Special Issue “Optimization for Decision Making III”

 

 

 

 

 

Mathematics (ISSN 2227-7390) is a peer-reviewed open access journal which provides an advanced forum for studies related to mathematics, and is published monthly online by MDPI.

  • Open Access – free for readers, with article processing charges (APC) paid by authors or their institutions.
  • High visibility: Indexed in the Science Citation Indexed Expanded – SCIE (Web of Science) from Vol. 4 (2016), Scopus, and Zentralblatt MATH from Vol. 3 (2015).
  • Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 21.7 days after submission; acceptance to publication is undertaken in 5.3 days (median values for papers published in this journal in the second half of 2018).
  • Recognition of reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.

Impact Factor: 1.747 (2019)  (First decile JCR journal)

Special Issue “Optimization for Decision Making III”

Deadline for manuscript submissions: 30 June 2021.

Special Issue Editors

Guest Editor 

Prof. Víctor Yepes
Universitat Politècnica de València, Spain
Website | E-Mail
Interests: multiobjective optimization; structures optimization; lifecycle assessment; social sustainability of infrastructures; reliability-based maintenance optimization; optimization and decision-making under uncertainty

Guest Editor 

Prof. José M. Moreno-Jiménez
Universidad de Zaragoza
Website | E-Mail
Interests: multicriteria decision making; environmental selection; strategic planning; knowledge management; evaluation of systems; logistics and public decision making (e-government, e-participation, e-democracy and e-cognocracy)

Special Issue Information

Dear Colleagues,

In the current context of the electronic governance of society, both administrations and citizens are demanding greater participation of all the actors involved in the decision-making process relative to the governance of society. In addition, the design, planning, and operations management rely on mathematical models, the complexity of which depends on the detail of models and complexity/characteristics of the problem they represent. Unfortunately, decision-making by humans is often suboptimal in ways that can be reliably predicted. Furthermore, the process industry seeks not only to minimize cost, but also to minimize adverse environmental and social impacts. On the other hand, in order to give an appropriate response to the new challenges raised, the decision-making process can be done by applying different methods and tools, as well as using different objectives. In real-life problems, the formulation of decision-making problems and application of optimization techniques to support decisions is particularly complex, and a wide range of optimization techniques and methodologies are used to minimize risks or improve quality in making concomitant decisions. In addition, a sensitivity analysis should be done to validate/analyze the influence of uncertainty regarding decision-making.

Prof. Víctor Yepes
Prof. José Moreno-Jiménez
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI’s English editing service prior to publication or during author revisions.

Keywords

  • Multicriteria decision making
  • Optimization techniques
  • Multiobjective optimization

Special Issue “Deep Learning and Hybrid-Metaheuristics: Novel Engineering Applications”

 

 

 

 

 

Mathematics (ISSN 2227-7390) is a peer-reviewed open access journal which provides an advanced forum for studies related to mathematics, and is published monthly online by MDPI. The European Society for Fuzzy Logic and Technology (EUSFLAT) and International Society for the Study of Information (IS4SI) are affiliated with Mathematics and their members receive a discount on article processing charges.

  • Open Access—free for readers, with article processing charges (APC) paid by authors or their institutions.
  • High Visibility: Indexed in the Science Citation Indexed Expanded – SCIE (Web of Science) from Vol. 4 (2016) and Scopus.
  • Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 16.4 days after submission; acceptance to publication is undertaken in 4.6 days (median values for papers published in this journal in the first half of 2020).
  • Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.

 

Impact Factor: 1.747 (2019) (First decile JCR)

Special Issue “Deep Learning and Hybrid-Metaheuristics: Novel Engineering Applications”

Deadline for manuscript submissions: 30 April 2021.

Special Issue Editors

Prof. Dr. Víctor Yepes Website SciProfiles
Guest Editor
ICITECH, Universitat Politècnica de València, Valencia, Spain
Interests: multiobjective optimization; structure optimization; lifecycle assessment; social sustainability of infrastructures; reliability-based maintenance optimization; optimization and decision-making under uncertainty
Special Issues and Collections in MDPI journals
Dr. José Antonio García Website
Guest Editor
Pontificia Universidad Católica de Valparaíso, Chile
Interests: optimization; deep learning; operations research; artificial intelligence applications to industrial problems

Special Issue Information

Dear Colleagues,

Hybrid metaheuristic methods have shown very good performances in different combinatorial problems. Additionally, the rise of machine learning techniques has created a space to develop metaheuristic algorithms that use these techniques in order to tackle NP-hard problems and improve the convergence of algorithms. In this Special Issue, we invite researchers to submit papers in this optimization line, applying hybrid algorithms to industrial problems, including but not limited to industrial applications, and challenging problems arising in the fields of big data, construction, sustainability, transportation, and logistics, among others.

Deep learning techniques have also been important tools in extracting features, classifying situations, predicting events, and assisting in decision making. Some of these tools have been applied, for example, to Industry 4.0. Among the main techniques used are feedforward networks (FNN), convolutional networks (CNN), long-term short memory (LSTM), autoencoders (AE), enerative adversarial networks, and deep Q-networks (DQNs). Contributions on practical deep learning applications and cases are invited to this Special Issue, including but not limited to applications to the industry of computational vision, natural language processing, supervised learning applied to industry, unsupervised learning applied to industry, and reinforcement learning, among others.

Prof. Dr. Víctor Yepes
Dr. José Antonio García
Guest Editors

 

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI’s English editing service prior to publication or during author revisions.

Keywords

  • Construction
  • Smart cities
  • Optimization
  • Deep learning

Special Issue “Optimization for Decision Making II”

 

 

 

 

 

Mathematics (ISSN 2227-7390) is a peer-reviewed open access journal which provides an advanced forum for studies related to mathematics, and is published monthly online by MDPI.

  • Open Access – free for readers, with article processing charges (APC) paid by authors or their institutions.
  • High visibility: Indexed in the Science Citation Indexed Expanded – SCIE (Web of Science) from Vol. 4 (2016), Scopus, and Zentralblatt MATH from Vol. 3 (2015).
  • Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 21.7 days after submission; acceptance to publication is undertaken in 5.3 days (median values for papers published in this journal in the second half of 2018).
  • Recognition of reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.

Impact Factor: 1.105 (2018)  (First quartile, JCR)

Special Issue “Optimization for Decision Making II”

Deadline for manuscript submissions: 29 February 2020.

Special Issue Editors

Guest Editor 

Prof. Víctor Yepes
Universitat Politècnica de València, Spain
Website | E-Mail
Interests: multiobjective optimization; structures optimization; lifecycle assessment; social sustainability of infrastructures; reliability-based maintenance optimization; optimization and decision-making under uncertainty

Guest Editor 

Prof. José M. Moreno-Jiménez
Universidad de Zaragoza
Website | E-Mail
Interests: multicriteria decision making; environmental selection; strategic planning; knowledge management; evaluation of systems; logistics and public decision making (e-government, e-participation, e-democracy and e-cognocracy)

Special Issue Information

Dear Colleagues,

In the current context of the electronic governance of society, both administrations and citizens are demanding greater participation of all the actors involved in the decision-making process relative to the governance of society. In addition, the design, planning, and operations management rely on mathematical models, the complexity of which depends on the detail of models and complexity/characteristics of the problem they represent. Unfortunately, decision-making by humans is often suboptimal in ways that can be reliably predicted. Furthermore, the process industry seeks not only to minimize cost, but also to minimize adverse environmental and social impacts. On the other hand, in order to give an appropriate response to the new challenges raised, the decision-making process can be done by applying different methods and tools, as well as using different objectives. In real-life problems, the formulation of decision-making problems and application of optimization techniques to support decisions is particularly complex, and a wide range of optimization techniques and methodologies are used to minimize risks or improve quality in making concomitant decisions. In addition, a sensitivity analysis should be done to validate/analyze the influence of uncertainty regarding decision-making.

Prof. Víctor Yepes
Prof. José Moreno-Jiménez
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI’s English editing service prior to publication or during author revisions.

Keywords

  • Multicriteria decision making
  • Optimization techniques
  • Multiobjective optimization

 

La revolución de la digitalización en la ingeniería civil

En una entrada anterior que denominé “La ingeniería de caminos en el siglo XXI, ¿quo vadis?, puse de manifiesto la incertidumbre que suponía la desaparición de la titulación de ingeniero de caminos, canales y puertos con motivo de la reestructuración de las enseñanzas universitarias en grado y máster. Las preguntas que dejaban en el aire adquirían un tinte dramático cuando se contextualizaban en una situación de profunda crisis económica, especialmente fuerte en el sector de la construcción.

Otra reflexión sobre el futuro de la profesión la dejé en la entrada “¿Qué entendemos por “Smart Construction”? ¿Una nueva moda?“. Allí dejé constancia de las modas que igual que aparecen, desaparecen, pero que suponen cambios sustanciales en una profesión como la de ingeniero civil. Allí expresé mi esperanza de que el término de “construcción inteligente” tuviera algo más de recorrido y pudiera suponer un punto de inflexión en nuestro sector. Este término presenta, como no podía ser de otra forma, numerosas interpretaciones y tantas más aplicaciones. Es un concepto que se asocia al diseño digital, a las tecnologías de la información y de la comunicación, la inteligencia artificial, al BIM, al Lean Construction, la prefabricación, los drones, la robotización y automatización, a la innovación y a la sostenibilidad, entre otros muchos conceptos. Entre estos conceptos, uno que me interesa especialmente es la asociación con el de los nuevos métodos constructivos (término que incluye nuevos productos y nuevos procedimientos constructivos). Su objetivo es mejorar la eficiencia del negocio, la calidad, la satisfacción del cliente, el desempeño medioambiental, la sostenibilidad y la previsibilidad de los plazos de entrega. Por lo tanto, los métodos modernos de construcción son algo más que un enfoque particular en el producto. Involucran a la gente a buscar mejoras, a través de mejores procesos, en la entrega y ejecución de la construcción.

Al hilo de estas reflexiones, me ha gustado especialmente el vídeo ganador del concurso de la Asociación de Ingenieros de Caminos, Canales y Puertos, ingeniería en 200 segundos, que presenta Juan Antonio Martínez Ortega, y que trata del impacto de la digitalización en la ingeniería civil. Atento al “diablillo de Laplace“. ¡Enhorabuena para Juan Antonio!

 

¿Qué se estudia en la asignatura Modelos Predictivos y de Optimización de Estructuras de Hormigón?

El programa de la asignatura Modelos Predictivos y de Optimización de Estructuras de Hormigón se ha diseñado basándose en el programa presentado en el departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil por parte de la unidad docente de “Procedimientos de Construcción y Gestión de Obras”, al que está adscrita en la actualidad la asignatura, y aprobado por el Consejo del Departamento. Las líneas maestras de los contenidos se definieron previamente en la Memoria de Verificación del título oficial de “Máster Universitario en Ingeniería del Hormigón por la Universitat Politècnica de València”. Se trata de una de las asignaturas de la materia “Análisis de estructuras de hormigón”, siendo obligatoria para todos los alumnos de esta titulación y se imparte en el primer cuatrimestre del primer curso. La asignación de créditos ECTS es de 5,0, repartidos en 3,0 créditos de teoría y 2,0 de prácticas, de acuerdo con el Plan de Estudios actualmente en vigor en el Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil.

Resultados de aprendizaje

Los resultados de aprendizaje de la asignatura se definen a partir de las competencias y de los contenidos (Yepes, 2017). Como resultado de aprendizaje general, al terminar con éxito esta asignatura, los estudiantes serán capaces de “comprender los diferentes métodos predictivos y procedimientos de optimización de estructuras de hormigón de modo que dispongan de las herramientas necesarias para la toma de decisiones en el ámbito del proyecto, construcción y mantenimiento de estas estructuras considerando los aspectos de sostenibilidad económica, social y ambiental”.

En relación con los resultados específicos de aprendizaje de la asignatura, tenemos los siguientes:

  • RA1    Seleccionar y aplicar las distintas técnicas procedentes de la estadística, de la investigación operativa y de la minería de datos en la toma de decisiones en el ámbito del hormigón
  • RA2    Modelizar un problema de optimización de una estructura de hormigón y resolverlo mediante algoritmos heurísticos secuenciales y poblacionales
  • RA3    Aplicar la inferencia estadística multidimensional para interpretar el comportamiento de las variables cualitativas y cuantitativas en el ámbito del hormigón
  • RA4    Formular modelos lineales de regresión múltiple e interpretar su validez límites predictivos
  • RA5    Emplear técnicas de diseño de experimentos para conocer los efectos principales y las interacciones entre los distintos factores que afectan a una variable de respuesta en el ámbito del hormigón
  • RA6    Optimizar el comportamiento de una estructura de hormigón utilizando la metodología de la superficie de respuesta
  • RA7    Aplicar redes neuronales artificiales en la predicción de sistemas altamente no lineales en el ámbito del hormigón
  • RA8    Aplicar técnicas de decisión multicriterio en la selección de la mejor tipología estructural considerando aspectos económicos, ambientales y sociales
  • RA9    Elegir la mejor opción de una frontera de Pareto tras aplicar técnicas de decisión multicriterio
  • RA10 Aplicar programas estadísticos avanzados, tales como SPSS o Minitab, y otros como Matlab, Sap y Excel en la predicción de variables de respuesta y en problemas de optimización en el ámbito del hormigón

 

Conocimientos previos

Los alumnos que cursan esta asignatura, tienen diversas procedencias: Ingeniería de Caminos, Canales y Puertos, Ingeniería Industrial, Arquitectura, Ingeniería Agronómica, Licenciado en Químicas, Ingeniería Geológica, Ingeniería Técnica de Obras Públicas, Ingeniería Técnica Industrial, o los actuales grados en ingeniería civil, de obras públicas o máster en ingeniería de caminos, canales y puertos, entre otros. Además los alumnos, en un porcentaje significativo, proceden de universidades latinoamericanas o europeas. Como es fácil de comprender, los alumnos tienen formaciones muy diferentes, habiendo estudiado las asignaturas relacionadas con el hormigón, con los métodos numéricos o la estadística de forma muy diversa, con niveles de adquisición de conocimientos descompensados. Esta situación implica cierta nivelación en cada uno de los temas, de forma que se adquieran los niveles básicos de comprensión de los contenidos de forma progresiva con el objetivo que todos los alumnos adquieran las competencias y los resultados de aprendizaje previstos.

Según la Guía Docente de la asignatura, los conocimientos recomendados versarían sobre estadística y sobre lenguajes de programación (MATLAB, SPSS, MINITAB, SAP, etc.), aunque no son imprescindibles.  Además, resultan necesarios unos conocimientos básicos sobre el hormigón y su análisis como material estructural. Ello obliga al profesor a sintetizar el contenido previo para la correcta comprensión de la asignatura.

 

Programa resumido de la asignatura

La asignatura se desarrolla siguiendo un programa que tiene en cuenta los resultados de aprendizaje antes definidos, las actividades formativas y el sistema propuesto para la evaluación. Ello permite organizar la asignatura en 25 temas y sus prácticas de informática asociadas.

  • Tema 1. La investigación operativa y la toma de decisiones
  • Tema 2. La modelización de un problema estructural de hormigón
  • Tema 3. Algoritmos y problemas de decisión
  • Tema 4. Optimización y programación matemática
  • Tema 5. Optimización combinatoria y algoritmos heurísticos
  • Tema 6. Clasificación y uso de heurísticas y metaheurísticas
  • Tema 7. Búsqueda local de máximo gradiente
  • Tema 8. Recocido simulado, aceptación por umbrales y búsqueda tabú
  • Tema 9. Sistemas de inteligencia de enjambre
  • Tema 10. Programación evolutiva y estrategias evolutivas
  • Tema 11. Algoritmos genéticos y meméticos
  • Tema 12. GRASP, búsqueda dispersa y búsqueda de la armonía
  • Tema 13. Heurísticas de optimización multiobjetivo
  • Tema 14. Inferencia estadística bidimensional
  • Tema 15. Inferencia estadística multidimensional
  • Tema 16. Modelos lineales de regresión múltiple
  • Tema 17. Modelos de ecuaciones estructurales
  • Tema 18. Diseño de experimentos
  • Tema 19. Optimización mediante la metodología de superficie de respuesta
  • Tema 20. Modelos Kriging y diseños robustos
  • Tema 21. Redes neuronales artificiales
  • Tema 22. Programación genética y lógica difusa
  • Tema 23. La toma de decisiones en el ciclo de vida de una estructura de hormigón
  • Tema 24. Técnicas de decisión multicriterio continua
  • Tema 25. Técnicas de decisión multicriterio discreta

 

 

Los 25 temas se encuentran agrupados en 4 bloques temáticos. El primero de los bloques es introductorio. Consta de 5 temas que presentan al alumno la aplicación de las técnicas de la investigación científica en el ámbito de la toma de decisiones en las empresas a través de lo que se conoce como investigación operativa. Se introduce al alumno en la forma de abordar los problemas reales en el ámbito de las estructuras de hormigón a través de modelos de distinto tipo. Se describen los componentes básicos de un problema de optimización: función objetivo, variables de decisión, parámetros y restricciones. A continuación se describe el concepto de algoritmo y complejidad algorítmica para explicar las limitaciones de la programación matemática en la resolución de problemas reales, lo cual da paso a la introducción de los algoritmos heurísticos como aproximaciones en la búsqueda de óptimos locales de calidad en tiempos de cálculo razonables.

El segundo de los bloques se centra en la descripción y aplicación de la optimización heurística en las estructuras de hormigón. Se describe paso a paso tanto las técnicas de búsqueda secuencial de máximo gradiente y de “hill-climbing” como otras técnicas poblacionales basadas en los algoritmos genéticos o en la inteligencia de partículas. Este bloque termina con una explicación de la optimización multiobjetivo y la construcción de fronteras de Pareto de calidad en el caso de confluencia de funciones objetivo contrapuestas.

El bloque tercero se centra específicamente en los modelos predictivos de las estructuras de hormigón. Se hace un repaso de las técnicas de inferencia bidimensional y multidimensional para pasar a los modelos predictivos lineales, tanto los basados en regresiones múltiples como en los modelos de ecuaciones estructurales. Posteriormente se aborda el diseño de experimentos como técnicas estadísticas básicas en la predicción de los efectos principales y las interacciones de los distintos factores que afectan a un problema de hormigón. El estudio de los diseños factoriales lleva directamente al planteamiento de la metodología de la superficie de respuesta, que permite realizar la optimización de la respuesta. Tanto la metodología de la superficie de respuesta como los modelos Kriging o las redes neuronales, constituyen metamodelos que se explican como herramientas muy útiles para simplificar el espacio de soluciones de los problemas reales del hormigón estructural. En particular, los modelos Kriging permiten el diseño robusto óptimo, es decir, aquel que se comporta bien incluso ante cambios en las variables o en las condiciones de contorno. Para los sistemas altamente complejos, se explican las redes neuronales artificiales que, además, permiten su uso como metamodelos o como parte de un algoritmo heurístico de optimización. La programación genética y la lógica difusa también se explican en una lección como herramientas posibles en el ámbito de los modelos predictivos y cuando los parámetros o restricciones del problema no son determinísticos.

El cuarto bloque se dedica a la toma de decisión multicriterio en las estructuras de hormigón. A los alumnos se les explica cómo, antes de realizar una optimización multiobjetivo, es necesario seleccionar la mejor tipología estructural con base en criterios que no siempre son objetivos: economía, plazo, estética, medioambiente, aspectos sociales, durabilidad, etc. Se introducen las distintas técnicas de toma de decisión multicriterio y se comentan su empleo, incluso, para la obtención de pesos objetivos de criterios que pueden ser incluso subjetivo, o bien para la selección de la mejor opción dentro de una frontera de Pareto tras una optimización multiobjetivo.

En la Tabla siguiente se muestra el programa resumido de la asignatura “Modelos Predictivos y de Optimización de Estructuras de Hormigón” (T, Teoría; P, Prácticas informáticas), indicándose el número de horas asignadas a cada tema.

Referencias:

YEPES, V. (2017). Proyecto docente. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 642 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

 

Optimización heurística mediante aceptación por umbrales

En algunos posts anteriores hemos comentado lo que es un modelo matemático de optimización, qué son las metaheurísticas, o cómo poder optimizar las estructuras de hormigón. A continuación os presentamos un Polimedia donde se explica brevemente cómo podemos optimizar siguiendo la técnica de optimización heurística mediante aceptación por umbrales. Podréis comprobar cómo se trata de un caso similar a la famosa técnica de la cristalización simulada. Espero que os sea útil.

Podéis consultar, a modo de ejemplo, algunos artículos científicos que hemos escrito a ese respecto en las siguientes publicaciones:

  • CARBONELL, A.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2011). Heuristic optimization of reinforced concrete road vault underpasses. Advances in Engineering Software, 42(4): 151-159. ISSN: 0965-9978.  (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)
  • YEPES, V.; MEDINA, J.R. (2006). Economic Heuristic Optimization for Heterogeneous Fleet VRPHESTW. Journal of Transportation Engineering, ASCE, 132(4): 303-311. (link)

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Es fácil optimizar estructuras de hormigón?

Es más, ¿es posible que un ordenador sea capaz de diseñar de forma automática estructuras óptimas sin darle ninguna pista o información previa? Estoy convencido que a la vuelta de un par de años, todos los programas comerciales tendrán paquetes de optimización estructural que permitirán reducciones de coste en torno al 5-15% respecto a los programas actuales. Ya os adelanto que esta nueva tecnología va a traer consigo nuevas patologías en las estructuras de hormigón, que con la optimización se parecen más a las estructuras metálicas. Con el tiempo habrá que introducir capítulos o restricciones en las futuras versiones de la EHE o de los Eurocódigos. En este post vamos a continuar comentando aspectos relacionados con la modelización matemática, la optimización combinatoria, las metaheurísticas y los algoritmos.

Toda esta aventura la empezamos en el año 2002, con el primer curso de doctorado sobre optimización heurística en la ingeniería civil, que luego hemos ido ampliando y mejorando en el actual Máster Oficial en Ingeniería del Hormigón. Ya tenemos varias tesis doctorales y artículos científicos al respecto para aquellos de vosotros curiosos o interesados en el tema. Para aquellos que queráis ver algunas aplicaciones concretas, os recomiendo el siguiente capítulo de libro que escribimos sobre la optimización de distintas estructuras con un algoritmo tan simple como la cristalización simulada. Para aquellos otros que tengáis más curiosidad, os dejo algunas publicaciones de nuestro grupo de investigación en el apartado de referencias.

Os paso, para abrir boca, una forma sencilla de optimizar a través de este Polimedia. Espero que os guste.

Referencias:

  • MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. https://authors.elsevier.com/a/1VLOP3QCo9NDzg 
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. doi: 10.1007/s00158-017-1653-0
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI: 10.1016/j.acme.2017.02.006
  • MOLINA-MORENO, F.; GARCÍA-SEGURA; MARTÍ, J.V.; YEPES, V. (2017). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms. Engineering Structures, 134:205-216. DOI: 10.1016/j.engstruct.2016.12.042
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  • LUZ, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540), e114. DOI: 10.3989/ic.14.089
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering ASCE, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058 (descargar versión autor)
  • YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. doi:10.1016/j.acme.2015.05.001
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  • GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures,  11(7):1190 – 1205. ISSN: 1679-7817. (link)
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2013). Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, DOI: http://dx.doi.org/10.1016/j.rimni.2013.04.010.
  • TORRES-MACHÍ, C.; YEPES, V.; ALCALA, J.; PELLICER, E. (2013). Optimization of high-performance concrete structures by variable neighborhood search. International Journal of Civil Engineering, 11(2):90-99 . ISSN: 1735-0522. (link)
  • MARTÍNEZ-MARTÍN, F.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics45(6): 723-740. (link)
  • MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering, 13(6):420-432. DOI: 10.1631/jzus.A1100304. ISSN 1673-565X (Print); ISSN 1862-1775 (Online).  (link)
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures48:342-352. DOI:10.1016/j.engstruct.2012.09.014. ISSN: 0141-0296.(link)
  • YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering ASCE, 26 (3):378-386. DOI: 10.1061/(ASCE)CP.1943-5487.0000140. ISNN: 0887-3801. (link)
  • CARBONELL, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2011). Búsqueda exhaustiva por entornos aplicada al diseño económico de bóvedas de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):227-235.  (link) [Global best local search applied to the economic design of reinforced concrete vauls]
  • CARBONELL, A.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2011). Heuristic optimization of reinforced concrete road vault underpasses. Advances in Engineering Software, 42(4): 151-159. ISSN: 0965-9978.  (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2011). Estudio paramétrico de pilas para viaductos de carretera. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):236-250. (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; ALCALÁ, J. (2011). Design of tall bridge piers by ant colony optimization. Engineering Structures, 33:2320-2329.
  • PEREA, C.; YEPES, V.; ALCALÁ, J.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2010). A parametric study of optimum road frame bridges by threshold acceptance. Indian Journal of Engineering & Materials Sciences, 17(6):427-437. ISSN: 0971-4588.  (link)
  • PAYÁ-ZAFORTEZA, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5): 693-704. DOI 10.1007/s11012-010-9285-0. ISSN: 0025-6455.  (link)
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2010). Design of prestressed concrete precast pedestrian bridges by heuristic optimization. Advances in Engineering Software, 41(7-8): 916-922. http://dx.doi.org/10.1016/j.advengsoft.2010.05.003
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)
  • PAYÁ, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-Efficient Design of Reinforced Concrete Building Frames. Engineering Structures, 31: 1501-1508. ISSN: 0141-0296. (link)
  • YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated Annealing. Engineering Structures, 30(3): 821-830. ISSN: 0141-0296.  (link)
  • PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Advances in Engineering Software, 39(8): 676-688. ISSN: 0965-9978.  (link)
  • PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8): 596-610. ISSN: 1093-9687.  (link)
  • PAYÁ, I.; YEPES, V.; CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F. (2006). Optimización heurística de pórticos de edificación de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 22(3): 241-259. [Heuristic optimization of reinforced concrete building frames]. (link)

¿Las hormigas nos pueden enseñar a optimizar puentes?

A veces la Naturaleza nos sorprende cada día más. ¿Es posible que el comportamiento de las hormigas pueda servirnos para optimizar estructuras complejas, como por ejemplo un puente? Pues vamos a ver que sí. Este post es continuación de otros anteriores donde hablamos de la posibilidad de optimizar estructuras de hormigón. La optimización por colonia de hormigas (ant colony optimization) va a ser una metaheurística que nos va a permitir realizar este tipo de operaciones. A continuación vamos a contar los fundamentos básicos y en las referencias os dejo, incluso, algunos artículos donde hemos podido utilizar esta técnica de forma exitosa.

Colorni, Dorigo y Maniezzo (1991) sugirieron la idea de imitar el comportamiento de los insectos para encontrar soluciones a los problemas de optimización combinatoria. El principio de la metaheurística denominada como “Ant System Optimization, ACO” se basa en el comportamiento colectivo de las hormigas en la búsqueda de alimentos para su subsistencia, que son capaces de encontrar el camino más corto entre una fuente de comida y su hormiguero. Primero las hormigas exploran el entorno de su hormiguero de forma aleatoria. Tan pronto como un individuo encuentra una fuente de comida, evalúa su cantidad y calidad y transporta un poco al hormiguero. Durante el regreso, la hormiga deja por el camino una señal odorífera, depositando una sustancia denominada feromona, para que las demás puedan seguirla. Después de un tiempo, el camino hacia el alimento se indicará por un rastro oloroso que crece con el número de hormigas que pasen por él, y que va desapareciendo en caso contrario. El resultado final es la optimización del trabajo de todo el hormiguero en su búsqueda de comida.

En la Figura se muestra cómo las hormigas encuentran el camino más corto. En a) las hormigas deben decidir un camino; en b) se toma uno al azar; en c), dado que la velocidad de una hormiga se considera aproximadamente constante, las que llegan antes vuelven eligiendo el camino con más acumulación de feromona. En d), se circula por el camino más corto, desapareciendo por evaporación el rastro en el camino más largo.

Las hormigas y el camino más corto

La analogía a una metaheurística de optimización puede establecerse de la siguiente forma:

  • La búsqueda de alimento por las hormigas es equivalente a la exploración de soluciones factibles de un problema combinatorio.
  • La cantidad de alimento hallada en un lugar es similar al valor de la función objetivo.
  • El rastro de feromona es la memoria adaptativa del método.

Un esquema básico de la metaheurística sería el siguiente:

  1. Iniciar un rastro de feromona.
  2. Mientras no se encuentre un criterio de parada:
    1. Para cada hormiga artificial, construir una nueva solución usando el rastro actual y evaluar la solución que está siendo construida.
    2. Actualizar el rastro de feromona.

El componente más importante de un Sistema de Hormigas es la gestión de las huellas odoríferas. En su versión estándar, los rastros se usan en relación con la función objetivo para construir nuevas soluciones. Una vez se ha construido, éstos se actualizan de la siguiente forma: primero todos los rastros se debilitan para simular la evaporación del feronoma; después aquellos que corresponden a los elementos que se han empleado para la construcción, se refuerzan teniendo en cuenta la calidad de la solución.

El siguiente vídeo os puede ayudar a comprender el comportamiento de las hormigas. Espero que os guste.

Referencias:

COLORNI, A.; DORIGO, M.; MANIEZZO, V. (1991). Distributed optimization by ant colonies, in VARELA, F.J.; BOURGINE, P. (eds.) Proceedings of the First European Conference on Artificial Life (ECAL-91). The MIT Press: Cambrige, MA, 134-142.

MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; ALCALÁ, J. (2011). Design of tall bridge piers by ant colony optimization. Engineering Structures, 33:2320-2329.

MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)

YEPES, V. (2003). Apuntes de optimización heurística en ingeniería. Editorial de la Universidad Politécnica de Valencia. Ref. 2003.249. Valencia, 266 pp. Depósito Legal: V-2720-2003.

¿Qué es la optimización combinatoria?

Los problemas de optimización en los que las variables de decisión son enteras, es decir, donde el espacio de soluciones está formado por ordenaciones o subconjuntos de números naturales, reciben el nombre de problemas de optimización combinatoria. En este caso, se trata de hallar el mejor valor de entre un número finito o numerable de soluciones viables. Sin embargo la enumeración de este conjunto resulta prácticamente imposible, aún para problemas de tamaño moderado.

Las raíces históricas de la optimización combinatoria subyacen en ciertos problemas económicos: la planificación y gestión de operaciones y el uso eficiente de los recursos. Pronto comenzaron a modelizarse de esta manera aplicaciones más técnicas, y hoy vemos problemas de optimización discreta en diversas áreas: informática, gestión logística (rutas, almacenaje), telecomunicaciones, ingeniería, etc., así como para tareas variadas como el diseño de campañas de marketing, la planificación de inversiones, la división de áreas en distritos políticos, la secuenciación de genes, la clasificación de plantas y animales, el diseño de nuevas moléculas, el trazado de redes de comunicaciones, el posicionamiento de satélites, la determinación del tamaño de vehículos y las rutas de medios de transporte, la asignación de trabajadores a tareas, la construcción de códigos seguros, el diseño de circuitos electrónicos, etc. (Yepes, 2002). La trascendencia de estos modelos, además del elevado número de aplicaciones, estriba en el hecho de que “contiene los dos elementos que hacen atractivo un problema a los matemáticos: planteamiento sencillo y dificultad de resolución” (Garfinkel, 1985). En Grötschel y Lobas (1993) se enumeran otros campos en los cuales pueden utilizarse las técnicas de optimización combinatoria.

REFERENCIAS

GARFINKEL, R.S. (1985). Motivation and Modeling, in LAWLER, E.L.; LENSTRA, J.K.; RINNOOY KAN, A.H.G.; SHMOYS, D.B. (eds.) The Traveling Salesman Problem: A Guide Tour of Combinatorial Optimization. Wiley. Chichester.

GRÖTSCHEL, M.; LÓVASZ, L. (1993). Combinatorial Optimization: A Survey. Technical Report 93-29. DIMACS, May.

YEPES, V. (2002). Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW. Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universitat Politècnica de València. 352 pp. ISBN: 0-493-91360-2. (pdf)

Optimización y programación matemática

George Bernard Dantzig
George Bernard Dantzig (1914-2005), “padre de la programación lineal”

Optimizar significa buscar la mejor manera de realizar una actividad, y en términos matemáticos, hallar el máximo o mínimo de una cierta función, definida en algún dominio. La optimización constituye un proceso para encontrar la mejor solución de un problema donde “lo mejor” se concilia con criterios establecidos previamente.

La programación matemática constituye un campo amplio de estudio que se ocupa de la teoría, aplicaciones y métodos computacionales para resolver los problemas de optimización condicionada. En estos modelos se busca el extremo de una función objetivo sometida a un conjunto de restricciones que deben cumplirse necesariamente. Las situaciones que pueden afrontarse con la programación matemática se suelen presentar en ingeniería, empresas comerciales y en ciencias sociales y físicas.

Con carácter general, un programa matemático (ver Minoux, 1986) consiste en un problema de optimización sujeto a restricciones en  de la forma:

 

Continue reading “Optimización y programación matemática”