Balance personal de 2018 en el ámbito docente e investigador

El 31 de diciembre suele ser una buena fecha para reflexionar lo que ha sido el año. Todo pasa muy rápido, demasiado rápido, las cosas cambian y las noticias del año que acaba suelen ser agridulces cuando se mira la prensa o la televisión. Desde el punto de vista de la ingeniería, me impactaron mucho los desastres del puente de Morandi en Génova y el hundimiento de una pasarela en Vigo, ambos casi simultáneos ocurridos en agosto, aunque son muchos más los desastres naturales y los relacionados con la ingeniería, el territorio y el cambio climático. Hoy toca realizar el balance del 2018 y destacar aquellos logros que hacen que haya merecido la pena el paso de este año. Como siempre, me centraré en el ámbito docente e investigador.

Lo primero que me gustaría destacar es el 50 aniversario de nuestra Escuela de Ingenieros de Caminos de Valencia. Va a ser difícil llegar a ver el centenario, pero con un poco de suerte, dentro de 25 años podremos ver cómo ha cambiado la Escuela y la profesión. Este año, muy especial en cuanto a fechas, también ha sido el año en que mi hija Lorena terminó de forma brillante el Máster en Ingeniería de Caminos, Canales y Puertos. También es momento de recordar a algunos que nos dejaron. Un recuerdo para los profesores Carlos A. Brebbia y David Billington.

En cuanto a la difusión de la ingeniería, he participado este año en varios programas de radio. En Radio Nacional, en el programa “Esto me suena” me han realizado varias entrevistas donde tuve la ocasión de divulgar aspectos menos conocidos por el público en general de la ingeniería civil. Esta colaboración ya viene siendo habitual desde el año 2016. Este año hemos hablado sobre cómo se construyeron los arcos a lo largo de la historia, sobre las tuneladoras, del viaducto sobre el río Almonte de Garrovillas de Alconétar y otra más sobre la seguridad de nuestros puentes. También me entrevistaron en À Punt Ràdio hablando de los algoritmos heurísticos basados en el jazz que hemos desarrollado en nuestro grupo de investigación como ayuda en la decisión de qué infraestructuras son las prioritarias a la hora de invertir. Esta noticia tuvo eco en numerosos medios de comunicación escrita. En Radio Alcoy también tuve la ocasión de hablar sobre la reparación del puente Fernando Reig, y allí hablé de la necesidad de reconocer a los autores de las obras de ingeniería. Además, de los desastres de Génova y Vigo tuve ocasión de hablar en un artículo denominado “Más allá de Génova y Vigo: la crisis de las infraestructuras es un problema global“, que se publicó en “The Conversation” y que luego se reprodujo en numerosos medios de comunicación escrita. Por último, no quiero olvidar mi labor de difusión a través de mi blog personal. Este año he escrito 130 entradas en el blog sobre diversos temas. Es un blog que ha crecido un 43,9% en número de usuarios respecto al año anterior. En este año 2018 han sido 428 mil usuarios los que han utilizado el blog, lo cual empiezan a ser cifras a tener en cuenta.

En cuanto a las publicaciones de artículos científicos en revistas indexadas, 2018 ha sido un buen año. He publicado 10 artículos internacionales en revistas indexadas en el JCR (Journal of Cleaner Production, Sustainability Environmental Impact Assessment Review), de las cuales 8 corresponden a revistas en el primer cuartil y 2 a las del segundo cuartil. De las 8 del primer cuartil, 7 son revistas del primer decil. Pero, además, a fecha de hoy, ya nos han publicado tres artículos en revistas de impacto para el año 2019 (Engineering Structures, Journal of Cleaner ProductionEnvironmental Impact Assessment Review), las tres del primer cuartil. Además, hemos publicado en 2018 también un par de artículos en revistas internacionales (Journal of Construction Engineering, Management & Innovation y Technologies). Asimismo, destaco mi contribución como Editor Invitado, junto con el profesor José Mª Moreno, al número especial “Optimization for Decision Making” de la revista Mathematics; así como Editor Asociado en el número especial “Advanced Optimization Techniques and Their Applications in Civil Engineering“, de la revista Advances in Civil Engineering. Todo esto no hubiera sido posible sin mis alumnos de doctorando y colegas del grupo de investigación. También debo reseñar el reconocimiento recibido por el Publons Peer Review Awards 2018, donde se reconoce estar durante el periodo 2017-2018 en el 1% de los revisores en el ámbito “Engineering”. El resultado ha sido que, a fecha de hoy, mi índice Hirsch de producción científica, según la Web of Science, es h=21, mientras que ese mismo índice en Google Académico es h=34.

En cuanto a Congresos, tuve la oportunidad de asistir a dos congresos donde, además de presentar ponencias, he pertenecido a los Comités Científicos. Del 11 al 13 de julio de 2018 asistí al HPSM/OPTI 2018 (International Conference on High Performance and Optimum Design of Structures and Materials), celebrado en Liubliana (Eslovenia). La comunicación presentada se publicará en 2019 en la revista International Journal of Computational Methods and Experimental Measurements). Por otra parte, del 28 al 31 de octubre asistí al IALCCE 2018 (The sixth International symposium on Life-Cycle Civil Engineering), que tuvo lugar en Gante (Bélgica). Este congreso fue especialmente importante porque Tatiana García Segura, a la que dirigí su tesis doctoral, recibió el  Junior Award IALCCE 2018, que premia al mejor investigador, con una edad menor a 42 años. Es la primera vez que un español gana este galardón, lo cual es un hito para la Escuela de Ingenieros de Caminos de Valencia y para la Universitat Politècnica de València. Sobre el tema de playas inteligentes me invitaron a impartir una conferencia magistral en el III Congreso Internacional de Calidad Ambiental en Playas Turísticas, organizado por la Universidad de la Guajira en Colombia, del que también formo parte del Comité Científico Internacional; dicho congreso se celebra entre el 21 y el 23 de marzo de 2018. Debido a problemas de agenda, se me invitó a impartir la charla por teleconferencia. Otros congresos donde participé este año han sido el Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2018, Valencia;  el ICERI2018,the 11th annual International Conference of Education, Research and Innovation, en Sevilla; y el VIBRArch Valencia 1 Bienial Research of Architecture, en Valencia.

En cuanto a proyectos de investigación competitivos, este año iniciamos el proyecto DIMALIFE  (Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos, BIA2017-85098-R), el cual tiene una duración prevista de tres anualidades y cuenta con la financiación necesaria para un contrato predoctoral FPI. Este es un proyecto donde soy investigador principal. Además, también empezamos el proyecto RTC-2017-6148-7-AR (Sistema integral de mantenimiento eficiente de pavimentos urbanos) donde participo como investigador. En cuanto a tesis doctorales, están muy avanzadas las de Jorge Salas, Ignacio Navarro y Vicent Penadés. Estas tres tesis se leerán, con toda seguridad, a lo largo del 2019.

En el ámbito docente, me gustaría destacar el Curso de Creatividad que impartí en marzo de este año en la universidad de La Rioja a personal docente y el Curso de Planificación y Gestión de Playas que impartí y dirigí en la Universidad de Oporto en junio. Pero, quizás sin duda, uno de los hitos de este año fue la puesta en marcha, por primera vez, de un curso MOOC (gratuito, masivo y online) denominado “Introducción a los encofrados y las cimbras en obra civil y edificación“, que este mismo año ya va por la tercera edición y ha tenido casi 4000 alumnos inscritos. Todo un éxito inesperado que espero poder repetir en un futuro próximo con otros temas. En cuanto a premios recibidos, destaco el Premio Docencia en Red 2017/2018, recibido en el contexto del Plan de Docencia en Red de la Universitat Politècnica de València por la elaboración de material educativo en formato digital.

Por último, me gustaría destacar las visitas de investigación recibidas por parte de profesores de prestigio internacional como ha sido el caso del profesor Gizo Partskhaladze, (Georgia) que nos ha visitado ya por tercera vez. También hemos recibido al profesor Moacir Kripka, catedrático de estructuras en la Universidade de Passo Fundo, en Brasil.

En definitiva, 2018 se puede calificar de un buen año en estos aspectos universitarios. Espero que 2019 siga siendo al menos, la mitad de bueno que éste. A continuación paso un listado de alguna de las cosas que he podido terminar este año.

INVESTIGADOR PRINCIPAL EN PROYECTOS DE INVESTIGACIÓN COMPETITIVOS:

  • Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos. DIMALIFE. [Reliability-based robust optimum design and maintenance of high social and environmental efficiency of bridges and highway infrastructures under restrictive budgets]. BIA2017-85098-R.

 

ARTÍCULOS INDEXADOS EN EL JCR:

  1. SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  2. PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015
  3. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:1016/j.eiar.2018.10.001
  4. GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202: 904-915. DOI:1016/j.jclepro.2018.08.177
  5. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110
  6. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:1016/j.eiar.2018.05.003
  7. DEDE, T.; KRIPKA, M.; TOGAN, V.; YEPES, V.; RAO, R.V. (2018). Advanced optimization techniques and their applications in civil engineering. Advances in Civil Engineering, 2018: 5913083. DOI:1155/2018/5913083
  8. PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192:411-420. DOI:1016/j.jclepro.2018.04.268
  9. SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI:1016/j.jclepro.2018.03.022
  10. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:3390/su10030845
  11. PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. DOI:3390/su10030685
  12. SALAS, J.; YEPES, V. (2018). Urban vulnerability assessment: Advances from the strategic planning outlook. Journal of Cleaner Production, 179:544-558. DOI:1016/j.jclepro.2018.01.088
  13. SALAS, J.; YEPES, V. (2018). A discursive, many-objective approach for selecting more-evolved urban vulnerability assessment models. Journal of Cleaner Production, 176:1231-1244. DOI:1016/j.jclepro.2017.11.249
  14. SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534. DOI:1016/j.jclepro.2017.12.140

 

OTROS ARTÍCULOS:

  • YEPES, V.; PÉREZ-LÓPEZ, E.; GARCÍA-SEGURA, T.; ALCALÁ, J. (2019). Optimization of high-performance concrete post-tensioned box-girder pedestrian bridges. International Journal of Computational Methods and Experimental Measurements, (accepted, in press).
  • YEPES, V.; PÉREZ-LÓPEZ, E.; ALCALÁ, J.; GARCÍA-SEGURA, T. (2018). Parametric study of concrete box-girder footbridges. Journal of Construction Engineering, Management & Innovation, 1(2):67-74. doi:10.31462/jcemi.2018.01067074
  • ALCALÁ, J.; GONZÁLEZ-VIDOSA, YEPES, V.; MARTÍ, J.V. (2018). Embodied energy optimization of prestressed concrete slab bridge decks. Technologies, 6(2):43. doi:10.3390/technologies6020043 (link)

 

CONGRESOS:

  • FERNÁNDEZ-MORA, V.; YEPES, V. (2018). Problems in the adoption of BIM for structural rehabilitation.  VIBRArch Valencia 1 Bienial Research of Architecture, Valencia (Spain),  18th-19th October 2018.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Heuristics in engineering education. A case study application to sustainable bridge management systems. Proceedings of ICERI2018,the 11th annual International Conference of Education, Research and Innovation, Seville (Spain), 12th-14th November 2018, pp. 9788-9797.  ISBN: 978-84-09-05948-5
  • NAVARRO, I.; MARTÍ, J.V.; YEPES, V. (2018). Multi-criteria decision making techniques in civil engineering education for sustainability. Proceedings of ICERI2018,the 11th annual International Conference of Education, Research and Innovation, Seville (Spain), 12th-14th November 2018, pp. 9798-9807.  ISBN: 978-84-09-05948-5
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V. (2018). Kriging-based heuristic optimization of a continuous concrete box-girger pedestrian bridge. Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE 2018), Ganth (Belgium), October 2018, pp. 2753-2759. ISBN: 9781138626331
  • YEPES, V. (2018). La transición de playas certificadas a playas inteligentes. III congreso Internacional de Calidad Ambiental en Playas Turísticas (CAPT 2018). Marzo, Universidad de la Guajira (Colombia).
  • YEPES, V. (2018). Correspondencia jerárquica entre las competencias y los resultados de aprendizaje. El caso de “Procedimientos de Construcción”. Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2018, Valencia, pp. 1-15. ISSN 2603-5863

 

TRABAJOS FIN DE MÁSTER

  • CALDERÓN, S. (2018). Estudio sobre BIM integrado. Análisis del caso práctico de la ampliación de la Tercera Compuerta en la Esclusa de Beatriz y Ensanchamiento del Canal de Lek (Holanda). Máster Universitario en Planificación y Gestión de la Construcción.
  • RÓDENAS, A. (2018). Comparativa Ambiental y Económica de Pantallas de Contención de Tierras para Edificación Mediante el Análisis del Ciclo de Vida. Máster Universitario en Planificación y Gestión de la Construcción.
  • TRONCOSO, P.T. (2018). Gestión de la Economía Circular en la Producción de Mezcla Asfáltica en Chile. Máster Universitario en Planificación y Gestión de la Construcción.
  • TRIANA, C.R. (2018). Gestión de Innovación de las Empresas del Sector de la Construcción en Colombia. Máster Universitario en Planificación y Gestión de la Construcción.

 

VÍDEOS EDUCATIVOS (POLIMEDIAS)

  1. Definición de cimbra autolanzable. 7 minutos, 11 segundos.
  2. Clasificación de las cimbras autolanzables. 6 minutos, 38 segundos.
  3. Cimbra autolanzable frente a otros procedimientos constructivos. 9 minutos, 13 segundos.
  4. Parámetros para seleccionar una cimbra autolanzable.  6 minutos, 50 segundos.
  5. Elementos de una cimbra autolanzable.  7 minutos, 57 segundos.
  6. Cimbra autolanzable bajo tablero.  7 minutos, 33 segundos.
  7. Cimbra autolanzable sobre tablero.  8 minutos, 4 segundos.
  8. Construcción de puentes mediante lanzador de vigas. 8 minutos, 0 segundos.

 

¿Cómo se distribuyen las presiones en el suelo al paso de un compactador?

Figura 1. Compactador de neumáticos

Un aspecto de gran interés práctico en la compactación es conocer cómo se distribuyen las presiones bajo la superficie por la que pasa el compactador. Si en vez de considerar las tensiones y deformaciones uniformemente distribuidas por todo el material, tal y como hemos visto en los ensayos descritos en entradas anteriores, nos centramos en lo que ocurre bajo la superficie donde se aplica la carga, comprobaremos que los efectos de la carga únicamente se soportan por una porción del suelo bajo ella.

Boussinesq desarrolló, para un suelo homogéneo, isótropo y elástico, la distribución de las tensiones bajo placas cargadas (en 1885 obtuvo una solución para los esfuerzos debidos a una carga aplicada en dirección normal a la superficie de un semiespacio elástico semi-infinito). Se forma un bulbo de presiones bajo la placa, de forma que la presión a determinada profundidad es proporcional a la presión de contacto (Figura 2).

Figura 2. Distribuciones de presiones según Boussinesq

Asimismo, la forma y el tamaño de la placa influyen en el bulbo de presiones. A igualdad de carga y superficie, una placa cuadrada produce mayores presiones a medida que aumenta la profundidad. También se observa que, para una presión de contacto dada, cuanto más ancha es la placa de carga, mayor es la profundidad alcanzada para la misma compresión. Ello explica que un compactador de neumáticos (Figura 1) -cuya huella se aproxima a un círculo- es más eficaz en cuanto a penetración que un compactador de cilindro liso (Figura 3), estando cargados por igual, y a igual superficie total de contacto.

Figura 3. Compactador de rodillo liso

Tanto las tensiones como las deformaciones disminuyen rápidamente con la profundidad de la tongada a compactar. Así en un neumático de una anchura D, con una presión de contacto con la superficie de PC, transmite a 0,5 D solo 0,6 PC, a una distancia D transmite 0,3 PC y al llegar a 2D únicamente nos llega 0,09 PC. El tamaño del bulbo nos indica qué partes de la masa del suelo serán afectadas por la carga aplicada de forma significativa, tanto en profundidad como en extensión lateral. La Tabla 1 proporciona los valores aproximados de la profundidad y ancho de los bulbos de presión de 0,2q y 0,1q.

Tabla 1
Tabla 1. Bulbos de presión bajo el terreno

Como existe una presión por debajo de la cual las deformaciones dejan de ser permanentes (se puede tomar como idea unos 0,2 MPa), por ser de tipo elástico, es fácil comprender que la presión en superficie, al ir disminuyendo, encontrará una línea divisoria por debajo de la cual no es posible compactar el terreno.

Debido a que para cada carga, existe una deformación remanente límite, independiente del número de ciclos, se obtendrá una profundidad límite de capa para cada compactador y para cada peso unitario especificado. Se puede calcular dicho espesor límite interpolando entre varios valores de deformación límite y grosor de capa, para un compactador prefijado. Las relaciones entre los pesos unitarios iniciales, especificada y las deformaciones son las descritas mediante la siguiente ecuación, basada en que el peso unitario de cada capa crece en la misma relación que disminuye la altura:donde:

ε = deformación unitaria

δ = deflexión

h = grosor de la tongada

γ0 = peso unitario inicial

γesp = peso unitario especificado

Referencia:

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cómo influye el tiempo y la velocidad de aplicación de la sobrecarga en la compactación?

Figura 1. Compactador vibratorio JCB

La influencia del tiempo de actuación de la sobrecarga se observa con facilidad en un ensayo edométrico, tal y como hemos visto en una entrada anterior. Si se aplica una carga constante, la deformación aumenta con el tiempo pero tiende asintóticamente a una deformación unitaria, tal y como se ve en la Figura 2. Al mismo tiempo, se puede comprobar la pérdida de humedad por las paredes de la probeta.

Si la prueba se repite aplicando la misma carga con una probeta mayor, se comprueba que se llega a idéntica deformación unitaria, pero éstas al principio son más lentas, tardando más en salir el agua.

Figura 2. Variación de la deformación del suelo con el tiempo de aplicación de la carga

En cuanto a la influencia de la velocidad de aplicación de la sobrecarga y las deformaciones obtenidas se constata cómo la máxima se retrasa respecto a la aplicación efectiva de la máxima presión, debido a los fenómenos descritos con anterioridad. En este caso la carga se aplica de forma creciente hasta llegar a su máximo, disminuyéndola de forma análoga.

A su vez, si dicho esfuerzo se aplica con rapidez, la deformación máxima alcanzada será menor. Sin embargo, al incrementar la velocidad de traslación se puede dar un mayor número de pases por hora de trabajo, existiendo una velocidad idónea, compromiso entre ambos efectos contradictorios. Por consiguiente, y a efectos prácticos, se consideran dos vías para aumentar el efecto de la compactación: o bien incrementar la carga aplicada, o disminuir la velocidad del compactador. Estas circunstancias serán importantes en los terrenos finos, y menos en terrenos granulares.

Referencia:

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Diagramas de carga-deflexión en la compactación mecánica de suelos

Figura 1. Rodillo compactador Hamm 3412

La compactación mecánica está basada en las relaciones entre las tensiones y las deformaciones o deflexiones causadas por una carga compresora.

Si se analiza el ensayo realizado sobre una probeta de suelo cilíndrica, permaneciendo la superficie lateral libre y en cuya base superior aplicamos una carga mediante una chapa metálica, con un valor que vaya aumentando a velocidad constante, se obtiene el diagrama de carga-deflexión como el de la Figura 2. En este ensayo, una vez alcanzado determinado valor en la carga, la probeta rompe. Asimismo, la pendiente de la curva cargas-asientos correspondiente a cada ciclo permite calcular el módulo de deformación del suelo.

Figura 2. Tensión-deformación en una probeta con paredes laterales libres

La curva permite comprobar ciertos fenómenos significativos. El primero de ellos es que si al llegar al punto 3 dejamos de aumentar la carga, sigue la probeta deformándose hasta estabilizarse en el punto 4 al cabo de cierto tiempo. Este efecto es acusado en suelos plásticos y húmedos por su dificultad en evacuar el aire y el agua. El segundo fenómeno es que si a partir de un punto tal como el 1 descargamos a la misma velocidad que veníamos cargando, la probeta recupera parte de su deformación, hasta llegar a 2 cuando ya no existe tensión. Si a partir de este punto repetimos el proceso, la nueva curva se aproxima a la original hasta ser tangente con ella. Estas dos ramas, de compresión y de descompresión, no se confunden, sino que forman un lazo nominado de histéresis.

Si este experimento se realiza con un terreno natural, y otro recompuesto de la rotura de los anteriores ensayos, y ambos se vuelven a testar con la misma humedad, se observa que a igualdad de cargas, los suelos recompuestos o amasados rompen antes y sufren mayor deformación. Análogamente, si experimentamos a mayores velocidades de incremento de carga, las deformaciones son menores ya que no da tiempo suficiente a evacuar aire y agua de la muestra.

El segundo tipo de ensayo propuesto sería someter la probeta cilíndrica a un proceso de cargas escalonado, de forma que permanezca constante la compresión durante un periodo de tiempo dilatado que garantice que se alcanza el alargamiento límite para dicha carga. A su vez, la probeta tendrá impedida su deformación lateral, siendo porosas las bases del cilindro, pudiendo así aplicar cargas de mayor magnitud. En este caso sólo existe deformación vertical siendo la lateral nula, hablándose entonces de deformación edométrica, por ser el edómetro el aparato en el cual se realiza este experimento. Por cierto, edómetro viene del griego “oidos“, hinchamiento, por ser la medida de la expansividad de los suelos en contacto en el agua, una de sus primeras aplicaciones.

Figura 3. Celda de edómetro

En este caso, la curva obtenida presenta las mismas características que la anterior. Si no se descarga, la curva (0135) se denomina de compresión noval. Al descargar, nos movemos de forma lineal por la rama de descarga. Se llama presión de preconsolidación la máxima que ha sufrido el material en su historia, siendo por tanto que un suelo o está en la rama elástica o en la tensión de preconsolidación.

Se distinguen tres tipos de asientos al realizar un ensayo edométrico. La consolidación inicial es un asiento independiente del fenómeno de consolidación y que está asociado a deformaciones debidas al cierre de fisuras de la muestra, a rozamientos y huelgos del sistema de aplicación de la carga, etc. La consolidación primaria se rige por la teoría de la consolidación, es decir, existe un asiento debido a la expulsión del agua como consecuencia de la sobrepresión aplicada. Por último, la consolidación secundaria se debe a fenómenos viscosos y de reajuste de la estructura del suelo una vez las sobrepresiones se han anulado, y tampoco se debe al fenómeno de consolidación. La teoría de la consolidación está basada en el principio de Terzaghi, y plantea que un suelo saturado y poco permeable reacciona inicialmente a un cambio tensional como si no cambiara de volumen, generando sobrepresiones intersticiales. A medida que éstas se van disipando hacia los contornos drenantes, las tensiones totales transmitidas inicialmente se transforman, gradualmente, en presiones efectivas, y el suelo se deforma.

Se llaman suelos normalmente consolidados aquellos en los que la tensión efectiva actual es la máxima que han tenido en su historia, y suelos sobreconsolidados o preconsolidados los que han soportado en el pasado una tensión superior a la actual. Es evidente que cuanto antes se hablaba de un suelo remoldeado en anteriores ensayos, este es, por definición, sobreconsolidado.

A continuación os dejo un vídeo sobre el ensayo edométrico. Espero que os sea de interés.

Referencia:

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Mejor pocas pasadas de un compactador muy pesado?

Figura 1. Compactador vibratorio

Una pregunta que suelen hacerme es saber si resulta más económico compactar un terreno con un compactador pesado con pocas pasadas o un compactador menos pesado, pero con más pasadas. Es conocido que el número de pasadas y la profundidad de la capa de terreno a compactar dependerá no solo de las características de la máquina, sino también de la naturaleza del suelo y su humedad. La determinación de estos parámetros se puede realizar mediante un tramo de prueba. Sin embargo, en esta entrada quiero centrarme en el aspecto energético del problema. En efecto, voy a contar qué ocurre con los ciclos de carga-descarga sobre un terreno al que se le aplican deformaciones remanentes progresivas.

Si se consideran varios ciclos de carga y descarga, es interesante comprobar cómo los módulos de deformación de cada lazo de histéresis van aumentando progresivamente hasta alcanzar un valor de equilibrio. La densificación del terreno va provocando deformaciones remanentes progresivas, que llegan a un límite, en cuyo rango de presiones el suelo se comporta elásticamente (esto es cierto salvo en terrenos muy plásticos y con gran humedad).

En la Figura 2 se observa la variación de la deformación residual con el número de ciclos de carga-descarga.

Figura 2. Número de ciclos de carga-descarga con respecto a la deformación residual

Estos mismos ciclos de carga y descarga ocurren al pasar un compactador por encima de una capa que se desea compactar. Cada pasada constituye un ciclo completo de carga y descarga, con un terreno que se encuentra en una situación intermedia entre el confinamiento horizontal total y el libre, que son los dos experimentos descritos.

El proceso provoca deformaciones residuales cada vez menores, hasta llegar a una situación en el límite, donde las tensiones y deformaciones son lineales, y donde una carga mayor rompe el suelo, subiendo éste alrededor del compactador. Veamos en la Figura 3 las sucesivas relaciones entre tensiones y deformaciones que se producen en cada pasada de compactador. El área formada por los puntos OA1B1 es proporcional a la energía necesaria para obtener la deformación remanente OB1. Por tanto, cuanto mayor sea la carga del compactador, menos pasadas serán necesarias para llegar a la deformación remanente deseada, es decir, al grado de densidad especificado. Ahora bien, dicha carga debe ser inferior a la de rotura del material.

Figura 3. Relación entre tensión y deformación con ciclos de cargas y descargas sucesivas

Se presentan dos formas de llegar a la deformación remanente necesaria: o bien con muchas pasadas de un compactador menos pesado, o bien con pocas pasadas de un compactador más pesado. En el límite la energía necesaria con una sola pasada sería proporcional a la curva OAB, mientras que con muchas pasadas sería proporcional aproximadamente a OANBN. Ello podría hacer pensar que sería más económico muchas pasadas con un compactador pequeño que pocas con uno más grande. Esto no es del todo cierto ya que también se consume energía por rozamiento al trasladarse los equipos. Bajo una perspectiva energética, lo óptimo se encuentra en una situación intermedia.

Referencia:

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los ingenieros del regeneracionismo y la crisis del 98

Joaquín Costa (1846-1911). https://commons.wikimedia.org

¡Qué amargura! ¡Qué desencanto! Creíamos ser un imperio glorioso y resulta que no somos nada.” (Ramón y Cajal, 1898)

La decadencia española ocurrida con el desastre colonial de 1898 produjo varias corrientes intelectuales, la Generación del 98 y el regenacionismo. Fue un ingeniero de caminos, Práxedes Mateo Sagasta, el que tuvo la penosa labor de presidir el gobierno que tuvo que firmar la paz con los Estados Unidos. Este periodo trajo una profunda crisis intelectual sobre lo que era y significaba España.

Salvando las distancias de tiempo y forma, “la música pienso que nos suena familiar”, tal y como comenta Jaume Vallés en la tribuna de El País en enero del 2014. Ambos movimientos expresaban un juicio pesimista sobre España, pero los regeneracionistas lo hicieron de forma menos subjetiva y más documentada, mientras la Generación del 98 se expresó en forma más literaria, subjetiva y artística.

La palabra “regeneración” se usa, tomada del vocabulario médico, como antónimo de “corrupción” y expresaba la preocupación por la decadencia del país. Su principal representante fue el político aragonés Joaquín Costa. Los intelectuales regeneracionistas divulgaban sus estudios en revistas de amplia difusión, como la Revista Contemporánea o La España Moderna. Con todo, fueron muchas las corrientes regeneracionistas, de distinta ideología, que surgieron en este momento histórico. Lo común a todas ellas era su preocupación por la decadencia de España y el deseo de regenerarla.

El regeneracionismo coincidía en exigir reformas en la Administración Pública y en erradicar el caciquismo; se trataba de sacar al país de su atraso cultural y económico, reclamando la intervención del Estado en el fomento y extensión de la enseñanza y en el aumento de la producción y riqueza de la nación. El lema “Despensa y Escuela“, de Costa, reflejaba con acierto los retos a abordar. Surgieron diversos proyectos educativos y científicos como los conducidos por la Institución Libre de Enseñanza y por la Junta para Ampliación de Estudios, todos ellos con la aspiración a la revitalización intelectual y moral de los españoles.

“… las carreteras iban no por donde las trazaban los ingenieros, sino por donde caían sus fincas, sus pueblos o sus caseríos …” (Joaquín Costa, 1901)

Muchas de las propuestas políticas regeneracionistas exigían la construcción de nuevas instituciones y servicios públicos y el desarrollo de los mecanismos administrativos existentes. Por tanto, esta crisis cambió significativamente la organización de las obras públicas, con una mayor inversión estatal, especialmente en obras de regadío. Una campaña de la Revista de Obras Públicas (revista técnica del Cuerpo de Ingenieros de Caminos, Canales y Puertos) y el periódico El Imparcial, había asumido desde un principio las ideas de Joaquín Costa. Los argumentos a favor de la intervención estatal se basaban en el fracaso demostrado por medio siglo de política de incentivos al capital privado, la utilidad publica de los embalses, el incremento de la riqueza y de las contribuciones fiscales derivado de las obras de riego, de la contradicción en la que se había incurrido en España al impulsarse la construcción pública de carreteras y no hacer lo mismo con las obras hidráulicas, etc.

El principio del siglo XX supuso un cambio en los papeles del fomento de las obras, siendo el Estado el que empezó a asumir su liderazgo en la promoción de nuevas construcciones. La asignatura pendiente en aquel momento fueron las obras hidráulicas, pues ya se habían completado las redes de transporte interior viarias y ferroviarias y se habían desarrollado los transportes marítimos. Una señal clara de la incorporación del Cuerpo de Ingenieros de Caminos, Canales y Puertos a este movimiento regeneracionista fue la elaboración, por iniciativa propia e inspirada por el ingeniero Saturnino Bellido, del “Avance de un Plan General de pantanos y canales de riego” en 1899.

El Isidro del ministerio, en Gedeón, 1900. Wikipedia

Rafael Gasset Chinchilla (1866-1927), tío del filósofo José Ortega y Gasset, que había sido director del periódico El Imparcial, ocupó la cartera de Obras Públicas en 1900. Su primera gestión al frente del mismo es un Real Decreto por el que se reorganiza el Servicio Hidrológico en España y se creaban siete Divisiones Hidrológicas.  Además, se propuso llevar a cabo su Plan de Pantanos y Canales, el Plan Gasset de 1902, plan largamente reclamado por los planteamientos regeneracionistas de la época. Se trataba de la respuesta del liberalismo político a la grave crisis agraria en la que se encontraba el país. Curiosamente, ese mismo año nacía en Estados Unidos el primer plan público de grandes regadíos. Pero el plan, vigente durante casi medio siglo, obtuvo resultados poco satisfactorios, lo que se entiende como una evidencia del fracaso de la iniciativa, que fue incapaz de aumentar significativamente las inversiones en obras públicas -salvo en la dictadura de Primo de Rivera- ante las prioridades de la política colonial y las sucesivas crisis económicas.

También tuvo el desastre del 98 una fuerte influencia en la formación de los ingenieros, que empezaron a incluir en sus planes de estudios contenidos propios de las humanidades. Resulta de interés citar la apertura del curso 1898-1899 del Ateneo de Madrid por parte de José Echegaray, que pronunció un discurso fundamental, La fuerza de las naciones, para la orientación práctica del regeneracionismo. Además, hubo una reorganización en el Cuerpo de Ingenieros de Caminos, puesto que una de las consecuencias del Plan Gasset fue la ruptura de la organización del escalafón. Se creó un Consejo de Obras Públicas, constituido por técnicos afines a la nueva política, que sustituyó a la Junta Consultiva, que suponía una fuerte resistencia a las nuevas políticas.

Esta reorientación de las obras públicas influyó en los ingenieros de caminos, que fueron dedicándose más a la profesión independiente del Estado. Proliferaron las empresas hidroeléctricas en la pequeñas presas construidas en el primer tercio del siglo XX, que precisaban ingenieros responsables de su gestión. También aparecieron empresas constructoras para atender los concursos públicos, muchas de ellas fundadas por ingenieros de caminos. Es el caso de MZOV, Agromán, Entrecanales y Tavora, o Corsán. También fueron habituales las relaciones entre los ingenieros funcionarios y las empresas privadas, integrándose a menudo como asesores o accionistas.

Son muchos los ingenieros de caminos regeneracionistas de la época. Cabe destacar a Pablo de Alzola y Minondo (1841-1912). Ocupó la Dirección de Obras Públicas (1900-1901), puesto ofrecido por Rafael Gasset, pero rápidamente se puso en marcha para agilizar los procesos burocráticos en los sistemas de contratación para evitar que las Cortes pudieran interferir en el funcionamiento de la administración. En 1899 publicó Las obras públicas en España, estudio histórico, que no solo era un relato histórico de las obras públicas, sino que constituía una exhaustiva relación de los errores de la administración pública en materia de fomento. También hay que destacar a otros, como el ingeniero de minas Lucas Mallada y Puello (1841-1921), autor de Los males de la Patria, que llegó a ser Inspector General del Cuerpo, y aunque no ejerció en el campo de la política, su dimensión de analista político fue de primera magnitud, proclamando la necesidad de una regeneración completa de la vida política y social española.

Como indica Saenz Ridruejo (1999) con motivo del bicentenario del cuerpo de Ingenieros de Caminos, Canales y Puertos, lo que define a los ingenieros del 98 son su preocupación por la enseñanza y su reforma, la regulación de los ríos y su aprovechamiento hidroeléctrico, la apertura a la sociedad del ingeniero mediante el trabajo profesional libre, y la utilización de un nuevo material, el hormigón armado.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Método acelerado de optimización de puentes en cajón

 

Acaban de publicarnos en Engineering Structures, revista de ELSEVIER indexada en el primer cuartil del JCR, un artículo en el que hemos propuesto un novedoso método de optimización que acelera los cálculo al emplear Kriging como metamodelo en los cálculos intermedios de las iteraciones de un proceso de optimización heurística. Se ha aplicado en la optimización de la energía requerida para la construcción de un puente en cajón de hormigón pretensado, pero la metodología es aplicable al cálculo de cualquier estructura. Este artículo forma parte del proyecto de investigación DIMALIFE. Como se ha publicado en abierto, os puedo pasar el artículo completo, que os podéis descargar también en la propia revista.

ABSTRACT:

Structural optimization is normally carried out by means of conventional heuristic optimization due to the complexity of the structural problems. However, the conventional heuristic optimization still consumes a large amount of time. The use of metamodels helps to reduce the computational cost of the optimization and, along these lines, kriging-based heuristic optimization is presented as an alternative to carry out an accelerated optimization of complex problems. In this work, conventional heuristic optimization and kriging-based heuristic optimization will be applied to reach the optimal solution of a continuous box-girder pedestrian bridge of three spans with a low embodied energy. For this purpose, different penalizations and different initial sample sizes will be studied and compared. This work shows that kriging-based heuristic optimization provides results close to those of conventional heuristic optimization using less time. For the sample size of 50, the best solution differs about 2.54% compared to the conventional heuristic optimization, and reduces the computational cost by 99.06%. Therefore, the use of a kriging model in structural design problems offers a new means of solving certain structural problems that require a very high computational cost and reduces the difficulty of other problems.

KEYWORDS: Low-embodied energy; Post-tensioned concrete; Box-girder bridge; Structural optimization; Metamodel; Kriging

REFERENCE:
PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015

 

Antecedentes de las conducciones de fundición dúctil

Figura 1. Tubería de fundición. Palacio de Versalles (1748). https://www.pamline.es/tuberia-fundicion-traves-historia

No se puede entender una civilización sin estudiar el desarrollo tecnológico de las tuberías para el transporte del agua, pues esta infraestructura define fuertemente la calidad de vida de sus habitantes. Si ya se utilizaban tuberías de arcilla cruda 4000 años A.C. en Babilonia, se han utilizado otros materiales desde la antigua Roma como la cerámica, la madera y el plomo. Sin embargo, tuvo que ser la fundición gris la que trajo un material seguro que tuviese una vida útil suficientemente larga bajo tierra. La fundición gris era conocida ya en la prehistoria. El arte de la fundición en arena llegó a Europa desde China, donde el acero se fundía en moldes de arena hacía más de 2500 años.

La fundición es una aleación hierro-carbono en la que el contenido de carbono en forma de grafito varía entre un 3,4 y un 4,5% en peso. Con un porcentaje de carbono inferior al 1,7%, tendríamos un acero. Si el grafito se presenta en forma laminar se obtiene una fundición gris y si es esferoidal, se tiene una función nodular o fundición dúctil (Figura 2). La fundición gris presenta buena moldeabilidad y resistencia a la abrasión, pero es frágil. La fundición dúctil es un material con buena moldeabilidad y que resulta muy dúctil, es decir, se puede deformar plásticamente con grandes deformaciones bajo la acción de una fuerza.

Figura 2. Fundición gris (izquierda) y función dúctil (derecha). https://www.construtec.com/que-es-la-fundicion-ductil-que-quiere-decir-ductil/

Se ha documentado que la primera tubería de fundición gris se instaló en Alemania en 1455, para conducir agua al castillo Dillenberg. Aunque este mismo tipo de canalizaciones se utilizaron en las fuentes del palacio de Versalles (Francia), ordenadas construir entre 1664 por Luis XIV (Figura 1);  o en España en el Palacio de la Granja de San Ildefonso en 1720, por orden de Felipe V. Los 35 km  de tuberías de fundición de Versalles se sellaban entre sí con juntas de plomo o cuero, permitiendo el funcionamiento, a una presión máxima de 15 bar, de las instalaciones del palacio por casi trescientos años. En Londres, hacia el año 1746, se instaló la primera tubería de fundición de Inglaterra, y en Estados Unidos se usó por vez primera en Filadelfia en 1817, usando tubos importados de Inglaterra.

Sin embargo, los tubos de fundición dúctil, tal y como se conocen actualmente, se instalaron por primera vez en 1948 en Europa, y se usaron ya de forma habitual a partir de 1955. Tuvieron tal éxito que en la década de los años setenta del siglo XX sustituyeron prácticamente a la antigua fundición gris, de menor resistencia y susceptibles de rotura frágil. La fundición debe ser dulce, tenaz y dura, sin embargo debe poder ser cortada y taladrada. En general, los tubos de fundición pueden obtenerse en foso de colada o por centrifugación, siendo estos últimos de calidad superior. Además de centrifugados, para obtener características mecánicas de mayor nivel, los tubos se someten a un tratamiento térmico de grafitización y ferritización. En la actualidad, las excelentes propiedades mecánicas de la fundición dúctil hace que su uso se extienda a las canalizaciones de agua potable, regadío y saneamiento en una gran parte del mundo.

Figura 3. Tubería de fundición dúctil. https://www.pamline.es

Entre las ventajas de la conducción de fundición dúctil destacan la elevada resistencia al choque y a los asentamientos del terreno, capacidad para aguantar altas presiones (tanto interiores como exteriores), amortiguan los golpes de ariete, se ven poco afectadas por la corrosión del suelo (incluso en terrenos húmedos), la mayoría de los terrenos no los atacan químicamente, no se oxidan por las acciones del agua o la atmósfera, y como consecuencia de todo lo anterior, estas tuberías tienen una larga vida útil. Por contra, son caras respecto a otras tuberías no metálicas para diámetros inferiores a 140 mm, su peso es comparativamente mayor, presentan incrustaciones interiores (especialmente con aguas duras). Además, en conducciones de gran longitud, que atraviesan terrenos de diversa naturaleza, pueden producirse fenómenos electro químicos (que se pueden evitar con juntas aislantes). Para evitar estos problemas, los tubos de conducción dúctil presentan un revestimiento exterior de zinc metálico con una capa de acabado de producto bituminoso o resina sintética y un revestimiento interior de mortero de cemento.

En el vídeo que sigue se puede ver la fabricación de los tubos de fundición dúctil de la empresa Saint-Gobain PAM. Espero que os sea de interés.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Impacto de la crisis económica en la construcción: lo que opinan los estudiantes

ABSTRACT:

The current economic crisis has specially affected the Spanish construction industry, causing the loss of 1.2 million jobs in the last four years. The increase in the unemployment rate is particularly worrisome for recent graduates in the construction industry. This fact leads to changes in the university degrees related to construction: undergraduate students should be prepared for a new professional environment and recent graduate find it hard to enter the labor market. Low employment opportunities entail a lack of motivation that can cause a significant decrease in the achievement of learning outcomes. This paper seeks to analyze the impact of the crisis in the construction industry from the point of view of the students of a M.Sc. in Construction Management, analyzing the evolution of student’s perception on unemployment and their motivations to enroll in the master degree. For this purpose, a questionnaire was handed out to students of three consecutive classes of the M.Sc. in Construction Management at the Universitat Politècnica de València (Spain) from 2010 to 2012. A statistical analysis of the survey was developed. This way, some interesting points can be highlighted on the impact of crisis on young construction professionals.

KEYWORDS:

Construction; Economic Crisis; Employment; Motivation; Labor Market; M.Sc. Degree

REFERENCIA:

TORRES-MACHÍ, C.; PELLICER, E.; YEPES, V.; PICORNELL, M. (2013). Impact of the economic crisis in construction: a perspective from graduate students. Procedia – Social and Behavioral Sciences, 89:640-645.

Descargar (PDF, 199KB)

 

 

Bandejas vibratorias o placas vibrantes

Figura 1. Bandeja Vibratoria Reversible VDR 26H

Son máquinas que transmiten su vibración mediante una bandeja accionada por el giro de masas excéntricas unidas a ella. Decaladas convenientemente las masas, se consigue una resultante de la fuerza centrífuga en el sentido de la marcha del operador. Las bandejas vibratorias con movimiento sólo de avance tienen una excéntrica situada en la parte delantera de la placa, mientras que las bandejas con movimiento en ambos sentidos, tienen dos. Las dos excéntricas permiten la regulación gradual de la velocidad. Son accionados por motores de gasolina o diésel, e incluso por motores eléctricos.

El motor y el manillar se montan sobre una placa separada, que está aislada de la bandeja vibratoria por muelles de acero o amortiguadores de goma. Tienen una longitud entre 0,50 y 1,00 m, con anchos entre 30 y 80 cm. Su velocidad varía entre 20 y 25 m/min. Se clasifican según su peso y frecuencia en:

  • Ligeros: alrededor de 100 kg, 100 Hz.
  • Medios: 500-1000 kg, 50 Hz.
  • Pesados: 1500-3000 kg, 20 Hz.

Las bandejas ligeras operan normalmente a altas frecuencias y bajas amplitudes. Son adecuadas para la compactación de arena y grava, cuando trabajan en capas delgadas (10-15 cm). Cuando se equipan con sistema de riego, también son útiles para el tratamiento de superficies asfálticas. Las bandejas vibratorias medio-pesadas (>400 kg) son efectivas sobre suelos semicohesivos -hasta 12-15% de finos- debido a su peso y sus mayores amplitudes. Evidentemente, no se aconsejan para trabajos de alto volumen. Suelen ser muy útiles en la compactación de rellenos de zanjas.

Se pueden acoplar varias placas a una máquina sobre neumáticos o sobre orugas constituyendo un compactador de multiplacas vibrantes.

Figura 2. Compactador de multiplacas vibrantes

 

Figura 3. Placa vibrante acoplada al brazo de una retroexcavadora. Imagen: V. Yepes

Os dejo algún vídeo para que veáis el funcionamiento de esta máquina.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.