1. ¿Cómo explica el «modelo del queso suizo» que la DANA de 2024 no fuera solo un fenómeno natural, sino un fallo de múltiples barreras de defensa?
Esta pregunta aborda la raíz del desastre y la diferencia entre las condiciones latentes —infraestructuras obsoletas, urbanismo en zonas inundables y falta de mantenimiento— y los fallos activos —retrasos en las alertas y errores en la coordinación de la emergencia—. El análisis revela que la catástrofe ocurrió porque los «agujeros» de distintas áreas —la política, la supervisión, la infraestructura y la respuesta inmediata— se alinearon, lo que permitió que el peligro atravesara todas las defensas. Además, subraya que los desastres no son puramente «naturales», sino el resultado de decisiones humanas y de la ocupación de cauces críticos.
2. ¿Por qué se considera la infraestructura hidráulica un «seguro de vida» y qué consecuencias tuvo la falta de ejecución de las obras proyectadas en el barranco del Poyo?
El significado central de las fuentes técnicas y de las comisiones de investigación radica en que demuestran que las obras hidráulicas salvan vidas. Mientras que Valencia se salvó gracias al nuevo cauce del Turia y las poblaciones del río Magro vieron reducidos sus daños por la presa de Forata, la cuenca del Poyo carecía de infraestructuras de laminación, por lo que se produjo una avenida destructiva sin precedentes. La falta de inversión, la ralentización administrativa y la priorización de criterios ambientales por encima de los estructurales impidieron la ejecución de proyectos ya diseñados y aprobados.
3. ¿De qué manera el «fin de la estacionariedad climática» obliga a la ingeniería y al urbanismo a abandonar los registros históricos y adoptar un diseño basado en el rendimiento y la resiliencia?
Las fuentes consultadas destacan que el cambio climático ha invalidado el uso exclusivo de datos históricos para predecir el futuro. Fenómenos como la DANA de 2024 demuestran que lo que antes se consideraba un evento con un periodo de retorno de 500 años ahora puede ocurrir con mucha mayor frecuencia. Por tanto, es necesario rediseñar las infraestructuras con mayores márgenes de seguridad (retornos de 1000 años), utilizar modelos probabilísticos y aplicar el diseño basado en el desempeño (PBD), que garantiza que un sistema pueda seguir funcionando o recuperarse rápidamente cuando se vea superado.
4. ¿Por qué la «retirada estratégica» de las zonas de alto riesgo y el rediseño arquitectónico resiliente son ahora imperativos para convivir con el «riesgo residual» que las infraestructuras no pueden eliminar?
Esta pregunta aborda el hecho de que, durante décadas, se ha construido con una grave «amnesia hidrológica», ocupando zonas de flujo preferente que la naturaleza ha acabado por reclamar. El análisis de las fuentes indica que, dado que el «riesgo cero» no existe y las presas pueden verse superadas por eventos extremos, la reconstrucción no debe limitarse a reparar, sino a reubicar las infraestructuras críticas (colegios, centros de salud) fuera de las zonas de alto riesgo. En cuanto a las viviendas que permanecen en áreas inundables, se propone un cambio radical en los códigos de edificación: prohibir dormitorios y garajes en las plantas bajas, elevar las instalaciones críticas (electricidad, calderas) y utilizar materiales resistentes al agua que permitan recuperar rápidamente la funcionalidad. Por último, las fuentes subrayan que la educación pública y la cultura de la prevención (siguiendo modelos como el japonés) son medidas de bajo coste y alto impacto que salvan vidas cuando las barreras físicas fallan.
5. ¿Qué cambios son imprescindibles en la gobernanza y la coordinación institucional para evitar que la reconstrucción sea una mera réplica de los errores del pasado?
Las fuentes coinciden en que la reconstrucción no puede limitarse a reponer lo perdido, pues, de lo contrario, se perpetuaría la vulnerabilidad. Se recomienda la creación de un «ministerio del pensamiento» o de un equipo de reflexión que establezca directrices estratégicas a largo plazo y evite la «rapidez ilusoria» de las obras tácticas. Además, se reclama una gobernanza interadministrativa eficaz, posiblemente mediante consorcios en los que las administraciones deleguen competencias para unificar presupuestos y decisiones técnicas sobre las políticas, y así superar la fragmentación y la parálisis burocrática.
Creo que dos analogías o metáforas pueden aclarar algunos conceptos básicos:
Gestionar el territorio hoy es como construir en la ladera de un volcán. Podemos instalar sensores y construir diques para desviar la lava (infraestructuras), pero la verdadera seguridad depende de no construir los dormitorios en el camino de la colada (ordenación del territorio) y de que todos los habitantes sepan exactamente qué mochila coger y hacia dónde correr cuando suene la alarma (concienciación comunitaria).
Gestionar el riesgo de inundaciones hoy en día es como conducir un coche moderno por una autopista peligrosa: no basta con tener un motor potente (infraestructuras hidráulicas), también es necesario que los cinturones de seguridad y el airbag funcionen (alertas y protección civil), que el conductor esté capacitado (concienciación comunitaria) y que las normas de circulación se adapten a las condiciones meteorológicas de la vía, y no a cómo era el asfalto hace cincuenta años.
De izquierda a derecha: Fermín Navarrina, Víctor Yepes, Iván Negrín, Tatiana García y Rasmus Rempling.
Hoy, 19 de diciembre de 2025, ha tenido lugar la defensa de la tesis doctoral de D. Iván Antonio Negrín Díaz, titulada “Metaheuristic optimization for the sustainable and resilient design of hybrid and composite frame building structures with advanced integrated modeling”, dirigida por los profesores Víctor Yepes y Moacir Kripka. La tesis ha obtenido la máxima calificación de sobresaliente «cum laude». A continuación, presentamos un breve resumen de la misma.
El cambio climático y la rápida expansión de las áreas urbanas han intensificado el impacto ambiental del sector de la construcción, responsable de cerca del 37 % de las emisiones globales de CO₂ y de más de un tercio del consumo energético mundial. Por tanto, mejorar la sostenibilidad y la resiliencia de las estructuras de edificios se ha convertido en una prioridad esencial, plenamente alineada con los Objetivos de Desarrollo Sostenible de las Naciones Unidas. Esta tesis doctoral aborda este reto mediante el desarrollo de un marco de diseño optimizado que permite obtener soluciones innovadoras, sostenibles y resilientes para estructuras porticadas.
El objetivo principal de la investigación es crear y validar metodologías avanzadas que integren tipologías estructurales híbridas y mixtas con estrategias de optimización de vanguardia apoyadas en modelos estructurales de alta fiabilidad. Para ello, se formulan problemas de optimización que consideran conjuntamente criterios económicos, ambientales, constructivos, de durabilidad y de seguridad estructural, e incorporan, además, aspectos frecuentemente ignorados, como la interacción suelo-estructura, la robustez frente al colapso progresivo y el desempeño ambiental a lo largo del ciclo de vida de la estructura. Entre los objetivos específicos, destacan los siguientes: evaluar metaheurísticas avanzadas y técnicas de optimización asistida por metamodelos; cuantificar los riesgos de modelos estructurales simplificados; integrar la resiliencia como restricción de diseño; valorar los beneficios de tipologías híbridas y mixtas; explorar estrategias de optimización multiobjetivo; y comparar enfoques de diseño basados en fases iniciales y en el ciclo de vida.
Los resultados muestran que las estrategias metaheurísticas avanzadas y asistidas por metamodelos (como BBO-CINS, enfoques basados en Kriging y Optimización Escalarizada de Pareto) superan claramente a los algoritmos tradicionales, ya que logran reducciones de hasta el 90 % en el coste computacional en problemas de un solo objetivo y mejoras de hasta el 140 % en la calidad del frente de Pareto en problemas de varios objetivos. Asimismo, se evidencia el riesgo de simplificar en exceso los modelos estructurales: omitir aspectos críticos, como la interacción suelo-estructura o los elementos secundarios (forjados, muros), puede distorsionar el diseño, comprometer la seguridad (por ejemplo, al subestimar la resistencia al colapso) y aumentar los impactos ambientales a largo plazo, debido al deterioro acelerado y a las mayores necesidades de mantenimiento. También se demuestra que, al incorporar la resiliencia como restricción de diseño en lugar de tratarla como un objetivo de optimización, es posible mejorar la robustez frente al colapso progresivo sin perjudicar la sostenibilidad y reducir la carga ambiental del diseño robusto en torno al 11 % al considerar elementos estructurales secundarios.
A nivel de componentes estructurales, la optimización de las vigas de acero soldadas confirmó las ventajas de la hibridación y de las geometrías variables, lo que dio lugar a la tipología Transversely Hybrid Variable Section (THVS), que reduce los costes de fabricación hasta en un 70 % respecto a las vigas I convencionales. Su integración en pórticos compuestos de hormigón armado y elementos THVS proporcionó mejoras adicionales en sostenibilidad, con reducciones del 16 % en emisiones y del 11 % en energía incorporada en las fases iniciales de diseño, y hasta un 30 % en emisiones de ciclo de vida en comparación con los sistemas tradicionales de hormigón armado. La inclusión de forjados y muros estructurales amplificó estos beneficios, reduciendo los impactos del ciclo de vida hasta en un 42 % respecto a configuraciones de pórticos en las que solo el esqueleto trabaja estructuralmente (omitiendo forjados y muros).
En conjunto, esta tesis demuestra que las metodologías de diseño basadas en la optimización, apoyadas en modelos estructurales realistas y en estrategias computacionales avanzadas, permiten concebir edificios que, al mismo tiempo, son más sostenibles y resilientes. Al resaltar las ventajas de las tipologías híbridas y mixtas e integrar la resiliencia sin comprometer la sostenibilidad, la investigación establece un marco claro para el diseño contemporáneo. Además, al enfatizar la optimización a lo largo de todo el ciclo de vida, ofrece una base metodológica sólida para impulsar una nueva generación de edificaciones alineadas con los objetivos globales de sostenibilidad y de acción climática.
Vista del barranco del Poyo, en Paiporta, 17 de octubre de 2025. Imagen: V. Yepes
Hoy, 29 de octubre de 2025, se cumple el primer aniversario de la DANA de Valencia de 2024, un evento que ha sido catalogado como una de las mayores catástrofes naturales ocurridas en España en décadas. La tragedia se produjo por unas precipitaciones históricas que pulverizaron récords nacionales, con máximos de más de 770 l/m² acumulados en 24 horas en Turís, lo que demuestra que el riesgo cero no existe en un contexto de cambio climático. El desastre no se explica únicamente por la cantidad de lluvia caída, sino por la trágica multiplicación entre el evento extremo, sobrealimentado por el calentamiento global, y el fallo estructural de un urbanismo que, durante décadas, ha ignorado las zonas de riesgo. Aunque la respuesta inmediata y los esfuerzos por restablecer las infraestructuras críticas han sido notables, la ingeniería de la reconstrucción no puede limitarse a reponer lo perdido, ya que replicar el estado previo implica aceptar que los efectos se repetirán. En este contexto, un medio de comunicación me ha solicitado una entrevista para abordar si, un año después, hemos avanzado hacia las soluciones de resiliencia y prevención que el conocimiento técnico lleva tiempo demandando. Os dejo la entrevista completa, por si os resulta de interés.
¿Cómo describiría desde un punto de vista técnico lo que ocurrió el 29 de octubre en Valencia? ¿Qué falló?
Desde el punto de vista técnico e ingenieril, el suceso del 29 de octubre en Valencia fue un evento de inundación extremo provocado por una DANA con un carácter pluviométrico extraordinario, ya que se registraron cifras extremas, como los 771,8 l/m² en 24 horas en Turís, y caudales en la Rambla del Poyo de hasta 2.283 m³/s antes de que los sensores fueran arrastrados, superando con creces cualquier expectativa de diseño y demostrando que el riesgo cero no existe. La magnitud del impacto fue consecuencia de una serie de factores concurrentes. El factor principal se produjo en la cuenca de la Rambla del Poyo, donde la virulencia del agua (con caudales medidos superiores a 2.200 m³/s y estimaciones simuladas que superan los 3.500 m³/s) se encontró con la ausencia de infraestructuras hidráulicas suficientes para la laminación de avenidas y otras medidas complementarias. Los proyectos de defensa contra inundaciones, que llevaban años planificados y con estudios previos, no se ejecutaron a tiempo. En contraste, el Nuevo Cauce del Turia y las presas de Forata y Buseo funcionaron eficazmente, protegiendo la ciudad de Valencia y otras poblaciones. Además de estas vulnerabilidades latentes, el impacto humano y material se vio agravado por desafíos en la respuesta, incluyendo la efectividad en los sistemas de alerta temprana (SAIH) bajo condiciones tan extremas y en la implantación de los planes de emergencia municipales, así como en la emisión de avisos con suficiente antelación a la población, impidiendo que esta pudiera reaccionar a tiempo.
¿Qué papel jugaron las infraestructuras y la planificación urbana en la magnitud de los daños? ¿Hubo zonas especialmente vulnerables o mal planificadas?
Las infraestructuras y la planificación urbana jugaron un papel determinante en la magnitud de los daños. Por un lado, las obras estructurales, como el Nuevo Cauce del Turia y las presas de Forata y Buseo, resultaron fundamentales, mitigando las inundaciones y protegiendo la ciudad de Valencia y otras poblaciones. Sin embargo, la magnitud de los daños se vio agravada por la ausencia de medidas integrales de defensa diseñadas para la laminación de avenidas, especialmente en la cuenca de la Rambla del Poyo, donde los proyectos planificados no se ejecutaron a tiempo. Los caudales extraordinarios superaron con creces la capacidad existente. Además, las infraestructuras lineales (carreteras, ferrocarriles y puentes) actuaron como puntos de estrangulamiento, reteniendo arrastres y aumentando el nivel de destrucción. Las zonas más vulnerables se concentraron en el cono aluvial de L’Horta Sud, una zona de alto riesgo urbanizada principalmente entre la riada de 1957 y la década de 1970, sin planificación adecuada ni infraestructuras de saneamiento suficientes. La falta de unidad de criterio en la ordenación territorial municipal y la prevalencia de intereses de desarrollo sobre las directrices de restricción de usos en zonas inundables (a pesar de instrumentos como el PATRICOVA) aumentaron la vulnerabilidad social y material del territorio. Aunque algunos hablan de emergencia hidrológica, probablemente sea más adecuado hablar de un profundo desafío urbanístico y de ordenación territorial.
Vista del barranco del Poyo, en Paiporta, 17 de octubre de 2025. Imagen: V. Yepes
Desde entonces, ¿qué medidas reales se han tomado —si las hay— para reducir el riesgo de que vuelva a suceder algo similar?
Desde la DANA de octubre de 2024, las medidas adoptadas se han enfocado en la reconstrucción con criterios de resiliencia y atención a urgencias, aunque las soluciones estructurales de gran calado, que requieren plazos de ejecución más largos, siguen mayormente pendientes. En la fase inmediata, se activaron obras de emergencia, destacando la reparación y refuerzo de infraestructuras críticas como las presas de Forata y Buseo, y la recuperación de cauces y del canal Júcar-Turia. Un ejemplo de reconstrucción en curso es la mejora de la red de drenaje de Paiporta, que forma parte de las primeras actuaciones tras la catástrofe. En el ámbito normativo, el Consell aprobó el Decreto-ley 20/2024 de medidas urbanísticas urgentes y se ha puesto sobre la mesa la revisión de normativas como el Código Técnico de la Edificación (CTE) para incluir requisitos para edificaciones en zonas inundables. También se prevé que los sistemas de comunicación y alerta estén coordinados en todas las cuencas mediterráneas, lo que podría evitar muertes en caso de repetirse el fenómeno. Sin embargo, es un hecho que, meses después, la legislación urbanística de fondo sigue sin cambios estructurales y que, en cuanto a las obras hidráulicas estructurales de prevención, como las presas de laminación, sus plazos de tramitación y ejecución impiden que se hayan materializado avances significativos todavía, dificultando el avance de proyectos críticos. Por tanto, existe una etapa de reconstrucción que debería ser inteligente y no dejar las infraestructuras como estaban antes de la DANA, pues eso implicaría asumir los mismos riesgos, y otra a medio y largo plazo que permita defender a la población, minimizando los riesgos.
¿Qué actuaciones considera urgentes o prioritarias para evitar repetir los errores del pasado?
Para evitar repetir los errores del pasado, es necesario un cambio de modelo que combine inversión estructural urgente con planificación territorial resiliente. En ingeniería hidráulica, la acción prioritaria es acelerar e implementar las obras de laminación contempladas en la planificación hidrológica, como la construcción de presas en las cuencas de la Rambla del Poyo y el río Magro, y destinar recursos extraordinarios para construir las estructuras de prevención necesarias y corregir el déficit de infraestructuras de prevención. También es prioritario eliminar obstáculos urbanísticos, como puentes y terraplenes insuficientes, y reconstruir infraestructuras lineales con criterios resilientes, permitiendo el paso seguro del agua. En urbanismo, la enseñanza principal es devolverle el espacio al agua, retirando estratégicamente infraestructuras de las zonas de flujo preferente para reducir la exposición al riesgo más elevado e iniciando un plan a largo plazo para reubicar infraestructuras críticas y viviendas vulnerables. Se recomienda revisar la normativa sobre garajes subterráneos en llanuras de inundación. Asimismo, es esencial invertir en sistemas de alerta hidrológica robustos, con más sensores y modelos predictivos que traduzcan la predicción en avisos concretos y accionables. Por último, es fundamental que la gobernanza supere la inercia burocrática mediante un modelo de ejecución de urgencia que priorice el conocimiento técnico y garantice que el riesgo no se convierta de nuevo en catástrofe humana.
Vista del barranco del Poyo, en Paiporta, 17 de octubre de 2025. Imagen: V. Yepes
¿Hasta qué punto Valencia está preparada para afrontar lluvias torrenciales o fenómenos extremos de este tipo en el futuro?
Desde una perspectiva técnica e ingenieril, a día de hoy, la vulnerabilidad de fondo persiste y no estamos preparados para afrontar una nueva DANA de la magnitud de la ocurrida en 2024. La situación es similar a la de una familia que circula en coche por la autopista a 120 km/h sin cinturones de seguridad: bastaría un obstáculo inesperado (una DANA) para que el accidente fuera mortal. Aceptar la reposición de lo perdido sin añadir nuevas medidas de protección estructural implicaría aceptar que los efectos del desastre se repetirán, algo inasumible. El problema principal es que prácticamente no se han ejecutado las grandes obras de laminación planificadas, especialmente en las cuencas de la Rambla del Poyo y del Magro, que constituyen la medida más eficaz para proteger zonas densamente pobladas mediante contención en cabecera. La DANA expuso un problema urbanístico severo. Meses después, mientras no se modifique la legislación territorial de fondo y se actúe sobre el territorio, el riesgo latente de la mala planificación persiste ante el próximo fenómeno extremo. La única forma de eliminar esta vulnerabilidad es mediante una acción integral que combine inversión urgente en obras estructurales con retirada estratégica de zonas de flujo preferente.
Os dejo un pequeño vídeo didáctico donde se resume lo acontecido en la DANA del 29 de octubre de 2024.
En las noticias de hoy, aparezco en varios reportajes:
En el Telediario de TVE, en horario de máxima audiencia, a las 21:00 h, se hizo un programa especial sobre la DANA donde tuve la ocasión de participar. Os dejo un trozo del vídeo.
En el mundo de la ingeniería y la construcción, hay una pregunta fundamental que guía todo el proceso de diseño: «¿Qué tan seguro es “bastante seguro”?». Durante décadas, la respuesta parecía sencilla: construir estructuras lo bastante fuertes para soportar las fuerzas esperadas. El objetivo principal era la resistencia, es decir, la capacidad de mantenerse sin romperse.
Sin embargo, en un mundo cada vez más marcado por eventos extremos e impredecibles, desde huracanes más intensos hasta fallos en cadena en redes complejas, esta filosofía ya no es suficiente. La simple resistencia no tiene en cuenta lo que sucede después de un desastre. Es aquí donde surge un concepto mucho más relevante para nuestro tiempo: la resiliencia.
La resiliencia no se limita a soportar un golpe, sino que se centra en la capacidad de recuperación de un sistema tras recibirlo. Supone una nueva frontera en el diseño de ingeniería que va más allá de la fuerza bruta, ya que incorpora la rapidez, la creatividad y la capacidad de recuperación como características de diseño medibles.
Este artículo explorará cinco de los descubrimientos más sorprendentes e impactantes que nos ofrece esta filosofía emergente sobre cómo construir la infraestructura del mañana.
Los cinco descubrimientos clave sobre la resiliencia en ingeniería
1 .La noción de «seguridad» ha evolucionado drásticamente. Ya no se trata solo de resistir.
La forma en que los ingenieros definen la «seguridad» ha cambiado profundamente. Los métodos tradicionales, como el diseño por esfuerzos admisibles (ASD) o el diseño por factores de carga y resistencia (LRFD), se basaban en un principio sencillo: garantizar que la capacidad del sistema superara la demanda esperada. Aunque eran eficaces, estos enfoques no evaluaban la seguridad a nivel del sistema completo y no siempre producían los diseños más eficientes desde el punto de vista económico.
El primer gran avance fue el diseño basado en el desempeño (PBD). Esta filosofía cambió el enfoque de simplemente «no fallar» a evaluar el comportamiento de una estructura durante un evento extremo. El PBD introdujo métricas críticas de rendimiento, como las pérdidas económicas, el tiempo de inactividad y el número de víctimas. Aunque supuso un gran avance, aún dejaba fuera una parte esencial: la capacidad de recuperación del sistema.
El paso más reciente y transformador es el diseño basado en la resiliencia (RBD). La diferencia clave es que el RBD incorpora formalmente el proceso de recuperación del sistema tras un evento. Ya no solo importa cómo resiste el impacto, sino también cuán rápido y eficientemente puede volver a funcionar. Esto supone un cambio de paradigma fundamental en ingeniería, donde la resiliencia se convierte en una métrica tan importante como la resistencia.
La clave del cambio es que un análisis de resiliencia no solo considera los riesgos, sino también la capacidad de recuperación, integrando así la prevención, el impacto y la rehabilitación en una visión holística del diseño.
2. No se trata de ser irrompible. Recuperarse rápido es el nuevo superpoder.
Una de las ideas más contraintuitivas del diseño basado en la resiliencia es que la invulnerabilidad no es el objetivo final. En lugar de buscar estructuras que nunca fallen, la verdadera prioridad es la capacidad de un sistema para recuperarse rápidamente de un fallo, un atributo de diseño tan importante como su resistencia inicial.
Imaginemos dos estructuras, la «Estructura A» y la «Estructura B», ambas sometidas a un evento severo que supera sus límites de diseño. Como resultado, el rendimiento de ambas cae drásticamente. A primera vista, podrían parecer igualmente fallidas. Sin embargo, la resiliencia marca la diferencia.
La «Estructura A» ha sido diseñada de manera que, en caso de fallo, sus componentes puedan ser reparados o reemplazados de forma rápida y eficiente, lo que le permite recuperar su funcionalidad original en mucho menos tiempo. Por el contrario, la «Estructura B» tarda considerablemente más en volver a operar. Según la filosofía de la resiliencia, el diseño de la Estructura A es superior, ya que minimiza el tiempo total de interrupción del servicio.
La lección es clara: el diseño moderno ya no solo se pregunta «¿Qué tan fuerte es?», sino también «¿Qué tan rápido se recupera después de caer?». La rapidez de recuperación no es un extra, sino una característica de diseño fundamental.
3. La resiliencia no es una cualidad única, sino una combinación de cuatro «ingredientes» medibles.
Aunque la resiliencia puede parecer un concepto abstracto, los ingenieros la han desglosado en cuatro propiedades distintas y medibles. Comprender estos cuatro «ingredientes» es clave para diseñar sistemas verdaderamente resilientes.
La robustez es la capacidad de un sistema para soportar un cierto nivel de interrupción sin perder eficiencia. Representa la resistencia inherente para absorber el impacto inicial. Cuanto más robusto es un sistema, menos daño sufre desde el comienzo del evento.
La rapidez es la capacidad de un sistema para recuperar rápidamente su funcionamiento normal después de una interrupción. Este componente se centra en minimizar las pérdidas y evitar futuras interrupciones, de modo que el sistema vuelva a operar en el menor tiempo posible.
El ingenio es la capacidad de identificar problemas, establecer prioridades y movilizar recursos de manera eficaz. Un sistema con ingenio puede reducir el tiempo necesario para evaluar daños y organizar una respuesta eficaz, lo que facilita una recuperación más rápida. Es como un equipo de urgencias experto que sabe exactamente qué especialistas llamar y qué equipo utilizar, minimizando el tiempo entre la detección del problema y la solución eficaz.
La redundancia es la capacidad de los elementos dañados del sistema para ser sustituidos por otros. La redundancia permite que el sistema siga funcionando, aunque sea con capacidad reducida, redirigiendo la carga de los componentes fallidos a elementos auxiliares. Piénselo como la rueda de repuesto de un coche o los servidores de respaldo de un sitio web: recursos listos para asumir la función de un componente principal en caso de fallo.
4. La recuperación no es instantánea. Existe una «fase de evaluación» crítica tras el desastre.
Cuando un sistema se ve interrumpido, su rendimiento no mejora de forma inmediata una vez que el evento ha terminado. El análisis de resiliencia muestra que la recuperación sigue una curva con distintas fases críticas. Inicialmente, el rendimiento del sistema empeora durante el evento (de t1 a t2).
A continuación, aparece un período a menudo pasado por alto, pero crucial: la fase de evaluación (de t2 a t3). Durante esta etapa, la funcionalidad del sistema permanece baja y casi plana. No se observa una mejora significativa, ya que en este tiempo se evalúan los daños, se reúnen los recursos, se organizan los equipos de respuesta y se establece un plan de acción efectivo.
Un objetivo clave del diseño resiliente es acortar la duración de esta fase de «línea plana». Mediante una planificación previa más sólida, planes de respuesta a emergencias claros y una movilización eficiente de recursos, es posible reducir significativamente este período de inactividad.
Solo después de esta fase de evaluación comienza la fase de recuperación (de t3 a t4), durante la cual la funcionalidad del sistema empieza a restaurarse hasta alcanzar un nivel aceptable y recuperar gradualmente su capacidad total de operación.
Figura 2. Rendimiento del sistema bajo interrupción
5. La resiliencia no es solo un concepto, sino una cifra que se puede calcular.
Uno de los descubrimientos más importantes del diseño basado en la resiliencia es que esta no solo es un concepto cualitativo, sino también una métrica cuantificable. Los ingenieros pueden calcular un «índice de resiliencia», que a menudo se define como el área bajo la curva de rendimiento del sistema a lo largo del tiempo. Cuanto mayor sea esta área, mayor será la resiliencia del sistema.
Un ejemplo concreto proviene de un estudio realizado en el túnel del metro de Shanghái. Tras ser sometido a una sobrecarga extrema, el túnel perdió entre un 70 % y un 80 % de su rendimiento. Lo revelador del estudio fue que la simple eliminación de la sobrecarga, es decir, una recuperación pasiva, solo restauró el 1 % del rendimiento. Esto demuestra que esperar a que el problema desaparezca no es una estrategia de recuperación viable.
Para recuperar la funcionalidad, fue necesaria una intervención activa: la inyección de lechada de cemento en el suelo alrededor del túnel. No obstante, esta solución no fue inmediata, ya que se necesitaron cuatro años para recuperar un 12,4 % adicional del rendimiento. El estudio concluyó que, al mejorar y acelerar este proceso, el índice de resiliencia del túnel podría aumentar hasta un 73 %.
La capacidad de cuantificar la resiliencia transforma el enfoque de la ingeniería. Permite comparar objetivamente distintas opciones de diseño, justificar inversiones en estrategias de recuperación más rápidas y, en última instancia, tomar decisiones basadas en datos para construir infraestructuras más eficaces y seguras.
Conclusión: Diseñando para el mañana
El debate sobre la infraestructura del futuro está experimentando un profundo cambio. Hemos pasado de una obsesión por la fuerza y la resistencia a un enfoque más inteligente y holístico centrado en la recuperación. La resiliencia nos enseña que la forma en que un sistema se recupera de una avería es tan importante, si no más, que su capacidad para resistir el impacto inicial.
Al entender la resiliencia como una combinación medible de robustez, rapidez, ingenio y redundancia, podemos diseñar sistemas que no solo sobrevivan a los desafíos del siglo XXI, sino que también se recuperen de ellos de manera rápida, eficiente y predecible.
Ahora que la recuperación se considera un factor de diseño, surge una pregunta crítica: ¿qué infraestructura esencial de tu comunidad —eléctrica, de agua o de transporte— necesita ser rediseñada para ser no solo más fuerte, sino también más rápidamente recuperable?
En el panorama actual, marcado por una mayor complejidad e interconexión a nivel mundial, los efectos de los desastres son cada vez más graves. El cambio climático, por ejemplo, actúa como un multiplicador de riesgos, intensificando los peligros existentes y generando otros nuevos. Ante esta realidad, el concepto de resiliencia comunitaria se ha convertido en un elemento clave de las estrategias de gestión del riesgo de desastres. La misión de la ingeniería es proporcionar a las comunidades las herramientas necesarias para resistir, adaptarse y recuperarse de estos eventos. En este contexto, los sistemas de apoyo a la decisión (DSS) emergen como herramientas indispensables que transforman la manera en que abordamos la protección de las ciudades y sus ciudadanos.
En el ámbito de la ingeniería civil y la planificación urbana, la resiliencia se define como la capacidad de un sistema, comunidad o sociedad expuesta a peligros para resistir, absorber, adaptarse, transformarse y recuperarse de manera oportuna y eficiente de los efectos de un evento adverso. Esto incluye la preservación y restauración de sus estructuras y funciones básicas esenciales mediante una gestión de riesgos adecuada. Una comunidad resiliente es aquella que, tras un terremoto, una inundación o una ola de calor extrema, logra mantener operativas o recuperar rápidamente sus infraestructuras críticas —desde la red eléctrica hasta los hospitales—, minimizando el impacto en la vida de sus habitantes.
La gestión del riesgo de desastres (DRM) incluye las fases de prevención, preparación, respuesta y recuperación. La resiliencia está intrínsecamente vinculada a todas estas fases. Por ejemplo, la implementación de códigos de construcción más estrictos o sistemas de control de inundaciones es una medida de prevención que aumenta la resiliencia. La preparación, por su parte, permite que las comunidades se adapten mejor a una situación de desastre y se recuperen con mayor rapidez.
Sistemas de apoyo a la decisión (DSS): herramientas inteligentes para la gestión de crisis.
Los DSS son herramientas informáticas diseñadas para ayudar a los responsables de la toma de decisiones, ya que proporcionan análisis, información y recomendaciones, e incluso permiten simular diferentes escenarios. Son fundamentales para mejorar la resiliencia comunitaria, puesto que ofrecen soluciones rápidas y eficientes a los problemas relacionados con los desastres, integrando diversas fuentes de datos y perspectivas de múltiples interesados. Además, los DSS facilitan la operacionalización de la resiliencia, es decir, permiten traducir este concepto abstracto en acciones y modelos analíticos concretos en los que están implicados todos los actores clave, lo que ofrece una comprensión más profunda del proceso de resiliencia. Esto, a su vez, conduce a una toma de decisiones más objetiva y basada en pruebas, que mitiga la subjetividad humana.
Las técnicas de modelización en los DSS: un arsenal de estrategias.
Los DSS se construyen utilizando diversas técnicas de modelización, cada una con sus propias fortalezas. Entre ellas, las técnicas de optimización son las más utilizadas. Estas técnicas permiten encontrar la mejor solución a un problema teniendo en cuenta múltiples factores y restricciones, a menudo mediante algoritmos matemáticos que identifican la opción más eficiente o efectiva. Por ejemplo, se utilizan para decidir la asignación óptima de recursos para la reparación de infraestructuras tras un terremoto o para la gestión de intervenciones en infraestructuras interdependientes.
Otras técnicas destacadas incluyen:
Modelado espacial (SIG): utiliza sistemas de información geográfica (SIG) para capturar relaciones espaciales, analizar, predecir y visualizar la influencia de los factores geográficos en los procesos y las decisiones. Esta técnica resulta muy útil para visualizar la distribución de riesgos y recursos en una ubicación específica, lo que facilita la comprensión del estado de resiliencia.
Análisis de decisiones multicriterio (MCDA): ayuda a los responsables de la toma de decisiones a ponderar diferentes factores y evaluar alternativas frente a múltiples criterios, a menudo conflictivos, para identificar la opción más adecuada en función de las prioridades y los objetivos. Es idóneo para la toma de decisiones en grupo y para capturar aspectos cualitativos de un problema.
Simulación: crea un modelo digital para imitar sistemas o procesos del mundo real, lo que permite la experimentación y el análisis en un entorno controlado. Es excelente para probar el impacto de diversas políticas y decisiones en el comportamiento del sistema antes de su implementación real.
Teoría de grafos: estudia las relaciones entre objetos, que se representan como nodos y aristas en un grafo. Es fundamental para analizar la conectividad de las redes interdependientes, como las infraestructuras de transporte o suministro, y para encontrar rutas óptimas, por ejemplo, para la distribución de ayuda humanitaria.
Minería de texto: extrae conocimiento e información de grandes volúmenes de datos textuales mediante métodos computacionales. Un ejemplo práctico es el uso de chatbots que procesan datos de redes sociales para ofrecer información en tiempo real durante un desastre.
Aplicación de los DSS en las fases de gestión de desastres.
Es interesante observar que los DSS tienden a centrarse más en las fases de preparación y respuesta que en las de recuperación y mitigación. Por ejemplo, el modelado espacial se utiliza mucho en la fase de preparación (en el 80 % de los artículos consultados) para tomar decisiones estratégicas, como determinar la ubicación óptima de los refugios o cómo distribuir los recursos. Durante la fase de respuesta, los DSS espaciales permiten visualizar la situación en tiempo real, identificar rutas bloqueadas y distribuir la ayuda humanitaria de manera eficiente mediante algoritmos que calculan la ruta más corta.
La optimización, por su parte, se utiliza principalmente en la fase de recuperación (en el 75 % de los artículos consultados), particularmente en las decisiones relativas a la rehabilitación y reconstrucción de infraestructuras dañadas. Las técnicas de MCDA son adecuadas para la fase de preparación (el 75 % de los artículos), ya que permiten comparar planes y políticas alternativas con el tiempo necesario para su análisis. Los modelos de simulación también se utilizan en la fase de respuesta para imitar el comportamiento del sistema y de los individuos durante una catástrofe.
Desafíos en el desarrollo y la implementación de los DSS.
A pesar de su potencial, el desarrollo e implementación de sistemas de apoyo a la decisión para la resiliencia no están exentos de desafíos significativos. Uno de los principales desafíos es la disponibilidad y calidad de los datos. La modelización de la resiliencia es un proceso complejo en el que los datos, tanto cuantitativos como cualitativos, son fundamentales. A menudo, la información proviene de múltiples fuentes con diferentes niveles de precisión, lo que dificulta su integración. En los países menos desarrollados, el acceso a los datos públicos (censos, informes, etc.) es aún más complicado, lo que limita la aplicación de ciertos modelos.
Otro obstáculo es la incertidumbre inherente al contexto de un desastre y la necesidad de gestionar cambios en tiempo real. También es una preocupación crucial la privacidad de los datos sensibles sobre infraestructuras críticas o planes de emergencia.
Por último, la colaboración interdisciplinar es imprescindible, pero difícil de conseguir, y la integración de estos sistemas en las operaciones diarias de las organizaciones de emergencia sigue siendo un reto considerable.
La colaboración con los interesados es clave para el éxito.
La implicación de los diversos actores o partes interesadas (stakeholders) es fundamental en el ciclo de vida de un DSS para la resiliencia. Se identifican tres enfoques principales:
Como fuente de datos: recopilando sus opiniones y datos (mediante entrevistas, encuestas o incluso información compartida en redes sociales).
Participación en el diseño: involucrándolos en la identificación de problemas, la construcción del modelo y el desarrollo del sistema para garantizar que la herramienta sea relevante y práctica para sus necesidades reales
Incorporación de preferencias en el modelo: reflejando sus prioridades como parámetros o funciones objetivo en los modelos matemáticos, lo que influirá directamente en las soluciones propuestas. Por ejemplo, se pueden integrar las preferencias comunitarias como restricciones en un modelo de optimización.
Conclusiones y futuras direcciones en ingeniería resiliente.
Los sistemas de apoyo a la decisión suponen un avance significativo en nuestra capacidad para crear comunidades más resilientes frente a los desastres. Aunque hemos logrado grandes avances, especialmente en las fases de preparación y respuesta, y con el uso intensivo de modelos de optimización, aún queda mucho por hacer. Es imperativo ampliar el enfoque a las fases de recuperación y mitigación e investigar cómo integrar fuentes de datos en tiempo real y tecnologías IoT para mejorar la capacidad de respuesta de los DSS en entornos dinámicos. Además, debemos seguir profundizando en la modelización de las interacciones entre los diversos actores de la comunidad para fomentar una colaboración más sólida y, en última instancia, crear un entorno más seguro y resiliente para todos.
Ayer, cuando se cumplían 11 meses de la catástrofe de la DANA de 2024, volvimos a estar en alerta roja en Valencia. No se trató de un evento tan catastrófico como el que vivimos hace menos de un año. Pero volvieron los fantasmas y se volvió a poner a prueba todo el esfuerzo, con mayor o menor acierto, que se está realizando para evitar este tipo de catástrofes.
Queda mucho por hacer: necesitamos consenso en la gobernanza de los proyectos de futuro, desarrollo sostenible de los territorios, un mejor conocimiento para actuar de manera más eficaz por parte de las autoridades y los ciudadanos, y finalmente, aprender a convivir con las inundaciones.
A continuación, os resumo algunos pensamientos sobre este tema que he ido publicando en este blog. Espero que sirvan para reflexionar sobre este tema.
Introducción: cuando la «naturaleza» no es la única culpable.
Tras la devastadora DANA que asoló la provincia de Valencia en octubre de 2024, dejando una estela de dolor y destrucción, es natural buscar explicaciones. La tendencia humana nos lleva a señalar a la «furia de la naturaleza», a la «mala suerte» o a un evento tan extraordinario que era imposible de prever. Nos sentimos víctimas de una fuerza incontrolable.
Sin embargo, un análisis técnico y sereno nos obliga a mirar más allá del barro y el agua. Como se argumenta en foros de expertos, los desastres no son naturales, sino que son siempre el resultado de acciones y decisiones humanas que, acumuladas con el paso del tiempo, crean las condiciones perfectas para la tragedia. Esta idea no es nueva. Ya en 1755, tras el terremoto de Lisboa, Jean-Jacques Rousseau le escribía a Voltaire: «Convenga usted que la naturaleza no construyó las 20.000 casas de seis y siete pisos, y que, si los habitantes de esta gran ciudad hubieran vivido menos hacinados, con mayor igualdad y modestia, los estragos del terremoto hubieran sido menores, o quizá inexistentes».
Este artículo explora cuatro de las ideas menos obvias y más impactantes que surgen del análisis técnico del desastre. Cuatro revelaciones que nos invitan a dejar de buscar un único culpable para empezar a entender las verdaderas raíces del riesgo, repensar cómo nos preparamos para él y, sobre todo, cómo lo reconstruimos de forma más inteligente.
Primera revelación: un desastre no es azar, es la coincidencia de errores en cadena (el modelo del queso suizo).
La primera revelación consiste en abandonar la búsqueda de un único culpable. Un desastre no es un rayo que cae, sino una tormenta perfecta de debilidades sistémicas.
1. Las catástrofes no se producen por un único fallo, sino por una tormenta perfecta de pequeñas debilidades.
Para entender por qué un fenómeno meteorológico extremo se convierte en una catástrofe, los analistas de riesgos utilizan el «modelo del queso suizo» de James T. Reason. La idea es sencilla: nuestro sistema de protección es como una pila de lonchas de queso. Cada loncha representa una capa de defensa (infraestructuras, planes de emergencia, normativas urbanísticas) y los agujeros en cada una de ellas simbolizan fallos o debilidades. Ocurre un desastre cuando los agujeros de varias capas se alinean, creando una «trayectoria de oportunidad de accidente» que permite al peligro atravesar todas las barreras.
Aplicado a la gestión de inundaciones, este modelo identifica cuatro áreas principales donde se producen estos fallos:
Influencias organizativas: decisiones políticas a largo plazo, como «un contexto de austeridad» en el que las instituciones «reducen la inversión en infraestructuras de protección». Esto crea agujeros latentes en nuestras defensas.
Fallos de supervisión: falta de control efectivo sobre el cumplimiento de normativas, como la construcción en zonas inundables o el mantenimiento de infraestructuras de contención.
Condiciones latentes: Debilidades preexistentes que permanecen ocultas hasta que se produce la crisis. Un sistema de drenaje obsoleto, planes de evacuación anticuados o la «falta de concienciación y preparación en la comunidad» son ejemplos de condiciones latentes.
Acciones inseguras: errores activos cometidos durante la emergencia, como retrasos en la emisión de alertas o una comunicación deficiente con el público.
Esta perspectiva nos saca del juego de la culpa lineal —una presa que falló, una alerta que no llegó— y nos obliga a entender el desastre como un fallo sistémico acumulado, resultado de años de pequeñas decisiones, omisiones y debilidades que finalmente se alinearon en el peor momento posible.
2. Volver a construir lo mismo que se destruyó es programar la siguiente catástrofe.
Tras la conmoción, la presión política y social exige una respuesta inmediata: limpiar, reparar y reconstruir. Sin embargo, este impulso esconde una de las trampas más peligrosas. Si la reconstrucción se limita a la reposición de lo perdido, ignoramos la lección más importante y perpetuamos las mismas vulnerabilidades.
La forma en que se afronta la reconstrucción tras un desastre no puede limitarse a la reposición de lo perdido.
Aquí surge un conflicto fundamental. Por un lado, está el «enfoque táctico» de los políticos, que necesitan acciones rápidas y visibles. Como explican los análisis de ingeniería, «la rapidez en la ejecución de ciertas obras genera la percepción de una gestión eficaz, pero este proceder puede ocultar la ausencia de una estrategia que optimice las actuaciones a largo plazo». Por otro lado, está la necesidad técnica de llevar a cabo una reflexión estratégica que requiere tiempo para analizar qué ha fallado y diseñar soluciones resilientes que no repitan los errores del pasado.
Para evitar que la urgencia impida esta reflexión, es esencial contar con un equipo de análisis, una especie de «ministerio del pensamiento», que establezca directrices fundamentadas. Esta «trampa de la reconstrucción» es común porque la reflexión es lenta y políticamente menos rentable que una foto posando en la inauguración de un puente reparado. Evitarla tras la DANA de Valencia es crucial. No se trata solo de levantar muros, sino de aprovechar esta dolorosa oportunidad para reordenar el territorio, rediseñar las infraestructuras y construir una sociedad más segura.
Tercera revelación: El clima ha roto las reglas del juego.
3. Ya no podemos utilizar el pasado como guía infalible para diseñar el futuro de nuestras infraestructuras.
Durante un siglo, la ingeniería se ha basado en una premisa fundamental que hoy es una peligrosa falsedad: que el clima del pasado era una guía fiable para el futuro. Este principio, conocido como «estacionariedad climática», ha dejado de ser válido. Esta hipótesis partía de la base de que, aunque el clima es variable, sus patrones a largo plazo se mantenían estables, lo que permitía utilizar registros históricos para calcular estadísticamente los «periodos de retorno» y diseñar infraestructuras capaces de soportar, por ejemplo, la «tormenta de los 100 años», un evento que no ocurre cada 100 años, sino que tiene un 1 % de probabilidad de suceder en cualquier año.
El cambio climático ha invalidado esta hipótesis. El clima ya no es estacionario. La frecuencia e intensidad de los fenómenos meteorológicos extremos están aumentando a un ritmo que hace que los datos históricos dejen de ser una referencia fiable. Esta no estacionariedad aumenta los «agujeros» en nuestro queso suizo de defensas, haciendo que las vulnerabilidades sistémicas sean aún más críticas.
La consecuencia es alarmante: muchas de nuestras infraestructuras (puentes, sistemas de drenaje, presas) pueden haber sido diseñadas para unas condiciones que ya no existen, lo que aumenta drásticamente el riesgo estructural. La adaptación al cambio climático no es una opción ideológica, sino una necesidad inaplazable. Esto exige una revisión completa de los códigos de diseño y los planes de ordenación del territorio. Debemos dejar de mirar exclusivamente por el retrovisor para empezar a diseñar con la vista puesta en el futuro.
Cuarta revelación: Los argumentos técnicos no ganan batallas culturales.
4. El obstáculo más grande no es técnico ni económico, sino nuestra propia mente.
Ingenieros y científicos llevan años advirtiendo sobre los riesgos. Sin embargo, estas advertencias a menudo no se traducen en la voluntad política y social necesaria para actuar. La respuesta se halla en la psicología humana. El fenómeno de la «disonancia cognitiva» explica nuestra tendencia a rechazar información que contradiga nuestras creencias más profundas. A esto se suma la «asimetría cognitiva»: la brecha de comunicación existente entre los distintos «estratos» de la sociedad (científicos, técnicos, políticos y la opinión pública). Cada grupo opera con su propia percepción de la realidad, su lenguaje y sus prioridades, lo que crea mundos paralelos que rara vez se tocan.
Esto nos lleva a una de las ideas más frustrantes para los técnicos: la creencia de que es posible convencer a alguien solo con datos es, en muchos casos, una falacia.
«Cuando intentas convencer a alguien con argumentos respecto a un prejuicio que tiene, es imposible. Es un tema mental, es la disonancia cognitiva».
Cuando un dato choca con un interés o una creencia, lo más habitual no es cambiar de opinión, sino rechazar el dato. Esto explica por qué, a pesar de la evidencia sobre ciertos riesgos, se posponen las decisiones o se toman decisiones que van en direcciones contrarias. El problema no es la falta de conocimiento técnico, sino la enorme dificultad para comunicarlo de manera que sea aceptado eficazmente por quienes toman las decisiones y por la sociedad en su conjunto. Superar esta barrera mental es, quizás, el mayor desafío de todos.
Conclusión: reconstruir algo más que edificios y puentes.
Las lecciones de la DANA de 2024 nos obligan a conectar los puntos: los desastres son fallos sistémicos (como el queso suizo), cuyas debilidades se multiplican porque el clima ha cambiado las reglas del juego (no estacionariedad); la reconstrucción debe suponer una reinvención estratégica, no una copia; y las barreras humanas, alimentadas por la disonancia cognitiva, a menudo son más difíciles de superar que cualquier obstáculo técnico.
La verdadera lección, por tanto, no se limita a la hidráulica o al urbanismo. Se trata de cómo tomamos decisiones como sociedad frente a riesgos complejos y sistémicos. Se trata de nuestra capacidad para aprender, adaptarnos y actuar con valentía y visión de futuro.
Ahora que conocemos mejor las causas profundas del desastre, ¿estamos dispuestos como sociedad a adoptar las decisiones valientes que exige una reconstrucción inteligente o la urgencia nos hará tropezar de nuevo con la misma piedra?
En este audio hay ideas que os pueden servir para entender el problema.
Os dejo un vídeo que os puede ayudar a entender las ideas principales de este artículo.
Y por último, os dejo una intervención que tuve sobre este tema en el Colegio de Ingenieros de Caminos. Espero que os interese.
En nuestra vida cotidiana dependemos de una red invisible de infraestructuras que hace posible casi todo lo que hacemos: el agua que bebemos, la electricidad que ilumina nuestras casas, el transporte que nos conecta o las telecomunicaciones que nos mantienen informados. Sin embargo, basta con que una de estas piezas falle para que se produzca un efecto dominó con graves consecuencias. Un corte eléctrico prolongado puede paralizar hospitales y transportes, una rotura en la red de agua puede afectar a la higiene, la industria y la propia seguridad contra incendios, y un colapso en las telecomunicaciones puede aislar a comunidades enteras. Estas situaciones ponen de manifiesto la necesidad de ir más allá de la protección frente a fallos y centrarse en la resiliencia de los sistemas de infraestructuras.
La resiliencia de la infraestructura se define como «la capacidad de un sistema para minimizar la pérdida de rendimiento debido a una interrupción y para recuperar un nivel de rendimiento específico dentro de límites de tiempo y costes predefinidos y aceptables». Este concepto ha recibido mucha atención en los últimos años, en parte debido a la creciente frecuencia e intensidad de los eventos disruptivos de baja probabilidad y gran impacto, como el huracán Katrina, el tsunami de Indonesia y los atentados terroristas. La sociedad moderna depende en gran medida del funcionamiento casi continuo de sistemas de infraestructura vitales, como los de transporte, suministro de agua, alcantarillado, energía y telecomunicaciones. Estas infraestructuras están compuestas por elementos tangibles e intangibles que forman redes socioeconómicas y técnicas complejas e interdependientes. La interrupción grave de estos «salvavidas» puede tener enormes impactos negativos en las estructuras económicas y sociales de las comunidades humanas. Los conceptos de resiliencia, junto con los enfoques de protección, son fundamentales para garantizar la continuidad operativa de la infraestructura durante y después de tales eventos. La actual urbanización mundial ha aumentado también la población que depende de estas infraestructuras, lo que subraya aún más la necesidad de resiliencia.
En ingeniería, la resiliencia se define como la capacidad de un sistema de infraestructuras para absorber el impacto de una perturbación, mantener un nivel básico de servicio y recuperarse en un tiempo y con un coste socialmente aceptables. No basta con diseñar estructuras robustas que no se caigan; también es importante que, cuando sufran un daño o una interrupción inevitable, puedan volver a funcionar lo antes posible. A diferencia de la fiabilidad, que mide la probabilidad de que un sistema funcione sin fallos, o de la vulnerabilidad, que estima el grado de daño probable, la resiliencia se centra en el comportamiento del sistema antes, durante y después de la crisis.
Imaginemos una red de agua urbana: si sus tuberías están bien mantenidas y cuentan con sensores de fuga, será fiable, ya que es poco probable que falle; si, a pesar de todo, se produce una rotura y existen válvulas de sectorización, equipos de reparación rápida y depósitos de reserva, será resiliente, puesto que el servicio se recuperará en poco tiempo y con costes asumibles; y si la avería afecta a un hospital o a una zona muy poblada, mostrará una alta vulnerabilidad debido al gran impacto inicial.
Resiliencia en el diseño de infraestructuras
Un sistema resiliente se caracteriza por cuatro atributos fundamentales: robustez, que es la capacidad de resistir eventos disruptivos sin que su rendimiento se vea significativamente afectado; redundancia, que implica contar con elementos o recursos alternativos que puedan suplir a los que fallen durante una interrupción; inventiva, que es la capacidad de identificar problemas, priorizar acciones, movilizar recursos y procedimientos de manera eficaz para responder y recuperarse, y rapidez, es decir, la capacidad de contener daños y restaurar el funcionamiento a niveles aceptables en el menor tiempo posible. Además, la resiliencia se manifiesta a través de cuatro dimensiones (técnica, organizativa, social y económica), lo que subraya su carácter multidisciplinar y su relevancia para los sistemas de infraestructura civil.
Valoración de la resiliencia tras un evento extremo (Anwar et al., 2019)
Una de las formas más gráficas de explicar la resiliencia es mediante la curva de funcionalidad, también conocida como «triángulo de resiliencia». Imaginemos una red de suministro eléctrico que opera al 100 % de su capacidad. En el momento en que ocurre un huracán, la funcionalidad del sistema cae en picado, digamos, hasta un 40 %. A partir de ese momento, comienza la recuperación. En algunos casos, la curva puede ser lineal, con una mejora progresiva hasta alcanzar de nuevo el 100 %. En otros, puede presentar una forma exponencial, con una recuperación inicial rápida que se ralentiza al final. También puede ser trigonométrica, comenzando la recuperación lentamente y acelerándose después. El área bajo la curva, es decir, la «superficie» del triángulo de resiliencia, representa la pérdida acumulada de servicio y, por tanto, el coste social del fallo. Esta herramienta permite a los ingenieros comparar estrategias: un sistema con redundancia puede experimentar una caída inicial menor, mientras que otro con mejores recursos de reparación puede recuperarse más rápidamente.
Curvas de resiliencia: patrones de recuperación tras un evento disruptivo
La resiliencia de las infraestructuras no es un concepto aislado de la ingeniería estructural, sino que se nutre de múltiples disciplinas. La ecología, por ejemplo, plantea la idea de que los sistemas no siempre regresan a su estado original, sino que pueden alcanzar nuevos equilibrios tras un evento disruptivo. La economía ayuda a valorar las pérdidas no solo en términos de daños materiales, sino también en costes indirectos, como la pérdida de productividad o el impacto en la actividad social. Las ciencias sociales, por su parte, nos recuerdan que las infraestructuras existen para servir a la comunidad y que el tiempo de recuperación aceptable depende de la tolerancia y de las necesidades de la sociedad. La teoría de grafos, por su parte, ofrece herramientas matemáticas para analizar redes como las de agua o de telecomunicaciones e identificar qué nodos son críticos y qué sucede si se eliminan de forma aleatoria (simulando un desastre natural) o intencionada (como en un ataque).
Perspectiva interdisciplinaria de la resiliencia de las infraestructuras
Las infraestructuras modernas están muy interconectadas, por lo que existe un mayor riesgo de fallos en cadena: por ejemplo, un corte de energía puede afectar al suministro de agua, a las comunicaciones y al transporte. Aunque existen acuerdos de ayuda mutua entre sistemas para apoyarse durante las interrupciones, ello no garantiza que cada sistema sea más resiliente por sí mismo. Un evento grave que afecte a toda la región podría dejar a cada servicio dependiendo únicamente de sus propios recursos. Además, si se confía demasiado en la ayuda externa, se frena el desarrollo de la resiliencia propia. Por eso, es fundamental evaluar la resiliencia de cada sistema de manera individual para que esté mejor preparado ante fallos generalizados y situaciones imprevistas.
Los ejemplos de interdependencia entre infraestructuras ilustran bien la complejidad del problema. Imaginemos un terremoto que daña simultáneamente la red eléctrica y la de agua potable. Las estaciones de bombeo necesitan energía para funcionar, mientras que algunas centrales térmicas requieren agua para la refrigeración. Si falla la electricidad, no habrá agua, y si no hay agua, puede peligrar la producción de electricidad. Este círculo vicioso muestra cómo una perturbación localizada puede propagarse en cascada a otros sectores, multiplicando su impacto. Por ejemplo, un fallo en las telecomunicaciones puede impedir la coordinación de la reparación de carreteras o la distribución de combustible, lo que alarga los tiempos de recuperación. Estos ejemplos subrayan la importancia de diseñar infraestructuras robustas y conscientes de sus interconexiones.
Esquema de interdependencia de infraestructuras críticas: visualiza cómo agua, energía, telecomunicaciones y transporte dependen unas de otras y de la sociedad.
Para los futuros ingenieros, la resiliencia implica un cambio de mentalidad. No se trata solo de dimensionar una estructura para soportar una carga extrema, sino de considerar cómo responderá todo el sistema ante un fallo parcial. Supone aceptar la incertidumbre y trabajar con escenarios probabilísticos en los que se consideran eventos disruptivos, como el envejecimiento de los materiales, las sequías prolongadas o las crisis energéticas. Implica integrar la resiliencia en la gestión de activos y tomar decisiones como, por ejemplo, si es más eficaz duplicar una tubería para garantizar la redundancia o disponer de brigadas de intervención rápida que acorten los tiempos de reparación.
Traducir la resiliencia en aplicaciones prácticas para la infraestructura civil es todo un desafío debido a su complejidad y a su naturaleza transdisciplinaria. Las definiciones varían según la disciplina; es difícil medirla, y muchas metodologías se centran en aspectos aislados sin considerar su interacción. Además, para integrarla en los sistemas de gestión existentes y pasar del concepto teórico a la práctica, es necesario adoptar un enfoque integral que tenga en cuenta la variabilidad de los eventos disruptivos, las dimensiones técnicas y sociales, las implicaciones económicas y las características de red del sistema.
En conclusión, la resiliencia de las infraestructuras civiles no es un lujo, sino una necesidad estratégica en un mundo marcado por el cambio climático, la creciente urbanización y las redes interdependientes. Para los estudiantes de ingeniería, representa un campo fértil en el que confluyen la técnica, la economía y la sociedad, y en el que la innovación tendrá un impacto directo en la seguridad y la calidad de vida de millones de personas. Comprender y aplicar este enfoque significa prepararse para un futuro en el que la incertidumbre será constante, pero en el que nuestra mayor fortaleza será la capacidad de adaptación.
Os paso un vídeo que puede sintetizar bien las ideas de este artículo.
Referencias:
ANWAR, G.A.; DONG, Y.; ZHAI, C. (2020). Performance-based probabilistic framework for seismic risk, resilience, and sustainability assessment of reinforced concrete structures. Advances in Structural Engineering, 23(7):1454-1457.
BRUNEAU, M.; CHANG, S.E.; EGUCHI, R.T. et al. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra 19(4): 733–752.
GAY, L. F.; SINHA, S. K. (2013). Resilience of civil infrastructure systems: literature review for improved asset management. International Journal of Critical Infrastructures, 9(4), 330-350.