El profesor Moacir Kripka de estancia con nosotros en la Universitat Politècnica de València

Nuestro grupo de investigación está muy orgulloso y es muy afortunado de contar con visitas y estancias de otros profesores, de gran prestigio internacional, que vienen a trabajar y compartir experiencias en la Universitat Politècnica de València. Si en entradas anteriores hablé de la estancia del profesor Dan M. Frangopol y de la visita del profesor Gizo Parskhaladze, ahora os contaré la estancia de investigación del profesor Moacir Kripka con nosotros en el ICITECH. El profesor Kripka, es catedrático de estructuras en la Universidade de Passo Fundo, en Brasil, donde ejerce de profesor desde el año 1991. Ha sido director del Departamento de Ingeniería Civil y del Grado en Ingeniería, siendo actualmente editor de la revista Journal of Applied and Technological Sciences – CIATEC/UPF. Su área de investigación se centra fundamentalmente en la optimización de estructuras, por lo que ha sido de gran productividad para nosotros compartir experiencias durante su estancia de investigación (septiembre a diciembre de 2018). Fruto de esta colaboración, a parte de los relacionados con la investigación, se extienden al futuro intercambio de estudiantes y profesorado entre nuestras respectivas universidades y en la participación conjunta en proyectos de investigación y de transferencia tecnológica. En la fotografía que os dejo nos podéis ver después de una clase sobre optimización heurística de estructuras correspondiente al Máster Universitario en Ingeniería del Hormigón. Todo un verdadero placer.

Técnicas de decisión multicriterio para la educación de ingenieros en sostenibilidad

ABSTRACT

In recent times, a great deal of interest has emerged from different sectors of society towards sustainability and sustainable product design. Decision makers are increasingly encouraged to take into consideration the economic, environmental and social dimensions of reality when dealing with problems. Sustainability is of particular importance in the field of civil engineering, where structures are designed that are long lasting and shall cause significant impacts over a long period of time, such as bridges or dams. Consequently, when addressing a structural design, civil engineers shall account for the three dimensions of sustainability, which usually show conflicting perspectives. Multi-criteria methods allow the inclusion of non-monetary aspects into the design process of infrastructure. In the postgraduate course ‘Predictive and optimisation models for concrete structures’, offered at the Masters in Concrete Engineering of the Universitat Politècnica de València, civil engineering students are taught how to apply such tools within the framework of sustainable design of concrete structures. The present paper conducts a state-of-the-art review of the main multi-criteria decision making methodologies taught in the course in the context of sustainability. Articles are searched in recognized databases, such as SCOPUS and Web of Science. The most significant methods, such as Analytical Hierarchy Process (AHP), Elimination and Choice Expressing Reality (ELECTRE), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) or Complex Proportional Assessment (COPRAS) are systematically discussed, identifying the actual trends concerning the use of such methodologies in the field of civil engineering. The review provides a deep insight in the multi criteria techniques that are most frequently used when assessing sustainability of infrastructure designs.

KEYWORDS

Postgraduate education; multi-criteria decision making; sustainability; structural design; state of the art review

REFERENCE

NAVARRO, I.; MARTÍ, J.V.; YEPES, V. (2018). Multi-criteria decision making techniques in civil engineering education for sustainability. Proceedings of ICERI2018,the 11th annual International Conference of Education, Research and Innovation, Seville (Spain), 12th-14th November 2018, pp. 9798-9807.  ISBN: 978-84-09-05948-5

Descargar (PDF, 207KB)

Las heurísticas en la educación en ingeniería. Aplicación a los sistemas de gestión sostenible de puentes

ABSTRACT

This paper deals with the postgraduate course ‘Predictive and optimisation models for concrete structures’, offered at the Masters in Concrete Engineering of the Universitat Politècnica de València. Within this course, engineering students are introduced into different optimization algorithms, such as simulated annealing, neural networks, genetic algorithms, etc. of application in the automated design of concrete structures of any type. In recent times, such heuristic methods have turned out to be of great interest in the resolution of complex and actual engineering problems, such as the sustainable design and management of structures. This communication presents a case study where the ongoing research of the teaching body is applied so as to find the most sustainable management strategy for a particular bridge system consisting of 7 bridges whose lengths vary between 380 m and 1980 m. The optimization problem here aims to minimize both the economic and environmental life cycle impacts derived from the maintenance of the concrete decks of a bridge network by selecting the adequate maintenance intervals for every deck considering annual budgetary restrictions. A multi-objective simulated annealing algorithm is applied to find the set of Pareto optimal solutions for the presented engineering problem. The environmentally preferable maintenance strategy results in life cycle costs 4.9% greater than those related to the cost-optimal strategy, which in turn results in environmental impacts 5.6% greater than those from the environmentally optimized management option. Results are then compared to the optimal strategies considering a single bridge deck, showing that the optimality at the bridge level does not necessarily lead to a sustainable optimum at the network level. From this it follows that, when optimizing maintenance under budgetary restrictions, the network shall be analysed as a whole, and not as an aggregation of optimal strategies for each individual bridge. The case study presented here shows in a nutshell the close connection between the course curricula of the MSc course and the ongoing research of the teaching and research group.

KEYWORDS

Postgraduate education; applied research; heuristic algorithms; sustainable thinking; bridge management system

REFERENCE

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Heuristics in engineering education. A case study application to sustainable bridge management systems. Proceedings of ICERI2018,the 11th annual International Conference of Education, Research and Innovation, Seville (Spain), 12th-14th November 2018, pp. 9788-9797.  ISBN: 978-84-09-05948-5

Descargar (PDF, 663KB)

Correspondencia jerárquica entre las competencias y los resultados de aprendizaje. El caso de “Procedimientos de Construcción”

El mes pasado se desarrolló en la Universitat Politècnica de València el IV Congreso Nacional de Innovación Educativa y Docencia en Red. A parte de pertenecer al Comité Científico de dicho congreso. En este congreso, la mayor parte de las comunicaciones se presentan en formato póster y solo una pocas se presentan en comunicación oral. Ese ha sido el caso de la presentación oral que hice de una comunicación que presenté una propuesta jerárquica sobre las competencias y los resultados de aprendizaje. Esa comunicación es la que os dejo a continuación.

 

Para los que queráis tener acceso directo a todas las comunicaciones del congreso, podéis acceder a través del siguiente enlace: http://ocs.editorial.upv.es/index.php/INRED/INRED2018/schedConf/presentations

Resumen

El objetivo del artículo es establecer una estructuración de correspondencias jerárquicas entre las competencias y los resultados de aprendizaje de una asignatura. Para ello, tras comprobar las distintas interpretaciones que existen entre ambos conceptos, se opta por considerar que los resultados del aprendizaje son concreciones de las competencias para un determinado nivel y que son el resultado del proceso de enseñanza-aprendizaje. Además, el necesario alineamiento entre los programas de una asignatura, la adquisición de competencias y resultados de aprendizaje y la evaluación del estudiante, aconseja jerarquizar los resultados de aprendizaje en dos niveles. Como resultado de lo anterior, se muestra la aplicabilidad de esta correspondencia jerárquica a dos asignaturas del Grado de Ingeniería Civil de la Universitat Politècnica de València: “Procedimientos de Construcción I y II”.

Palabras clave

Competencias, resultados de aprendizaje, correspondencia jerárquica, procedimientos de construcción, ingeniería civil.

Referencia

YEPES, V. (2018). Correspondencia jerárquica entre las competencias y los resultados de aprendizaje. El caso de “Procedimientos de Construcción”. Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2018, Valencia, pp. 1-15. ISSN 2603-5863

Descargar (PDF, 300KB)

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Descenso del nivel freático por bombeo: fórmula de Dupuit-Thiem

Figura 1. Agua en excavación. http://www.saboredo.com/el-agua-en-la-obra-civil/

Cuando se quiere construir bajo el nivel freático, es necesario desecar el subsuelo antes de realizar la excavación para permitir que los trabajos se efectúan en condiciones relativamente secas (Figura 1). La ausencia de agua (sin llegar a un estado completamente seco) en la excavación estabiliza el fondo y los taludes, reduce las cargas laterales en los taludes, hace que el material de excavación sea más ligero y fácil de manejar y evita un fondo movedizo y lodoso, muy inconveniente para las actividades posteriores.

Para conservar una excavación libre de agua, en casi todos los tipos de suelos, el nivel freático se debe mantener a una profundidad, por lo menos de 60 cm o, preferentemente, a 150 cm por debajo del fondo de la excavación.

Aunque son los contratistas especializados en este tipo de trabajos los que determinan con mayor detalle las necesidades y los posibles rendimientos de la operación, siempre es necesario un análisis simplificado que definir “a priori” qué equipos serían necesarios y la viabilidad de la operación.

En la Figura 2 se muestra un esquema simplificado de la operación del abatimiento del nivel freático. En él se puede ver cómo varía la depresión en el nivel freático con la distancia al punto de bombeo. Se pueden utilizar pozos de observación o piezómetros a ciertas distancias (como r1 y r2) para controlar la depresión realizada.

Figura 2. Esquema del abatimiento del nivel freático mediante un pozo

El proceso de bombeo es un fenómeno de régimen variable, que evoluciona con el tiempo, hasta llegar a estabilizarse en un régimen permanente. A efectos prácticos, las fórmulas referentes al régimen estable son útiles para estudiar el rebajamiento provisional del nivel freático. El estudio del pozo aislado se realiza planteando el problema con simetría radial. Se supone que a suficiente distancia, las líneas de corriente son horizontales y las equipotenciales son verticales, supuesto que se conoce como hipótesis de Dupuit. Según la fórmula empírica de Sichardt, se puede calcular la distancia R a la cual se supone que termina la influencia del pozo con la siguiente expresión dimensional, donde R se expresa en m, k en m/s y sw es el descenso del nivel freático en el pozo, en m :

Un análisis simplificado del fenómeno implica, tal y como indica Dupuit (Harr, 1962) asumir que (a) para una pequeña inclinación de la línea de filtración, las líneas de flujo son horizontales y (b), que el gradiente hidráulico es igual a la inclinación de la superficie libre y es independiente de la profundidad.

La ecuación que rige el caudal en este caso es la siguiente:

En este caso, se asume que el régimen es permanente en un acuífero libre, siendo toda la capa de terreno homogénea con un coeficiente de permeabilidad hidráulica “k“.

Si se cumple que “q” es constante a lo largo del flujo, la ecuación anterior se puede integrar entre las distancias r1 y r2, obteniéndose la siguiente expresión (fórmula de Dupuit-Thiem):

Por tanto, una vez se ha determinado la extensión de la excavación, usando los parámetros r1, r2, h1 y h2, se puede utilizar la expresión anterior para determinar la capacidad requerida por la bomba. Asimismo, se podría utilizar la expresión anterior para determinar el coeficiente medio de permeabilidad del terreno sabiendo el caudal bombeado.

Es evidente que, en un caso real, existen muchas capas de terreno, con diferentes propiedades, por lo que la ecuación anterior debe particularizarse. Remitimos al lector al trabajo de Cedergreen (1989) para situaciones diferentes a las descritas. También podéis ver algunos problemas resueltos que pusimos en su momento en una entrada anterior.

Referencias

Cedergreen, H.R., 1989, Seepage, Drainage and Flow Nets, John Wiley, New York.

Harr, M., 1962, Groundwater and Seepage, McGraw-Hill, New York.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Una breve introducción a la dinámica litoral de nuestras costas

Son muchas las actividades que está desarrollando la Escuela de Caminos, Canales y Puertos de la Universitat Politècnica de València con motivo de su 50 aniversario. Una de ellas es la elaboración de una serie de vídeos divulgativos de la Ingeniería Civil y su papel en la sociedad.

Para empezar tenemos este vídeo producido por  y editado por Diodo Media. En él se describe la dinámica litoral de nuestras costas. Esperamos que lo disfrutéis.

Bibliografía y enlaces útiles sobre encofrados y cimbras

Imagen: AFECI (Asociación de Fabricantes de Encofrados y Cimbras). http://www.afeci.es/

Una vez finalizada la primera edición del curso MOOC sobre cimbras y encofrados, algunos alumnos me han solicitado que reúna toda la documentación y enlaces de interés al respecto. Es por ello que os dejo a continuación una lista que, probablemente, iré ampliando sucesivamente. Por cierto, al final más de 1000 alumnos se inscribieron en este primer curso gratuito y masivo. El objetivo era un curso divulgativo que llegase al máximo número de perfiles diferentes. Estamos preparando ya una segunda edición MOOC similar para aquellos que no pudieron hacer la primera versión y un curso de 30 horas donde, además se incluyan problemas y casos prácticos y permita un certificado oficial del Centro de Formación de Posgrado de la Universitat Politècnica de València (muchos alumnos necesitan, a parte de los conocimientos, un certificado académico). Ya os iré contando este proyecto, que seguramente se pondrá en marcha en el último trimestre de este año.

Enlaces y documentos de interés:

Estudios de apuntalamiento: De la teoría a la práctica. Jornada divulgativa (2018). Seguridad en fase de estructuras. (enlace)

Sistemas de encofrado: análisis de soluciones técnicas y recomendaciones de buenas prácticas preventivas. Fundación Agustín de Betancourt (2011), Comunidad de Madrid, 130 pp. (enlace)

Estudio de las condiciones de trabajo en encofrado, hormigonado y desencofrado. Fernández, R.; Honrado, C. (2010), Junta de Castilla y León, 68 pp. (enlace)

Guía informativa sobre encofrados y cimbras. AFECI. (enlace)

Guía práctica de encofrados. OSALAN (2007), Instituto Vasco de Seguridad y Salud Laborales, 200 pp. (enlace)

Colección de Legislación en materia de Prevención de Riesgos Laborales. INSHT, Instituto Nacional de Seguridad e Higiene en el Trabajo. (enlace)

REAL DECRETO 2177/2004, de 12 de noviembre, por el que se modifica el Real Decreto 1215/1997, de 18 de julio, por el que se establecen las disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de los equipos de trabajo, en materia de trabajos temporales en altura. BOE nº 274 13-11-2004. (enlace)

Orden FOM/3818/2007, de 10 de diciembre, por la que se dictan instrucciones complementarias para la utilización de elementos auxiliares de obra en la construcción de puentes de carretera.(enlace) BOE Nº 310 27-12-2007

Soluciones completas de encofrado túnel. Túneles y encofrados. (enlace)

Encofrado vertical. Sistemas trepantes (I). Notas técnicas de prevención. INSHT, Instituto Nacional de Seguridad e Higiene en el Trabajo (2009). (enlace)

Encofrado vertical. Muros a dos caras, pilares, muros a una cara (II). Notas técnicas de prevención. INSHT, Instituto Nacional de Seguridad e Higiene en el Trabajo (2009).  (enlace)

Encofrado horizontal: protecciones colectivas (I). Notas técnicas de prevención. INSHT, Instituto Nacional de Seguridad e Higiene en el Trabajo (2008). (enlace)

Encofrado horizontal: protecciones colectivas (II). Notas técnicas de prevención. INSHT, Instituto Nacional de Seguridad e Higiene en el Trabajo (2008).  (enlace)

Cimbras montadas con elementos prefabricados (I): normas constructivas. Notas técnicas de prevención. INSHT, Instituto Nacional de Seguridad e Higiene en el Trabajo (2016). (enlace)

Cimbras montadas con elementos prefabricados (II): normas constructivas. Notas técnicas de prevención. INSHT, Instituto Nacional de Seguridad e Higiene en el Trabajo (2016). (enlace)

Norma UNE 180 201: Encofrados. Diseño general, requisitos de comportamiento y verificaciones. AENOR (2016). (enlace)

Norma UNE-EN 12812: Cimbras. Requisitos de comportamiento y diseño general. AENOR (2008). (enlace)

Norma UNE 76501: Estructuras auxiliares y desmontables. Clasificación y definición. AENOR (1987).

Norma UNE-EN 1065: Puntales telescópicos regulables de acero. Especificaciones del producto, diseño y evaluación por cálculos y ensayos. AENOR (1999).

Norma UNE-EN 16031: Puntales telescópicos regulables de aluminio. Especificaciones del producto, diseño y evaluación por cálculos y ensayos. AENOR (2013).

Bibliografía:

ACHE (2005). Diseño y utilización de cimbras. Colegio de Ingenieros de Caminos, Canales y Puertos. Asociación Científico-técnica del Hormigón Estructural. Madrid, 624 pp.

ACI 318. Requisitos de Reglamento para Concreto Estructural (ACI 318S-05) y Comentario (ACI 318SR-05).

APA (2002). Encofrado de concreto (hormigón). Guía de diseño y construcción. 

Báez, J.M. (2016). Análisis de las legislaciones e cimbras en materia de prevención en Reino Unido, España y República Dominicana. Tesis de Máster. Universitat Politècnica de Catalunya.

Buitrago, M. (2014). Desarrollo de una aplicación informática de apoyo al cálculo del proecso constructivo de cimbrado/descimbrado de edificios en altura hormigonados in situ. Optimización del proceso aplicando técnicas de optimización heurística. Trabajo de Investigación CST/MIH. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil. Universitat Politècnica de València.

Calavera, J. (2002). Cálculo, construcción, patología y rehabilitación de forjados de edificación: unidireccionales y sin vigas-hormigón metálicos y mixtos. Intemac Ediciones, Madrid.

Corral, V. (2012). La influencia de los encofrados deslizantes en la construcción de las torres de un puente. Universidad Técnica de Ambato (Ecuador).

Díaz-Lozano, J. (2008). Criterios técnicos para el descimbrado de estructuras de hormigón. Tesis doctoral. Departamento de ingeniería civil: construcción. Universidad Politécnica de Madrid.

Dinescu, T.; Sandur, A.; Radulescu, C. (1973). Los encofrados deslizantes. 1ª edición. Espasa-Calpe, S.A. Pozuelo de Alarcón, 496 pp.

Gasch, I. (2012). Estudio de la evolución de cargas en forjados y estructuras auxiliares de apuntalamiento durante la construcción de edificios de hormigón in situ mediante procesos de cimbrado, clareado y descimbrado de plantas sucesivas. Tesis doctoral. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil. Universitat Politècnica de València.

González, F. (2007). Construcción de pasos superiores pretensados. Departamento de Ingeniería de la Construcción, 74 pp.

Griñán, J. (2000). Encofrados. 23ª edición. Grupo Editorial CEAC, S.A. Barcelona, 176 pp.

Grundy, P.; Kabaila, A. (1963). Construction loads on slabs with shored fromwork in multistory buildings. ACI Structural Proceedings, 60(12): 1729-1738.

Ledo, J.Mª. (1997). Andamios, apeos y entibaciones. 17ª edición. Grupo Editorial CEAC, S.A. Barcelona, 168 pp.

López Desfilís, V.J. (1995). Acciones a considerar en el proyecto y construcción de estructuras y elementos auxiliares. Normativa vigente. Apuntes del Máster Seguridad e Higiene en la Construcción. Universidad Politécnica de Valencia.

Martí, J.V.; Yepes, V.; González, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

Martín, J. (1983). Presiones del hormigón fresco. Monografía del Instituto Eduardo Torroja. nº 371. Madrid, 60 pp.

Ministerio de Fomento (1999). Instrucción de Hormigón Estructural EHE. Edita: Secretaría general técnica, centro de publicaciones, Ministerio de Fomento. Madrid, 472 pp.

Paz-Jáuregui, J. (2014). Diseño de un sistema de encofrados metálicos para la fundición de los pilares de un puente empleando software CAD/CAE. Tesis de pregrado. Universidad de Piura.

PERI (1990). PERI. Técnica de encofrados. Manual 90. Ed. PERI, 189 pp

PERI (2017). PERI. Encofrados y andamios. Manual 2017. Ed. PERI, 157 pp.

Peurifoy, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill Book Company. Madrid, 344 pp.

Ricouard, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

Sánchez Merino, E. (2012). Diseño y cálculo del cimbrado y encofrado de un paso superior con tablero de “ala de gaviota”. Proyecto Final de Carrera. Universidad Carlos III, Madrid.

SEOPAN (2015). Manual de cimbras autolanzables. Tornapunta Ediciones, Madrid, 359 pp.

Yepes, V. (1992). Seguridad en la construcción de tableros de puentes losa cimbrados. Apuntes del Máster Seguridad e Higiene en la Construcción. Universidad Politécnica de Valencia.

Yepes, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

 

Premio Docencia en Red 2017/2018

El viernes pasado recogí en el Paraninfo de la Universitat Politècnica de València, uno de los premios de Docencia en Red correspondientes a la convocatoria 2017/2018. Pero, ¿qué es la Docencia en Red? Para trabajar en la mejora del rendimiento académico de los estudiantes, la UPV ha definido una línea de acción de intensificación del uso de las nuevas tecnologías de la información y las comunicaciones en la docencia. En este contexto, el Plan DOCENCIA EN RED, tiene como objetivo es incentivar en el profesorado la elaboración de materiales educativos reutilizables en formato digital.

Los materiales educativos se elaboran en formato digital, de forma que puedan ser almacenados en bases de datos, distribuidos a través de la red y accesibles desde cualquier navegador estándar. Los objetos de aprendizaje elaborados se incluyen en el repositorio institucional de la UPV (RiuNet).

En particular, este año hice una serie de vídeos educativos relacionados con las cimbras autolanzables. Este material ha formado parte del curso MOOC sobre cimbras y encofrados, que ha tenido más de 1000 alumnos inscritos y que en septiembre volverá a repetirse su edición.

Curso gratuito online masivo: Introducción a los encofrados y las cimbras en obra civil y edificación

Cimbra porticada. Imagen V. Yepes (1991)

Acerca de este curso MOOC de la UPV

Este es un curso básico de construcción de obras civiles y de edificación con encofrados y cimbras organizado y avalado por la Universitat Politècnica de València. Es un curso que no requiere conocimientos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas tipologías y aplicabilidad de los encofrados y las cimbras utilizados en obras de ingeniería civil, de edificación y en la industria del prefabricado. Se índice especialmente en la comprensión del empuje del hormigón fresco sobre los encofrados, en los aspectos relacionados con la seguridad en los trabajos de cimbrado, descimbrado, encofrado y desencofrado. Se estudia con detalle el cimbrado y descimbrado de plantas sucesivas en edificación y se abordan los encofrados y cimbras empleados en puentes, túneles, estructuras en altura, edificios, entre otros: encofrados telescópicos, trepantes, deslizantes, encofrados túnel, cimbras autolanzables, cimbras autoportantes, etc.

El contenido del curso está organizado en 4 módulos, cada uno con 4 secuencias de aprendizaje que permiten, con una dedicación menor a una hora diaria, aprender los aspectos básicos de los encofrados y las cimbras. Cada semana se trabaja un módulo, teniendo el curso una duración estimada de un mes.

El inicio del curso es el 12 de junio de 2018, y la finalización, el 9 de julio de 2018. La inscripción la puedes realizar en el siguiente enlace: https://www.upvx.es/courses/course-v1:IngenieriaDeLaConstruccion+encofrados+2018-01/about

Lo que aprenderás

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de las estructuras auxiliares (encofrados y cimbras) en la construcción de obras civiles y de edificación
  2. Evaluar y seleccionar el mejor tipo de encofrado y cimbra necesario para una construcción en unas condiciones determinadas, considerando la economía y la seguridad

 

By Sensenschmied – Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=18911631

Programa del curso

  1. ¿Qué hacer antes de empezar a construir una estructura de hormigón?
  2. Oficios perdidos en la historia actual de España: el encofrador
  3. ¿Qué son y para qué sirven los encofrados?
  4. Elementos auxiliares y funcionalidad de los encofrados
  5. Clasificación de los sistemas de encofrado
  6. Medidas de seguridad durante el desencofrado
  7. Empuje del hormigón fresco sobre un encofrado
  8. Métodos de cálculo del empuje del hormigón fresco
  9. Encofrado prefabricado para pilares
  10. Construcción de un forjado reticular
  11. Mesas encofrantes o sistemas pre-montados
  12. Construcción mediante encofrados túnel
  13. Moldes para hormigón prefabricado
  14. Mesas basculantes para la fabricación de paneles prefabricados
  15. Encofrados trepantes
  16. Encofrados deslizantes
  17. Carros de encofrado para túnel
  18. Carros de encofrado para construcción de puentes por avance sucesivo
  19. Clases de diseño de cimbras según la norma UNE-EN 12812
  20. Cimbrado, recimbrado, clareado y descimbrado de plantas consecutivas
  21. Precauciones específicas relativas al montaje y desmontaje de cimbras y encofrados
  22. Cimbras y encofrados hinchables
  23. Componentes de una cimbra montada con elementos prefabricados
  24. Precauciones para el montaje de la cimbra de un puente
  25. Cimentación de la cimbra de un puente losa
  26. Cimbras cuajadas en la construcción de puentes
  27. Cimbras porticadas en la construcción de puentes
  28. Definición de cimbra autolanzable
  29. Clasificación de las cimbras autolanzables
  30. Cimbra autolanzable frente a otros procedimientos constructivos
  31. Parámetros para seleccionar una cimbra autolanzable
  32. Elementos de una cimbra autolanzable
  33. Construcción de puentes mediante autocimbra bajo tablero
  34. Construcción de puentes mediante cimbra autolanzable sobre tablero
  35. Construcción de puentes mediante lanzador de vigas
  36. Construcción de puentes por dovelas mediante cimbras autoportantes
  37. Construcción de puentes arco con armaduras rígidas (autocimbras)

Conozca al profesor

Víctor Yepes Piqueras

Catedrático de Universidad. Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Consejero del Sector Docencia e Investigación del Colegio de Ingenieros de Caminos, Canales y Puertos. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social de la UPV. Es investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE). Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Carros de encofrado para la construcción de puentes por avance en voladizo

Figura 1. Construcción por voladizos sucesivos. By Störfix [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], from Wikimedia Commons

La construcción en avance en voladizo con dovelas hormigonadas “in situ” ha ido desplazando a los puentes-viga metálicos en luces entre 60 y 200 m. No obstante, estos límites van superándose. Así, el puente Gateway en Brisbane, Australia, presenta 260 m de luz. El récord mundial de esta tipología lo ostenta el puente Stolma, en Noruega, con un vano central de 301 m de luz.

La dovela en curso de hormigonado suele apoyarse sobre un carro de avance soportado por el tablero terminado. Sin embargo, existen otros sistemas como el uso de andamiaje apoyado sobre el terreno, vigas metálicas auxiliares apoyadas sobre las pilas del puente en construcción e incluso mediante atirantamiento provisional.

En el caso que nos ocupa, el carro móvil de hormigonado soportado por el propio tablero, debe garantizar la posición geométrica de las dovelas y soportar su peso antes del fraguado del hormigón y de su unión mediante pretensado a la dovela precedente. Se distinguen los carros móviles tradicionales y los autoportantes. En los primeros, el peso de la dovela se transmite al tablero por medio de vigas longitudinales fijadas sólidamente en voladizo en el extremo de la ménsula.

  • Carros móviles con vigas principales superiores: Constan de vigas longitudinales situadas en la vertical de las almas, arriostradas por vigas transversales de donde cuelga el encofrado, la plataforma de trabajo y las pasarelas de inspección. Los encofrados interiores y de almas se apoyan sobre vigas o carretón móvil, desplazándose colgados tanto por el tablero como por el carro. El carro se ancla a la penúltima dovela, equilibrándose con contrapesos traseros (Figura 2) o bien con un anclaje móvil a la vía de rodadura (Figuras 1 y 3). El problema fundamental con este carro es la aparición de fisuras en la cara superior de la losa inferior al deformarse las vigas principales durante el hormigonado. Para reducir este efecto se hormigona el voladizo hacia atrás. También se podrían utilizar carros más rígidos y pesados, que pesan el doble que los ligeros, pero ello origina un aumento en el pretensado y en los dispositivos anclaje o contrapesos.
Figura 2. Carros antiguos con contrapesos para equilibrar. Fuente: Dragados Obras y Proyectos

 

Figura 3. Carro de avance moderno, anclado al tablero. http://www.sten.es/encofrados/viaductos/

 

  • Carros móviles con vigas principales inferiores: Para despejar la superficie de trabajo y permitir el acceso de la parte superior de la dovela en construcción se recurre a carros con vigas situadas bajo las almas exteriores de las dovelas. Ello facilita la prefabricación de las armaduras y vainas con cables de pretensado, lo que agiliza la ejecución.
  • Carros móviles autoportantes: Se trata carros donde el encofrado forma parte de la función resistente, reduciendo las deformaciones que aparecen durante el hormigonado de la dovela. Esta disposición mejora el control y la corrección geométrica del tablero, reduce las fisuras que aparecen entre las juntas de las dovelas y evita la obstrucción de las superficies de trabajo. Los carros se anclan por pretensado al tablero construido, posicionándose mediante usillos. El carro se traslada sobre perfiles situados en voladizo sobre la vertical de las almas. Pueden construirse secciones variables e incluso secciones en cajón con varias almas. El encofrado interior del cajón se apoya en la viga maestra anterior y se cuelga por la parte trasera de la dovela precedente.

 

Una explicación del proceso constructivo la tenéis en el siguiente vídeo:

A continuación os dejo un vídeo donde podéis ver un carro de avance modelo CVS de la empresa ULMA Construction. Espero que os sea de interés.

Otro vídeo, también del ULMA, es el siguiente:

También es de interés el procedimiento constructivo del viaducto de Contreras. Aquí os paso un vídeo de voxelstudios.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.