permitir una inyección eficaz del producto inyectado y asegurar una cobertura uniforme alrededor de los tendones.

3.2 Otros accesorios en vainas

  • Separadores: piezas que ayudan a distribuir las armaduras activas dentro de las vainas y aseguran una distancia y una alineación uniformes.
  • Tubo matriz: tubo flexible, generalmente de polietileno, que se coloca dentro de la vaina para suavizar el trazado y evitar tensiones no deseadas en las armaduras.

3.3 Tubos de purga

Los tubos de purga o respiraderos son pequeñas piezas que se colocan en los puntos altos y bajos del trazado de las vainas. Estos tubos permiten la evacuación del aire y del agua durante el proceso de inyección, lo que asegura que no queden huecos y que el producto inyectado cubra toda el área interna.

4. Equipos para enfilado, tesado e inyección

La tecnología de pretensado requiere equipos especializados que faciliten el enfilado de los tendones, la aplicación de tensión y la inyección de materiales protectores en los conductos. Los equipos esenciales son las enfiladoras, los gatos hidráulicos, las centrales de presión y los equipos auxiliares de manipulación.

  • Enfiladoras: son máquinas diseñadas para colocar los tendones dentro de las vainas de pretensado mediante un sistema de empuje o estirado, según el diseño de la estructura. Estas máquinas garantizan que los tendones estén correctamente alineados antes de aplicar la tensión.
  • Gatos hidráulicos: Los gatos son dispositivos hidráulicos que permiten el tesado de los tendones a una fuerza precisa y controlada. Se utilizan en combinación con cuñas para mantener la tensión en los extremos anclados y asegurar que la fuerza de pretensado se transmita de forma uniforme al hormigón.
  • Centrales de presión: las centrales de presión controlan los gatos hidráulicos mediante válvulas reguladoras y circuitos eléctricos que permiten ajustar la presión aplicada con precisión. Estos sistemas incluyen manómetros o dinamómetros para garantizar que la presión de tesado cumpla con los requisitos especificados en el proyecto.
  • Equipos auxiliares: Los equipos auxiliares incluyen grúas y otros medios de manipulación que facilitan el posicionamiento de los gatos, las vainas y las armaduras activas. Son especialmente útiles en obras de gran envergadura, donde el peso y el tamaño de los elementos dificultan su instalación manual.

5. Productos de inyección

La inyección de materiales dentro de las vainas es fundamental para proteger las armaduras activas y mejorar la adherencia entre el tendón y el hormigón. Existen dos tipos principales de productos de inyección:

  • Inyecciones adherentes: consisten en lechadas o morteros de cemento que llenan los conductos de las vainas y mejoran la unión entre el tendón y el hormigón. Algunas características esenciales de estos productos son:

— Uso de cemento Portland CEM-I, que asegura una buena adherencia y resistencia mecánica.
— Aditivos que permiten modificar las propiedades de la lechada para mejorar la protección de las armaduras.
— Relación agua/cemento baja (entre 0,38 y 0,43) para lograr una mayor resistencia a la compresión y una baja porosidad.

  • Inyecciones no adherentes: los productos de inyección no adherentes, como los betunes, mástiques bituminosos y grasas solubles, protegen las armaduras contra la corrosión sin generar adherencia con el hormigón. Son adecuados para estructuras donde se requiere flexibilidad en los tendones y una menor adherencia al hormigón.

Para aplicar los productos de inyección se utilizan equipos de mezcla e inyección que aseguran la preparación y la distribución uniforme del material dentro de las vainas. Estos equipos deben disponer de sistemas de control de calidad que permitan ajustar la mezcla y supervisar su aplicación durante el proceso de inyección.

Conclusión

Los sistemas de pretensado en hormigón son una solución técnica que aumenta la resistencia y durabilidad de las estructuras. Desde el suministro y almacenamiento de las armaduras activas hasta el tesado y la inyección, cada componente del sistema es crucial para el éxito de la estructura. Estos sistemas no solo aumentan la capacidad del hormigón para resistir esfuerzos de tracción, sino que también contribuyen a reducir el riesgo de deformaciones y a mejorar la calidad estructural general de las obras de ingeniería.

Os dejo algunos vídeos, que espero sean de vuestro interés.

Curso:

Curso de fabricación y puesta en obra del hormigón.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Predimensionamiento óptimo de tableros de puentes losa pretensados aligerados

Figura 1. Vista aérea de paso superior. Google Maps.

El artículo de investigación presentado en el 28th International Congress on Project Management and Engineering por los autores Yepes-Bellver, Martínez-Pagán, Alcalá, y Yepes es un análisis integral del predimensionamiento de los tableros de puentes losa pretensados aligerados.

Este informe detalla su importancia y sugiere mejoras en el diseño estructural mediante la optimización con métodos avanzados como el modelo Kriging y algoritmos de optimización heurística.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

1. Contexto del empleo de los puentes losa pretensados aligerados

Los puentes de losa pretensada son fundamentales en las infraestructuras de carreteras y vías ferroviarias debido a su capacidad para cubrir luces de entre 10 y 45 metros, lo que los hace más resistentes, duraderos y adaptables a distintos diseños geométricos. El coste de estos puentes suele representar entre un 5 % y un 15 % de los gastos totales de una infraestructura de transporte. Además, los puentes losa ofrecen una mayor flexibilidad y una apariencia estética superior, ya que eliminan las juntas de calzada, lo que mejora la comodidad y reduce el desgaste del tablero al tráfico.

Principales ventajas de los puentes losa pretensados:

  • Resistencia y durabilidad: estos puentes ofrecen una alta resistencia a la torsión y la flexión, por lo que son ideales para soportar cargas variables y condiciones climáticas adversas.
  • Versatilidad en el diseño: gracias a su construcción in situ, es posible adaptarlos a terrenos irregulares o a condiciones complejas, como curvas pronunciadas y anchos variados, lo que permite construirlos con rasantes bajas.
  • Ahorro de materiales y costes: Al diseñarse sin juntas y con posibilidades de aligeramiento, su mantenimiento resulta menos costoso en comparación con otras tipologías.

2. Predimensionamiento y limitaciones en los métodos actuales

El predimensionamiento es esencial en la fase preliminar del diseño de puentes con losas pretensadas. Tradicionalmente, los ingenieros utilizan reglas empíricas basadas en la experiencia para definir parámetros geométricos iniciales, como el espesor de la losa, la relación entre el canto y la luz y la cantidad de armadura activa y pasiva. Sin embargo, estos métodos tradicionales tienen limitaciones en cuanto a eficiencia y sostenibilidad, ya que no optimizan el uso de materiales ni reducen el impacto ambiental.

Desventajas de los métodos convencionales de predimensionamiento:

  • Rigidez en el diseño: los métodos empíricos pueden ser inflexibles, lo que limita las opciones de diseño y hace que la estructura no se adapte eficientemente a los criterios de optimización moderna.
  • Ineficiencia económica y ambiental: al no tener en cuenta factores de sostenibilidad y costes, estos métodos pueden provocar un uso excesivo de materiales, lo que aumenta la huella de carbono y el consumo energético.

3. Propuesta de optimización con modelos Kriging y metaheurísticas

La propuesta de los investigadores consiste en aplicar una optimización bifase mediante modelos Kriging combinados con el recocido simulado, un algoritmo heurístico. Esta técnica permite reducir el tiempo de cómputo en comparación con los métodos de optimización tradicionales sin perder precisión. La optimización se centra en tres objetivos clave:

  • Minimización del coste
  • Reducción de emisiones de CO₂
  • Disminución del consumo energético

El Kriging, un tipo de metamodelo, facilita la interpolación de datos en una muestra determinada, lo que permite que los valores estimados sean predictivos y evite el alto coste computacional que conllevan las simulaciones estructurales completas. Para implementar esta técnica, se usa un muestreo de hipercubo latino (LHS), que permite generar variaciones en el diseño inicial de los puentes y proporciona una base sobre la que se aplica el modelo Kriging para ajustar las alternativas optimizadas de diseño.

4. Resultados y comparación con diseños convencionales

A continuación, se exponen los principales hallazgos del estudio, basados en la optimización de puentes reales y en la comparación con métodos empíricos:

  • Esbeltez y espesor de la losa: la investigación recomienda que aumentar la relación entre el canto y la luz mejora la sostenibilidad del diseño. Los puentes optimizados presentan relaciones de hasta 1/30, en comparación con el rango usual de 1/22 a 1/25.
  • Volumen de hormigón y armaduras: los resultados muestran una disminución del volumen de hormigón y del número de armaduras activas necesarias, mientras que aumenta el número de armaduras pasivas. Este ajuste permite reducir tanto el coste como las emisiones.
  • Uso de materiales de construcción: se recomienda el uso de hormigón de resistencia entre 35 y 40 MPa para obtener una combinación óptima entre coste y sostenibilidad. La cantidad de aligeramientos interiores y exteriores también contribuye significativamente a la reducción del peso total sin comprometer la resistencia.

Comparativa de materiales:

  • Cuantía de hormigón: entre 0,55 y 0,70 m³ por m² de losa. La optimización reduce el consumo a 0,60 m³ para puentes económicos y a 0,55 m³ para priorizar la reducción de emisiones.
  • Armadura activa: la cantidad recomendada es inferior a 17 kg/m² de tablero. Esto representa una reducción significativa en comparación con los diseños tradicionales, que promedian alrededor de 22,64 kg/m².
  • Armadura pasiva: se debe aumentar la cuantía hasta 125 kg/m³ para proyectos de alta sostenibilidad, en contraste con los valores convencionales.

5. Herramientas prácticas para los proyectistas: nomogramas para el predimensionamiento

Uno de los aportes más valiosos del estudio es la creación de nomogramas que permiten a los ingenieros realizar predimensionamientos precisos con un mínimo de datos. Los nomogramas se desarrollaron mediante modelos de regresión múltiple y ofrecen una forma rápida de estimar:

  • La cantidad de hormigón necesaria.
  • El espesor de la losa.
  • La armadura activa en función de la luz del puente y los aligeramientos aplicados.

Estos nomogramas son útiles en las primeras fases de diseño, ya que permiten obtener valores cercanos a los óptimos de manera rápida y eficiente. Los gráficos incluyen secuencias de cálculo específicas con ejemplos de puentes con luces de 34 m y aligeramientos medios (interior de 0,20 m³/m² y exterior de 0,40 m³/m²), lo que facilita un proceso de diseño preliminar que cumple con criterios de sostenibilidad.

Figura 2. Nomograma para estimar el canto del tablero (m). Fuente: Yepes-Bellver et al. (2024)

6. Recomendaciones para el diseño sostenible de puentes losa pretensados aligerados

Basándose en los resultados de optimización, el estudio recomienda ajustar ciertos parámetros de diseño para mejorar la sostenibilidad y reducir los costes:

  • Aumento de la relación canto/luz: se debe aumentar la relación a 1/26 o incluso 1/30 para conseguir diseños sostenibles.
  • Reducción del hormigón utilizado: limitar el uso de hormigón a 0,60 m³/m², o menos si la prioridad es reducir las emisiones.
    Cuantía de armaduras: para la armadura pasiva, se recomienda un mínimo de 125 kg/m³, mientras que la armadura activa debe reducirse a 15 kg/m² de losa.
    Aligeramientos amplios: utilizar aligeramientos significativos (interior de 0,20 m³/m² y exterior de 0,50 m³/m²) para reducir el peso estructural y minimizar el material empleado.

7. Conclusión: innovación en el diseño de infraestructuras sostenibles

El uso de modelos predictivos, como el Kriging, y de técnicas de optimización avanzada en el diseño de puentes supone un gran avance hacia la construcción de infraestructuras sostenibles y eficientes. Estos métodos permiten reducir costes y minimizar el impacto ambiental, dos factores críticos en la ingeniería moderna. Al promover estos enfoques, la investigación allana el camino hacia políticas de infraestructura más responsables y sostenibles, un objetivo alineado con los Objetivos de Desarrollo Sostenible (ODS).

8. Perspectivas futuras: expansión de la metodología de optimización

Los autores proponen continuar esta línea de investigación aplicando el modelo Kriging y otros metamodelos a diversas estructuras de ingeniería civil, como marcos de carretera, muros de contención y otros tipos de puentes. Esta expansión podría sentar las bases para nuevos estándares en el diseño de infraestructuras sostenibles.

Este estudio se presenta como una herramienta esencial para ingenieros y proyectistas interesados en mejorar el diseño estructural mediante métodos modernos de optimización, ya que ofrece un enfoque práctico y avanzado para lograr una ingeniería civil más sostenible.

Os dejo la presentación que se hizo en el congreso:

Como está publicado en abierto, os dejo la comunicación completa a continuación:

Descargar (PDF, 1.98MB)

Referencia:

YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P.; ALCALÁ, J.; YEPES, V. (2024). Análisis del predimensionamiento de tableros óptimos de puentes losa pretensados aligerados y su incidencia en el proyecto estructural. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain), pp. 407-419. DOI:10.61547/2402010

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Prefabricados de hormigón: Procesos, tecnologías y ventajas de los métodos modernos de construcción

Figura 1. Planta de prefabricados de hormigón. https://www.prilhofer.com/aumento-de-la-eficiencia-en-la-produccion-de-prefabricados-de-hormigon

La prefabricación de hormigón ha revolucionado el sector de la construcción al ofrecer soluciones eficientes, duraderas y con un alto nivel de personalización. Al permitir la fabricación en serie de elementos estructurales y ornamentales fuera del lugar de la obra, este método optimiza tanto los tiempos de ejecución como los costes. A lo largo de este artículo, resumiremos las etapas, instalaciones y tecnologías utilizadas en la fabricación de elementos prefabricados de hormigón, así como en los aspectos de automatización y control de calidad que aseguran la precisión y la eficiencia en cada pieza.

1. ¿Qué es la prefabricación de hormigón y cuáles son sus ventajas?

La prefabricación de hormigón consiste en producir elementos en plantas especializadas, fuera de su ubicación final, lo que permite un control exhaustivo de las condiciones de fabricación y garantiza una calidad uniforme. Este enfoque implica la creación de piezas que, tras su transporte y montaje en la obra, conforman total o parcialmente la estructura de edificios, puentes, pavimentos, etc.

Las principales ventajas de la prefabricación son las siguientes:

  • Reducción de tiempos de obra: Los prefabricados se fabrican en paralelo a otros trabajos en obra, reduciendo la duración total del proyecto.
  • Alta calidad y durabilidad: El control exhaustivo en planta permite obtener acabados uniformes y una resistencia elevada, incluso en condiciones ambientales desfavorables.
  • Sostenibilidad: Al reducir los residuos de obra y aprovechar eficientemente los materiales, la prefabricación se alinea con prácticas sostenibles.
  • Versatilidad de diseño: La fabricación en planta permite producir elementos con diferentes formas, texturas y colores, lo que aumenta las posibilidades arquitectónicas.
Figura 2. Principales ventajas de la prefabricación

2. Las plantas de prefabricados de hormigón: Configuración y logística

La planta es el corazón del proceso de prefabricación. Su ubicación y configuración son decisiones clave que influyen en la eficiencia y la viabilidad económica del proyecto. Una planta típica incluye zonas de almacenamiento de materias primas, áreas de dosificación y mezclado, espacios de moldeo y compactación, y cámaras de curado, además de áreas de logística y almacenamiento final.

La ubicación de la planta depende de varios factores estratégicos:

  • Proximidad al mercado: La planta debe estar cerca de la zona de influencia para minimizar los costos de transporte.
  • Distancia a los proveedores: El acceso a materiales básicos como cemento, áridos y acero afecta la competitividad.
  • Infraestructuras y vías de transporte: La cercanía a carreteras o ferrocarriles facilita el envío de elementos a obra.
  • Condiciones climáticas: En zonas con clima extremo, la prefabricación reduce los riesgos y retrasos en obra, siendo especialmente útil en países con estaciones frías.
Figura
Figura 3. Fabricación de viguetas de hormigón pretensado. http://preforsa.es/

3. Materias primas y su almacenamiento

La calidad de los prefabricados de hormigón depende de la cuidadosa gestión de sus materias primas, que incluyen cemento, áridos, aditivos y agua.

  • Cemento: Se almacena en silos cerrados para protegerlo de la humedad y el polvo ambiental. Generalmente, se emplean varios tipos de cemento, cada uno almacenado de forma separada para evitar mezclas accidentales.
  • Áridos: Se clasifican y almacenan por granulometrías (arena, gravilla, grava) en depósitos separados y protegidos de la contaminación y el agua. Este cuidado es esencial, ya que la humedad afecta directamente a la durabilidad del hormigón.
  • Aditivos: Los aditivos pueden ser pulverulentos o líquidos y se almacenan en condiciones específicas. Los pulverulentos se guardan en recipientes impermeables, mientras que los líquidos se conservan en garrafas protegidas de heladas para mantener sus propiedades.
  • Agua: En muchas plantas, el agua proviene de redes de suministro locales, aunque también se usan sistemas de reutilización de agua de lluvia o de limpieza de moldes para reducir el consumo.

4. Procesos de fabricación: Dosificación, mezclado y vertido

La dosificación y mezcla de los componentes son fases críticas para obtener un hormigón homogéneo. Las plantas modernas utilizan amasadoras automáticas de alta precisión que ajustan las proporciones de los materiales según las especificaciones del proyecto. El agua y los aditivos se miden con cuidado, y se emplean medidores de humedad en los áridos para asegurar la consistencia y evitar errores.

  • Control de humedad: Los medidores de humedad ayudan a ajustar la cantidad de agua en la mezcla, fundamental para alcanzar la resistencia y durabilidad requeridas.
  • Amasadoras: Existen amasadoras de doble eje horizontal y planetarias, que garantizan un mezclado homogéneo en un tiempo mínimo, optimizando el uso de materiales y evitando la segregación de los componentes.

Una vez obtenida la mezcla, el hormigón se vierte en moldes que definirán las dimensiones y los acabados del prefabricado. Los moldes, que generalmente son de acero, deben soportar la presión del hormigón y garantizar un desmoldeado fácil.

  • Compactación: El hormigón se compacta mediante vibración para eliminar las bolsas de aire y lograr una densidad uniforme. En algunos casos, se utiliza hormigón autocompactante que elimina la necesidad de vibración.
  • Tipos de moldes: Los moldes metálicos son ideales para prefabricados estructurales, mientras que los moldes de plástico o materiales desechables se emplean para elementos ornamentales.

El hormigón se vierte en los moldes con dispositivos como cubilotes, cubas aéreas o incluso mangueras en sistemas automatizados. Estas herramientas distribuyen el hormigón por la planta, manteniendo un flujo constante y reduciendo los tiempos de ciclo. La correcta dosificación y el vertido garantizan que cada elemento cumpla con los estándares de calidad y consistencia requeridos.

Figura 4. Mesa basculante. https://www.seea.com.br/imagens/downloads/moldtech-catalogo-espanhol.pdf

 

5. El curado: Clave para la durabilidad del hormigón

El curado es esencial para lograr la resistencia y durabilidad del hormigón. En las plantas de prefabricación, el curado se realiza en ambientes controlados que aceleran la hidratación del cemento.

  • Cámaras de curado: Elementos como baldosas y bloques suelen ser curados en cámaras con condiciones de temperatura y humedad óptimas, lo que permite un curado uniforme y minimiza el riesgo de fisuración.
  • Moldes calefactados: En algunos casos, los moldes están equipados con sistemas de calefacción para mantener una temperatura constante durante el curado, optimizando la reacción del hormigón y reduciendo los tiempos de fabricación.

6. Control de calidad y automatización en la producción

Las plantas modernas han implementado sistemas de automatización que permiten un control exhaustivo de cada etapa de la producción. La automatización no solo aumenta la precisión y reduce los errores, sino que también facilita la trazabilidad de cada pieza prefabricada.

El sistema de carrusel es un método industrializado que permite fabricar elementos superficiales, como losas y paneles de fachada, en línea. Las bandejas de los carruseles pasan por estaciones de trabajo automatizadas, desde la limpieza y la aplicación de desencofrante hasta el vertido y el acabado del hormigón.

Un software de gestión supervisa cada paso del carrusel, optimizando los tiempos de producción y permitiendo el ajuste de cada proceso en función de las especificaciones del cliente. De esta forma, se mantiene una trazabilidad completa y se gestiona eficientemente el inventario de piezas terminadas.

El control de calidad se realiza mediante ensayos de resistencia y consistencia. En muchos casos, las plantas cuentan con laboratorios internos para realizar pruebas de resistencia a compresión y verificar que el hormigón cumple con las normativas. Los parámetros como la densidad, el contenido de aire y la resistencia a la compresión se revisan para asegurar que las piezas cumplan con los estándares de calidad requeridos.

7. Logística y almacenamiento: La última fase del proceso

Una vez fabricados, los elementos pueden transportarse directamente a la obra o almacenarse temporalmente en la planta. La logística es clave para asegurar una entrega puntual y en condiciones óptimas.

  • Almacenamiento en planta: Las plantas disponen de áreas de acopio donde los elementos se almacenan en condiciones seguras, evitando daños y manteniendo la organización.
  • Transporte a obra: Los prefabricados más grandes o pesados requieren el uso de puentes-grúa para su carga en camiones, mientras que las piezas más pequeñas pueden paletizarse y transportarse en volúmenes mayores. El almacenamiento y el transporte son esenciales para reducir los costes y cumplir los plazos de entrega.
Figura 5. Transporte de elementos prefabricados a acopio. https://imi.com.pa/planta-de-prefabricados-de-concreto/#!

Conclusión

La fabricación de prefabricados de hormigón es un proceso industrializado que combina control de calidad, automatización y logística para ofrecer soluciones constructivas de alta eficiencia. Este método permite construir con precisión y rapidez, optimizando los recursos y permitiendo una personalización considerable en los proyectos. Con el avance de las tecnologías de automatización y la mejora en el control de calidad, la prefabricación de hormigón seguirá siendo una pieza fundamental en la construcción moderna, ya que permite realizar obras de forma más rápida, sostenible y con mejores acabados arquitectónicos.

Os dejo algunos vídeos de estas plantas de prefabricados.

Dejo a continuación un folleto sobre moldes para elementos prefabricados de hormigón.

Descargar (PDF, 21.9MB)

Referencias:

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Materiales para pavimentos de hormigón

Figura 1. Construcción de pavimento de hormigón. https://obrasurbanas.es/como-controlar-el-alabeo-en-losas-de-pavimentos-de-hormigon/

En este artículo se ofrece una visión detallada de los materiales que se emplean en los pavimentos de hormigón, así como los requisitos técnicos que estos deben cumplir para asegurar una construcción de calidad en carreteras, autopistas y aeropuertos, vías peatonales, carriles ciclistas, zonas de almacenamiento y, en general, todos los firmes sometidos al tráfico. Se centra en los pavimentos de hormigón ejecutados in situ, dejando aparte los ejecutados con hormigón compactado con rodillo. Basado en la norma UNE-EN 13877-1:2013, se ha estructurado el contenido en tres grandes apartados: especificaciones de los materiales del hormigón, requisitos básicos del hormigón y requisitos básicos para otros materiales en pavimentos de hormigón. Este texto se ha redactado de forma accesible para facilitar el aprendizaje de los estudiantes de ingeniería civil, quienes podrán aplicarlo en proyectos de diseño y construcción de infraestructuras.

1. Especificaciones para los materiales del hormigón

Para garantizar la resistencia y durabilidad del hormigón en pavimentos, los materiales que lo componen deben cumplir los requisitos de calidad que aseguran un rendimiento adecuado frente a las exigencias de tráfico y condiciones ambientales. A continuación, se describen los componentes principales y sus especificaciones según la UNE-EN 13877-1:2013.

  • Cemento:
    • La elección del tipo de cemento es fundamental, ya que este actúa como el aglutinante que da cohesión al resto de materiales en la mezcla. De acuerdo con la norma EN 206-1, el cemento utilizado debe ser adecuado para la clase de resistencia requerida. La especificación concreta del tipo de cemento puede variar según las normativas nacionales o regionales del lugar de aplicación.
    • El cemento debe poseer propiedades que permitan una resistencia adecuada al tráfico y a la exposición ambiental del pavimento, evitando problemas como la desintegración o la pérdida de capacidad estructural con el paso del tiempo.
  • Áridos:
    • Los áridos, tanto gruesos como finos, son la base sólida del hormigón y deben cumplir con la norma EN 12620 para asegurar su idoneidad en términos de tamaño, forma y dureza. La selección y el tipo de áridos influyen directamente en la resistencia, la durabilidad y la trabajabilidad de la mezcla.
    • Es importante que el tamaño máximo de los áridos no sea mayor de un tercio (1/3) del espesor de la capa de hormigón, ya que así se evita que el agregado interfiera en la uniformidad del pavimento. En pavimentos armados con juntas o armados continuos, el tamaño del árido no debe superar un tercio de la distancia entre las armaduras longitudinales, previniendo obstrucciones y asegurando una correcta distribución de la mezcla.
  • Agua de amasado:
    • La calidad del agua de amasado es crucial, ya que interviene en las reacciones químicas de hidratación del cemento y en la cohesión de la mezcla. La norma UNE-EN 1008 establece los parámetros que debe cumplir el agua, incluyendo aspectos como la presencia de cloruros o sulfatos, que pueden afectar a la durabilidad.
    • Además de evitar posibles contaminantes, el agua debe mezclarse en proporciones controladas para asegurar que el hormigón adquiera la resistencia y consistencia deseadas. Es importante mantener una relación agua/cemento equilibrada, ya que una cantidad excesiva de agua puede generar porosidad y debilitar el material.
  • Otros materiales:
    • En algunos proyectos, pueden añadirse otros materiales, como adiciones y aditivos, para mejorar ciertas propiedades del hormigón. Estos deben cumplir con la norma EN 206-1, que establece los requisitos de conformidad para dichos materiales.
    • Los aditivos pueden ser superfluidificantes, retardadores o aceleradores de fraguado, entre otros, y ayudan a optimizar el manejo, la durabilidad y la resistencia de la mezcla en condiciones específicas de uso. Las adiciones, como las cenizas volantes o el humo de sílice, pueden mejorar la densidad del hormigón y su resistencia a agentes externos como el cloruro y la humedad.

2. Requisitos básicos del hormigón

Las propiedades del hormigón fresco y endurecido son fundamentales para asegurar la calidad y el rendimiento del pavimento. A continuación, se detallan los requisitos básicos que debe cumplir el hormigón, según la norma.

  • Hormigón fresco:
    • Consistencia: La consistencia determina la fluidez de la mezcla y su capacidad de ser manipulada durante el proceso de colocación. Para garantizar que el hormigón sea adecuado para el equipo de colocación, la norma permite especificar una clase de consistencia o un valor objetivo. La consistencia es importante no solo para la colocación, sino también para evitar problemas de compactación y reducir la formación de poros.
    • Densidad: La densidad del hormigón fresco debe determinarse mediante el cálculo de la masa de todos los componentes en un volumen específico. La densidad se especifica con una tolerancia del 1,5 % sobre el valor deseado, lo que permite adaptarse a ligeras variaciones de la mezcla. Esta propiedad influye en la resistencia y la durabilidad de la estructura final.
    • Contenido de aire: El volumen de aire atrapado en el hormigón es importante para prevenir problemas derivados de las congelaciones y descongelaciones. El contenido de aire debe medirse en el lugar de la obra según la norma EN 12350-7, y puede establecerse un porcentaje mínimo de aire en función de la normativa de cada país.
    • Contenido de cemento y partículas finas: La cantidad de cemento debe ser suficiente para dar resistencia al hormigón, mientras que el contenido de partículas de menos de 0,25 mm debe controlarse para evitar una textura excesivamente fina. Esto garantiza un equilibrio adecuado entre manejabilidad y resistencia final.
    • Contenido de cloruros: Si el hormigón incorpora elementos de acero sin protección, como barras de unión o pasadores, el contenido de cloruros no debe superar el 0,40 % de la masa del cemento. Esto previene la corrosión de los elementos metálicos y prolonga la vida útil de la estructura.
  • Hormigón endurecido:
    • Resistencia a ciclos de hielo y deshielo: En áreas donde el hormigón está expuesto a variaciones térmicas importantes, es necesario que el material resista los ciclos de congelación y descongelación sin sufrir deterioro. La norma especifica la resistencia que debe cumplir el hormigón en estas condiciones, de acuerdo con la EN 206-1.
    • Resistencia mecánica: La resistencia a la compresión, la tracción indirecta y la flexotracción del hormigón endurecido se miden a los 28 días. Estos parámetros se evalúan mediante ensayos específicos, como los ensayos de compresión (EN 12390-3), tracción indirecta (EN 12390-6) y flexotracción (EN 12390-5), que permiten clasificar el hormigón en distintas clases de resistencia y asegurar su adecuación para el tráfico y el uso proyectado.
Figura 2. Pavimento postesado. VSL Sistemas Especiales de Construcción Argentina S.A.

3. Requisitos básicos para otros materiales en pavimentos de hormigón

Además del hormigón, existen otros materiales que cumplen funciones específicas en los pavimentos y deben cumplir normativas particulares para garantizar su rendimiento.

  • Materiales de curado:
    • Los productos de curado son esenciales para evitar la pérdida de humedad en el hormigón fresco, lo que previene la formación de fisuras y asegura una ganancia de resistencia adecuada. Estos productos deben cumplir con la especificación técnica CEN/TS 14754-1, que evalúa su eficacia en la retención de agua.
    • Además, es recomendable que estos materiales de curado protejan el hormigón de variaciones bruscas de temperatura, especialmente en climas extremos, para evitar tensiones internas que puedan causar fisuras prematuras.
  • Retardadores de superficie:
    • En acabados de pavimentos con textura de árido expuesto, se utilizan retardadores de superficie que permiten revelar el árido grueso al retirar el mortero superficial. Estos retardadores deben estar diseñados específicamente para esta función y deben protegerse contra la evaporación hasta completar el proceso de fraguado.
  • Productos de sellado de juntas:
    • Las juntas en el pavimento son esenciales para permitir la expansión y contracción del hormigón, y los selladores de juntas deben prevenir la infiltración de agua. Los materiales de sellado deben cumplir con la norma EN 14188-1, EN 14188-2 o EN 14188-3, en función de si el sellado es en caliente, en frío o preformado. Esto evita la entrada de agua que puede congelarse y causar daños a largo plazo.
  • Barras de unión y pasadores:
    • Estos elementos de acero aseguran la transmisión de carga en las juntas y ayudan a prevenir el deslizamiento entre las losas adyacentes. Deben cumplir con la norma EN 10080, y especificar un nivel de resistencia B250 para barras lisas y B500 para barras corrugadas. Las dimensiones de estas barras deben seleccionarse en función de las tablas de la norma, teniendo en cuenta factores como el espesor del pavimento.
  • Armaduras:
    • La armadura de acero, que controla las fisuras y proporciona resistencia a las tensiones de tracción, debe cumplir con la norma EN 10080. En pavimentos armados continuos, la continuidad de la armadura puede lograrse mediante soldaduras, solapes o conectores, lo que garantiza una estructura sólida y sin fisuras que resista el paso constante de vehículos.

Este artículo aborda los detalles técnicos necesarios para comprender y aplicar las especificaciones de materiales en pavimentos de hormigón. Su selección y cumplimiento son esenciales para construir estructuras duraderas, seguras y adecuadas para las demandas de tráfico actuales y futuras.

Referencias:

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CALO, D.; SOUZA, E.; MARCOLINI, E. (2015). Manual de diseño y construcción de pavimentos de hormigón. Instituto del Cemento Portland Argentino (ICPA).

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C. (1965) Pavimentos de hormigón normal y pretensado. Experiencia española en el tramo de ensayo. Publicación n.º 18 del Laboratorio de Transporte y Mecánica del Suelo. Centro de Estudios y Experimentación de Obras Públicas (CEDEX). Madrid.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

RECUENCO, E. (2014). Firmes y pavimentos de carreteras y otras infraestructuras. Garceta grupo editorial, Colección Escuelas, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Recomendaciones sobre productos y sistemas para la protección superficial del hormigón

Figura 1. https://www.molins.es/construction-solutions/reparacion-y-proteccion-del-hormigon/

La protección superficial del hormigón no solo responde a una necesidad estética, sino que cumple un papel crucial en la durabilidad y conservación de las estructuras de hormigón expuestas a condiciones ambientales adversas o a demandas estructurales específicas. Factores como la exposición ambiental y las propiedades deseadas del hormigón influyen en la selección de los productos y sistemas más adecuados para su protección. Estos sistemas se aplican con el objetivo de prevenir la degradación o mejorar ciertas características de la superficie del hormigón. Este artículo describe las principales recomendaciones basadas en la norma UNE 83703:2023, y se centra en productos y sistemas destinados a proteger la superficie del hormigón, incluyendo impregnaciones, revestimientos y otros métodos, en función de diferentes tipos de agresión ambiental o necesidades de mejora física.

1. Productos para la protección superficial del hormigón

Antes de seleccionar un producto o sistema de protección, es fundamental comprender los principios en los que se basan los métodos de protección superficial. Los siguientes principios resumen las estrategias empleadas para proteger el hormigón frente a diversos tipos de agresiones: Protección contra la penetración, control de la humedad y resistencia a agentes químicos.

Los productos para la protección superficial del hormigón varían en función de los métodos y tratamientos empleados. Estos productos, que pueden presentarse en forma líquida o plástica, se endurecen o se secan a temperatura ambiente. A continuación, se detallan las principales categorías:

  • Impregnación hidrófoba: consiste en la aplicación de productos líquidos de baja viscosidad que penetran en los poros del hormigón sin formar una película superficial. El objetivo es crear una superficie repelente al agua sin afectar a la permeabilidad al vapor. Los productos más utilizados son los oligómeros de siloxanos y las microemulsiones de silanos.
  • Impregnación: su objetivo es rellenar los poros del hormigón y reducir su porosidad superficial. Los productos empleados suelen estar basados en aglutinantes similares a los usados en revestimientos, y proporcionan una mayor adherencia para aplicaciones posteriores.
  • Revestimientos: forman una película continua sobre la superficie del hormigón para prevenir el deterioro. Pueden tener un espesor que va desde los 0,1 mm hasta los 5 mm, o incluso más en aplicaciones específicas. Los revestimientos pueden estar basados en polímeros en dispersión acuosa, en disolución o en polímeros reactivos que no requieren disolventes. Estos pueden ser de varios tipos, como revestimientos flexibles o rígidos. En función de las necesidades, algunos revestimientos pueden incorporar mallas o tejidos que mejoran la resistencia mecánica.

Debe tenerse en cuenta que los revestimientos deben resistir una exposición prolongada a la luz solar, especialmente en exteriores. Los productos acrílicos suelen ser más resistentes a los rayos UV. Además, los revestimientos deben poder repararse. En este sentido, los revestimientos a base de polímeros termoplásticos, como los acrílicos, son fáciles de repintar si presentan algún deterioro.

Figura 2. https://anfapa.com/articulos-tecnicos-morteros-de-reparacion-de-hormigon/1252/principios-y-metodos-para-reparar-y-proteger-estructuras-de-hormigon-deterioradas-une-en-1504

2. Sistemas de protección superficial

Los productos para la protección superficial del hormigón se agrupan en diferentes sistemas, cada uno con características particulares. Cada sistema de protección superficial está diseñado para hacer frente a diferentes amenazas o mejorar ciertas características del hormigón. Por ello, es importante elegir el sistema adecuado en función de las condiciones específicas de la estructura y su entorno. A continuación, se describen los sistemas más comunes:

2.1 Sistemas para impregnación hidrófoba

Estos sistemas protegen el hormigón y lo hacen repelente al agua, al mismo tiempo que permiten que «respire» al dejar pasar el vapor de agua. Son especialmente útiles en ambientes donde se desea mantener el hormigón seco. Los productos empleados deben ser transparentes, no alterar el aspecto del hormigón y garantizar la transpirabilidad. La profundidad de la impregnación y la calidad de los productos utilizados son factores clave para su eficacia a largo plazo.

También debe considerarse la eficiencia de la impregnación, es decir, que debe alcanzar una profundidad adecuada para asegurar una protección prolongada. Además, la impregnación debe ser compatible con el hormigón existente, por lo que será necesario evaluar las características químicas de este antes de aplicarla.

2.2 Sistemas protectores frente a la carbonatación

La carbonatación del hormigón es un proceso natural que puede afectar a la durabilidad de las estructuras. Los sistemas protectores frente a la carbonatación, basados en polímeros acrílicos o epoxi, crean una barrera que impide la entrada de CO₂ y reduce la absorción de agua. Estos revestimientos deben proporcionar una resistencia a la difusión de CO₂ equivalente a un espesor de aire de al menos 50 m (SD ≥ 50 m).

2.3 Sistemas con capacidad de puenteo de fisuras

Estos sistemas están diseñados para absorber movimientos en fisuras o prevenir la aparición de otras nuevas en el hormigón. Son útiles en estructuras que experimentan movimiento o en zonas sometidas a esfuerzos térmicos o mecánicos. Se pueden clasificar en sistemas con capacidad de puenteo estático (fisuras sin movimiento) o dinámico (fisuras con movimiento cíclico).

2.4 Sistemas resistentes a la agresión química

En ambientes donde el hormigón está expuesto a sustancias químicas agresivas, como ácidos o sulfatos, los sistemas resistentes a la agresión química proporcionan una barrera protectora. Estos revestimientos, que pueden estar basados en resinas epoxi o poliuretanos, son fundamentales en estructuras sometidas a ataques químicos intensos, como en plantas industriales o instalaciones de tratamiento de aguas.

2.5 Sistemas con capacidad de mejora física

Los sistemas que mejoran las propiedades físicas del hormigón incluyen la aplicación de tratamientos superficiales que aumentan la resistencia a la abrasión, la dureza superficial y la resistencia al impacto. Estos productos, como las capas de rodadura o las impregnaciones endurecedoras, son habituales en pavimentos industriales y en zonas expuestas a un tránsito o un impacto mecánico elevados.

Entre sus aspectos importantes, destaca que las imprimaciones mejoran la adherencia entre el hormigón y el revestimiento, lo que garantiza una protección más duradera. Además, los productos utilizados deben ser compatibles entre sí y con el tipo de hormigón de la estructura.

3. Control catódico y zonas anódicas

La corrosión del acero de refuerzo es uno de los problemas más comunes y graves que afectan a las estructuras de hormigón armado. La aplicación de sistemas de protección puede incluir el control catódico y el control de zonas anódicas, que son métodos especializados en la prevención de la corrosión.

  • El control catódico se basa en restringir la penetración de oxígeno en las zonas catódicas del hormigón armado. Al limitar la cantidad de oxígeno disponible, se neutralizan los puntos de corrosión y se minimiza el riesgo de deterioro. Los sistemas basados en este principio suelen utilizar revestimientos superficiales que impiden la difusión de oxígeno.
  • El control de zonas anódicas busca evitar la corrosión en los puntos donde el acero de refuerzo del hormigón está expuesto al ambiente. Esto se consigue aplicando inhibidores de corrosión directamente sobre el hormigón o mezclándolos con los productos de revestimiento.
Figura 3.  Control catódico y zonas anódicas

4. Preparación del soporte para revestir

La durabilidad y la eficacia de los sistemas de protección dependen en gran medida de las condiciones del soporte de hormigón. Antes de aplicar cualquier producto o sistema, es fundamental garantizar que el soporte cumpla las siguientes condiciones:

  • Limpieza: el soporte debe estar libre de polvo, aceites, sales u otros contaminantes que puedan afectar a la adherencia.
  • Porosidad: una porosidad adecuada garantiza la penetración del producto en el hormigón.
  • Secado: el soporte debe estar completamente curado, con al menos 28 días desde su fabricación.
  • Resistencia mecánica: el soporte debe tener una resistencia mínima al arrancamiento de 1,5 N/mm² para garantizar la adherencia del sistema protector.

5. Métodos de puesta en obra

La correcta aplicación de los sistemas de protección es crucial para garantizar su eficacia. Los métodos más comunes son los siguientes:

  • Aplicación con brocha o rodillo: método utilizado en pequeñas áreas o en productos de baja viscosidad.
  • Pulverización: método recomendado para grandes superficies o cuando se requiere una aplicación uniforme y rápida.
  • Técnicas específicas: en el caso de membranas gruesas, como los sistemas cementosos, se pueden aplicar con llana o mediante proyección.

6. Control de calidad y mantenimiento

Es fundamental realizar controles de calidad durante y después de la aplicación de los sistemas de protección. Esto incluye verificar las condiciones ambientales, el espesor de las capas aplicadas y la adherencia de los productos. Una vez completada la aplicación, deben realizarse inspecciones periódicas para garantizar que la protección sigue siendo efectiva. Además de los controles mencionados, se recomienda incluir:

  • Pruebas de adherencia y resistencia: son necesarios ensayos de tracción directa (UNE-EN 1542) y ensayos de resistencia a la difusión de gases para asegurar que el sistema cumple con las especificaciones.
  • Mantenimiento periódico: en función del tipo de sistema aplicado, es fundamental establecer un programa de inspecciones periódicas para detectar signos de desgaste o deterioro.

Conclusión

La correcta elección y aplicación de los productos y sistemas de protección superficial del hormigón es esencial para prolongar la vida útil de las estructuras y evitar daños costosos. El uso adecuado de impregnaciones, revestimientos y sistemas especializados puede mitigar los efectos de la carbonatación, la humedad, los ataques químicos y las fisuras, garantizando así la durabilidad y la funcionalidad del hormigón en diversas condiciones ambientales. La elección adecuada del sistema, la correcta preparación del soporte y la aplicación conforme a los estándares son esenciales para asegurar la durabilidad y el rendimiento del hormigón en diversas condiciones ambientales y de uso.

Os dejo algunos vídeos al respecto. Espero que os sean de interés.

También os dejo un folleto de MAPEI por si os resulta de interés.

Descargar (PDF, 1.06MB)

Referencias:

Fernández Cánovas; M. (1994). Patología y terapéutica del hormigón armado. 3ª edición, Servicio de Publicaciones del Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Pelufo, M.J. (2003). Caracterización del comportamiento mecánico y frente a la corrosión de morteros de reparación del hormigón estructural. Tesis doctoral. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil, Universidad Politécnica de Valencia.

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curso en línea de “Fabricación y puesta en obra del hormigón”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso en línea sobre “Fabricación y puesta en obra del hormigón”.

El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-fabricacion-y-puesta-en-obra-del-hormigon/

 

 

Acerca de este curso

Este curso ofrece una visión completa sobre la fabricación y la puesta en obra del hormigón. No se requieren conocimientos previos específicos, ya que está diseñado para beneficiar a un amplio espectro de profesionales, tanto con experiencia como sin ella, así como a estudiantes de disciplinas relacionadas con la construcción, tanto en el ámbito universitario como en la formación profesional. El proceso de aprendizaje está estructurado de manera gradual, lo que permite a los participantes profundizar en los aspectos que más les interesen, apoyándose en material complementario y enlaces a recursos en línea, como vídeos y catálogos.

En este curso, adquirirás conocimientos fundamentales sobre la fabricación de hormigones y el uso de maquinaria relacionada, incluyendo centrales de hormigonado, transporte y bombeo de hormigón, cintas transportadoras, gunitado, colocación de hormigón bajo el agua y en condiciones de frío o calor, así como grandes vertidos, compactación por vibrado, hormigón al vacío, curado, juntas de construcción, hormigón precolocado y tipos de hormigón como el de fibra de vidrio, autocompactantes, compactados con rodillo y ligeros.

El enfoque principal del programa es comprender los principios que rigen la fabricación y la puesta en obra del hormigón, tanto prefabricado como ejecutado en obra, prestando atención a sus características más importantes y a los aspectos constructivos relevantes en ingeniería civil y edificación. El curso abarca un amplio espectro y profundiza en los fundamentos de la ingeniería de la construcción, además de destacar la importancia de fomentar el pensamiento crítico de los estudiantes, especialmente en relación con la selección de métodos, técnicas y maquinaria que se deben aplicar en situaciones concretas. Además, este curso trata de llenar el vacío que a menudo deja la bibliografía habitual y está diseñado para que los estudiantes puedan profundizar en los conocimientos adquiridos y adaptarlos a su experiencia previa o a sus objetivos personales y empresariales.

El contenido del curso se organiza en 50 lecciones, cada una de las cuales constituye una secuencia de aprendizaje completa. Además, se ofrece un amplio conjunto de problemas resueltos que complementan la teoría presentada en cada lección. Se estima que se necesitan entre dos y tres horas para completar cada lección, en función del interés del estudiante por profundizar en los temas mediante el material adicional proporcionado.

Al finalizar cada unidad didáctica, el estudiante se enfrenta a una serie de preguntas diseñadas para consolidar los conceptos fundamentales y fomentar la curiosidad sobre aspectos relacionados con el tema tratado. También se han diseñado tres unidades adicionales para reforzar los conocimientos adquiridos a través del desarrollo de casos prácticos, en los que se fomenta el pensamiento crítico y la capacidad para resolver problemas reales. Finalmente, al concluir el curso, se llevará a cabo un conjunto de preguntas tipo test con el objetivo de evaluar el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.

El curso está diseñado para una dedicación total de 75 horas por parte del estudiante. Se busca mantener un ritmo moderado, con una dedicación semanal de aproximadamente 10 a 15 horas, en función del nivel de profundidad que cada estudiante desee alcanzar. La duración total del curso es de seis semanas de aprendizaje.

Lo que aprenderás

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de la maquinaria empleada en la fabricación del hormigón, tanto prefabricado como elaborado en obra
  2. Evaluar y seleccionar los procedimientos constructivos para la colocación del hormigón, atendiendo a criterios económicos y técnicos
  3. Conocer las buenas prácticas y los aspectos de seguridad implicados en el transporte, vertido, compactación y curado del hormigón
  4. Analizar las características específicas en la fabricación y colocación de hormigones especiales como los autocompactantes, ligeros, con fibras, precolocados, compactados con rodillo y otros.

Programa del curso

  • Lección 1. Fabricación de hormigones
  • Lección 2. Homogeneidad en la fabricación del hormigón
  • Lección 3. Amasado del hormigón
  • Lección 4. Amasadoras de hormigón
  • Lección 5. Centrales de fabricación de hormigón
  • Lección 6. Hormigoneras
  • Lección 7. Cálculo de la temperatura de fabricación del hormigón
  • Lección 8. Almacenamiento de áridos
  • Lección 9. Corrección de humedad de los áridos
  • Lección 10. Transporte del cemento
  • Lección 11. Silos fijos de cemento
  • Lección 12. Cemento para hormigones resistentes a sulfatos en cimentaciones
  • Lección 13. Carretillas manuales o a motor para el transporte del hormigón
  • Lección 14. Hormigonado con cubilote
  • Lección 15. Transporte del hormigón mediante cintas transportadoras
  • Lección 16. Colocación del hormigón mediante bombeo
  • Lección 17. Torres distribuidoras de hormigón
  • Lección 18. Problemas de bombeo de hormigón
  • Lección 19. Hormigón proyectado: gunitado
  • Lección 20. Recomendaciones para el vertido de hormigón
  • Lección 21. Trompas de elefante para la colocación del hormigón
  • Lección 22. Hormigonado con tubería Tremie
  • Lección 23. Técnicas de colocación del hormigón bajo el agua
  • Lección 24. Fabricación y colocación del hormigón en tiempo caluroso
  • Lección 25. Fabricación y colocación del hormigón en tiempo frío
  • Lección 26. Hormigonado en condiciones de viento
  • Lección 27. Vertido y compactación de hormigón en soportes de sección reducida
  • Lección 28. Grandes vertidos de hormigón
  • Lección 29. Razones para compactar el hormigón
  • Lección 30. Compactación manual del hormigón: picado y apisonado
  • Lección 31. Compactación del hormigón por vibrado
  • Lección 32. Vibradores de aguja para compactar el hormigón
  • Lección 33. Vibradores externos para encofrados de hormigón
  • Lección 34. Mesa vibrante de hormigón
  • Lección 35. Compactación del hormigón con regla vibrante
  • Lección 36. Compactación del hormigón por centrifugación
  • Lección 37. Hormigón al vacío
  • Lección 38. Alisadoras rotativas o fratasadoras
  • Lección 39. Revibrado del hormigón
  • Lección 40. Agrietamiento plástico durante el fraguado del hormigón: Nomograma de Menzel
  • Lección 41. Necesidad y fases del curado del hormigón
  • Lección 42. Curado de pavimentos y otras losas de hormigón sobre tierra
  • Lección 43. Curado al vapor del hormigón e índice de madurez
  • Lección 44. Hormigón de limpieza en fondos de excavación
  • Lección 45. Las juntas de construcción en el hormigón
  • Lección 46. Hormigón precolocado: Prepakt y Colcrete
  • Lección 47. Hormigón reforzado con fibra de vidrio
  • Lección 48. Hormigón autocompactante
  • Lección 49. Hormigones compactados con rodillo
  • Lección 50. Hormigones ligeros
  • Supuesto práctico 1.
  • Supuesto práctico 2.
  • Supuesto práctico 3.
  • Batería de preguntas final

Conozca a los profesores

Víctor Yepes Piqueras

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 6 proyectos de investigación competitivos. Ha publicado más de 175  artículos en revistas indexadas en el JCR. Autor de 10 libros, 22 apuntes docentes y más de 350 comunicaciones a congresos. Ha dirigido 17 tesis doctorales, con 10 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social, así como el Premio a la Trayectoria Excelente en Investigación y el Premio al Impacto Excelente en Investigación, ambos otorgados por la Universitat Politècnica de València.

Lorena Yepes Bellver

Lorena Yepes Bellver es Profesora Asociada en el Departamento de Mecánica de los Medios Continuos y Teoría de las Estructuras de la Universitat Politècnica de València. Es ingeniera civil, máster en ingeniería de caminos, canales y puertos y máster en ingeniería del hormigón. Ha trabajado en los últimos años en empresas constructoras y consultoras de ámbito internacional. Aparte de su dedicación docente e investigadora, actualmente se dedica a la consultoría en materia de ingeniería y formación.

Nuevo estudio propone solución clave para reducir la huella de carbono en grandes proyectos de construcción internacionales

Un estudio innovador, titulado «Research on coupling optimization of carbon emissions and carbon leakage in international construction projects» y publicado en la prestigiosa revista Scientific Reports, aborda un desafío crítico para la construcción internacional: cómo optimizar las emisiones y las fugas de carbono en grandes proyectos de infraestructura.

Liderado por Zhiwu Zhou, de la Hunan University of Science and Engineering, y colaboradores como Víctor Yepes de la Universitat Politècnica de València, el artículo desarrolla un modelo matemático avanzado para analizar y predecir las emisiones de carbono a lo largo de todo el ciclo de vida de los proyectos de construcción en diferentes países. Este estudio es especialmente relevante en un contexto donde la globalización y el comercio internacional están impulsando el crecimiento económico, pero también contribuyendo de manera significativa al cambio climático.

Contexto y relevancia del estudio

El fenómeno conocido como «fuga de carbono» se ha convertido en un problema clave en la lucha contra el cambio climático. Este término se refiere al traslado de actividades productivas intensivas en carbono desde países con regulaciones estrictas sobre emisiones a países con normativas más laxas, lo que, paradójicamente, puede aumentar las emisiones globales. A medida que los países desarrollados implementan políticas más estrictas para reducir sus emisiones, existe la preocupación de que esto pueda incentivar a las empresas a trasladar su producción a países en desarrollo, exacerbando el problema en lugar de solucionarlo.

La construcción es uno de los sectores que más contribuye a las emisiones de carbono a nivel mundial. De hecho, la infraestructura está vinculada al 50 % de las emisiones globales, y se prevé que la inversión en infraestructuras alcance los 94000 millones de dólares para 2040, lo que pone de manifiesto la importancia de abordar el problema en este sector. El estudio de Zhou y su equipo se centra en ofrecer una herramienta para medir y mitigar la fuga de carbono en los grandes proyectos internacionales de construcción.

Metodología del estudio

La investigación combina una revisión bibliográfica extensa con el desarrollo de un modelo matemático que tiene en cuenta múltiples factores de incertidumbre asociados a los proyectos internacionales. Para analizar las emisiones y fugas de carbono, los investigadores emplearon bases de datos de cadenas de suministro reconocidas a nivel internacional, como Ecoinvent y OpenLCA, conforme a los estándares ISO 14040 e ISO 14044. Estas bases de datos permiten rastrear el ciclo de vida completo de los materiales y la energía utilizados en un proyecto, desde la extracción de materias primas hasta el transporte, la construcción y la eventual demolición.

El estudio utilizó como caso práctico un importante proyecto de infraestructura: el puente transnacional China-Indonesia, un proyecto internacional clave gestionado bajo el modelo EPC (ingeniería, contratación y construcción). Este puente, que conecta ambos países, se convirtió en un ejemplo ideal para analizar la huella de carbono debido a su complejidad técnica y logística, así como su impacto transnacional. El análisis de este caso permitió a los autores validar la robustez de su modelo teórico.

Resultados más destacados

Uno de los hallazgos más importantes del estudio es la notable diferencia en la huella de carbono entre los países exportadores e importadores. En el caso del puente China-Indonesia, los datos revelaron que la proporción de emisiones de carbono entre los países exportadores e importadores era de 0,577:100, lo que indica que los países que producen materiales y maquinaria (en este caso, China) soportan una mayor parte de la carga de emisiones. Esto sugiere que los países importadores, que son los principales beneficiarios de los proyectos de infraestructura, deberían asumir una mayor responsabilidad en la compensación de estas emisiones.

Además, el estudio pone de relieve que la utilización de acero, cemento y otros materiales intensivos en carbono es una de las principales fuentes de emisiones en los proyectos de construcción internacionales. Sin embargo, los resultados mostraron que optimizar la cadena de suministro y aplicar técnicas de transporte más eficientes pueden reducir significativamente estas emisiones. Por ejemplo, el uso de transporte marítimo en lugar de aéreo o terrestre para mover grandes volúmenes de materiales redujo las emisiones de manera sustancial.

Otro resultado clave es que la fuga de carbono no solo se produce durante la fase de construcción, sino también a lo largo de todo el ciclo de vida del proyecto, desde el diseño hasta la demolición. Las emisiones asociadas al diseño, el transporte y el montaje de los materiales también representan una parte significativa del impacto ambiental total de los proyectos.

Implicaciones del estudio

Este estudio tiene importantes implicaciones para los responsables políticos y las empresas constructoras. En primer lugar, los autores destacan la necesidad de desarrollar políticas más eficaces para gestionar la fuga de carbono en el comercio internacional. Las políticas actuales, como los ajustes en las fronteras de carbono (Carbon Border Adjustment Mechanisms, CBAM), son un buen paso hacia la reducción de la fuga de carbono, pero no son suficientes si no se aplican de manera coordinada a nivel global. Los investigadores sugieren que las empresas que participan en proyectos internacionales de construcción deben tener en cuenta no solo el coste económico, sino también el impacto ambiental y la huella de carbono de sus operaciones.

Por otro lado, el estudio subraya la importancia de optimizar las cadenas de suministro internacionales para reducir las emisiones de carbono. Esto implica seleccionar cuidadosamente los materiales, gestionar de manera eficiente el transporte y adoptar tecnologías más limpias durante el proceso de construcción. Los investigadores argumentan que los esfuerzos por reducir las emisiones deben extenderse a todas las fases del proyecto, no solo a la construcción, y que las empresas deben colaborar más estrechamente con los gobiernos para diseñar estrategias eficaces de mitigación del carbono.

Conclusiones

En resumen, el estudio ofrece una herramienta valiosa para evaluar y mitigar las emisiones y fugas de carbono en proyectos de construcción internacionales. Al utilizar un enfoque matemático riguroso y bases de datos internacionales de alto nivel, este trabajo proporciona un marco científico sólido para ayudar a los gobiernos y a las empresas a tomar decisiones más informadas sobre cómo reducir el impacto ambiental de sus proyectos.

Este enfoque no solo es relevante para los proyectos de infraestructura a gran escala, sino que también tiene el potencial de influir en la forma en que las políticas de carbono se diseñan e implementan a nivel global. La investigación concluye que, aunque los costes iniciales de adoptar prácticas más sostenibles pueden ser elevados, los beneficios a largo plazo, tanto en términos económicos como ambientales, justifican plenamente esta inversión.

Referencia:

ZHOU, Z.; WANG, Y.; ALCALÁ, J.; YEPES, V. (2024). Research on coupling optimization of carbon emissions and carbon leakage in international construction projects. Scientific Reports, 14: 10752. DOI:10.1038/s41598-024-59531-4

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 10.82MB)

Técnica innovadora optimiza estructuras de hormigón y reduce emisiones de CO₂ al considerar la interacción suelo-estructura

El artículo científico, titulado «Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction» y publicado recientemente en Engineering Structures, una de las revistas de mayor impacto en ingeniería civil, aborda un desafío clave en la ingeniería estructural: cómo optimizar el diseño de estructuras de hormigón armado para minimizar su impacto ambiental, con especial atención a la reducción de las emisiones de CO₂.

Esta investigación es el resultado de una colaboración internacional realizada en el marco de los proyectos HYDELIFE y RESILIFE, cuyo investigador principal es Víctor Yepes, y es fruto de una colaboración internacional entre investigadores de Cuba, Brasil y España.

Contexto de la investigación

La optimización estructural ha sido ampliamente explorada en las últimas décadas debido a la creciente necesidad de reducir los costes de construcción y el uso de materiales, todo ello mientras se minimiza el impacto ambiental. En el caso de las estructuras de hormigón armado, que son esenciales en la construcción de edificios y obras de infraestructura, optimizar su diseño conlleva implicaciones significativas en cuanto al ahorro de recursos y la reducción de las emisiones de CO₂.

Los problemas de optimización estructural pueden resolverse mediante métodos exactos, como la programación matemática, o mediante métodos heurísticos que imitan procesos naturales (como la evolución genética o el comportamiento de enjambres). Aunque los métodos heurísticos son más eficientes para problemas complejos y no lineales, como los que involucran grandes estructuras tridimensionales, requieren un alto coste computacional. Para abordar este problema, los autores proponen el uso de metamodelos, que son modelos simplificados que permiten realizar simulaciones con un consumo computacional mucho menor sin sacrificar demasiada precisión. En este estudio, se utiliza un metamodelo basado en Kriging, una técnica que permite aproximar el comportamiento de estructuras complejas.

Además, el estudio introduce una novedad crucial: la inclusión de la interacción suelo-estructura (SSI, por sus siglas en inglés) durante el modelado. Esta interacción, que muchas veces se ignora en los modelos tradicionales, afecta significativamente al comportamiento de la superestructura (el marco de hormigón). Ignorarla puede dar lugar a diseños menos precisos que no tienen en cuenta los asentamientos diferenciales del suelo, lo que puede provocar tensiones adicionales y un mayor deterioro de las estructuras con el tiempo.

Metodología

La investigación emplea un enfoque combinado de optimización heurística convencional y una estrategia basada en Kriging para optimizar marcos espaciales de hormigón armado. El objetivo es reducir las emisiones de CO₂ de las estructuras optimizadas, en línea con los esfuerzos para disminuir el impacto ambiental del sector de la construcción. El estudio incluye tres estudios de caso, cada uno con diferentes configuraciones estructurales (variando la longitud de los vanos y el número de niveles de las estructuras) para generalizar los resultados.

El elemento clave en esta investigación es la inclusión de la interacción suelo-estructura, que afecta al comportamiento global del sistema. Los autores utilizan un modelo de Winkler, que representa el suelo como un conjunto de resortes con rigidez variable en función de las características del suelo, y lo implementan en dos tipos de suelos: uno cohesivo y otro granular. Esta diferenciación es importante porque cada tipo de suelo responde de manera distinta a las cargas, lo que provoca asentamientos que, en última instancia, influyen en las tensiones de la superestructura. La plataforma CSi-SAP2000 se utilizó como motor de cálculo, mientras que el análisis geotécnico y estructural se integró mediante MATLAB.

Resultados

Uno de los hallazgos más destacados del estudio es que la inclusión de la interacción suelo-estructura modifica significativamente los diseños estructurales. En general, las estructuras diseñadas teniendo en cuenta la interacción suelo-estructura requieren más material (mayores cantidades de hormigón y acero), lo que refleja el aumento de tensiones debido a los asentamientos diferenciales. Por ejemplo, en comparación con un modelo con soportes rígidos ideales, las estructuras que consideran la inclusión de la interacción suelo-estructura muestran un aumento del 12,03 % en las emisiones de CO₂ en suelos cohesivos y hasta un 18,81 % en suelos friccionales.

Los elementos estructurales más afectados por la interacción suelo-estructura son las columnas. Esto se debe a que los asentamientos diferenciales incrementan los momentos flectores en las columnas, lo que requiere un refuerzo adicional y secciones más grandes para resistir las nuevas tensiones. En algunos casos, las emisiones de CO₂ asociadas a las columnas aumentaron más del 60 % al considerar la interacción con el suelo. Los resultados son especialmente marcados en suelos granulares, donde los asentamientos diferenciales son más pronunciados.

Además, la metodología basada en metamodelos, asistida por la técnica de Kriging, demostró ser eficaz para lograr optimizaciones con un alto grado de precisión (hasta un 98,24 % en suelos cohesivos y un 98,10 % en suelos granulares), todo ello reduciendo el tiempo de cálculo en aproximadamente un 90 % en comparación con los métodos heurísticos convencionales.

Implicaciones

Este estudio tiene importantes implicaciones prácticas para el diseño de estructuras de hormigón armado. La inclusión de la interacción suelo-estructura permite obtener diseños más robustos y precisos, lo que reduce el riesgo de fallos prematuros y la necesidad de costosos trabajos de mantenimiento a largo plazo. Los modelos que no tienen en cuenta la interacción suelo-estructura pueden dar como resultado estructuras que inicialmente parecen eficientes, pero que con el tiempo se deterioran más rápidamente debido a las tensiones adicionales no previstas. Por tanto, incluir esta interacción desde el inicio del diseño mejora significativamente la durabilidad y la fiabilidad de las estructuras.

Desde el punto de vista ambiental, el uso de metamodelos para optimizar estructuras de hormigón supone un importante avance. Al reducir el material necesario y mejorar la eficiencia estructural, se contribuye a la reducción de las emisiones de CO₂, un objetivo clave en la lucha contra el cambio climático. Además, la metodología propuesta ofrece un enfoque más sostenible al disminuir los recursos computacionales necesarios para realizar simulaciones complejas.

En conclusión, la inclusión de la interacción suelo-estructura y el uso de metamodelos basados en Kriging suponen una contribución innovadora al campo de la ingeniería estructural. Esta investigación no solo proporciona mejores resultados de diseño, sino que también tiene el potencial de reducir el impacto ambiental de las estructuras de hormigón armado, lo que hace que el sector de la construcción sea más sostenible y eficiente.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 8.18MB)

Edificios modulares de acero: una opción sostenible y resistente en zonas sísmicas

Un estudio reciente, titulado «Life cycle assessment of seismic resistant prefabricated modular buildings» y publicado en la prestigiosa revista Heliyon, ha evaluado los beneficios de los edificios modulares prefabricados (PVMB) diseñados para resistir terremotos.

La investigación, liderada por expertos de la Universitat Politècnica de València y la Universidad Central del Ecuador, se llevó a cabo en el marco del proyecto RESILIFE y comparó cuatro sistemas estructurales, tres de ellos basados en tecnología modular (dos de hormigón armado y uno de acero), y un sistema convencional de hormigón armado in situ, en una zona de alto riesgo sísmico.

El análisis tuvo en cuenta tanto los impactos económicos como ambientales a lo largo de todo el ciclo de vida de los edificios, desde la fabricación hasta la fase final de demolición.

 

Contexto del estudio

El sector de la construcción es responsable de una parte importante del consumo de recursos y de las emisiones de gases de efecto invernadero a nivel global. Dado que el crecimiento poblacional y la demanda de infraestructuras siguen aumentando, las tecnologías como los edificios modulares prefabricados ofrecen una alternativa innovadora para reducir el impacto ambiental. Estos sistemas, que permiten construir fuera del emplazamiento y ensamblar los módulos en la obra, prometen reducir los tiempos y los costes de construcción en un 50 % y un 30 %, respectivamente, lo que los convierte en una opción atractiva en términos de sostenibilidad y eficiencia.

Sin embargo, la adopción de estas tecnologías en áreas sísmicas aún se enfrenta a barreras, principalmente por la necesidad de demostrar su capacidad para resistir cargas sísmicas y por la percepción de altos costes iniciales. Por ello, el estudio se centró en realizar un análisis integral de la vida útil para cuantificar estos beneficios y compararlos con las técnicas de construcción convencionales.

Metodología

El estudio evaluó un hospital de cuatro pisos situado en Quito, Ecuador, una región con un alto nivel de actividad sísmica debido a la presencia de dos fuentes principales de terremotos: una zona de subducción y un sistema de fallas activas. Se evaluaron cuatro soluciones estructurales:

  1. Un sistema convencional de hormigón armado construido in situ.
  2. Un sistema modular de hormigón armado con conexiones húmedas (prefabricación con ensamblaje mediante hormigonado en obra).
  3. Un sistema modular de hormigón armado con conexiones secas (ensamblaje mediante pernos y juntas metálicas).
  4. Un sistema modular de acero.

El análisis abarcó las etapas de fabricación, construcción, uso y fin de vida, y evaluó tanto el impacto ambiental como el coste económico. Para ello, se utilizaron indicadores como la cantidad de materiales empleados, las emisiones de gases de efecto invernadero y los costes asociados a cada etapa, desde la producción de los módulos hasta su mantenimiento y demolición.

Resultados principales

Los resultados revelaron que, aunque el sistema modular de acero es el más costoso en términos de construcción inicial (un 60 % más caro que el sistema convencional), presenta los mejores resultados en términos de sostenibilidad. Este sistema mostró una reducción significativa en los impactos ambientales, con una disminución del 43 % en las emisiones de gases de efecto invernadero en comparación con el sistema tradicional de hormigón. Además, los ciclos de mantenimiento fueron menores, lo que implica una mayor durabilidad y menos intervenciones durante su vida útil.

Por otro lado, las alternativas de hormigón modular, si bien también ofrecían beneficios en cuanto a reducción del tiempo de construcción, presentaban mayores impactos ambientales debido al uso intensivo de hormigón y acero de refuerzo. De hecho, el sistema modular con conexiones húmedas resultó ser el menos favorable desde el punto de vista ambiental, con un impacto un 52 % mayor que el sistema convencional.

Implicaciones del estudio

Este trabajo tiene importantes implicaciones para la construcción en zonas sísmicas. Los autores sugieren que los métodos de construcción modulares no solo son viables desde el punto de vista técnico, sino también en términos de sostenibilidad ambiental, siempre y cuando se adopten las soluciones más eficientes, como el uso de estructuras de acero. Aunque los sistemas modulares de acero son más caros, ofrecen ventajas claras en cuanto a durabilidad, menor impacto ambiental y reducción de los costos de mantenimiento a lo largo de su vida útil.

El estudio también pone de relieve la importancia de evaluar no solo los costes iniciales de construcción, sino todo el ciclo de vida de las infraestructuras. Las decisiones basadas únicamente en el precio de construcción pueden dar como resultado infraestructuras menos sostenibles a largo plazo, mientras que un enfoque integral, que tenga en cuenta el impacto ambiental y los costes futuros, puede conducir a mejores decisiones tanto para el medio ambiente como para la economía.

Conclusiones

En resumen, este estudio aporta valiosas evidencias a favor del uso de edificios modulares prefabricados, especialmente en zonas de alto riesgo sísmico. Los resultados indican que el uso de sistemas modulares de acero puede ser clave para mejorar la sostenibilidad de las infraestructuras, reducir las emisiones y asegurar una mayor durabilidad de los edificios. Las conclusiones de esta investigación son relevantes no solo para el ámbito académico, sino también para los responsables de las políticas públicas y los profesionales de la construcción que buscan soluciones más sostenibles y eficientes para las ciudades del futuro.

Referencia:

GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2024). Life cycle assessment of seismic resistant prefabricated modular buildingsHeliyon, 10(20), e39458. DOI:10.1016/j.heliyon.2024.e39458

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 7.1MB)