Hipótesis de partida del proyecto de investigación RESILIFE

ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Universitat Politècnica de València

En artículos anteriores ya presentamos un resumen y la justificación del proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo justificaremos las hipótesis de partida de este proyecto.

La hipótesis principal de partida de RESILIFE es que un diseño óptimo y una construcción con estructuras híbridas basadas en los modernos métodos de construcción (MMC) son efectivos desde el punto de vista social y ambiental, y resilientes ante eventos extremos. La novedad radica en el empleo de la inteligencia artificial para optimizar la resiliencia y la sostenibilidad, con el fin de hacer frente a eventos extremos y evitar el colapso progresivo, protegiendo así la vida y la economía. De hecho, las estructuras híbridas de acero y las estructuras modulares son tipologías con elevadas posibilidades de generación de conocimiento (Sánchez-Garrido et al., 2023; Terreros-Bedoya et al., 2023). Además, existe un déficit de investigaciones que incorporen metaheurísticas híbridas emergentes y aprendizaje profundo (deep learning, DL) en la optimización multiobjetivo resiliente de este tipo de estructuras. Estas técnicas extraen información no trivial de las inmensas bases de datos procedentes de la optimización y mejoran la calidad y el tiempo de cálculo. Otra novedad en este proyecto es el uso de la teoría de juegos en la optimización multiobjetivo, empleada en la última tesis doctoral del grupo. Con esta propuesta metodológica se pretende abordar las incertidumbres del mundo real, planteando la optimización resiliente basada en la fiabilidad y en diseños robustos. Esta hipótesis debe extenderse a la toma de decisiones multicriterio que atienda a la sostenibilidad social y ambiental del ciclo de vida completo, que contemple las fluctuaciones tanto de los parámetros como de los escenarios posibles, especialmente con fuertes restricciones presupuestarias. La resolución del problema planteado presenta serias dificultades, por lo que se deben explorar metamodelos y DL capaces de acelerar el cálculo (Negrín et al., 2023).

Para alcanzar los objetivos del proyecto se basan en determinadas hipótesis:

  • Hipótesis 1: Es rentable diseñar estructuras innovadoras, resilientes y robustas frente a eventos extremos, que se puedan reparar cuando se optimizan a lo largo de su ciclo de vida.
  • Hipótesis 2: Las estructuras modulares permiten instaurar o restaurar infraestructuras rápidamente tras un evento extremo, y son eficientes desde el punto de vista social y ambiental.
  • Hipótesis 3: Las estructuras de acero híbridas mejoran las prestaciones de las estructuras de acero convencionales, mejorando la resiliencia ante eventos extremos, con niveles óptimos de sostenibilidad.
  • Hipótesis 4: Las metaheurísticas mejoran la calidad de las soluciones y reducen el tiempo de cálculo cuando se combinan con el aprendizaje profundo (DL).
  • Hipótesis 5: La optimización multiobjetivo de las estructuras híbridas de acero reduce los impactos sociales y ambientales a lo largo del ciclo de vida, siendo la teoría de juegos una técnica efectiva.
  • Hipótesis 6: La optimización multiobjetivo puede dar lugar a soluciones inviables con pequeñas variaciones en los parámetros o en las restricciones.
  • Hipótesis 7: Tanto el diseño óptimo basado en fiabilidad como el diseño óptimo robusto conducen a soluciones menos sensibles a la variabilidad y a los cambios en los escenarios (especialmente presupuestarios), pero se basan en funciones de probabilidad poco realistas por falta de datos.
  • Hipótesis 8: Es posible utilizar metamodelos y DL en el diseño óptimo robusto y en el diseño basado en fiabilidad para el proyecto y para el mantenimiento de estructuras híbridas y modulares.
  • Hipótesis 9: Las soluciones de mantenimiento óptimo de estructuras híbridas y modulares son diferentes si el análisis del ciclo de vida se incluye o no en la fase de proyecto.
  • Hipótesis 10: Dado un horizonte temporal para una estructura, es posible encontrar un diseño y una gestión posterior de dicho activo que mejore otras alternativas, incluso con presupuestos restrictivos.
  • Hipótesis 11: Las medidas de proyecto y preventivas derivadas de un sistema de apoyo a la toma de decisiones son preferibles por su menor coste social y ambiental a la reparación severa de las estructuras. La dimensión social incluye la integración del análisis de género en la investigación (IAGI).
  • Hipótesis 12: Es posible encontrar buenas prácticas en el diseño, la conservación, el mantenimiento y el desmantelamiento de estructuras híbridas y modulares que sean robustas ante cambios presupuestarios y resilientes ante eventos extremos.

Referencias

  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725.
  • TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Justificación del proyecto de investigación RESILIFE

Figura 1. Instituto de Ciencia y Tecnología del Hormigón (ICITECH)
Laboratorio de materiales del Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En un artículo anterior ya presentamos un resumen del proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo justificaremos brevemente la necesidad de este proyecto.

Entre 2003 y 2013, diversos desastres naturales (terremotos, tsunamis, tifones, deslizamientos e inundaciones) y provocados por el ser humano (explosiones, vertidos o impactos) ocasionaron más de 1,1 millones de muertes, afectaron a más de 2000 millones de personas y provocaron pérdidas estimadas en 1,5 billones de dólares (Hao y Li, 2019). Estos eventos, que siguen presentes en los últimos años, resaltan la urgencia de desarrollar estructuras resilientes, sostenibles y de alto rendimiento que protejan la vida y la economía. Además, los eventos extremos requieren adaptaciones eficaces y económicas en el diseño, construcción, reparación y mantenimiento de infraestructuras, lo que impulsa la investigación en construcción sostenible para reducir la huella de carbono y otros impactos.

Los eventos extremos, junto con errores de diseño, construcción y falta de mantenimiento, suelen provocar daños estructurales locales que pueden desencadenar el colapso progresivo del edificio (Adam et al., 2018). Caredda et al. (2013) determinaron que este tipo de colapso se debió a errores de construcción y diseño en el 65 % de los casos estudiados. Algunos eventos han demostrado que las intervenciones locales preventivas pueden salvar tanto vidas de usuarios como infraestructuras, resaltando así la importancia del mantenimiento. La falta de eficacia en las reparaciones de hormigón es uno de los principales problemas en ingeniería estructural. En Europa, solo el 50 % de las operaciones de restauración en edificaciones de hormigón es efectiva, a pesar de que la rehabilitación representa casi la mitad de las inversiones en construcción (Borghese et al., 2023).

El crecimiento económico, el aumento de la población y de la urbanización, así como el calentamiento global y el agotamiento de los recursos naturales implican que la construcción de estructuras deba considerar la sostenibilidad, la durabilidad y una gestión inteligente del ciclo de vida, además de la seguridad, el rendimiento y la resiliencia. Para ello, es necesario emplear materiales sostenibles y residuos industriales en la construcción; nuevas formas y diseños estructurales para controlar las vibraciones y mitigar los efectos de las cargas; tecnologías de prefabricación innovadoras mediante impresión 3D y construcción modular para minimizar las interrupciones en la obra y mejorar el control de calidad; así como nuevos conceptos de diseño y construcción, estructuras desplegables y estructuras de sacrificio para mejorar la resiliencia y la resistencia a cargas extremas.

La recuperación de estructuras dañadas implica recursos y emisiones considerables. Por tanto, el diseño y la construcción de estructuras deben enfocarse en la sostenibilidad, la durabilidad, la resistencia múltiple, la resiliencia y la monitorización inteligente del ciclo de vida. Este enfoque es esencial para cumplir los ODS de las Naciones Unidas y abordar los desafíos climáticos y ambientales.

No obstante, la modernización de las infraestructuras conlleva un coste prohibitivo, lo que resalta la necesidad de asignar eficazmente los limitados recursos presupuestarios. Ante la complejidad de este desafío, se plantean propuestas de optimización resiliente para facilitar la toma de decisiones considerando la aleatoriedad e incertidumbres inherentes. Por ejemplo, esto se aplica a las redes eléctricas, donde los apagones derivados de condiciones meteorológicas adversas generaron costes anuales de entre 18 000 y 33 000 millones de dólares entre 2003 y 2012 (Yuan et al., 2015).

Una estructura resiliente bien diseñada puede no requerir reparación o bien puede recuperarse con reparaciones menores después de un evento extremo, como puede ser el caso de puentes con resiliencia sísmica (Dong et al., 2022). Guaygua et al. (2023) revelaron la correlación entre los edificios prefabricados y aspectos como las conexiones secas, la disipación de energía, el diseño óptimo y el colapso progresivo. Los últimos avances en estructuras industrializadas pasan por mejoras en las uniones de las estructuras prefabricadas, que son los puntos más vulnerables ante los seísmos. De este modo, se están creando edificios que, a través de ingeniosos métodos de disipación de energía, están equiparando sus prestaciones y seguridad a las estructuras tradicionales sancionadas por la práctica. Sánchez-Garrido et al. (2023) detectan lagunas en la investigación, incluida la necesidad de aplicar más las estructuras innovadoras basadas en métodos modernos de construcción (Modern Methods of Construction, MMC). Asimismo, resaltan la importancia de abordar la mejora del entorno construido a través del paradigma del diseño regenerativo. Se necesita más investigación para comprender los sistemas de construcción interdependientes mediante el uso de gemelos digitales.

Las estructuras de acero se consideraban resistentes a los terremotos, pero esta percepción cambió tras los eventos de Northridge en 1994 y Kobe en 1995, que revelaron fracturas frágiles, especialmente en las conexiones viga-columna. Desde entonces, se ha explorado el uso de materiales emergentes y diseños innovadores para reducir el riesgo de fallo frágil temprano (Fang et al., 2022). Los cambios extremos de temperatura afectan a la resistencia y la rigidez de las estructuras de acero, por lo que es necesario aumentar el tamaño de la sección transversal para compensar la reducción de la rigidez y evitar fallos estructurales (Keles et al., 2024). Esta reducción de la capacidad resistente con la temperatura también ocurre con las estructuras de hormigón (Tang et al., 2023). Las vigas de acero híbridas optimizan la resistencia a la flexión y al cortante, y mejoran a los elementos de acero homogéneos. No obstante, la investigación debe cubrir las lagunas existentes en su aplicación a estructuras complejas y su capacidad de resistir acciones extremas (Terreros-Bedoya et al., 2023). Otra oportunidad son los materiales compuestos multifuncionales que se aplican en columnas y permiten reducir el peso y mejorar la resistencia en edificios altos y entornos agresivos. Estas innovaciones superan las limitaciones de las estructuras tradicionales de acero y hormigón, así como de las tecnologías convencionales de construcción (Sojobi et al., 2023).

No obstante, no todas las estructuras pueden diseñarse para resistir cualquier evento extremo, por lo que se tiende a incrementar su funcionalidad todo lo posible. El diseño de estructuras resilientes requiere esfuerzos colaborativos e interdisciplinarios para formular nuevos enfoques y métricas que consideren el rendimiento y los aspectos funcionales posteriores al evento. Las estructuras resilientes deben contemplar su vida útil en relación con los impactos de los desastres, las reparaciones, el mantenimiento y la evolución de las acciones sobre ellas. Actualmente no existen procedimientos explícitos para cuantificar la resiliencia de las estructuras e infraestructuras en el contexto de múltiples amenazas ni para comparar las estructuras y los sistemas en términos de su resiliencia (Khaloo y Mobini, 2016). Surge la oportunidad de implementar aspectos de la resiliencia estructural, como la funcionalidad técnico-socioeconómica, los principios de diseño basados en el riesgo probabilístico y la resiliencia, las dependencias ambientales y los sistemas de apoyo a la toma de decisiones basados en la resiliencia. Para ello, resulta fundamental integrar el proyecto estructural dentro del paradigma de modelos de información en la construcción (BIM) (Fernández-Mora et al., 2022).

Referencias

  • ADAM, J.M.; PARISI, F.; SAGASETA, J.; LU, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Struct., 173:122-149.
  • ALCALÁ, J.; NAVARRO, F. (2020). Viga en cajón mixta acero-hormigón. Patente P202030530, 4 junio 2020.
  • BORGHESE, V.; CONTIGUGLIA, C.P.; LAVORATO, D.; SANTINI, S.; BRISEGHELLA, B. (2023). Sustainable retrofits on reinforced concrete infrastructures. Bulletin of Geophysics and Oceanography, https://doi.org/10.4430/bgo00436
  • CAREDDA, G.; MAKOOND, N.; BUITRAGO, M.; SAGASETA, J.; CHRYSSANTHOPOULOS, M.; ADAM, J.M. (2023). Learning from the progressive collapse of buildings. Built Environ., 15:100194.
  • DONG, H.; HAN, Q.; DU, X.; ZHOU, Y. (2022). Review on seismic resilient bridge structures. Struct. Eng., 25(7):1565-1582.
  • FANG, C.; WANG, W.; QIU, C.; HU, S.; MacRAE, G.A.; EARTHERTON, M.R. (2022). Seismic resilient steel structures: A review of research, practice, challenges and opportunities. J Constr Steel Res, 191,107172.
  • FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Integration of the structural project into the BIM paradigm: a literature review. Build. Eng., 53:104318.
  • GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Constr., 142:104532.
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Multidiscip. Optim., 56(1):139-150.
  • GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58; 105598.
  • HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Power Spectral Density method performance in detecting damages by chloride attack on coastal RC bridge. Eng. Mech., 85(2):197-206.
  • HAO, H.; LI, J. (2019). Sustainable High-Performance Resilient Structures. Engineering, 5(2):197-198.
  • KELES, M.; ARTAR, M.; ERGÜN, M. (2024). Investigation of temperature effect on the optimal weight design of steel truss bridges using Cuckoo Search Algorithm. Structures, 59:105819.
  • KHALOO, A.; MOBINI, M. (2016). Towards resilient structures. Iran., 23(5), 2077-2080.
  • MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Discrete swarm intelligence optimization algorithms applied to steel-concrete composite bridges. Struct., 266:114607.
  • MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm. Multidiscip. Optim., 65:312
  • MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Multidiscip. Optim., 65:46.
  • MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879.
  • MORENO, J.D.; PELLICER, T.M.; ADAM, J.M.; BONILLA, M. (2018). Exposure of RC building structures to the marine environment of the Valencia coast. Build. Eng., 15: 109-121.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Struct Infrast Eng, 16(7): 949-967.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023a). Design optimization of welded steel plate girders configured as a hybrid structure. J Constr Steel Res, 211:108131.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023b). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023c). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Struct., 293:116657
  • ORTEGA, A.I.; PELLICER, T.M.; CALDERÓN, P.A.; ADAM, J.M. (2018). Cement-based mortar patch repair of RC columns. Comparison with all-four-sides and one-side repair. Constr Build Mater., 186: 338-350.
  • PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Struct., 209: 109968.
  • SALAS, J.; YEPES, V. (2022). Improved delivery of social benefits through the maintenance planning of public assets. Infrastruct. Eng., DOI:10.1080/15732479.2022.2121844
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725.
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Clean. Prod., 330:129724.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Clean. Prod., 176:521-534.
  • SOJOBI, A.O.; LIEW, K.M. (2023). Multi-objective optimization of high performance concrete columns under compressive loading with potential applications for sustainable earthquake-resilient structures and infrastructures. Struct., 315:117007.
  • TANG, Y.; WANG, Y.; WU, D.; CHEN, M.; PANG, L.; SUN, J.; FENG, W.; WANG, X. (2023). Exploring temperature-resilient recycled aggregate concrete with waste rubber: An experimental and multi-objective optimization analysis. Adv. Mater. Sci., 62(1):20230347.
  • TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Constr., 49:123-134.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Civ. Mech. Eng., 17(4):738-749.
  • YUAN, W.; WANG, J.; QIU, F.; CHEN, C.; KANG, C.; ZENG, B. (2016). Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters. IEEE Trans Smart Grid, 7(6):2817-2826.
  • ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Carbon impact assessment of bridge construction based on resilience theory. Civ. Eng. Manag., 29(6):561-576.
  • ZHOU, Z.; ZHOU, J.; ALCALÁ, J.; YEPES, V. (2024). Thermal coupling optimization of bridge environmental impact under natural conditions. Impact Assess. Rev., 104:107316.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Proyecto de investigación RESILIFE (2024-2027)

Los desastres naturales y humanos ocasionan pérdidas humanas y económicas considerables. Las estructuras dañadas deben diseñarse para recuperar su funcionalidad lo antes posible, lo que implica recursos y emisiones significativas. Por tanto, el diseño y la construcción de estructuras deben enfocarse en la sostenibilidad, la durabilidad, la resistencia múltiple, la resiliencia y la monitorización inteligente del ciclo de vida. Los eventos extremos, junto con errores de diseño, construcción y falta de mantenimiento, suelen provocar daños estructurales locales que pueden desencadenar el colapso progresivo de las infraestructuras. RESILIFE afronta el reto social que suponen el mantenimiento y la reparación de estructuras frente a situaciones extremas, mediante la optimización de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas. La hipótesis de partida es que un diseño óptimo y la construcción con estructuras híbridas basadas en los modernos métodos de construcción, en especial las modulares, son efectivos desde el punto de vista social y ambiental, y resilientes ante eventos extremos. El reto será incorporar mejoras en el diseño para afrontar eventos extremos y equiparar estas estructuras en prestaciones y en seguridad a las estructuras tradicionales. La innovación central consiste en plantear procedimientos explícitos para cuantificar la resiliencia de las estructuras en el contexto de múltiples amenazas y comparar las estructuras y los sistemas en términos de resiliencia. Para ello, se aplicarán técnicas de inteligencia artificial para optimizar la resiliencia, lo que demostrará su eficacia en términos sociales y ambientales frente a eventos extremos. La novedad metodológica radica en la utilización de metaheurísticas híbridas emergentes y Deep Learning en la optimización multiobjetivo, así como de la teoría de juegos, con el fin de lograr la pronta recuperación de su funcionalidad con costes sociales y ambientales reducidos, evitando su colapso progresivo. Además, se pretende profundizar en las técnicas de decisión multicriterio emergentes, como la lógica neutrosófica y otras, como las redes bayesianas. Esto no solo mejora la calidad y la velocidad de cálculo en el diseño, el mantenimiento y la reparación de estructuras, sino que también aborda las incertidumbres del mundo real y propone una optimización resiliente basada en la fiabilidad y en diseños robustos. En este contexto, en el mundo real existen incertidumbres, imperfecciones o desviaciones respecto a los parámetros utilizados en los códigos. Una estructura óptima se encuentra cercana a la región de infactibilidad, por lo que es necesario incorporar las incertidumbres para proporcionar diseños más robustos y fiables. Por otra parte, la fuerte limitación presupuestaria presente en momentos de crisis compromete seriamente las políticas de creación y conservación de las infraestructuras, sobre todo si hay incrementos de costes al introducir la resiliencia en el diseño. Los resultados esperados, tras un análisis de sensibilidad de distintas políticas presupuestarias asociadas a un horizonte temporal, pretenden detallar qué tipologías, actuaciones concretas de reparación y conservación, y alternativas de demolición y reutilización son adecuadas para minimizar los impactos ambientales y sociales considerando la variabilidad.

Natural and human disasters cause considerable human and economic losses. Damaged structures must be designed to recover their functionality quickly, which involves significant resources and emissions. Therefore, the design and construction of structures must focus on sustainability, durability, multiple resistance, resilience, and intelligent life-cycle monitoring. Extreme events, design, construction, and lack of maintenance errors often cause local structural damage that can trigger the progressive collapse of infrastructures. RESILIFE addresses the social challenge of maintaining and repairing structures in extreme situations by optimizing the complex problems posed at the level of public and private decisions. The starting hypothesis is that optimal design and construction with hybrid structures based on modern construction methods, especially modular ones, are socially and environmentally effective and resilient to extreme events. The challenge will be to incorporate design improvements to cope with extreme events and to bring these structures on par with traditional structures regarding performance and safety. The central innovation is to develop explicit procedures to quantify the resilience of structures in the context of multiple hazards and to compare structures and systems in terms of resilience. To this end, artificial intelligence techniques will be applied to optimize resilience, demonstrating its effectiveness in social and environmental terms in the face of extreme events. The methodological novelty lies in using emerging hybrid metaheuristics and Deep Learning in multi-objective optimization and game theory to achieve early recovery of its functionality with reduced social and environmental costs, avoiding its progressive collapse. In addition, it is intended to deepen emerging multi-criteria decision techniques, such as neutrosophic logic, and others, such as Bayesian networks. This not only improves the quality and speed of computation in the design, maintenance, and repair of structures but also addresses real-world uncertainties and proposes resilient optimization based on reliability and robust designs. In this context, uncertainties, imperfections, or deviations from the parameters used in the codes exist in the real world. An optimal structure is close to the infeasibility region, so it is necessary to incorporate the uncertainties to provide more robust and reliable designs. On the other hand, the strong budget constraints present in times of crisis seriously compromise infrastructure creation and maintenance policies, especially if there are cost increases when introducing resilience in the design. After a sensitivity analysis of different budgetary policies associated with a time horizon, the expected results aim to detail which typologies, specific repair and conservation actions, and demolition and reuse alternatives are adequate to minimize environmental and social impacts considering variability.

PROYECTO DE INVESTIGACIÓN:

Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas. (RESILIFE). [Resilient life-cycle optimization of socially and environmentally efficient hybrid and modular structures under extreme conditions]. PID2023-150003OB-I00. Investigadores principales: Víctor Yepes y Julián Alcalá.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

De «Fundación» de Asimov, a los Beatles y los atardeceres de Formentera a los desafíos de la ingeniería civil

Paola Villalba (Universidad Central del Ecuador) y Víctor Yepes (Universitat Politècnica de València)

Es muy agradable ver cómo desde la Universitat Politècnica de València se ponen en marcha iniciativas para divulgar el trabajo que realizan los que trabajamos en ella. En este caso, la iniciativa se llama “Revisado por pares”, dirigido por el periodista Luis Zurano, que presenta también con Celia Marín. Este espacio cuenta con la colaboración de la Fundación Española para la Ciencia y la Tecnología (FECYT) del Ministerio de Ciencia e Innovación. Se trata de una serie de podcasts que realiza nuestra universidad, donde:

«Queremos conocer al personal investigador de la UPV: sus trayectorias profesionales, qué les decantó por la ciencia y la investigación, los entresijos de la carrera científica… Dale al play y conoce, de dos en dos, a un investigador y una investigadora de la UPV«.

Os paso el enlace y el texto donde podéis ver este tipo de publicaciones: https://podcast.upv.es/programa/revisado-por-pares/

Esta nueva entrega de Revisado por pares tiene como protagonistas a Víctor Yepes y Paola Villalba. Víctor es catedrático de la UPV e investigador del Instituto ICITECH y uno de los científicos de referencia en nuestro país de la ingeniería civil. Mientras, Paloma es doctoranda de la UPV también en el ICITECH, donde llegó procedente de la Universidad Central del Ecuador.

En este podcast, descubrimos un poco de su lado más personal, viajando a Formentera y Florencia y hablando también de los Beatles o de Fundación de Isaac Asimov, entre otras muchas cuestiones. Hablamos también de su trayectoria, de profesores y profesoras que les marcaron. Y abordamos los retos y desafíos de la ingeniería civil y las claves para dedicarse al “apasionante” mundo de la investigación.

Lo podéis escuchar aquí:

 

David Martínez Muñoz y Zhiwu Zhou, Premios Extraordinarios 2024 a sus tesis doctorales

Foto de la izquierda: Lectura de tesis doctoral del Zhou. Foto de la derecha: Lectura de tesis doctoral de David.

No es fácil obtener el Premio Extraordinario a la tesis doctoral en la Universitat Politècnica de València. De hecho, solo se han premiado tres tesis doctorales en el área de ingeniería civil. Pues bien, de esas tres premiadas, dos son de nuestro grupo de investigación. Tuve el honor de dirigir, junto con el profesor Julián Alcalá, la tesis al Dr. Zhiwu Zhou, cuyo título fue “Life Cycle Optimization Analysis of Bridge Sustainable Development”, y que se defendió el 13 de enero de 2023. Asimismo, también tuve ese mismo honor de dirigir, junto con el profesor José V. Martí, la tesis al Dr. David Martínez Muñoz, cuyo título fue “Optimal deep learning assisted design of socially and environmentally efficient steel concrete composite bridges under constrained budgets”, y que se defendió el 19 de julio de 2023.

Este premio extraordinario se suma al ya conseguido por otros de mis doctorandos como Ignacio Payá, Cristina Torres, Leonardo Sierra, Jorge Salas o Ignacio Navarro. Seguro que no serán los únicos.

Desde mi blog quiero expresar mi enhorabuena tanto a Zhou como a David por dichos premios, merecidos, sin duda. En artículos anteriores ya presenté tanto el resumen de una tesis como de la otra. Ahora os paso también algunas de las publicaciones de mayor impacto fruto de dichos trabajos de investigación. Lo mejor está por venir.

Referencias de Zhou:

ZHOU, Z.; WANG, Y.; ALCALÁ, J.; YEPES, V. (2024). Research on coupling optimization of carbon emissions and carbon leakage in international construction projects. Scientific Reports, 14: 10752. DOI:10.1038/s41598-024-59531-4

ZHOU, Z.; ZHOU, J.; ZHANG, B.; ALCALÁ, J.; YEPES, V. (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, 101:105201. DOI:10.1016/j.scs.2024.105201

ZHOU, Z.; ZHOU, J.; ALCALÁ, J.; YEPES, V. (2024). Thermal coupling optimization of bridge environmental impact under natural conditions. Environmental Impact Assessment Review, 104:107316. DOI:10.1016/j.eiar.2023.107316

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Carbon impact assessment of bridge construction based on resilience theory. Journal of Civil Engineering and Management, 29(6):561-576. DOI:10.3846/JCEM.2023.19565

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Experimental Research on Diseases of Emulsified Asphalt Mortar Board for Ballastless Tracks. Journal of Materials in Civil Engineering, 35(6):04023156. DOI:10.1061/JMCEE7.MTENG-15149

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on Sustainable Development of the Regional Construction Industry Based on Entropy Theory. Sustainability, 14(24): 16645. DOI:10.3390/su142416645

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on the optimized environment of large bridges based on multi-constraint coupling. Environmental Impact Assessment Review, 97:106914. DOI:10.1016/j.eiar.2022.106914

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Regional sustainable development impact through sustainable bridge optimizationStructures, 41, 1061-1076. DOI: 10.1016/j.istruc.2022.05.047

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental Research and Public Health, 17(16):5953. DOI:10.3390/ijerph17165953

 

Referencias de David:

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2023). Deep learning classifier for life cycle optimization of steel-concrete composite bridges. Structures, 57:105347. DOI:10.1016/j.istruc.2023.105347

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2023). Hybrid swarm intelligence optimization methods for low-embodied energy steel-concrete composite bridges. Mathematics, 11(1):140. DOI:10.3390/math11010140

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm. Structural and Multidisciplinary Optimization, 65:312. DOI:10.1007/s00158-022-03393-9

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Discrete swarm intelligence optimization algorithms applied to steel-concrete composite bridges. Engineering Structures, 266:114607. DOI:10.1016/j.engstruct.2022.114607

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Advances in Civil Engineering, 2020:8823370. DOI:10.1155/2020/8823370

PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265

YEPES, V.; DASÍ-GIL, M.; MARTÍNEZ-MUÑOZ, D.; LÓPEZ-DESFILÍS, V.J.; MARTÍ, J.V. (2019). Heuristic techniques for the design of steel-concrete composite pedestrian bridges. Applied Sciences, 9(16), 3253; DOI:10.3390/app9163253

¡Portada en Nature! Investigadores de la UPV idean un nuevo método de diseño de edificios que evita colapsos catastróficos

De vez en cuando se recibe una buena noticia que marca un punto de inflexión en la investigación. Es un honor para mí pertenecer al Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y a la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Valencia. En este contexto, el equipo del catedrático José Miguel Adam ha logrado un hito al publicar un artículo en la revista de mayor impacto por excelencia: NATURE. No solo eso, sino que, además, es portada de dicha revista. Mi más sincera enhorabuena a José Miguel y a su equipo. Os paso la noticia completa.

Un equipo del Instituto ICITECH de la Universitat Politècnica de València (UPV) ha publicado en Nature los últimos resultados de su “radical” propuesta para conseguir edificios ultrarresistentes, que sean capaces de aguantar situaciones extremas causadas por desastres naturales –riadas, inundaciones, deslizamiento de laderas…- explosiones, su propio envejecimiento, o un mantenimiento y conservación inadecuados. Esta propuesta añade al diseño de la estructura de los edificios una última línea de defensa para evitar colapsos catastróficos.

El nuevo método se inspira en cómo los lagartos se protegen de los depredadores al liberar sus colas cuando son atacados.

Los métodos de diseño actuales se basan en mejorar la conectividad entre los componentes de la estructura. En el caso de que algún componente falle, esta conectividad permite que las cargas que soportaban los componentes que fallan se redistribuyan al resto del sistema estructural. Aunque estos métodos resultan eficaces en el caso de pequeños fallos iniciales, pueden aumentar el riesgo de colapso progresivo tras grandes fallos iniciales, conduciendo así a colapsos completos o de gran magnitud. Así sucedió, por ejemplo, en las Champlain Towers y en el derrumbe de un edificio en Peñíscola en 2021, o en la ciudad iraní de Abadan en 2022. Y esto es lo que evita la propuesta surgida del ICITECH de la UPV.

“Nuestro novedoso método de diseño proporciona una solución para superar esta alarmante limitación y conseguir edificios más resilientes, capaces de aislar el colapso a solo la parte de la estructura que ha sufrido el fallo inicial, y salvaguardar el resto del edificio. El nuevo método de diseño ha sido verificado con un ensayo sobre un edificio real. Por tanto, se trata de la primera solución contra la propagación de colapsos en edificios tras grandes fallos iniciales que ha sido probado y verificado a escala real. Con la aplicación del nuevo método de diseño se conseguirá prevenir colapsos catastróficos, protegiendo así vidas humanas y minimizando los costes materiales que supondría un colapso completo de la estructura”, destaca José M. Adam, coautor de la publicación con Nirvan Makoond, Andri Setiawan y Manuel Buitrago; todos ellos miembros del ICITECH de la UPV.

Unos “fusibles” evitan el colapso total

La clave del método ideado por el equipo de la UPV reside en usar el concepto de fusible estructural, que permite aislar las partes dañadas de un edificio con el fin de evitar la propagación de grandes fallos a toda la construcción.

“Esta nueva filosofía es parecida a la forma en que las redes eléctricas se protegen frente a sobrecargas, al conectar diferentes segmentos de la red mediante fusibles eléctricos. Con nuestros diseños, el edificio presenta continuidad estructural bajo condiciones normales de funcionamiento, pero se segmenta cuando la propagación de un fallo es inevitable, reduciendo así el alcance del colapso y evitando el derrumbe total”, apunta Nirvan Makoond.

«La implementación del método repercutirá levemente, o incluso de forma despreciable, en el coste de la estructura, ya que utiliza detalles constructivos y materiales convencionales”, señala Andri Setiawan.

En su estado de desarrollo actual, el nuevo diseño de estos investigadores se puede aplicar a prácticamente cualquier edificio de nueva construcción. “Su eficacia ha sido verificada y demostrada para edificios con estructura prefabricada de hormigón. Actualmente, trabajamos en la aplicación de la metodología a edificios ejecutados con hormigón in situ y a edificios con estructura de acero”, concluye Manuel Buitrago.

Validado en un ensayo pionero a nivel mundial

El desarrollo de este nuevo método de diseño es uno de los resultados más destacados hasta la fecha del proyecto Endure, financiado por el European Research Council – ERC (Consejo Europeo de Investigación) con una ayuda Consolidator Grant de más de 2,5 millones de euros. Fue precisamente en el marco de este proyecto donde se llevó a cabo, en junio del año pasado, un ensayo pionero a nivel mundial que permitió validar sus prestaciones. Las pruebas se hicieron con un edificio completo, a escala real, en el que un gran fallo inicial en la estructura se aisló en una parte del edificio, evitando su propagación a toda la estructura. Cabe resaltar que la investigación se lleva a cabo al 100% en la UPV, siendo los cuatro autores de la publicación investigadores también de la UPV.

Portada de Nature

Nature ha publicado el trabajo del equipo del Instituto ICITECH de la UPV en la portada de su número de hoy. Además, es la primera vez que la revista publica un artículo de investigación en el campo del diseño y construcción de edificios.

Primeros pasos gracias a un proyecto financiado por la Fundación BBVA

El germen de este proyecto surgió de una Beca Leonardo que en 2017 otorgó la Fundación BBVA a José M. Adam. Ahora, siete años más tarde, el investigador del ICITECH – UPV continua con este proyecto revolucionario, de la mano del Consejo Europeo de Investigación, que permitirá levantar edificios más seguros y salvar vidas humanas.

Endure se desarrollará hasta 2026 en el laboratorio de estructuras del ICITECH de la Universitat Politècnica de València, uno de los mayores de Europa para el ensayo de grandes elementos estructurales.

Referencia

Makoond, N., Setiawan, A., Buitrago, M. et al. Arresting failure propagation in buildings through collapse isolation. Nature 629, 592–596 (2024). https://doi.org/10.1038/s41586-024-07268-5

Os dejo el vídeo y el artículo completo, pues está publicado en abierto.

Pincha aquí para descargar

Balance personal de 2023 en el ámbito docente e investigador

Cada 31 de diciembre, hemos decidido que termina un año y empieza otro. Aunque podría haberse elegido una fecha más vinculada a los ciclos naturales, como un solsticio o un equinoccio, la tradición dicta que este día marca el cierre de un ciclo para dar paso a uno nuevo. Siguiendo mi costumbre, este día se convierte en una oportunidad propicia para reflexionar sobre lo acontecido a lo largo del año 2023.

El año 2023 se ha caracterizado por la «polarización» como término clave, evidenciando la persistencia de una tensión constante en las relaciones entre individuos y naciones. A pesar de que la pandemia parecía quedar en segundo plano, la congelación del conflicto en Ucrania y los impactantes eventos en Gaza, marcados por bombas y desastres humanitarios tras los ataques de Hamás, nos recuerdan la fragilidad de la estabilidad global. En España, una campaña electoral perpetua mantiene un clima de confrontación constante, convirtiendo el enfrentamiento en parte integral de la vida diaria. El precio del dinero alcanza sus niveles máximos. La Naturaleza nos pone en nuestro sitio con los terremotos en Turquía, Siria y Marruecos. Los fenómenos atmosféricos adversos asociados al cambio climático dejaron un rastro de incendios devastadores en Canadá, grandes sequías y una media de temperaturas globales de récord. En fin, como ya dije el año pasado, parece que las crisis sucesivas va a ser una constante en el corto y medio plazo. Sin embargo, entre las noticias más impactantes destaca el rápido desarrollo de la inteligencia artificial, que se hizo evidente con la popularización de Chat GPT. Lamentablemente, en este año nos han dejado destacados ingenieros como Florentino Regalado, José Calavera, Julio Martínez Calzón y Santiago Hernández, entre otros, marcando pérdidas significativas en el mundo de la ingeniería.

Pero voy a centrarme ya en el balance personal que suelo hacer llevar a cabo cada año en esta fecha. Este año, sin duda, creo que es mi «annus mirabilis«. Va a ser muy difícil mejorar los logros conseguidos en el ámbito profesional. En junio de 2023 recibí el Premio Excelencia Docente del Consejo Social de la Universidad Politécnica de Valencia, en su XXII edición. Es un premio muy especial, pues se concede a nivel personal y es un reconocimiento valorado por aquellos que nos dedicamos a la docencia. Además, solo se concede una vez, siendo un premio al que no debes presentar ninguna candidatura, por lo que fue una auténtica sorpresa. En noviembre de 2023, recibí dos de los premios más importantes en el ámbito de la investigación en nuestra universidad. Se trata del Premio a la Trayectoria Excelente en Investigación y el Premio al Impacto Excelente en Investigación, ambos otorgados por la Universitat Politècnica de València. El prestigio de estos premios lo dan los excelentes finalistas que han competido conmigo que, en mi modesta opinión, tienen méritos más que merecidos para ello. Teniendo en cuenta que la Universitat Politècnica de València cuenta con casi 3.000 investigadores, el hecho de estar premiado en dos de las categorías más relevantes, es un logro que agradezco mucho. Este reconocimiento se suma a estar entre los tres primeros investigadores españoles con mayor factor de impacto en el área de ingeniería civil. En este momento, mi índice H=41 en la Web of Science, H=40 en Scopus y H=58 en Google Academico, con 162 artículos publicados en revistas indexadas en el JCR. Además de los 24 artículos científicos que he publicado en revistas indexadas en el JCR, cifra que ha marcado un record, ya tenemos un artículo publicado del 2024 y uno más  aceptado. No está mal empezar el nuevo año con dos artículos. Nunca me cansaré de elogiar a los componentes del grupo de investigación. Cada día son mejores.

 

Este año he seguido con mi labor como Consejero en el Sector 4: docencia e investigación en el Colegio de Ingenieros de Caminos, Canales y Puertos. Además, cumplí con la misión de pertenecer al Comité Asesor de la Comisión Nacional Evaluadora de la Actividad Investigadora CNEAI, en el área de “Ingeniería y Arquitectura”, donde se evalúan los sexenios de investigación. También participé como vocal suplente en la Comisión de Acreditación de ANECA C13 – Arquitectura, ingeniería civil, construcción y urbanismo. A partir del 2024 estaré como vocal en la Comisión de Acreditación 15- Ingeniería Civil de ANECA.

Demos un pequeño repaso a lo que ha sido este 2023. En el mes de enero se defendió la tesis doctoral de D. Zhi Wu Zhou titulada “Life cycle optimization analysis of bridge sustainable development“, que dirigí junto con el profesor Julián Alcalá González. En marzo impartí una ponencia como invitado en CEVISAMA, titulada “Nuevas técnicas para reducir costos y mejorar la sostenibilidad de los elementos constructivos”. En julio asistimos al AEIPRO 2023, en Donostia-San Sebastián (Spain), en el 27th International Congress on Project Management and Engineering. En julio de 2023 se defendió la tesis doctoral de D. David Martínez Muñoz titulada “Optimal deep learning assisted design of socially and environmentally efficient steel concrete composite bridges under constrained budgets“, que dirigí junto con el profesor José V. Martí Albiñana. En octubre impartí una ponencia como invitado titulada “Técnicas innovadoras para reducir costes y mejorar la sostenibilidad en la construcción”, que tuvo lugar en Guayaquil (Ecuador), dentro del VIII Congreso Científico Internacional INPIN 2023. En septiembre se defendió el trabajo fin de máster sobre un estudio para la ubicación y diseño estructural de un aparcamiento disuasorio en altura en el área metropolitana de Valencia. Su autor fue Víctor José Yepes Bellver y los directores, Julián Alcalá González y Mª Rosa Arroyo López. También en este año, Lorena Yepes Bellver obtuvo una plaza de profesora asociada en el Departamento de Mecánica de los Medios Continuos y Teoría de las Estructuras. Un orgullo que mis dos hijos sean ingenieros de caminos. En octubre impartí en Granada la conferencia inaugural de las VI Jornadas Internacionales sobre Innovación Docente en las Titulaciones Técnicas. En noviembre impartí una Conferencia Magistral sobre diseño óptimo de estructuras dentro del XIII Coloquio de análisis, diseño y monitoreo estructural, en particular en el 13rd International Symposium on Structures, Geotechnics and Construction Materials STRUCTURES 2023. celebrada en Cuba. También participé en el Comité Científico del IALCCE2023, Eighth International Symposium on Life-Cycle Civil Engineering, que tuvo lugar en el campus del Politécnico de Milán (Italia), entre el 11 y el 15 de junio. Asimismo, puse en marcha un número especial denominado Special Issue “Machine Learning, Metaheuristics and Combinatorial Optimization Problems”. Asimismo, he vuelto a estar en otros comités científicos, como el del INRED 2023. Además, participé en la redacción de parte de la Orden Circular 4/2023 sobre procedimiento para la justificación de precios en la Dirección General de Carreteras y base de precios de apoyo. Por último, para 2024 está prevista la lectura de cuatro tesis doctorales que tengo el honor de dirigir. Ya os daré noticias al respecto.

Este año puse en marcha, en colaboración con la empresa Ingeoexpert, un nuevo curso, en línea sobre «Estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras«. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-estructuras-auxiliares-en-la-construccion-andamios-apeos-entibaciones-encofrados-y-cimbras/.

Este año publiqué un libro que he tardado en elaborar varios años. Se trata de un texto académico denominado: Maquinaria y procedimientos de construcción: problemas resueltos. El libro ofrece una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil, la edificación y las obras públicas.

Otro libro que he publicado este año, en este caso en colaboración con los profesores Pedro Martínez Pagán y Marcos A. Martínez Segura, de la Universidad Politécnica de Cartagena, ha sido el de Ejercicios resueltos de sistemas de transporte continuo (bombas y cintas transportadoras). Es un placer colaborar con otros compañeros en estas tareas.

Este post es el número 187 los que he escrito este año, lo cual no está nada mal. Ya he publicado 1849 artículos en mi blog desde que inicié esta andadura un 5 de marzo de 2012, por lo que este año se ha cumplido una década de esta aventura. Sin darme cuenta, he tocado muchos temas que tienen que ver con la profesión de la ingeniería civil y a la construcción en todos sus aspectos. Además, en redes sociales cada vez tengo más presencia. Más de 32.667 seguidores en Twitter.

Por último, os dejo a continuación algunas de las referencias respecto a los artículos, congresos, libros y vídeos educativos que he realizado durante este 2023. Va a ser muy difícil mejorar este 2023, pero haremos lo posible para el 2024.

INVESTIGADOR PRINCIPAL EN PROYECTOS DE INVESTIGACIÓN COMPETITIVOS:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00.

ARTÍCULOS INDEXADOS EN EL JCR:

  1. GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58; 105598. DOI:10.1016/j.istruc.2023.105598
  2. GARCÍA, J.; LEIVA-ARAOS, A.; DÍAZ-SAAVEDRA, E.; MORAGA, P.; PINTO, H.; YEPES, V. (2023). Relevance of Machine Learning Techniques in Water Infrastructure Integrity and Quality: A Review Powered by Natural Language Processing. Applied Sciences, 13(22):12497. DOI:10.3390/app132212497
  3. YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767
  4. MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2023). Deep learning classifier for life cycle optimization of steel-concrete composite bridges. Structures, 57:105347. DOI:10.1016/j.istruc.2023.105347
  5. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Multi-criteria optimization for sustainability-based design of reinforced concrete frame buildingsJournal of Cleaner Production, 425:139115. DOI:10.1016/j.jclepro.2023.139115
  6. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Carbon impact assessment of bridge construction based on resilience theory. Journal of Civil Engineering and Management, 29(6):561-576. DOI:10.3846/JCEM.2023.19565
  7. HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Life Cycle Assessment of a Coastal Concrete Bridge Aided by Non-Destructive Damage Detection Methods. Journal of Marine Science and Engineering, 11(9):1656. DOI:10.3390/jmse11091656
  8. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657
  9. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Design optimization of welded steel plate girders configured as a hybrid structure. Journal of Constructional Steel Research, 211:108131. DOI:10.1016/j.jcsr.2023.108131
  10. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2023). Enhancing sustainability assessment of bridges in aggressive environments through multi-criteria group decision-making. DYNA, 98(5):477-483. DOI:10.6036/10816
  11. SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Journal of Building Engineering, 73:106725. DOI:10.1016/j.jobe.2023.106725
  12. TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.
  13. LEMUS-ROMANI, J.; OSSANDÓN, D.; SEPÚLVEDA, R.; CARRASCO-ASTUDILLO, N.; YEPES, V.; GARCÍA, J. (2023). Optimizing Retaining Walls through Reinforcement Learning Approaches and Metaheuristic Techniques. Mathematics 11(9): 2104. DOI:10.3390/math11092104
  14. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2023). Evaluation of Higher Education Students’ Critical Thinking Skills on Sustainability. International Journal of Engineering Education, 39(3):592-603.
  15. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631. DOI:10.1016/j.istruc.2023.04.006
  16. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Experimental Research on Diseases of Emulsified Asphalt Mortar Board for Ballastless Tracks. Journal of Materials in Civil Engineering, 35(6):04023156. DOI:10.1061/JMCEE7.MTENG-15149
  17. HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023).  Life-cycle cost assessment using the power spectral density function in a coastal concrete bridgeJournal of Marine Science and Engineering, 11(2):433. DOI:10.3390/jmse11020433
  18. MARTÍN, R.; YEPES, V. (2023). Landscape values in a marina in Granada (Spain): Enhancing landscape management through public participation. Land, 12(2):492. DOI:10.3390/land12020492
  19. TRES JUNIOR, F.L.; YEPES, V.; MEDEIROS, G.F.; KRIPKA, M. (2023). Multi-objective Optimization Applied to the Design of Sustainable Pedestrian Bridges. International Journal of Environmental Research and Public Health, 20(4), 3190. DOI:10.3390/ijerph20043190 
  20. HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Power Spectral Density method performance in detecting damages by chloride attack on coastal RC bridge. Structural Engineering and Mechanics, 85(2):197-206. DOI:10.12989/sem.2023.85.2.197
  21. RUIZ-VÉLEZ, A.; ALCALÁ, J.; YEPES, V. (2023). A parametric study of optimum road modular hinged frames by hybrid metaheuristics. Materials, 16(3):931. DOI:10.3390/ma16030931
  22. YEPES, V.; LOPEZ, S. (2023). The Knowledge sharing capability in innovative behavior: A SEM approach from graduate students’ insights. International Journal of Environmental Research and Public Health, 20(2):1284. DOI:10.3390/ijerph20021284
  23. MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2023). Hybrid swarm intelligence optimization methods for low-embodied energy steel-concrete composite bridges. Mathematics, 11(1):140. DOI:10.3390/math11010140
  24. RUIZ-VÉLEZ, A.; ALCALÁ, J.; YEPES, V. (2023). Optimal design of sustainable reinforced concrete precast hinged frames. Materials, 16(1):204. DOI:10.3390/ma16010204.

OTROS ARTÍCULOS:

LIBROS:

CONGRESOS:

  1. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Model for considering soil-structure interaction and its implementation in the optimal design of RC frame structures. 7th International Conference on Mechanical Models in Structural Engineering, CMMoST 2023. 29 nov – 01 dec, Málaga (Spain).
  2. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Optimización estructural asistida por metamodelos: Aplicaciones. XIII Coloquio de Análisis, Diseño y Monitoreo Estructural, Cayos de Villa Clara (Cuba), 15 pp.
  3. YEPES, V. (2023). Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares (HYDELIFE). XIII Coloquio de Análisis, Diseño y Monitoreo Estructural, Cayos de Villa Clara (Cuba), 20 pp.
  4. SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2023). Sustainable Design of Lightened Reinforced Concrete Flat Slabs in Coastal Environment. 8th International Symposium on Life-Cycle Civil Engineering IALCCE 2023, July 2-6, Milano (Italy), PP. 2463-2470. DOI:10.1201/9781003323020-300
  5. YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; YEPES, V. (2023). Evaluación de los conocimientos de los estudiantes de posgrado en ingeniería civil sobre temas de actualidad. IX Congreso de Innovación Educativa y Docencia en Red (IN-RED 2023), 13-14 julio, Valencia, pp. 534-544. DOI:10.4995/INRED2023.2023.16514
  6. YEPES, V.; MARTÍNEZ-PAGÁN, P.; BLIGHT, T.; BOULET, D.J.; ROSCHIER, L.(2023). Competencias analógicas en un mundo digital. Nomogramas en el proceso de aprendizaje de la ingeniería. IX Congreso de Innovación Educativa y Docencia en Red (IN-RED 2023), 13-14 julio, Valencia, pp. 2106-2118. DOI:10.61547/3509
  7. BRUN-IZQUIERDO, A.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2023). Optimización energética de tableros tipo losa pretensados aligerados mediante modelos Kriging27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain), pp. 426-437. DOI:10.61547/3374
  8. HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Durability assessment and re-design of coastal concrete bridge through a non-destructive damage detection method. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain), pp. 386-401. DOI:10.61547/3371
  9. YEPES, V.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.J.; BLIGHT, T. (2023). Códigos abiertos basados en Python para la construcción de nomogramas y su aplicación en la ingeniería de proyectos. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain), pp. 2106-2118. DOI:10.61547/3509

VÍDEOS EDUCATIVOS:

  1. Obras de dragado. Importancia y clasificación. 7 minutos, 36 segundos.
  2. Draga retroexcavadora. 8 minutos, 27 segundos.
  3. Draga de cuchara montada sobre pontona. 9 minutos, 27 segundos.
  4. Draga de succión estacionaria. 8 minutos, 7 segundos.
  5. Plantas fijas de tratamiento de áridos por vía seca. 7 minutos, 36 segundos.
  6. Parrillas de barras o cribas de barrotes. 6 minutos, 56 segundos.
  7. La molienda en las instalaciones de tratamientos de áridos. 9 minutos, 10 segundos.
  8. Trómeles. Cribas dinámicas y cilindros lavadores. 8 minutos, 37 segundos.

MEDIOS DE PRENSA:

À PUNT. Entrevista radiofónica sobre los rascacielos. https://www.apuntmedia.es/tema-del-dia/02-05-2023-tema-del-dia-els-gratacels_135_1612244.html

EL CONFIDENCIAL. 82.000 ingenieros alertan: la seguridad de edificios y personas no está garantizada con la normativa anti-terremotos que pretende aprobar el Gobierno. https://www.elconfidencialdigital.com/articulo/dinero/80000-ingenieros-alertan-gobierno-va-aprobar-urgencia-normativa-anti-terremotos-que-garantiza-seguridad-edificios-personas/20230630133029600224.html

EL CONFIDENCIAL. Terremoto en Marruecos. Europa tiene paralizada la normativa anti-seísmos de España que no garantiza la seguridad de edificios y personas, según 82.000 ingenieros. https://www.elconfidencialdigital.com/articulo/seguridad/terremoto-marruecos-europa-tiene-paralizada-normativa-anti-seismos-gobierno-que-garantiza-seguridad-edificios-personas-82000-ingenieros/20230910010244633320.html

NOTICIAS DE LA CIENCIA. Algoritmos para una construcción más limpia y más barata de túneles subterráneos. https://noticiasdelaciencia.com/art/46721/algoritmos-para-una-construccion-mas-limpia-y-mas-barata-de-tuneles-subterraneos#google_vignette

TECH XPLORE. Study seeks to revolutionize wind turbine design. https://techxplore.com/news/2023-03-revolutionize-turbine.html

EL HERALDO DE TABASCO. Más de 300 perforaciones se han realizado en el Acueducto Usumacinta. https://www.elheraldodetabasco.com.mx/local/cuantas-perforaciones-lleva-el-acueducto-usumacinta-11183822.html

EL PERIÓDICO DEL AZULEJO. Marcos prefabricados de hormigón, una opción más económica y sostenible para la construcción. https://www.elperiodicodelazulejo.es/colocacion/marcos-prefabricados-de-hormigon-una-opcion-mas-economica-y-sostenible-para-la-construccion-KY1441851

VALENCIA PLAZA. Marcos prefabricados de hormigón para la construcción, una opción más barata y sostenible. https://valenciaplaza.com/marcos-prefabricados-hormigon-construccion-opcion-mas-barata-sostenible

 

Visibilidad para el grupo de investigación CONSTRUCTION OPTIMIZATION – ICITECH UPV

En mi blog personal, suelo destacar los logros personales de los miembros de nuestro grupo de investigación, compuesto por profesores e investigadores jóvenes de varios países, que tienen su sede en el ICITECH (Instituto de Ciencia y Tecnología del Hormigón) de la Universitat Politècnica de València. Sin embargo, estos logros a menudo pasan desapercibidos debido a la falta de una vía de comunicación propia.

Desde 2006, nuestro grupo ha centrado sus investigaciones en la optimización multiobjetivo y la toma de decisiones multicriterio para garantizar la sostenibilidad económica, social y medioambiental a lo largo del ciclo de vida de puentes e infraestructuras. Hasta la fecha, hemos publicado unos 150 artículos científicos indexados en el JCR y hemos presentado numerosas comunicaciones en congresos nacionales e internacionales. Ya se han leído 15 tesis doctorales y, en este momento, se encuentran otras 10 en marcha.

No obstante, consideramos que es crucial aumentar la visibilidad de nuestro trabajo para acercarlo a la sociedad. De esta manera, esperamos que nuestra investigación pueda contribuir a la construcción de infraestructuras más sostenibles y eficientes en el futuro.

Como podréis observar, hemos diseñado un logotipo para identificar nuestro trabajo. El diseño sigue el estilo institucional de los grupos de investigación de nuestra universidad. En la parte inferior, en color rojo destacado, aparece el acrónimo de la UPV, mientras que encima figuran dos palabras que consideramos fundamentales: “CONSTRUCTION” y “OPTIMIZATION”. Las hemos escrito en inglés porque queremos comunicar nuestro trabajo a nivel internacional.

La primera de ellas transmite que nuestro objeto de investigación no se limita a las estructuras de hormigón o puentes, sino que abarcamos un amplio espectro de infraestructuras, como edificios, carreteras, ferrocarriles, puertos y presas, entre otros. Además, la palabra “optimización” resume la base y los inicios de nuestro grupo, ya que buscamos mejorar la sostenibilidad integral de las infraestructuras a lo largo de su ciclo de vida.

Sin lugar a dudas, lo más complicado para nosotros ha sido crear una silueta que capture, a modo de paraguas, el núcleo central de nuestro mensaje. Hemos creado un arco que simboliza un puente y también tiene la intención de representar una cúpula de un edificio, un tramo de carretera o una sección de una presa bóveda. En resumen, hemos buscado un diseño que sea fácil de comprender y que simbolice el trabajo que llevamos a cabo en nuestro grupo.

Pues bien, podéis encontrar toda la información que vaya generando el grupo en las siguientes redes de comunicación. Os invito a que las sigáis para estar al tanto de lo que está ocurriendo en la punta de lanza del conocimiento en este ámbito de la ingeniería de la construcción.

Twitter: https://twitter.com/ConstOptUPV

Facebook: https://www.facebook.com/groups/231497652653826

LinkedIn: https://www.linkedin.com/groups/12794089/

 

Ponencia invitada en CEVISAMA: Nuevas técnicas para reducir costes y mejorar la sostenibilidad de los elementos constructivos

Me complace anunciar que he sido invitado a impartir una ponencia en CEVISAMA, titulada “Nuevas técnicas para reducir costos y mejorar la sostenibilidad de los elementos constructivos”, que tendrá lugar el jueves 2 de marzo de 2023 a las 10:00 h. Esta ponencia se llevará a cabo en el Foro Cevisama Build, en el Nivel 3 del Pabellón 1 de Feria Valencia, que acogerá a numerosos profesionales y empresas del sector de la construcción sostenible y bioconstrucción. El programa completo del evento se puede encontrar en el siguiente enlace: https://cevisama.feriavalencia.com/actividades/programa-completo/.

Durante mi intervención, repasaré los principales logros que ha alcanzado nuestro grupo de investigación en los últimos 15 años y destacaré las posibilidades que tienen las empresas para incorporar las nuevas tecnologías y reducir los costos de producción, a la vez que mejoran la sostenibilidad de sus productos, especialmente en el sector de la construcción.

Cevisama 2023 reunirá a marcas insignes del sector cerámico, el baño y la piedra natural, y contará con novedades como “Cevisama Tech”, un área exclusiva que mostrará las últimas soluciones en innovación y tecnología aplicadas a la industria cerámica.

En su última edición, celebrada en 2020, Cevisama reunió a más de 800 firmas y marcas y recibió la visita de 90.000 profesionales, de los que más de 21.000 fueron visitantes extranjeros.

Balance personal de 2022 en el ámbito docente e investigador

Cada 31 de diciembre decidimos que termina un año y empieza otro. Podría haberse elegido otra fecha más razonable, como un solsticio o un equinoccio, pero hoy parece que todo termina para volver a empezar. Siguiendo mi costumbre, hoy es un buen día para repasar lo que ha sido el año 2022.

Parecía que habíamos superado los problemas de la pandemia de 2020 y 2021, cuando de repente nos encontramos con la guerra de Ucrania. Un auténtico terremoto que ha puesto la economía patas arriba y cuyas consecuencias están afectando a muchísimas personas. La inflación galopante, los tipos de interés al alza y el precio de la energía y los alimentos son algunos de los factores a los que se suma la imparable crisis climática, lo que hace presagiar un futuro con más nubes que claros. Hoy mismo, cuando estoy escribiendo estas líneas, la pandemia se ha desbordado en China. Las consecuencias son difíciles de evaluar a día de hoy. En fin, parece que las crisis sucesivas va a ser una constante en el corto y medio plazo. Encima, el ambiente de crispación política en nuestro país parece que no va a amainar teniendo elecciones a la vista el año que viene. No obstante, también tenemos buenas noticias, sobre todo en el ámbito científico y tecnológico.

Pero voy a centrarme ya en el balance personal que suelo hacer todos los años cuando llega este día. Parece que el año ha pasado muy rápido, pero son muchas las cosas que han ocurrido y que me gusta repasar para reflexionar sobre ellas. Este año he seguido con mi labor como Consejero en el Sector 4: docencia e investigación en las elecciones del Colegio de Ingenieros de Caminos, Canales y Puertos. Además, cumplí con la misión de pertenecer al Comité Asesor de la Comisión Nacional Evaluadora de la Actividad Investigadora CNEAI, en el área de «Ingeniería y Arquitectura», donde se evalúan los sexenios de investigación.

Este post es el número 175 los que he escrito este año, lo cual no está nada mal. Ya he publicado 1662 artículos en mi blog desde que inicié esta andadura un 5 de marzo de 2012, por lo que este año se ha cumplido una década de esta aventura. Sin darme cuenta, he tocado muchos temas que tienen que ver con la profesión de la ingeniería civil y a la construcción en todos sus aspectos. Además, en redes sociales cada vez tengo más presencia. Más de 28.200 seguidores en Twitter.

Demos un pequeño repaso a lo que ha sido este 2022. En el mes de febrero participé en la clausura de la 3ª Edición del Concurso de Distinciones a la Excelencia en las Prácticas de Alumnado en Ingeniería, fue una  invitación recibida por INECO. En mayo impartí una conferencia invitada en el Primer Congreso CONTRUC LATAM 2022, que tuvo lugar en Colombia, cuyo tema fue Gestión del mantenimiento de las carreteras con presupuestos restringidos“. Ese mismo mes impartí una conferencia invitada dentro de las II Jornadas de Ingeniería y Arquitectura organizadas por el Colegio de España. También participe en junio en el VIII Congreso Trienal de la Asociación Española de Ingeniería Estructural (ACHE), que tuvo lugar en Santander. Asimismo en el 26th International Congress on Project Management and Engineering AEIPRO 2022, que se desarrolló en Terrasa en julio. Presentamos en julio una comunicación en el 11th International Conference on Bridge Maintenance, Safety and Management IABMAS 2022, que se desarrolló en Barcelona. Durante julio participé en el International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI/SUSI 2022.  También en julio, impartí un taller en la Universidad de Alicante con motivo de una invitación recibida por su Instituto de Ciencias de la Educación. En septiembre impartí una conferencia invitada en el XXXIX Congreso Sudamericano de Ingeniería Estructural, JSAEE 2022. Participé en septiembre en el Congreso de Métodos Numéricos en Ingeniería CMN 2022, que tuvo lugar en las Palmas de Gran Canaria. En octubre, participé en el Encuentro Profesional Geololotecnia 2022, celebrando el día de Terzaghi. Bajo el auspicio del CYTED, Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, participé en una mesa redonda en octubre sobre “Nuevos desafíos en la investigación sobre playas en Iberoamérica: conectando ciencia y gestión“.

Este año puse en marcha, en colaboración con la empresa Ingeoexpert, un nuevo curso, online sobre Gestión de costes y producción de la maquinaria empleada en la construcción. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-gestion-de-costes-y-produccion-de-la-maquinaria-empleada-en-la-construccion/. Otro curso que impartí en septiembre trató sobre las novedades del nuevo Código Estructural respecto al control de calidad. Fue un curso organizado por el Colegio Oficial de la Arquitectura Técnica de Araba/Álava, mediante videoconferencia, con un total de 8 horas lectivas.

También me comunicaron este año mi participación en el Comité Científico del IALCCE2023, Eighth International Symposium on Life-Cycle Civil Engineering, que tendrá lugar en el campus del Politécnico de Milán (Italia), entre el 11 y el 15 de junio. Asimismo, puse en marcha un número especial denominado Special Issue “Machine Learning, Metaheuristics and Combinatorial Optimization Problems”. También vuelvo a estar en otros comités científicos, como el del INRED 2023.

En cuanto a reconocimientos, fue muy grata la carta remitida por el Rector de la Batumi Shota Rustaveli State University, de Georgia, a nuestro Rector José Esteban Capilla. En un correo recibido por nuestro Vicerrector de Internacionalización y Comunicación, nos remiten la carta junto con el agradecimiento de nuestra universidad.

Pero uno de los reconocimientos más valorados ha sido ser seleccionado como uno de los cinco aspirantes al Premio a la Trayectoria Excelente en Investigación de la Universitat Politècnica de València en la rama de Ingeniería. Fuí el único candidato en el ámbito de la ingeniería civil, siendo muy difícil competir contra los otros seleccionados, grandes investigadores en otras ramas de conocimiento dentro de la ingeniería. Fue un honor representar a la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos en este reto. Este reconocimiento se suma a estar entre los tres primeros investigadores españoles con mayor factor de impacto en el área de ingeniería civil.

En estos días también he tenido la oportunidad de repasar las pruebas de imprenta de una novedad editorial que verá la luz en enero del 2023. Se trata de un Manual de Referencia denominado: Gestión de costes y producción de maquinaria de construcción. Es un texto académico, revisado por pares, que ha tenido una edición muy cuidada. Ya os daré detalles.

Además de los 22 artículos científicos que he publicado en revistas indexadas en el JCR —cifra que ha marcado un récord—, ya tenemos dos artículos de 2023 y otros tres que han sido aceptados. No está nada mal empezar el año con cinco artículos. Nunca me cansaré de elogiar al equipo de investigación. Cada día son mejores.

A continuación, os dejo algunas referencias respecto a los artículos, congresos, libros y vídeos educativos que he realizado durante este 2022. Espero que 2023 sea mejor que este año, aunque no lo tengo claro.

INVESTIGADOR PRINCIPAL EN PROYECTOS DE INVESTIGACIÓN COMPETITIVOS:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00.

ARTÍCULOS INDEXADOS EN EL JCR:

  1. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on Sustainable Development of the Regional Construction Industry Based on Entropy Theory. Sustainability, 14(24): 16645. DOI:10.3390/su142416645
  2. PARTSKHALADZE, G.; ALCALÁ, J.; MEDZMARIASHVILI, E.; CHAVLESHVILI, G.; SURGULADZE, B., I.; YEPES, V.  (2022). Heuristic Optimization of a New Type Prestressed Arched Truss. Materials, 15(22): 8144. DOI:10.3390/ma15228144
  3. MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm. Structural and Multidisciplinary Optimization, 65:312. DOI:10.1007/s00158-022-03393-9
  4. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on the optimized environment of large bridges based on multi-constraint coupling. Environmental Impact Assessment Review, 97:106914. DOI:10.1016/j.eiar.2022.106914
  5. SALAS, J.; YEPES, V. (2022). Improved delivery of social benefits through the maintenance planning of public assets. Structure and Infrastructure Engineering, DOI:10.1080/15732479.2022.2121844
  6. HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2022). Performance comparison of structural damage detection methods based on Frequency Response Function and Power Spectral Density. DYNA, 97(5):493-500. DOI:10.6036/10504
  7. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2022). Analytic Network Process-based sustainability life cycle assessment of concrete bridges in coastal regions. Sustainability, 14(17):10688. DOI:10.3390/su141710688
  8. MARTÍN, R., YEPES, V. (2022). Economic valuation of landscape in marinas: Application to a marina in Spanish Southern Mediterranean coast (Granada, Spain). Land, 11(9):1400. DOI:10.3390/land11091400
  9. GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. DOI:10.1016/j.autcon.2022.104532
  10. YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776
  11. MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Discrete swarm intelligence optimization algorithms applied to steel-concrete composite bridges. Engineering Structures, 266:114607. DOI:10.1016/j.engstruct.2022.114607
  12. MARTÍN, R., YEPES, V. (2022). Assessing the relationship between landscape and management within marinas: The managers’ perception. Land, 11(7):961. DOI:10.3390/land11070961
  13. SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2022). An Adaptive ANP & ELECTRE IS-based MCDM Model Using Quantitative VariablesMathematics, 10(12):2009. DOI:10.3390/math10122009
  14. MARTÍNEZ-MARTÍN, F.J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; ALCALÁ, J. (2022). Optimization design of RC elevated water tanks under seismic loads. Applied Sciences, 12(11):5635. DOI:10.3390/app12115635
  15. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Regional sustainable development impact through sustainable bridge optimizationStructures, 41, 1061-1076. DOI: 10.1016/j.istruc.2022.05.047
  16. VITORIO, P.C., Jr.; YEPES, V.; KRIPKA, M. (2022). Comparison of Brazilian Social Interest Housing Projects considering Sustainability. International Journal of Environmental Research and Public Health, 19(10):6213DOI:10.3390/ijerph19106213
  17. FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Integration of the structural project into the BIM paradigm: a literature review. Journal of Building Engineering, 53:104318. DOI:10.1016/j.jobe.2022.104318.
  18. MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.
  19. MARTÍNEZ FERNÁNDEZ, P.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2022). Slab track optimisation using metamodels to improve rail construction sustainabilityJournal of Construction Engineering and Management, 148(7):04022053. DOI:10.1061/(ASCE)CO.1943-7862.0002288
  20. SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Evaluating the sustainability of soil improvement techniques in foundation substructures. Journal of Cleaner Production, 351: 131463. DOI:10.1016/j.jclepro.2022.131463
  21. MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization, 65:46. DOI:10.1007/s00158-021-03154-0
  22. SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

OTROS ARTÍCULOS:

LIBROS:

CAPÍTULOS DE LIBRO:

  • YEPES, V. (2022). Gestão de praias na Espanha, in BOMBANA, B.; TURRA, A.; POLETTE, M. (Eds.): Gestão de praias: do conceito à prática. Instituto de Estudos Avançados da Universidade de São Paulo, pp. 360-381, São Paulo (Brazil). ISBN 978-65-87773-36-0. DOI 10.11606/9786587773360

CONGRESOS:

  1. FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Durability damage indicator in BIM environments. Valencia International Biennial of Research in Architecture, VIBRArch, 9-11 November 2022, Valencia, Spain.
  2. YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). Sustainable optimization of post-tensioned cast-in-place concrete slab road bridges using metamodelsCongress on Numerical Methods in Engineering CMN2022, 12-14 September 2022, Las Palmas de Gran Canaria, Spain, pp. 166-185. ISBN: 978-84-123222-9-3
  3. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2022). Group Analytic Network Process for the sustainability assessment of bridges nearshore. International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI/SUSI 2022, 11-13 July 2022, Lisbon, Portugal, pp. 143-154. DOI:10.2495/HPSU220131. ISSN 1743-3509 (online)
  4. MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Steel-concrete composite bridge optimization through threshold accepting. 11th International Conference on Bridge Maintenance, Safety and Management IABMAS 2022, 11-15 July 2022, Barcelona, Spain, pp. 2019-2026.  DOI:10.1201/9781003322641-250 ISBN: 978-1-032-35623-5
  5. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2022). ANP-based sustainability-oriented indicator for bridges in aggressive environments. 26th International Congress on Project Management and Engineering, AEIPRO, 5-8 de julio, Terrassa (Spain).
  6. NAVARRO, I.J.; VILLALBA, I.; YEPES, V. (2022). Development of social criteria for the social life cycle assessment of railway infrastructures. 26th International Congress on Project Management and Engineering, AEIPRO, 5-8 de julio, Terrassa (Spain).
  7. YEPES-BELLVER, V.J.; ALCALÁ, J.; YEPES, V. (2022). Study of solutions for the design of a footbridge based on a hierarchical analytical process. 26th International Congress on Project Management and Engineering, AEIPRO, 5-8 de julio, Terrassa (Spain), pp. 512-524.
  8. MARTÍ, J.V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Diseño de experimentos para la calibración de la heurística de optimización de muros de contrafuertes. VIII Congreso de la Asociación Española de Ingeniería Estructural ACHE. Santander, 2022, 10 pp.
  9. SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2022). Aplicación del análisis del valor MIVES a la estructura de una vivienda unifamiliar de autopromoción con criterios de sostenibilidad. VIII Congreso de la Asociación Española de Ingeniería Estructural ACHE. Santander, 2022.
  10. YEPES, V.; PELLICER, E.; MARTÍ, J.V.; KRIPKA, J. (2022). Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes de alta eficiencia social y medioambiental bajo presupuestos restrictivos. VIII Congreso de la Asociación Española de Ingeniería Estructural ACHE. Santander, 2022, 10 pp.
  11. MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Training and use of ICT assessment in postgraduate civil engineering studies. 16th annual International Technology, Education and Development Conference (INTED 2022), 7th-8th March 2022, pp. 2177-2183, Valencia, Spain. ISBN: 978-84-09-37758-9
  12. MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Assessment of structures life cycle assessment importance by civil engineering postgraduate students with a case study. 16th annual International Technology, Education and Development Conference (INTED 2022), 7th-8th March 2022, pp. 2184-2190, Valencia, Spain. ISBN: 978-84-09-37758-9
  13. YEPES, V.; BRUN-IZQUIERDO, A.; YEPES-BELLVER, L. (2022). Analysis of civil engineering postgraduate students’ perception about contemporary issues. 16th annual International Technology, Education and Development Conference (INTED 2022), 7th-8th March 2022, pp. 579-586, Valencia, Spain. ISBN: 978-84-09-37758-9
  14. YEPES, V.; YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.  (2022). Civil engineering postgraduate students’ perception on synchronous virtual versus face-to-face teaching during COVID-19. 16th annual International Technology, Education and Development Conference (INTED 2022), 7th-8th March 2022, pp. 587-595, Valencia, Spain. ISBN: 978-84-09-37758-9

VÍDEOS EDUCATIVOS:

  1. Introducción al Código Estructural y su tratamiento de la calidad.
  2. Criterios generales para la gestión de la calidad de las estructuras según el Código Estructural.
  3. Control de la conformidad de los procesos de ejecución según el Código Estructural.
  4. Gestión de los procesos constructivos en el Código Estructural.
  5. El Plan y el Programa de Control en el Código Estructural.
  6. Programación del control de ejecución en las estructuras de hormigón según el Código Estructural.

 

MEDIOS DE PRENSA:

EL CONFIDENCIAL. Este ingeniero avisa tras el viaducto desplomado en la A-6: «Hay que invertir cuatro veces más». https://www.elconfidencial.com/tecnologia/ciencia/2022-06-23/ingeniero-avisa-derrumbe-invertir_3448284/

ABC. El ardid tecnológico chino que amenaza el equilibrio internacional. https://www.abc.es/economia/creador-magico-islas-ardid-chino-ganar-poder-20220905194355-nt.html

LAS PROVINCIAS. El río de los puentes. https://servicios.lasprovincias.es/especiales/rio-puentes.html?ref=https%3A%2F%2Fwww.google.com%2F

ESPACIOS DE EDUCACIÓN SUPERIOR. Cómo incrementar el valor añadido en la educación superior eliminando burocracia. https://www.espaciosdeeducacionsuperior.es/21/10/2022/como-incrementar-el-valor-anadido-en-la-educacion-superior-eliminando-burocracia/