Colocación y curado de hormigones ligeros

Figura 1. https://www.laterlite.es/productos/hormigones-estructurales-ligeros/latermix-beton-1600/

Las reglas básicas para el manejo del hormigón, ya abordadas en artículos anteriores, también se aplican al hormigón de áridos ligeros, sin especificaciones particulares adicionales. Sin embargo, es crucial tener en cuenta su mayor tendencia a la segregación. Por lo tanto, se deben extremar las precauciones en cuanto a la máxima caída libre, el uso de trompas y el hormigonado de elementos estrechos con bandas de plástico, entre otros aspectos.

La compactación del hormigón con áridos ligeros requiere una mayor energía de vibración en comparación con la de un hormigón normal. Por lo tanto, se debe reducir la separación entre los puntos de inmersión de los vibradores al 70% de la distancia utilizada para el hormigón convencional, ya que estos hormigones se dispersan menos lateralmente debido a su menor peso. Además, el radio de acción del vibrado es menor, por lo que es necesario colocar el hormigón en más puntos y distribuirlo manualmente en elementos horizontales, lo cual resulta más fácil que con los hormigones normales. El desplazamiento lateral mediante vibración es muy difícil y, además, conlleva el riesgo de segregación. Por otra parte, dado que algunos áridos ligeros tienden a flotar, es necesario tomar precauciones adicionales, como utilizar vibradores de superficie o rodillos que ayuden a introducir los áridos en el interior de la masa.

La vibración del hormigón con áridos ligeros debe realizarse con extremo cuidado para evitar la segregación y la separación de los áridos en capas de densidad variable. La compactación del hormigón ligero se realiza casi exclusivamente mediante vibradores. El menor peso de este hormigón amortigua el efecto del vibrado, ya que las ondas mecánicas se propagan mejor en materiales de mayor densidad. Además, los áridos porosos ligeros atenúan las vibraciones, reduciendo significativamente el radio efectivo del vibrador.

Como regla general, debe duplicarse el número de puntos de vibración interna o, en caso de utilizar vibradores externos, debe colocarse el doble de estos. Los vibradores internos deben introducirse al menos tres veces por metro. Debido a la limitada penetración de la vibración en este tipo de hormigón, no es necesario utilizar equipos muy potentes. Se recomienda emplear agujas vibradoras con diámetros de entre 50 y 700 mm y frecuencias de entre 150 y 200 Hz.

En elementos horizontales, es crucial evitar la segregación del hormigón. Mientras que en el hormigón normal el exceso de vibrado provoca que el mortero y la lechada migren hacia la superficie, dejando el árido grueso en el fondo, en el hormigón de áridos ligeros ocurre lo contrario: los áridos flotan y el cemento se acumula en el fondo. Por ello, se debe controlar cuidadosamente el tiempo de vibrado y aplicar la regla de vibrar en muchos puntos durante poco tiempo. Se recomienda usar hormigones con un asentamiento de cono entre 60 y 100 mm, ya que asentamientos mayores pueden causar la flotación del árido grueso y dificultar el acabado. El asentamiento del hormigón con áridos ligeros debe ser aproximadamente la mitad del recomendado para el hormigón con áridos normales, en cualquier aplicación específica.

El uso de aire ocluido y la cantidad mínima óptima de agua son esenciales para asegurar que estos hormigones ligeros tengan la trabajabilidad necesaria para un vertido y acabado adecuados, especialmente aquellos hechos con áridos triturados, angulares e intensamente vesiculares. De este modo, se minimizan el sangrado, la segregación y la flotación no deseada de las partículas de árido más grandes y menos densas hacia la superficie.

El riesgo de flotación del árido ligero aumenta con vibraciones excesivas. Para lograr un buen acabado superficial en la cara expuesta del hormigón, es fundamental utilizar herramientas adecuadas que presionen el árido ligero e integren adecuadamente en la masa, asegurando que quede recubierto por la lechada. El uso de reglas vibrantes proporciona buenos acabados superficiales, ya que hunden los áridos gruesos y cubren la superficie con una capa de pasta, lo que mejora el acabado y facilita el pulido posterior. En cambio, si se utiliza una regla normal entre los bordes del encofrado, los áridos gruesos superficiales pueden desplazarse, lo que provoca oquedades y defectos en la superficie.

En cuanto al curado, la capacidad de absorción de agua de los áridos hace que, en general, el hormigón disponga de suficiente agua para completar el proceso de hidratación sin necesidad de aporte externo, especialmente cuando se utilizan áridos saturados. Sin embargo, si se emplean áridos secos, es necesario extremar las condiciones de curado añadiendo agua para asegurar un adecuado proceso de hidratación. Además, se debe evitar la desecación superficial, al igual que en los hormigones normales, especialmente en condiciones de baja humedad relativa y altas temperaturas. Los tiempos de curado deben ser similares a los requeridos para los hormigones normales.

El curado del hormigón de áridos ligeros debe comenzar inmediatamente después de su colocación, con mayor rigor que en el caso del hormigón normal. La mayor difusión del vapor de agua provoca un secado más rápido, por lo que es fundamental extremar el curado para evitar la formación de grietas y los problemas derivados de la pérdida de agua durante la hidratación del cemento. Es necesario proteger las superficies expuestas, cubriéndolas con tejidos húmedos, láminas de plástico, añadiendo suficiente agua o utilizando membranas de curado.

Se recomienda mantener el curado durante 7 días si la temperatura supera los 10 °C.

En elementos prefabricados, también puede utilizarse el curado al vapor, aunque se deben tomar ciertas precauciones para evitar problemas derivados de una mayor absorción de agua por parte de los áridos, lo que podría calentar en exceso la masa de hormigón.

Diversos experimentos recomiendan que la temperatura en la cámara de vapor no supere los 60-65 °C. Esto implica un tiempo mínimo de espera de 3 horas antes de iniciar el tratamiento y una velocidad de calentamiento limitada a 20 °C por hora. Con estas restricciones y un tratamiento total de 12 a 18 horas, se logran las resistencias necesarias para proceder al destensado sin causar problemas posteriores.

Debido a la menor conductividad térmica de los áridos ligeros, estos hormigones tienden a liberar menos calor de hidratación. Sin embargo, dado que los áridos ligeros tienen un módulo de elasticidad menor, la microfisuración de la matriz resultante es, por lo general, menor que la de los hormigones normales.

Os dejo un vídeo ilustrativo al respecto de la puesta en obra de un hormigón ligero elaborado con arlita.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Amasado y transporte del hormigón ligero

Figura 1. Panteón de Agripa, con uso de hormigón ligero (áridos de roca volcánica). https://es.wikipedia.org/

El hormigón de áridos ligeros, comúnmente conocido como «hormigón ligero», tiene numerosas aplicaciones en el campo del hormigón estructural, tanto en elementos armados como pretensados. Se utiliza en estructuras de edificios, principalmente en losas, cubiertas laminares, puentes y elementos prefabricados. Su desarrollo ha estado ligado a la capacidad de fabricar áridos ligeros y, actualmente, la gama de resistencias que puede alcanzar es similar a la de los hormigones ordinarios.

La primera utilización documentada de hormigón ligero data del siglo II a. C., durante la construcción del Panteón de Roma (Figura 1). Para cubrir la bóveda de 44 m de diámetro, los ingenieros romanos emplearon una mezcla de argamasa y piedra pómez para reducir su peso.

El Código Estructural define en su Anejo 8 el hormigón con áridos ligeros (HL) como aquel hormigón de estructura cerrada, cuya densidad aparente, medida en condición seca hasta peso constante, es inferior a 2000 kg/m³, pero superior a 1200 kg/m³, y que contiene una cierta proporción de árido ligero, tanto natural como artificial. Se excluyen los hormigones celulares, tanto de curado estándar como curados en autoclave. Es importante resaltar que la densidad aparente (o peso unitario) en el estado fresco es superior a la del hormigón con árido normal y depende del grado de saturación del árido ligero y del contenido de agua de amasado.

El hormigón ligero es más caro que el hormigón ordinario como material. Sin embargo, el coste total de la estructura o construcción se reduce al emplear un material que genera menos cargas, lo que optimiza el armado y las cimentaciones. Básicamente, los áridos ligeros utilizados en hormigones estructurales son artificiales.

Figura 2. Hormigón ligero blanco. https://www.trasbordo.es/bachillerato-ohs-hormigon-ligero-estructural-blanco/

Un problema habitual durante el amasado, el transporte y la colocación de este hormigón es la segregación negativa. En este fenómeno, los áridos de mayor tamaño y menor densidad tienden a elevarse dentro de la masa, es decir, a flotar. Este efecto se vuelve especialmente pronunciado con ciertos áridos ligeros cuando el hormigón se vierte y se vibra.

La mayoría de los hormigones ligeros experimentan una retracción significativa o cambios volumétricos al endurecerse, especialmente cuando hay variaciones en la humedad ambiental. Estas variaciones pueden causar problemas importantes. La retracción hidráulica depende en gran medida del tipo de árido y de la dosificación de la mezcla, mientras que los cambios de volumen por variación de la humedad dependen de la permeabilidad del hormigón y de los áridos utilizados. El curado con vapor a presión reduce estos cambios de manera muy efectiva.

Las instalaciones de fabricación son fundamentales para lograr las características deseadas del hormigón ligero, así como para asegurar la constancia y la homogeneidad de sus propiedades, garantizando así la seguridad y la fiabilidad que el usuario requiere. Debido a las particularidades del hormigón ligero y de algunos de sus componentes, es esencial disponer de acopios bien definidos que eviten la contaminación de los áridos y de las instalaciones. Además, es necesario contar con balsas u otros sistemas que permitan la inmersión o el riego de los áridos para su adecuada humectación.

Amasado

El amasado del hormigón puede realizarse de manera seca o húmeda, siendo esta última la más recomendable debido a la mejor regularidad que se obtiene en el producto final. Además, es importante destacar que se debe aumentar el tiempo de amasado en comparación con el hormigón normal para controlar la absorción del árido y lograr un producto homogéneo.

Para el amasado, se pueden utilizar amasadoras de caída libre o de salida forzada, siendo estas últimas más efectivas, ya que presentan menos pérdida de conglomerante por adherencia.

Las amasadoras de caída libre tienden a formar adherencias de la pasta de cemento y los finos en las paredes del tambor, debido a que el efecto desincrustante de los áridos ligeros contra las paredes durante el amasado es mucho menor que el de los áridos normales. Esto es especialmente relevante en las mezclas con poca agua y algo de cemento, habituales en estos hormigones para alcanzar elevadas resistencias.

La secuencia de carga en la amasadora es otro aspecto crucial que debe tenerse en cuenta, ya que puede variar en función de los siguientes factores:

  • La densidad del árido ligero utilizado.
  • El grado de saturación de ese árido
  • El uso de aditivos o su ausencia.

En función de estos factores, se debe decidir si cargar y amasar primero el árido y la arena con el agua para evitar variaciones en el contenido de agua de amasado y, por ende, en la relación agua/cemento. También es importante evitar la absorción de aditivos por el árido, lo que podría reducir su efectividad.

Una opción es añadir toda el agua al principio para evitar estos problemas; sin embargo, es preferible utilizar amasadoras forzadas de alto rendimiento.

El amasado debe seguir esta secuencia: incorporar los áridos ligeros, poner en marcha la hormigonera y añadir al menos dos tercios del agua de amasado. Se debe mezclar durante 30 segundos a 1 minuto, luego añadir el cemento y el agua restante. Amasar durante dos minutos con la carga total. Si la amasadora se ha parado, dar diez vueltas a la velocidad de mezclado antes de descargar para evitar la segregación.

Los aditivos en polvo se deben añadir mezclados con el cemento, mientras que los aditivos líquidos se incorporan con la segunda carga de agua de amasado. Durante la primera carga de agua, los áridos absorben parte de ella, por lo que los aditivos no deben mezclarse en esta etapa, ya que serían absorbidos por los áridos y perderían efectividad. Lo mismo ocurre si se añade el cemento en seco, pues la lechada absorbida por los áridos reduciría su contenido. Por lo tanto, los aditivos no deben incorporarse hasta que los áridos hayan sido debidamente humedecidos.

Si se utilizan áridos secos, es necesario mezclar el árido grueso y la arena con una cantidad de agua equivalente al 40 %-60 % del total antes de añadir el cemento, durante al menos un minuto. Se debe calcular la cantidad total de agua añadiendo al agua efectiva para la pasta de cemento la cantidad que absorben los áridos en 30 minutos. Si se emplean áridos secados en horno, puede ser necesario mantener la hormigonera parada durante un tiempo tras la primera incorporación de agua, para permitir así una absorción uniforme. De no hacerlo, la trabajabilidad del hormigón podría disminuir rápidamente durante el amasado.

En el caso de utilizar áridos húmedos, es crucial determinar previamente su contenido de humedad y restarlo de la cantidad de agua absorbida en 30 minutos. Es importante destacar que la correcta adición de agua tiene un impacto significativo tanto en la resistencia como en la trabajabilidad del hormigón.

En general, el tiempo de amasado necesario para los hormigones con áridos ligeros es mayor que para los hormigones con áridos normales. Este tiempo adicional se utiliza para humedecer adecuadamente los áridos antes de añadir el cemento y para homogeneizar la mezcla después de incorporar el aditivo y de añadir toda el agua de amasado. Este proceso prolongado evita que la rápida absorción de agua y aditivo por parte del árido ligero reduzca la trabajabilidad del hormigón y la eficacia del aditivo. En general, se aconseja no superar los dos minutos de amasado para evitar la trituración de los áridos ligeros. Aunque en la práctica, tiempos de hasta tres minutos no suelen causar daños apreciables, no se recomienda exceder el tiempo indicado, especialmente con áridos de baja dureza y resistencia.

Transporte

El transporte del hormigón ligero se realiza con los mismos medios que se utilizan para los hormigones convencionales. Sin embargo, es importante evitar sistemas que favorezcan la segregación, como los camiones estacionarios o las cintas. En la práctica, el uso de estos sistemas ya está muy restringido incluso para los hormigones normales.

El transporte del hormigón debe realizarse en camiones hormigonera, pues esto permite corregir la disminución de la docilidad que ocurre durante el transporte. Asimismo, evita la tendencia a la segregación del árido ligero en hormigones de alta docilidad mediante un amasado previo al vertido. Es importante destacar que la consistencia del hormigón puede reducirse durante el transporte más que en el caso de los hormigones normales. Además, existe una mayor tendencia a la segregación, especialmente en hormigones más fluidos y con áridos de menor densidad. Por lo tanto, se recomienda utilizar aditivos o adiciones que reduzcan el contenido de agua y mejoren la estabilidad del hormigón.

El transporte por camión es un método habitual, ya que facilita el control de las precauciones técnicas y del equipo necesario, como la humedad de los áridos, el orden de amasado y las hormigoneras de salida forzada en la planta. Los tiempos de transporte son comparables a los de los hormigones convencionales, aunque durante el traslado puede producirse una pérdida de consistencia debido a la absorción de agua por los áridos ligeros. Para prevenir estos problemas, es crucial humedecer adecuadamente los áridos antes de su uso. La cantidad exacta de agua de amasado debe determinarse mediante ensayos previos, considerando la humedad de los áridos, el tiempo de transporte y la consistencia requerida en la obra. Se deben seguir las pautas de amasado establecidas y ajustar la consistencia en la obra, si es necesario, añadiendo agua adicional o un aditivo fluidificante. Este ajuste no afectará a la resistencia, siempre que se realice de manera controlada para alcanzar el asentamiento de cono especificado y compensar así el agua absorbida en exceso por los áridos. Sin embargo, se recomienda probar el procedimiento mediante ensayos previos.

El mezclado exclusivo en camión presenta problemas para estos hormigones debido a la formación de grumos de pasta en las paredes del tambor y debe evitarse. Es preferible realizar el amasado por completo en la planta y luego transportar el hormigón a la velocidad de giro del camión. Antes de descargar, se recomienda girar el tambor diez veces a la velocidad de amasado. No es necesario imponer limitaciones estrictas al número total de revoluciones durante el transporte para evitar la trituración de los áridos, ya que, en la práctica, este fenómeno no se ha observado.

Cuando se transporta hormigón con áridos ligeros por tubería, es crucial tener en cuenta cómo la presión de bombeo afecta a la absorción de agua por los áridos ligeros. Una presión elevada aumenta la absorción de agua, mientras que una disminución de esta presión puede provocar un exceso de agua en relación con el cemento. En el primer caso, se puede perder trabajabilidad y complicar la operación de bombeo, por lo que es esencial presaturar los áridos. En el segundo caso, la resistencia del hormigón se verá comprometida y su estructura interna perderá compacidad. Por lo tanto, es fundamental ajustar la dosificación para prever y mitigar estas alteraciones, limitando adecuadamente las distancias y alturas de bombeo. Por ello, se recomienda realizar pruebas de bombeo para verificar que las características del hormigón fresco no se vean afectadas de forma notable.

Se adjunta el Anejo 8 del Código Estructural sobre recomendaciones para la utilización de hormigón con áridos ligeros.

Descargar (PDF, 932KB)

Os dejo algunos vídeos que espero que os interesen.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Fabricación y puesta en obra del hormigón autocompactante

Figura 1. Hormigón autocompactante. https://www.construex.com.bo/

El hormigón autocompactante se define por su capacidad de fluir y consolidarse bajo su propio peso sin necesidad de vibración. Este material se desarrolló en los años 80 para mejorar el llenado de moldes en zonas de difícil acceso. Entre sus ventajas destacan la rapidez de ejecución, la reducción de mano de obra y el mejor acabado superficial. Para ello, es esencial el uso de aditivos superplastificantes y agentes modificadores de viscosidad. Este tipo de hormigón presenta una menor permeabilidad y mayor durabilidad, con una dosificación típica que incluye cemento, aditivos y áridos de tamaño controlado para asegurar su fluidez y cohesión.

En general, no se requieren equipos especiales para fabricar hormigón autocompactante; se pueden utilizar las amasadoras convencionales empleadas para el hormigón compactable por vibración. Sin embargo, es fundamental controlar continuamente el contenido de humedad de los áridos y ajustar el agua de amasado en función de los resultados de este control. Además, es necesario establecer un esquema de control casi continuo durante la elaboración de las primeras mezclas, ajustando los tiempos de amasado en función de los resultados. Cabe señalar que, por lo general, los tiempos de amasado para el hormigón autocompactante deben ser ligeramente mayores que para los hormigones convencionales.

Dado que el hormigón autocompactante no requiere compactación para su colocación y es capaz de fluir dentro del encofrado, llenando naturalmente su volumen y consolidándose bajo su propio peso, los rendimientos de colocación son mucho mayores que los del hormigón convencional. En elementos horizontales, como losas de piso, forjados, soleras o pavimentos, estos rendimientos son aún mayores, lo que permite reducir los tiempos de ejecución hasta en un 20 o 25 %, dependiendo de la naturaleza de la construcción. Esta reducción en los tiempos de ejecución va acompañada de una disminución del 50 % en la mano de obra necesaria para su colocación, lo cual compensa su mayor coste respecto a otros hormigones.

Otro factor a considerar es que se necesita menos equipo para colocar el hormigón autocompactante. Ya sea vertido directamente desde el camión mezclador o a través de un tubo flexible de goma cuando se utiliza un sistema de bombeo, no es necesario emplear equipos como palas y rastrillos para colocarlo ni llanas para acabarlo. Además, al eliminar la actividad de vibrado del material, se prescinde del uso de equipos de compactación necesarios para el hormigón convencional.

Figura 2. https://www.desarrolla.es/utilizacion-de-hormigon-autocompactante/

El momento en el que deben añadirse los aditivos, especialmente los superplastificantes, debe determinarse en consulta con el proveedor. Asimismo, una vez seleccionada la dosificación, cualquier problema con la consistencia de la masa debe resolverse preferiblemente ajustando la dosificación de los aditivos, particularmente la cantidad de superplastificante, siempre y cuando la relación agua/cemento permita realizar estas correcciones sin superar los límites establecidos en los ensayos de dosificación.

La fabricación del hormigón autocompactante es similar a la del hormigón convencional vibrado, pero requiere una mayor atención a la regularidad de la dosificación. Esto se debe a que el hormigón autocompactante es más exigente en términos de uniformidad de los materiales y precisión en la dosificación del agua. Debido a su mayor cohesión, es preferible amasar el hormigón autocompactante con dos tercios de la cantidad total de agua. Una vez que se haya logrado una buena homogeneización, se debe añadir el tercio restante de agua junto con los aditivos necesarios para completar el amasado.

Al suministrar el hormigón en la obra, puede ser conveniente volver a readitivar el material para asegurar que mantiene las condiciones de autocompactabilidad necesarias para su correcta colocación. La readitivación debe realizarse bajo la supervisión del fabricante del hormigón, quien determinará el tipo y la dosis exacta de aditivo necesarios, así como verificará que el tiempo de amasado en el camión después de la readitivación sea el adecuado.

Se recomienda el uso de la técnica de hormigonado con bomba para este tipo de hormigón. Para obtener mejores resultados, el hormigón debe bombearse desde la parte más baja del encofrado. Si se opta por el hormigonado por caída libre, la altura de vertido no debe superar los 5 m y la distancia horizontal de desplazamiento debe limitarse a un máximo de 10 m para evitar la segregación del material.

Los encofrados deben ser no absorbentes, y es fundamental prestar especial atención a su diseño, ya que el hormigón autocompactante ejerce presiones mayores durante su colocación. Dado que el hormigón autocompactante es un material muy fluido, los encofrados deben ser estancos. Esto evita que la lechada se filtre por las juntas y provoque la formación de «nidos de grava» una vez desencofrado el elemento.

El curado del hormigón autocompactante es similar al del hormigón convencional y se aplican los mismos procedimientos. Es importante comenzar el curado lo antes posible para evitar la pérdida de agua superficial por evaporación, lo que podría causar retracción plástica y asentamiento, especialmente en condiciones adversas como altas temperaturas, viento y baja humedad relativa. Estos factores son aún más críticos cuando se combinan. Además, dado que el hormigón autocompactante contiene más finos (cemento y aditivos) que el hormigón convencional, el curado adquiere mayor importancia.

Se pueden emplear los mismos procedimientos para el acabado de las superficies de hormigón autocompactante en términos de textura y color que los utilizados para el hormigón convencional.

En superficies sin tratamiento adicional, el hormigón autocompactante ofrece una mayor uniformidad y, por lo tanto, un mejor acabado en comparación con el hormigón convencional. Esto se debe a que, al evitar la vibración, se elimina el principal factor que provoca la falta de homogeneidad cromática en las caras visibles del hormigón. En el hormigón convencional, esta heterogeneidad se debe a la distribución aleatoria del agua en la mezcla, lo que genera diferentes procesos de hidratación con variadas proporciones de agua y cemento, que dan lugar a variaciones en el color del cemento hidratado. No obstante, hay que tener precaución con los niveles de acabado en las superficies libres, procediendo a su nivelación y acabado superficial con útiles especiales, dado que la aplicación de reglas metálicas resulta problemática en algunas ocasiones.

Os dejo, a continuación, algunos vídeos ilustrativos.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Amasado del hormigón

Figura 1. Amasadora de hormigón. Imagen: V. Yepes

El amasado del hormigón tiene como objetivo recubrir los áridos con una capa de pasta de cemento y mezclar todos los componentes hasta obtener una masa uniforme. Este proceso se realiza en mezcladoras u hormigoneras. Es fundamental que la mezcla mantenga su uniformidad durante las operaciones de descarga, lo cual depende de la cohesión de la mezcla y del diseño de la hormigonera.

Este proceso puede llevarse a cabo utilizando amasadoras fijas o móviles, mediante uno de los siguientes procedimientos: completamente en una amasadora fija, comenzando y terminando en una amasadora fija o móvil, o iniciado en una amasadora fija y terminado en una móvil antes del transporte. Todas las amasadoras cuentan con componentes comunes, como una cuba, paletas y un cargador. El amasado se realiza según dos técnicas principales:

  • Mediante la elevación de los áridos y su caída libre, como en el caso de las hormigoneras y las mezcladoras de eje horizontal.
  • A través del empuje de los elementos con ayuda de paletas sobre el fondo horizontal de un cilindro, como en el caso del amasado forzado con mezcladoras de eje vertical.

Las hormigoneras se clasifican en tres tipos: basculantes o de eje inclinado, de eje horizontal y de eje vertical, consideradas tradicionales. Actualmente, para la producción de hormigón a gran escala se utilizan hormigoneras de doble tambor y amasadoras de ejes gemelos con paletas.

Un buen amasado es fundamental para garantizar la homogeneidad del hormigón, lo que influye directamente en la adecuada hidratación del cemento. Este proceso no solo implica la técnica de amasado, sino también factores como el tiempo de amasado y el tipo de máquina utilizada. En este contexto, numerosos parámetros influyen en un buen amasado (Tiktin, 1994):

  • Tipo de amasadora o mezcladora
  • Velocidad y duración del amasado
  • Capacidad de amasado
  • Número de amasadas por hora
  • Orden de carga de los componentes
  • Dosificación de agua mínima

La velocidad del amasado debe mantenerse por debajo de la velocidad crítica, definida como aquella en la que los materiales comienzan a centrifugarse. Si tomamos el diámetro de la cuba como parámetro, la velocidad crítica de amasado en r.p.m. se puede demostrar fácilmente con la fórmula n = 42√D. Además, el tiempo de amasado no debe ser demasiado corto, ya que los materiales no se mezclarían adecuadamente, ni demasiado largo, para evitar fenómenos de segregación, especialmente en hormigones secos o con áridos de gran tamaño.

El número de amasadas por hora depende de varios factores, como la duración del ciclo de trabajo de la instalación, los medios disponibles para la dosificación y alimentación de los componentes, y el sistema de transporte del hormigón. Generalmente, este número oscila entre 10 y 60 amasadas por hora. Como orientación pueden tomarse los siguientes datos de la Tabla 1.

Tabla 1. Número de amasadas/hora para distintos tipos de hormigoneras

TIPOS N.º amasadas/hora
Hormigoneras de cuba basculante, sin skip o cargador 10/15
Hormigoneras de cuba basculante con skip 15/20
Hormigoneras de tambor reversible con skip 20/30
Mezcladora con skip 30/40
Mezcladora sin skip, abastecida por torre 45/60

Es importante distinguir entre la capacidad de hormigón fresco y la capacidad necesaria de áridos, cuya relación es aproximadamente 0,70. Esta diferencia se debe a que, al introducir los materiales en el tambor en rotación, se llenan los huecos y se reduce el volumen.

La relación entre el volumen de los componentes antes del amasado y el volumen del hormigón fresco es aproximadamente 1,50. Los fabricantes de maquinaria suelen indicar dos valores: por ejemplo, una amasadora 750/500 puede recibir 750 litros de mezcla de áridos, cemento y agua, y suministrar 500 litros de hormigón fresco.

Además, es importante considerar que el hormigón colocado en estructura es un hormigón compacto que representa aproximadamente el 90 % del volumen del hormigón fresco.

Las hormigoneras tradicionales se caracterizan por tres capacidades principales: la capacidad total de su cuba (Vt), la capacidad máxima de carga de los componentes, excluyendo el agua (Vc), y la capacidad máxima de producción de hormigón fresco (Vf). Las relaciones entre Vc y Vt, así como entre Vf y Vt, suelen ser las indicadas en la Tabla 2.

Tabla 2. Relación de volúmenes en función del tipo de hormigonera (Fernández-Cánovas, 2007)

Relación de volúmenes Tipo de hormigonera
Eje basculante Eje horizontal Eje vertical
Vc / Vt 0,7 0,4 0,6 a 0,7
Vf / Vt 0,5 0,3 0,4 a 0,5

El orden de llenado de las hormigoneras varía en función de su tipo, aunque en las instalaciones automatizadas dicha carga es prácticamente simultánea. Siempre es recomendable comenzar introduciendo una parte del agua de amasado, seguida inmediatamente por los componentes sólidos, si fuera posible de manera simultánea con el resto del agua. Cuando se utilizan aditivos plastificantes o superplastificantes, estos deben añadirse al final de la carga, después de que la hormigonera haya girado varias veces para iniciar el amasado. En algunas mezclas secas, es beneficioso humedecer primero el árido grueso con una parte del agua y luego añadir el resto de los componentes.

Si las hormigoneras se alimentan de silos y se quiere mejorar la resistencia a flexotracción del hormigón, es conveniente introducir primero los áridos gruesos, seguidos de una parte de cemento y de agua. A continuación, se hace girar esta mezcla unas cuantas veces para que la pasta envuelva los áridos y, después, se añade la arena y el resto de cemento y agua. De esta forma, se consigue mejorar mucho la adherencia entre los componentes.

Es imprescindible respetar los tiempos mínimos de amasado para evitar la falta de homogeneidad en las masas parcialmente mezcladas. Estos tiempos dependen en gran medida de la velocidad de giro de las hormigoneras, es decir, de la raíz cuadrada del diámetro de la cuba. Se ha observado que, en hormigoneras tradicionales, tiempos de amasado inferiores a 90 segundos producen hormigones con una notable falta de homogeneidad, evidenciada por los coeficientes de variación obtenidos en ensayos de compresión. Por encima de un minuto y medio, los hormigones son uniformes y no muestran mejoras significativas. Es durante el primer minuto y cuarto cuando los componentes del hormigón se mezclan adecuadamente.

Figura 2. Influencia del tiempo de amasado en la homogeneidad del hormigón (Fernández-Cánovas, 2007)

El tiempo de amasado varía en función de la hormigonera utilizada, su volumen, la composición granulométrica de los áridos y la cantidad de agua en la mezcla. Se recomienda un tiempo mínimo de amasado de un minuto y cuarto, más quince segundos adicionales por cada fracción de 400 litros de exceso sobre los 750 litros de capacidad máxima de hormigón fresco de la hormigonera. Con experiencia, es posible determinar visualmente si la masa de hormigón está suficientemente amasada. Los hormigones con áridos gruesos se mezclan más rápido que aquellos con áridos finos, y los hormigones muy secos requieren más tiempo de amasado que los más fluidos. La dosificación mínima de agua determina el tipo de máquina que se debe utilizar. Si se busca alcanzar relaciones agua/cemento inferiores a 0,60, no se pueden utilizar hormigoneras y es necesario recurrir a mezcladoras.

A continuación, os dejo lo expresado en el artículo 51.2.4 sobre equipos de amasado del Código Estructural.

51.2.4 Equipos de amasado.

Los equipos pueden estar constituidos por amasadoras fijas o móviles capaces de mezclar los componentes del hormigón de modo que se obtenga una mezcla homogénea y completamente amasada, capaz de satisfacer los dos requisitos del grupo A y al menos dos de los del grupo B, de la tabla 51.2.4.

Estos equipos se examinarán con la frecuencia necesaria para detectar la presencia de residuos de hormigón o mortero endurecido, así como desperfectos o desgastes en las paletas o en su superficie interior, procediéndose, a comprobar anualmente el cumplimiento de los requisitos de la tabla 51.2.4, salvo que exista una reglamentación específica que marque una frecuencia mayor.

Las amasadoras, tanto fijas como móviles, deberán ostentar, en un lugar destacado, una placa metálica en la que se especifique:
— para las fijas, la velocidad de amasado y la capacidad máxima del tambor, en términos de volumen de hormigón amasado;
— para las móviles, el volumen total del tambor, su capacidad máxima en términos de volumen de hormigón amasado, y las velocidades máxima y mínima de rotación.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Puesta en obra del hormigón en tiempo frío

Figura 1. Hormigonado en tiempo frío. https://www.cotecno.cl/precauciones-para-el-hormigonado-en-climas-frios/

El hormigón no adquiere la resistencia necesaria si el fraguado y el primer endurecimiento se producen a temperaturas muy bajas. Esto se debe principalmente a la acción expansiva del agua intersticial. En el mejor de los casos, se observa una disminución en la velocidad de hidratación de los componentes activos del cemento, como se explicó en un artículo anterior sobre los efectos del frío en el fraguado del hormigón.

En condiciones de frío, el hormigón debe colocarse en los encofrados y compactarse de manera rápida y sin interrupciones. Antes de verter el hormigón, se debe retirar toda la nieve, el hielo, la escarcha y el agua derretida del equipo, el encofrado y el terreno donde se coloque. Para ello, se pueden utilizar chorros de aire caliente. A menos que el área de trabajo esté cubierta, se debe limpiar inmediatamente antes de verter el hormigón.

La temperatura de las superficies que estén en contacto con el hormigón fresco (equipos de colocación, encofrados, terreno) no debe ser inferior a 3 °C ni superar la temperatura del hormigón en más de 5 °C. La superficie del terreno de cimentación puede descongelarse cubriéndola con material aislante durante unos días, pero en la mayoría de los casos es necesario aplicar calor externo con aire seco, ya que el vapor puede hacer que el agua se condense y posteriormente se congele. Se recomienda el uso de encofrados de madera. Los equipos de colocación y los encofrados metálicos pueden estar dotados de aislamiento térmico (más espesor en las esquinas) o pueden precalentarse.

La temperatura de las armaduras también debe ser ligeramente superior a 0 °C cuando se vierte el hormigón. Colocar el hormigón en zonas con alta concentración de armaduras a temperaturas muy bajas puede causar la congelación local del hormigón alrededor de las barras, lo que puede disminuir la adherencia si esta persiste después de la vibración. Si se calientan las armaduras, este proceso no debería afectar a las propiedades del acero.

Se recomienda evitar el uso de canaletas y cintas transportadoras, a menos que estén debidamente aisladas. Estos elementos tienden a perder una gran cantidad de calor y pueden formar hielo durante los intervalos de colocación.

En general, se suspenderá el hormigonado o se adoptarán medidas especiales si se prevé que la temperatura pueda descender por debajo de 0 °C en las próximas 48 horas. Dado que la temperatura del hormigón durante el fraguado depende del tipo de cemento y del espesor de las partes o piezas a hormigonar, estas medidas se implementarán si, a las nueve de la mañana (hora solar), se registran temperaturas inferiores a las siguientes, de acuerdo con los tipos de obras:

Para estructuras de hormigón con cemento Portland:

  • 4 °C para estructuras ordinarias sin más condiciones.
  • 1 °C para estructuras de gran masa o con protección aislante.

Para estructuras de hormigón con cemento siderúrgico o puzolánico:

  • 9 °C para estructuras ordinarias sin más condiciones.
  • 6 °C para estructuras de gran masa o con protección aislante.

No obstante, si se produce una helada justo después de verter el hormigón y antes de que fragüe, el problema es reversible. En este caso, el fraguado no ha comenzado porque el agua se ha congelado y, una vez que el hielo se derrita, el hormigón podrá fraguar normalmente, previa nueva vibración. Por ejemplo, tomando valores aproximados, a una temperatura de 5 °C, el tiempo de fraguado es de unas 14 horas, mientras que a 20 °C se reduce a 6 horas y a 40 °C a apenas 1,5 horas.

Es necesario asegurarse de que el hormigón no se coloque en los encofrados a un ritmo superior al que permite su correcta compactación y acabado final. En la puesta en obra del hormigón en forjados y elementos superficiales, es fundamental realizar la colocación en frentes reducidos.

Una alternativa para superar los problemas derivados del hormigonado en tiempo frío consiste en calentar el hormigón antes de su colocación o las armaduras o moldes que lo recibirán, así como en usar protecciones aislantes suficientes para evitar una pérdida excesiva de calor. También se pueden calentar los áridos, el agua o la mezcla en la hormigonera. Si se calienta el agua, algo que resulta especialmente útil, su temperatura no debe superar los 70 °C para evitar un fraguado rápido. Este calentamiento suele requerir un mayor tiempo de amasado para evitar la formación de grumos. Además, se recomienda utilizar bajas relaciones agua/cemento y cementos de alto calor de hidratación. Si el encofrado actúa como aislante, como en el caso de la madera, se puede retrasar el proceso de desencofrado para retener el calor durante el mayor tiempo posible.

El problema descrito se agrava si, además de las bajas temperaturas, se presentan fuertes vientos, lluvias, humedad, u otras condiciones climáticas adversas.

El Código Estructural establece las condiciones para hormigonar en tiempo frío en su artículo 52.3.1:

“La temperatura de la masa de hormigón, en el momento de verterla en el molde o encofrado, no será inferior a 5 °C.

Se prohíbe verter el hormigón sobre elementos (armaduras, moldes, etc.) cuya temperatura sea inferior a cero grados centígrados.

En general, se suspenderá el hormigonado siempre que se prevea que, dentro de las cuarenta y ocho horas siguientes, pueda descender la temperatura ambiente por debajo de los cero grados centígrados.

En los casos en que, por absoluta necesidad, se hormigone en tiempo de heladas, se adoptarán las medidas necesarias para garantizar que, durante el fraguado y primer endurecimiento de hormigón, no se producirán deterioros locales en los elementos correspondientes, ni mermas permanentes apreciables de las características resistentes del material. En el caso de que se produzca algún tipo de daño, deberán realizarse los ensayos de información necesarios para estimar la resistencia realmente alcanzada, adoptándose, en su caso, las medidas oportunas.

El empleo de aditivos aceleradores de fraguado o aceleradores de endurecimiento o, en general, de cualquier producto anticongelante específico para el hormigón, requerirá una autorización expresa, en cada caso, de la dirección facultativa. Nunca podrán utilizarse productos susceptibles de atacar a las armaduras, en especial los que contienen ion cloro”.

Los comentarios a este artículo dicen lo siguiente:

“Se entiende por tiempo frío el periodo durante el cual existe, durante más de tres días, las siguientes condiciones:

      • la temperatura media diaria del aire es inferior a 5 °C,
      • la temperatura del aire no supera los 10 °C durante más de la mitad del día.

La hidratación de la pasta de cemento se retrasa con las bajas temperaturas. Además, la helada puede dañar de manera permanente al hormigón poco endurecido si el agua contenida en los poros se hiela y rompe el material. En consecuencia, deben adoptarse las medidas necesarias para asegurar que la velocidad de endurecimiento es la adecuada y que no se producen daños por helada.

Cuando existe riesgo de acción del hielo o de helada prolongada, el hormigón fresco debe protegerse mediante dispositivos de cobertura o aislamiento, o mediante cerramientos para el calentamiento del aire que rodee al elemento estructural recién hormigonado, en cuyo caso deberán adoptarse medidas para mantener la humedad adecuada”.

Os dejo un vídeo al respecto del hormigonado al tiempo frío.

También comparto un artículo que, espero, sea de vuestro interés.

Descargar (PDF, 685KB)

Referencias:

AA. VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.

ACI COMMITTEE 306. Cold wheather concreting (ACI 306R-16). American Concrete Institute.

AENOR (2022). UNE 83151-1 IN Hormigonado en condiciones climáticas especiales. Parte 1: Hormigonado en tiempo frío. Madrid, 27 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Recomendaciones para el vertido del hormigón

Figura 1. Vertido del hormigón. https://constructivo.com/noticia/siga-estos-pasos-para-llevar-a-cabo-un-correcto-proceso-de-vibrado-en-la-fundicion-de-concreto-1582900765

Una vez que el hormigón se encuentra en el lugar de colocación, se procede a su puesta en obra, la cual se realizará de acuerdo con el tipo de hormigón y las condiciones del espacio y los medios de colocación disponibles. El método más sencillo de colocación consiste en verter el hormigón directamente desde el dispositivo de transporte al encofrado, molde o lugar designado. En ocasiones, el acceso del transporte al punto de colocación puede ser difícil; en estos casos, el bombeo soluciona el problema y, además, proporciona un flujo continuo de hormigón que aumenta la eficiencia del trabajo.

Antes del vertido, es necesario prever la ubicación de las juntas de hormigonado. Asimismo, es fundamental verificar si los encofrados podrán resistir las presiones generadas por el hormigón fresco, considerando la consistencia del hormigón, el tipo de cemento utilizado, la altura del hormigonado, la temperatura ambiente, entre otros factores. La velocidad de colocación debe ser lo suficientemente alta para evitar la formación de juntas frías, pero no tan alta que cause una segregación excesiva o genere altas presiones sobre los encofrados. Las juntas frías se producen cuando una capa de hormigón se ha fraguado antes de que se vierta otra capa sobre ella, lo que da como resultado una unión débil entre ambas capas.

El vertido puede considerarse como la operación final del transporte del hormigón antes de su colocación definitiva. Al llegar a la obra, el punto de vertido puede encontrarse al mismo nivel del terreno o a mayor altura. En ambos casos, lo más conveniente es que la descarga se realice directamente desde el medio de transporte utilizado, como camiones hormigonera, camiones abiertos o autobombas. Sin embargo, en ocasiones es necesario verter el hormigón en recipientes auxiliares para luego acercarlo y dirigirlo mediante tolvas o canaletas hasta el molde o encofrado. En cualquier caso, como norma general, debe procurarse que el punto de descarga esté lo más cercano posible al de colocación, evitando operaciones innecesarias que puedan aumentar la segregación del hormigón fresco.

El ritmo de vertido debe ser uniforme y compatible con el equipo y los trabajadores presentes en el proceso de colocación y acabado. Cuando exista la posibilidad de una interrupción en el vertido del hormigón, se debe considerar el aprovisionamiento de un equipo de apoyo.

Para garantizar la calidad y uniformidad del hormigón durante el vertido, es fundamental evitar su segregación. Además, se debe tener cuidado para no desplazar las armaduras, las vainas del pretensado o el atado de los encofrados, para lo cual se deben adoptar las medidas oportunas. El hormigón se debe verter verticalmente, lo más cerca posible de su posición definitiva, sin obstáculos que tamicen el flujo y evitando desplazamientos laterales una vez colocado. Además, nunca se deberán verter masas que acusen el principio de fraguado, la segregación o la desecación.

A continuación, se ofrecen recomendaciones para las operaciones de vertido.

  • El material no debe verterse desde una gran altura (como máximo 2 m de caída libre). Se debe procurar que la dirección de caída sea vertical, evitando desplazamientos horizontales de la masa. Durante el vertido, el hormigón debe dirigirse para impedir que choque libremente contra el encofrado o las armaduras. Para lograr esto, se utilizarán canaletas que permitan encauzar el hormigón como si fuera un embudo. Por ello, la carga de cubas, carretillas y tolvas no debe hacerse directamente desde la amasadora.
  • El hormigón se debe colocar en capas horizontales de espesor inferior al que permita una buena compactación de la masa (generalmente entre 20 y 70 cm), facilitando así el «cosido» de las capas. Las distintas capas se consolidarán sucesivamente, uniendo cada capa a la anterior con el medio de compactación elegido (normalmente un vibrador) y sin que transcurra mucho tiempo entre ellas para evitar que la masa se seque o empiece a fraguar, a menos que esté prevista una junta de hormigonado. Por ello, el espesor de la capa debe ser algo inferior a la longitud del elemento vibrador, de manera que este atraviese todo el espesor de la capa y llegue a introducirse lo suficiente en la siguiente.
  • No se debe arrojar el hormigón con pala ni a gran distancia, ni distribuirlo con rastrillos o vibradores que provoquen su disgregación. No se debe hacer avanzar más de un metro de hormigón dentro de los encofrados.
  • En el hormigonado de superficies inclinadas, se deben tener en cuenta los siguientes aspectos:
    • El hormigón fresco tiende a correr o deslizar hacia abajo, especialmente bajo el efecto del vibrado.
    • Se produce segregación por la distinta velocidad de los áridos en la superficie inclinada.
    • Es preferible hormigonar de abajo hacia arriba, colocando una superficie que contenga el hormigón y lo encauce a modo de embudo. Si se utiliza vibrado, su acción debe ser lo más breve posible.
    • Para minimizar los efectos del vibrado, también es recomendable hormigonar de abajo hacia arriba, en secciones cuyo volumen y distancia de la parte compactada sean tales que el hormigón ocupe su lugar después de una breve acción de vibrado.
    • Hay que ajustar la velocidad de vertido al espesor de las capas, a los períodos necesarios de vibración y a las juntas de hormigonado previstas.

A continuación, se recogen algunas figuras que permiten conocer algunas de las malas prácticas en la colocación incorrecta del hormigón.

Figura 2. Cargas y descargas en vertical y centradas

 

Figura 3. Las compuertas inclinadas de las tolvas son en realidad canaletas con un final sin control que origina segregación al llenar las carretillas

 

Figura 4. El empleo de una cacera elimina los riesgos de segregación al vaciar una hormigonera

 

Figura 5. Falta de control al final de la cinta. La pantalla simplemente cambia la dirección de la segregación

El hormigón no debe encontrar restricciones antes de colocarlo en el encofrado. Si se vierte la masa en la parte superior mediante una tubería flexible de caída o un tubo central, se evita la segregación y los encofrados y las armaduras se mantienen limpios hasta que el hormigón los cubre (Figura 6).

Figura 6. Hormigonado en parte superior con un tubo central.

Cuando se utiliza una lámina de plástico que se enrolla a medida que se vierte el hormigón, se logra un efecto similar (Figura 7). No se debe permitir que el faldón se sumerja más de 500 mm en el hormigón para facilitar su extracción.

Figura 7. Hormigonado en parte superior con láminas de plástico.

No se debe permitir que el hormigón choque y rebote contra el encofrado y las armaduras, pues origina la segregación y la formación de nidos de grava en el fondo (Figura 8).

Figura 8. Vertido incorrecto del hormigón

Como se puede comprobar en la Figura 9, en las losas es conveniente que el avance del frente de hormigonado abarque todo el espesor. En estas superficies horizontales, la colocación del hormigón debe realizarse contra la masa ya colocada. El vertido correcto se produce cuando el operario coloca el hormigón retrocediendo, aunque resulta algo incómodo. De esta forma, atraviesa solo una capa, amortigua la capa viscosa y se produce cierta compactación.

Figura 9. Recomendación de vertido contra el hormigón

En la Figura 10 se puede observar que, en caso de detectarse segregación, es posible añadir el árido grueso al hormigón y mezclarlo con una pala. Es importante no añadir mortero ni hormigón al árido grueso.

Figura 10. Forma correcta de añadir árido grueso al hormigón

En artículos anteriores hemos explicado con cierto detalle la puesta en obra del hormigón para casos especiales como el hormigonado en tiempo caluroso, hormigonado en condiciones de viento, hormigonado de pilares y muros, hormigonado mediante bombeo, grandes vertidos de hormigón, hormigonado bajo el agua, o el hormigonado en tiempo frío, entre otros. Dejo los enlaces para los lectores interesados.

El Artículo 52.1 del Código Estructural establece las condiciones de vertido y colocación del hormigón.

“En ningún caso se tolerará la colocación en obra de masas que acusen un principio de fraguado.

En el vertido y colocación de las masas, incluso cuando estas operaciones se realicen de un modo continuo mediante conducciones apropiadas, se adoptarán las debidas precauciones para evitar la disgregación de la mezcla.

No se colocarán en obra capas o tongadas de hormigón cuyo espesor sea superior al que permita una compactación completa de la masa.

No se efectuará el hormigonado en tanto no se obtenga la conformidad de la dirección facultativa, una vez que se hayan revisado las armaduras ya colocadas en su posición definitiva.

El hormigonado de cada elemento se realizará de acuerdo con un plan previamente establecido en el que deberán tenerse en cuenta las deformaciones previsibles de encofrados y cimbras”.

Los comentarios de este artículo son los siguientes:

“El vertido en grandes montones y su posterior distribución por medio de vibradores noes, en absoluto, recomendable, ya que produce una notable segregación en la masa del hormigón.

Se tendrá especial cuidado en evitar el desplazamiento de armaduras, conductos de pretensado, anclajes y encofrados, así como el producir daños en la superficie de estos últimos, especialmente cuando se permita la caída libre del hormigón.

El vertido del hormigón en caída libre, si no se realiza desde pequeña altura (inferior a dos metros), produce inevitablemente la disgregación de la masa, y puede incluso dañar la superficie de los encofrados o desplazar éstos y las armaduras o conductos de pretensado, debiéndose adoptar las medidas oportunas para evitarlo.

El empleo de aditivos superplastificantes y el elevado contenido de finos en hormiones de alta resistencia, los hace muy fluidos, permitiendo unas tongadas de mayor espesor que en un hormigón convencional, si bien resultas necesaria una mayor energía de compactación”.

Os dejo una Guía de Aplicación de la puesta en obra del hormigón de consistencia fluida en edificación según el Código Estructural.

Descargar (PDF, 2.98MB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigoneras con inversión de marcha y eje horizontal

Figura 1. Hormigonera de eje horizontal e inversión de marcha. https://www.linosella.com/es/producto/modelo-hopper-s-1500-22

Las hormigoneras de eje horizontal presentan ventajas significativas en comparación con las hormigoneras de tambor basculante. Su capacidad puede ser considerablemente mayor y el hormigón que producen suele ser de mejor calidad. Estas máquinas pueden ser fijas o móviles; las móviles se montan sobre un chasis de dos ejes con ruedas neumáticas.

Estas hormigoneras cuentan con una cuba de gran diámetro, de forma cilindro-cónica y con eje horizontal, que posee dos bocas opuestas. Una de las bocas es para la carga, que recibe el material cuando la cuba gira en un sentido, lo que facilita el amasado de la mezcla. La otra, para la descarga, a diferencia de las hormigoneras de tambor basculante, que solo tienen una boca.

En su interior, la cuba incluye una cámara central de trabajo equipada con de paletas helicoidales inclinadas y fijas que aseguran un buen mezclado. La salida del hormigón generalmente se realiza mediante una inversión rápida del giro de la máquina. Estas máquinas tienen una capacidad de hasta 5 m³, con una producción de 250 m³/h. El tiempo mínimo de amasado, en segundos, para una hormigonera de diámetro D, en metros, se calcula con la siguiente fórmula: t = 90 √D. La velocidad de giro de la cuba, en r. p. m., se determina aproximadamente mediante la fórmula N = 20 / √D.

Las hormigoneras de eje horizontal suelen tener una velocidad de descarga lenta, lo que, en ocasiones, puede provocar la segregación del hormigón. Este problema es especialmente frecuente cuando se utilizan áridos grandes, pues el mortero mezclado con los áridos de tamaño intermedio tiende a salir primero, dejando los áridos gruesos para el final. Este problema también puede presentarse en las hormigoneras de eje basculante.

La carga de los componentes de la mezcla se realiza generalmente de forma mecánica, utilizando un skip. Este dispositivo recibe los materiales y los sube por unas guías inclinadas hasta encajar en la tolva de descarga. A continuación, se abre una compuerta ubicada en el fondo de la cuba y los materiales se introducen en la hormigonera.

El tambor está montado sobre dos aros de rodadura que se apoyan en cuatro rodillos colocados en el bastidor que lo sustenta. El sentido de giro en un sentido u otro se logra mediante la acción de un piñón de ataque montado en un grupo motorreductor que actúa sobre una corona dentada alrededor de la cuba. Los sistemas de arrastre incluyen:

  • Un conjunto de corona atornillada al tambor y un piñón de ataque acoplado al motor.
  • Un sistema de fricción en el que unos rodillos con bandaje de goma arrastran el tambor, siendo estos rodillos impulsados por el motor. Estas ruedas están montadas sobre dos ejes y reciben el movimiento de un motorreductor a través de ruedas dentadas y cadenas.

El equipo de la hormigonera se completa con un armazón metálico montado sobre un eje, una tolva de fondo abatible para el llenado, enganchada al cable de un torno eléctrico, que se desplaza a lo largo de unos carriles inclinados (skip). Todos los movimientos se controlan de forma remota mediante pulsadores.

El amasado se produce mediante el giro del tambor, complementado por la acción de las paletas que impulsan el material hacia el centro de la cuba. Un inconveniente frecuente de estas hormigoneras, incluidas las de eje inclinado, es que durante la primera amasada, parte del mortero del hormigón queda adherido a las paredes. Esto hace que la primera mezcla sea de menor calidad que las siguientes y deba desecharse. Para evitar este problema, se debe realizar una pequeña amasada de mortero antes de iniciar la producción del hormigón. Parte de este mortero recubrirá las paredes de la hormigonera, eliminando el exceso y mejorando la calidad de las mezclas siguientes.

La descarga puede realizarse de varias formas, dependiendo del modelo:

  • Cambiando el sentido de giro del tambor. Al invertir el sentido de la marcha, la mezcla llega a los álabes del cono y se evacúa al exterior. Antes de invertir el sentido de giro del motor eléctrico, es necesario detenerlo. El cambio de polaridad permite la inversión. Cuando se utiliza un motor diésel, se requiere un inversor-reductor para cambiar el sentido de giro del tambor.
  • A través de una canaleta que se introduce por la boca de descarga dentro de la cuba o cambiando el ángulo de las paletas, aunque estos dos métodos están en desuso.

Os dejo un vídeo explicativo que espero os sea de interés.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigonado en tiempo caluroso

Figura 1. https://www.carboncure.com/es/esquina-del-concreto/las-mejores-practicas-para-trabajar-con-el-concreto-en-climas-calidos/

Las altas temperaturas del hormigón y del ambiente, la exposición solar, el viento fuerte y la baja humedad del aire son factores que, individualmente o combinados, provocan una rápida evaporación. Este fenómeno aumenta considerablemente la probabilidad de que la superficie del hormigón se agriete por retracción plástica. En climas más húmedos, este riesgo se reduce y la alta temperatura del hormigón deja de ser un factor tan determinante para la formación de este tipo de fisuras.

El éxito del hormigonado en climas cálidos depende de una planificación minuciosa tanto de los procesos internos de la planta como de los procedimientos externos en el lugar de trabajo. Con suficiente antelación, se deben planificar todas las operaciones para mitigar los efectos adversos del calor y evitar la improvisación. Es crucial que el personal de obra sea consciente de los daños que el calor puede causar al hormigón. Se recomienda contar con datos climáticos registrados, como temperaturas, insolación, vientos y evaporación, para estimar las condiciones a las que estará expuesto el hormigón y adoptar las medidas oportunas, tanto para el hormigón fresco como para el sistema de colocación en obra. Dado que el hormigón se endurece más rápidamente en condiciones calurosas, las operaciones que deben realizarse con el hormigón aún fresco o poco endurecido, como el corte y preparación de juntas o la aplicación de retardadores superficiales, son más críticas. Por lo tanto, estas operaciones deben estar cuidadosamente previstas y planificadas.

En condiciones de calor, es fundamental asegurarse de que el hormigón no se coloque en los encofrados a un ritmo superior al que permite su correcta compactación y acabado final. Durante el vertido en forjados y elementos superficiales, es necesario trabajar en frentes reducidos. Los encofrados metálicos y las armaduras expuestas a la radiación solar pueden alcanzar temperaturas elevadas, lo que provoca un rápido endurecimiento del hormigón antes de su correcta compactación. Por esta razón, antes del vertido, se deben humedecer los encofrados sin permitir que el agua se condense sobre las armaduras o que se forme un charco en la parte inferior. En caso de hormigonar directamente sobre el terreno, es crucial que la explanación esté húmeda, pero sin formar láminas de agua o charcos. Se recomienda utilizar pulverizadores que generen una fina nube de agua para enfriar el aire circundante, los encofrados y las armaduras, y así evitar la rápida evaporación en la superficie del hormigón. Sin embargo, debe evitarse una pulverización excesiva que pueda lavar la superficie del hormigón fresco.

Sin la pulverización adecuada antes y después de las operaciones de acabado, especialmente cuando la humedad es baja, el agua de la superficie puede evaporarse más rápido que la difusión del agua desde el interior del hormigón hacia la superficie que se está secando. Esto genera tensiones crecientes en la superficie que frecuentemente resultan en fisuras por retracción plástica. Cuando estas fisuras aparecen antes de que el fraguado esté completo, pueden cerrarse mediante el uso de una llana para alisar la superficie a ambos lados de la fisura.

Para evitar que el hormigón eleve su temperatura antes de colocarlo en el encofrado, es fundamental protegerlo del sol. Las unidades de transporte, como cintas, bombas y tuberías de bombeo, deben mantenerse a la sombra y pintadas de blanco. Las tuberías pueden enfriarse cubriéndolas con arpilleras húmedas y regándolas con mangueras u otros medios auxiliares.

Como medidas adicionales, se puede utilizar agua fría e incluso hielo picado en el amasado del hormigón. El uso de agua fría es muy eficaz, ya que su calor específico es cinco veces mayor que el del cemento y los áridos, y su temperatura es más fácil de controlar. Sin embargo, debido a su baja proporción en la masa del hormigón, su influencia no es muy significativa. Por otro lado, el uso de hielo picado es mucho más ventajoso, ya que aprovecha el calor latente de fusión del hielo (334 kJ/kg). El hielo se utiliza para sustituir parte del agua en el amasado.

Para garantizar una colocación rápida del hormigón, es importante contar con equipos de gran capacidad y en perfecto estado. Si se utiliza una grúa con cubas, estas deben tener una boca ancha y paredes muy inclinadas para facilitar una descarga rápida y completa del contenido. Es crucial establecer una comunicación efectiva entre el personal que carga las cubas y el que coloca el hormigón, para evitar que este permanezca en las cubas sin colocarse. En caso de utilizar bombas, estas deben estar adecuadamente dimensionadas para bombear el hormigón de la clase especificada a lo largo de toda la línea con la velocidad requerida.

La compactación del hormigón también debe realizarse lo más rápidamente posible. Para lograrlo, es necesario contar con un número adecuado de equipos de compactación y suficiente personal. Además, se deben tener agujas vibradoras de reserva y generadores de emergencia para prevenir problemas por cortes eléctricos. Puede ser conveniente colocar el hormigón en capas más delgadas, de manera que la capa inferior todavía responda a la vibración cuando se coloque la siguiente capa.

Las operaciones de acabado deben comenzar tan pronto como el hormigón esté listo, sin ningún retraso. Las fisuras producidas por la retracción plástica son difíciles de reparar, ya que extender pasta sobre ellas no funciona bien y tienden a reaparecer. Una posible solución es revibrar el hormigón antes de que alcance su fraguado final, aunque esta técnica no es recomendable en condiciones de calor porque puede dañar el hormigón si ya ha comenzado a endurecer. Otra opción es golpear la superficie con una llana a ambos lados de la fisura. Después, se debe volver a fratasar el área afectada para nivelar el acabado y protegerla de inmediato para evitar la evaporación.

En la Figura 2, cuyos datos han sido tomados de la norma ACI 305, se muestran las temperaturas del hormigón que pueden ser críticas para la fisuración plástica en función de diferentes niveles de humedad relativa del aire ambiente. No obstante, se remite al lector al nomograma de Menzel para una mejor aproximación a este efecto.

Figura 2. Temperaturas del hormigón potencialmente críticas para la retracción plástica, para diversas humedades relativas.

En la Figura 3 se resumen las precauciones que deberían adoptarse cuando se hormigona en tiempo caluroso.

Figura 3. Precauciones a tomar cuando se hormigona en tiempo caluroso. https://hormigonaldia.ich.cl/recomendaciones-tecnicas/hormigonado-en-tiempo-caluroso/

El Código Estructural, en su artículo 52.3.2, establece las condiciones de hormigonado en tiempo caluroso.

“Cuando el hormigonado se efectúe en tiempo caluroso, se adoptarán las medidas oportunas para evitar la evaporación del agua de amasado, en particular durante el transporte del hormigón y para reducir la temperatura de la masa. Estas medidas deberán acentuarse para hormigones de resistencias altas.

Para ello, los materiales constituyentes del hormigón y los encofrados o moldes destinados a recibirlo deberán estar protegidos del soleamiento.

Una vez efectuada la colocación del hormigón se protegerá este del sol y especialmente del viento, para evitar que se deseque.

Si la temperatura ambiente es superior a 40 °C o hay un viento excesivo, se suspenderá el hormigonado, salvo que, previa autorización expresa de la dirección facultativa, se adopten medidas especiales”.

Los comentarios a este artículo dicen lo siguiente:

“Del contenido de este artículo se desprende que debe entenderse por tiempo caluroso, aquel en que se produzca cualquier combinación de altas temperaturas, baja humedad relativa y alta velocidad del viento, que tiendan a empeorar la calidad del hormigón o que puedan conferir propiedades no deseadas.

Las propiedades del hormigón pueden verse influidas de manera desfavorable en tiempo caluroso. Las temperaturas elevadas del hormigón fresco aceleran el fraguado, aumentan la velocidad de hidratación y la exigencia de agua, y conducen a una resistencia final más baja. Además, se dificultan las condiciones de puesta en obra y aumenta la aparición de fisuras de retracción plástica.

En consecuencia, debe tratarse de asegurar que la temperatura del hormigón en el momento del vertido sea inferior a 35ºC en el caso de estructuras normales, y menor que 15ºC en el caso de grandes masas de hormigón.

Se recomienda tomar medidas especiales para evitar retracciones plásticas cuando exista peligro de evaporaciones superficiales superiores a 1 kg/m2/h, lo que puede producirse cuando concurren circunstancias meteorológicas indicadas en la tabla 52.3.2.”

Tabla 52.3.2 Condiciones atmosféricas para riesgo de retracción plástica

Temperatura atmosférica (ºC)

Velocidad del viento (km/h)

Humedad relativa

40 ºC

10

≤ 35 %

25

≤ 45 %

40

≤ 55 %

35 ºC

25

≤ 25 %

40

≤ 35 %

Os dejo algunos vídeos al respecto:

Referencias:

AA. VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigoneras de tambor basculante y eje inclinado

Figura 1. Hormigonera de tambor basculante. https://www.archiproducts.com/es/productos/lino-sella-world/hormigonera-hidraulica-con-tambor-basculante-skipper-s-360_652525

Las hormigoneras de tambor basculante y eje inclinado son las más habituales en obras pequeñas, ideales para producir hormigón plástico de calidad media. En el mercado, hay una amplia variedad de modelos, desde los más pequeños, con una capacidad inferior a 60 litros, hasta máquinas de gran capacidad. No obstante, los modelos más frecuentes tienen capacidades que oscilan entre un cuarto y un tercio de metro cúbico. Estas hormigoneras están compuestas por una cuba o tambor que gira alrededor de su eje, con una parte superior troncocónica y una inferior cilíndrica.

La cuba está fabricada con chapa de acero soldada, reforzada en la boca de carga. En su interior, lleva atornilladas unas paletas deflectoras cuya función es arrastrar hacia el centro de la cuba los componentes más pesados de la mezcla, que tienden a situarse en la periferia debido al movimiento centrífugo. El conjunto generalmente está montado sobre un chasis principal provisto de un eje con dos ruedas neumáticas y una lanza de tiro para facilitar su remolque por carretera.

El tambor puede ajustar su inclinación según la operación en curso, ya sea llenado, amasado o descarga. Tanto el llenado como la descarga del aparato se realizan a través de una única abertura centrada en el eje de rotación del tambor. No obstante, existen ciertos modelos con dos aberturas: una para el llenado y otra para la descarga. En posición de amasado, el eje del tambor es horizontal y la descarga por gravedad se realiza inclinando la cuba. Para la descarga, la cuba se inclina alrededor de un eje horizontal con la ayuda de un volante o de un motor. Este volante hace pivotar la cuba y su abrazadera mediante un mecanismo de piñones dentados. El principio del tambor basculante permite una alimentación rápida y un vaciado completo. Este sistema también facilita una limpieza adecuada al final de la jornada laboral.

El movimiento de la cuba se produce mediante el engranaje de un piñón motor, cuyo eje coincide con el de la cuba, sobre una corona dentada. El conjunto motor, que puede ser eléctrico o térmico, y los elementos de reducción de velocidad están montados en una carcasa lateral.  Los motores de gasolina se usan con capacidades de 80 a 150 litros, mientras que los diésel para capacidades mayores. La mezcla de los elementos se optimiza al reducir la inclinación del eje de la cuba respecto a la horizontal. No obstante, esta inclinación no debe exceder los 15º a 20º aproximadamente. Superar estos valores puede reducir el volumen del tambor, ya que aumenta su capacidad útil; sin embargo, aunque esto disminuye el precio de compra, empeora la calidad del amasado. Por lo tanto, el ángulo de inclinación es uno de los factores principales que el comprador debe considerar.

Este problema también ocurrirá si la pared interior del tambor no tiene ninguna paleta. Inicialmente, los materiales se acumulan en el fondo de la cuba y se arrastran hasta el principio del amasado debido a la fricción generada por el giro. Sin embargo, después de algunas vueltas, especialmente si se ha añadido mucha agua, la mezcla se vuelve muy plástica y se desliza a lo largo de la pared de la cuba en lugar de subir y caer de nuevo. En este caso, no se puede considerar un verdadero amasado. La presencia y la disposición de las paletas facilitan la elevación de los materiales y permiten una buena agitación de los componentes. Además, la fijación de las paletas al tambor debe diseñarse cuidadosamente para asegurar un impulso constante durante el amasado.

Un inconveniente frecuente de estas hormigoneras y las de eje horizontal es que parte del mortero del hormigón queda adherido a las paredes durante la primera amasada, lo que hace que esta primera mezcla sea de menor calidad que las siguientes y deba desecharse. Para evitar este problema, se debe realizar una pequeña amasada de mortero antes de comenzar a producir hormigón. Parte de este mortero recubrirá las paredes de la hormigonera y eliminará el exceso. Para facilitar el amasado, se debe introducir el árido grueso en último lugar. Si se introduce primero, la mezcla será deficiente y el hormigón corre el riesgo de ser heterogéneo. El tiempo mínimo de amasado, en segundos, para una hormigonera de este tipo y diámetro D, se calcula mediante la fórmula t = 120 √D.

Estas hormigoneras pueden estar equipadas con un cargador elevable para alimentar los materiales y con dispositivos de suministro de agua, como depósitos, dosificadores o contadores de agua. Se embraga para subir el cargador y este baja por gravedad al desembragar. El cargador puede ser de los siguientes tipos:

  • Basculante mediante cilindro hidráulico. Sin cargador para capacidades de 120 a 200 litros, con o sin cargador para 250 a 500 litros.
  • Skip, accionado por cable, que se enrolla en un cabrestante, accionado por el mismo motor que impulsa la hormigonera, con su correspondiente embrague. Al activar el embrague, el cargador se eleva, y al desactivarlo, desciende por gravedad.
  • Radio rascante, con un conjunto de cangilones de alimentación continua.

Os dejo algunos vídeos al respecto de esta hormigonera.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El amasado del hormigón en tiempo caluroso

https://hormigonaldia.ich.cl/recomendaciones-tecnicas/hormigonado-en-tiempo-caluroso/

El proceso de amasado no difiere del realizado en condiciones normales. Es importante amasar durante el tiempo necesario para obtener una mezcla homogénea, pero no más, para evitar el calor generado por el rozamiento del hormigón con la cuba y las palas. Para lograr un mezclado eficaz en poco tiempo, se debe asegurar que la amasadora esté libre de adherencias y que las paletas de los camiones amasadores estén en buen estado. Una vez que se ha conseguido un hormigón homogéneo, la rotación debe mantenerse a la velocidad mínima de agitación de la unidad. No obstante, no es conveniente detener la cuba durante largos periodos, pues existe el riesgo de un falso fraguado del hormigón.

Proteger la amasadora de la luz solar directa ayuda a evitar un aumento innecesario de la temperatura. Pintar la superficie de blanco también reduce el efecto de la radiación solar. Además, cuando se utiliza un aditivo retardante, su efecto será mayor si se añade al final del amasado en lugar de al principio.

Es importante controlar cuidadosamente la fluidez del hormigón a la salida de la amasadora para asegurar que llegue a la obra en las condiciones necesarias para su uso. También es posible enfriar el hormigón en la amasadora mediante la evaporación de un producto inerte, aunque se trata de una instalación compleja.

Si bien no es una práctica habitual, para retrasar el fraguado del hormigón se pueden dosificar los materiales sólidos en la planta y premezclarlos, añadiendo el agua y los aditivos líquidos en la obra, seguido de un mezclado posterior en el camión de suministro. Sin embargo, esto puede causar una pérdida de uniformidad entre las amasadas. Dado que es complicado controlar la dosificación de líquidos y el mezclado en obra, es necesario preparar adecuadamente todo el proceso si se elige este método.

Cuando se utilizan aditivos plastificantes, superplastificantes y retardadores, su efecto es más prolongado si se introducen al final del amasado, mezclados con una pequeña cantidad del agua de amasado. Los superplastificantes pueden añadirse parcialmente en la planta para obtener la fluidez necesaria para la carga y el transporte del hormigón, y el resto en la obra para compensar la pérdida de asiento durante el transporte. Para un control preciso, el aditivo puede dosificarse previamente en recipientes. Es necesario un amasado posterior en el camión antes de verter el hormigón en el encofrado o en el sistema de colocación en obra.

Es esencial fabricar el hormigón según las especificaciones requeridas para evitar rechazos que provoquen la formación de juntas de hormigonado o problemas en el acabado. Por ello, se recomienda realizar una inspección previa al transporte. En la planta, el hormigón puede inspeccionarse visualmente durante la descarga. En el caso de utilizar un camión amasador, se recomienda realizar un amasado inicial en la planta y verificar el asiento antes de proceder al transporte.

Referencias:

AA.VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.

ACI COMMITTEE 305. Guide to Hot Weather Concreting. ACI 305R-10.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.