Study on Improving Labor Productivity in the Construction Industry. The Cases of Europe and Hong Kong

Labor productivity is one the least studied areas within the construction industry. Productivity improvements achieve high cost savings with minimal investment. Due to the fact that profit margins are small on construction projects, cost savings associated with productivity are crucial to becoming a successful contractor. The chief setback to improving labor productivity is measuring labor productivity.

However, labor productivity involves many aspects. The aim of this research is to focus in some of them such as construction trades and how different factors affect their labor productivity through benchmarking in both online and hard copy format. A list of 37 construction trades was selected based on the Construction Industry Council of Hong Kong (CIC) in order to see their construction cost, labor cost and labor shortage criticality and their automation level. A list of 40 factors affecting the labor productivity was selected based on experts at The Hong Kong University of Science and Technology, in order to see in which level they affect the critical construction trades labor productivity found previously. Both results were analyzed using the relative importance index (RII).

These results are used in an additional case study, based on the comparison of them with another study with the same objectives did by some colleagues from The Hong Kong University of Science and Technology. An additional improvement of the labor productivity can be done by the mixture of both studies.

Results found previously can be used in a future study to create a tool to help contractor’s grade productivity on their projects in the preplanning stage and plan improvements in the most beneficial areas.

Reference:

ZABALLOS, I. (2016). Study on Improving Labor Productivity in the Construction Industry. The Cases of Europe and Hong Kong. Trabajo Final de Grado. Universitat Politècnica de València.

Descargar (PDF, 3.98MB)

¿Cómo aumentar la productividad a través de la medición del trabajo?

El estudio del trabajo compendia las técnicas que examina las tareas humanas en todos sus contextos y que llevan sistemáticamente a investigar los factores que influyen en la eficiencia y economía de la situación estudiada para su mejora. Consta de dos técnicas relacionadas entre sí. La primera, el estudio de métodos, se ocupa del modo de hacer un trabajo; la segunda, la medición del trabajo, tiene como meta averiguar cuánto tiempo se requiere para ejecutarlo.

La medición del trabajo se define como la aplicación de técnicas diseñadas para establecer el tiempo que tardará un trabajador calificado en realizar un trabajo específico efectuándolo según un método preestablecido. El trabajador calificado no debe confundirse con el trabajador representativo de un grupo. El primero es aquel de quien se reconoce que tiene las aptitudes físicas necesarias, que posee la inteligencia y la instrucción requeridas y que ha adquirido la destreza y conocimientos necesarios para efectuar el trabajo en curso según normas satisfactorias de seguridad, cantidad y calidad.

El primer objetivo de la medida del trabajo es la determinación de los tiempos improductivos y sus causas, eliminándolas mediante su análisis. Igualmente, se emplea como auxiliar del estudio de métodos para eliminar o disminuir el tiempo de trabajo. Para establecer la medida del trabajo de un recurso se siguen las siguientes fases:

  • Descomposición del tiempo de trabajo en elementos.
  • Medida del tiempo de los elementos con estimación simultánea del factor de velocidad y precisión (actividad).
  • Cálculo del tiempo normal de cada elemento o nivelación.
  • Cálculo del coeficiente de mayoración de cada elemento.
  • Obtención del ciclo de cada recurso.
  • Cálculo de la saturación de cada recurso en el equipo.

Para aclarar y ampliar estos conceptos, os dejo un Polimedia que espero sea de vuestro interés.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Por qué no nos salen las cosas siempre “exactamente” igual?

Siempre que intentamos hacer algo nunca nos sale “exactamente” igual. Por ejemplo, si corremos 100 m lisos y tuviésemos un cronómetro que nos midiera hasta 100 decimales, sería muy improbable que hiciésemos dos series en igual tiempo. Este concepto universal de la variabilidad es muy importante en los procesos productivos y en la calidad. Demos un pequeño repaso al concepto.

El enemigo de todo proceso es la variación, siendo la variabilidad inevitable. Cuando se fabrica un producto o se presta un servicio, es materialmente imposible que dos resultados sean exactamente iguales. Ello se debe a múltiples motivos, más o menos evitables. Por un lado existen múltiples causas comunes, aleatorias y no controlables que hacen que el resultado cambie siguiendo habitualmente una distribución de probabilidad normal. Se dice que dicho proceso se encuentra bajo control estadístico, siendo éste el enfoque que sobre el concepto de calidad propugna Deming y que vimos en un artículo anterior. Por otra parte, existen unas pocas causas asignables, que ocurren de forma fortuita y que podemos detectarlas y corregirlas. Ocurren de forma errática y, afortunadamente se solucionan fácilmente. Las causas comunes son difíciles de erradicar porque precisan de un cambio del proceso, de la máquina o del sistema que produce los resultados, siendo ese cambio una responsabilidad de la gerencia. Kaouru Ishikawa decía que el 85% de los problemas en un proceso son responsabilidad de la gerencia, siendo mal recibido dicho comentario por parte de la alta dirección de las empresas.

Para aclarar y entender estos conceptos, os dejo un Polimedia explicativo, de poco más de siete minutos, que espero os guste.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cómo escarificar con un buldócer?

La “ripabilidad” de una roca representa una medida del grado de dificultad de la misma para ser excavada con equipos de convencionales; mediante la rotura del terreno con un tractor o buldócer que permite su excavación o carga directa. Si bien hay numerosos factores que afectan la ripabilidad, como por ejemplo la resistencia fracturación, dirección del buzamiento de la roca, etc., en términos de producción, los factores dominantes son: la resistencia a la compresión simple de la roca, el grado de meteorización, la velocidad sísmica, la resistencia y rugosidad de las juntas, su separación, y sobre todo la masa del tractor. Las empresas constructoras de maquinaria suelen ofrecer gráficos como el que os dejo aquí abajo, donde se establecen los valores (en función de la velocidad sísmica) para los cuales un terreno es ripable.

 

 

 

Ripabilidad (D9) vs. Velocidad de Onda Sísmica (Caterpillar, Handbook of Ripping 8th Edition)

Ahora hablaremos del escarificador. Es un equipo que un tractor oruga pesado  lleva en su parte posterior un bastidor, accionado hidráulicamente, provisto de uno o varios dientes rompedores. Con el avance del tractor y accionado mediante cilindros hidraúlicos, el diente escarificador o “ripper”, provisto en su extremo de una uña dirigida hacia abajo, penetra y desgarra el terreno cuando éste es excesivamente duro o cohesivo para ser removido con la hoja frontal. Actualmente los tractores más utilizados en los trabajos de escarificación son los de peso igual o superior a las 35 t. y potencia igual o superior a los 300 CV. La pregunta es: ¿qué podemos hacer para conseguir una mayor producción, un menor coste y una mayor seguridad al trabajar ripando? A continuación os dejo un Polimedia y varios vídeos para recordar los conceptos básicos sobre el tema. Espero que os gusten.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Cálculo de la capacidad de la hoja empujadora de un buldócer

Bulldozer

La capacidad de la hoja empujadora de un buldócer (bulldozer en inglés) depende de la geometría de dicha hoja y de las características del material que va a empujar. Es importante limitar la capacidad de la hoja en función de la potencia del tractor y de las características del material. Puede admitirse que la sección del volumen de tierra acumulada delante de la hoja y en la dirección del empuje, forma una cuña, cuya altura es la altura de la hoja “H”, y cuya base depende del ángulo de reposo o talud natural del material, que denominaremos “α”. Es fácil deducir que el volumen teórico sería, considerando que el terreno es llano:

formuladonde,

VL = Volumen de material suelto.

L = Anchura de la hoja empujadora.

H = Altura de la hoja empujadora.

α = Ángulo del talud en reposo del material.

La siguiente tabla proporciona, para distintos materiales, sus ángulos de talud en reposo y el factor 1/2 tgα:

Tabla

Los distintos fabricantes de maquinaria nos proporcionan directamente la capacidad de cada hoja, o un coeficiente del tipo de hoja “K”, que multiplicando a L·H2 nos da su capacidad. Dicho coeficiente es habitual que se acerque a 0,80 para las hojas universales y varía entre 0,5 y 0,7 para las hojas rectas.

Por si os gustan los nomogramas, os dejo uno que hemos hecho en colaboración con el profesor Pedro Martínez Pagán. Espero que os sea de interés.

Os dejo a continuación un enlace a una calculadora on-line para que podáis calcular gráficamente la capacidad de la hoja del bulldozer. El enlace es: https://laboratoriosvirtuales.upv.es/eslabon/CapacidadBulldozer/default.aspx

Produccion bulldozer

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué es la distancia crítica de transporte?

https://www.excavacionesblancocorral.com/

Aquí nos vamos a ocupar de la distancia crítica de transporte. En un movimiento de tierras, por ejemplo, es aquella distancia en la que el equipo de cargadoras y camiones está equilibrado. Es decir, ni sobran ni faltan camiones o cargadoras. O dicho de otra forma, es la distancia de transporte en la que no existen esperas en las máquinas. Esta es una distancia teórica, puesto que para calcularla debemos conocer todos los datos de antemano, y estos no son deterministas. Por otra parte, en obra ocurre lo contrario: tenemos una distancia de transporte como dato, pero en este caso se trataría de saber cuántos camiones y cargadoras serían necesarios para que no existiesen demoras. Afortunadamente en obra se puede corregir rápidamente cualquier desfase. Para entender este concepto os paso un laboratorio virtual que usan nuestros alumnos para facilitar la comprensión de este concepto. Espero que os guste.

Para acceder al laboratorio virtual, pinchar aquí: Distancia crítica de transporte

Distancia crítica

Referencias:

YEPES, V. (1995). Maquinaria de movimiento de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-264. 144 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

 

 

¿Cómo se determina la producción de los equipos?

¿Cómo podemos averiguar la producción de una máquina en una obra? Muchas veces se cometen errores de bulto a la hora de establecer el volumen producido de los equipos por parte de los responsables de una obra. No es apropiado acudir a libros, folletos o incluso obras anteriores; tampoco es lo mismo una máquina que trabaje en solitario que un grupo de ellas que trabajen coordinadas. Cada obra tiene sus peculiaridades y es fácil cometer errores que pongan en riesgo la previsión de resultados correspondiente. En posts anteriores ya resaltamos la importancia de la productividad y del fondo horario de la maquinaria. No basta con conocer con precisión el coste horario de las máquinas, sino que es imprescindible conocer la producción de los equipos en nuestra obra para poder establecer el coste unitario correspondiente. Vamos, pues a dar una pincelada a estos conceptos. Para ello os dejo una presentación sobre la producción de los equipos que se basa en los apuntes de clase de la asignatura Procedimientos de Construcción. Espero que os guste este Polimedia divulgativo.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Seis sigma en la gestión de la construcción?

En artículos anteriores nos hemos referido a temas tan importantes como el despilfarro y los costes de calidad en las empresas. Seis Sigma constituye una metodología de gestión que ha significado para ciertas empresas una reducción drástica de sus fallos y costes de calidad. Si bien esta metodología se desarrolló fundamentalmente para disminuir la variabilidad de procesos repetitivos, también es verdad que la filosofía que subyace en Seis Sigma posiblemente pueda reducir significativamente el coste y el número de fallos debido a una calidad deficiente en el diseño y la ejecución de los proyectos de construcción. Veamos aquí, como siempre, con ánimo divulgativo, alguno de los aspectos más característicos de esta metodología.

La historia de Seis Sigma se inicia a mediados de los años 80 en Motorola, cuando un ingeniero (Mikel Harry) comienza a estudiar la reducción en la variación de los procesos para mejorarlos. Esta herramienta tenía una fuerte base estadística y pretendía alcanzar unos niveles de calidad en los procesos y en los productos de la organización próximos a los cero defectos. Constituye una metodología sistemática para reducir errores, concentrándose en la mejora de los procesos, el trabajo en equipo y con una gran implicación por parte de la Dirección (de Benito, 2000; Membrado, 2004; Harry y Schroeder, 2004).

En los años 90, Jack Welch, presidente de General Electric, decidió utilizar Seis Sigma consiguiendo resultados económicos espectaculares. Desde entonces, Seis Sigma se ha convertido en una de las herramientas de mejora más empleadas, habiendo sido adoptada por compañías como Motorola, General Electric, Allied Signal, Polaroid, Toshiba, Honeywell, City Bank o American Express. Más recientemente, Seis Sigma ha llegado a Europa, donde numerosas empresas están empezando a implantarla (en España, empresas como Telefónica, e-La Caixa o Iberia).

La letra griega sigma (s) se emplea en estadística para representar la variación típica de una población. El “nivel sigma” de un proceso mide la distancia entre la media y los límites superior e inferior de la especificación correspondiente (Figura 3). Ha sido habitual considerar como suficiente que un proceso tuviese una desviación de ±3s, lo cual significa que dicho proceso era capaz de producir solo 2,7 defectos por cada mil oportunidades. La idea de un “porcentaje de error aceptable” (a veces denominado un “nivel de calidad aceptable”) es un curioso remanente de la era del “control de calidad”. En aquellos tiempos se podían encontrar maneras de justificar estadísticamente los naturales fallos humanas, sosteniendo que nadie podía ser perfecto. Hoy día dicho nivel de calidad es inaceptable para muchos procesos (supondría aceptar 68 aterrizajes forzosos en un aeropuerto internacional cada mes, o bien 54.000 prescripciones médicas erradas por año). Seis Sigma hace referencia a un nivel de calidad capaz de producir con un mínimo de 3,4 defectos por millón de oportunidades (0,09 aterrizajes forzosos en un aeropuerto internacional cada mes, o una prescripción médica errada en 25 años). Esta calidad se aproxima al ideal del cero-defectos y puede ser aplicado no solo a procesos industriales, sino a servicios y, por supuesto, al proceso proyecto-construcción.

Niveles sigma de un proceso
Niveles sigma de un proceso

Sin embargo, los principios estadísticos anteriores poco tienen que ver con lo que actualmente se entiende por Seis Sigma. De hecho, es una filosofía que promueve la utilización de herramientas y métodos estadísticos de manera sistemática y organizada, que permite a las empresas alcanzar considerables ahorros económicos a la vez que mejorar la satisfacción de sus clientes, todo ello en un periodo de tiempo muy corto.

Los cambios radicales se consiguen básicamente traduciendo las necesidades de los clientes al lenguaje de las operaciones y definiendo los procesos y las tareas críticas que hay que realizar de forma excelente. En función de las intervenciones de análisis y mejora siguientes, Seis Sigma lleva el funcionamiento de los productos, servicios y procesos a niveles nunca conseguidos anteriormente.

Seis Sigma se utiliza para eliminar los costes de no calidad (desperdicios, reprocesos, etc.), reducir la variación de un aspecto o característica de un producto, acortar los tiempos de respuesta a las peticiones de los clientes, mejorar la productividad y acortar los tiempos de ciclo de cualquier tipo de proceso, centrándose en aquellas características o atributos que son clave para los clientes y, por tanto, mejorando notablemente su satisfacción. Para ello, la Dirección identifica las cuestiones que más incidencia tienen en los resultados económicos y asigna a los mejores profesionales, tras formarlos intensivamente, a trabajar en los mismos.

Los elementos clave que soportan la filosofía Seis Sigma son los siguientes: (a) conocimiento de los requerimientos del cliente, (b) dirección basada en datos y hechos, (c) mejora de procesos y (d) implicación de la Dirección.

Un elemento básico en Seis Sigma es la formación. Para ello se definen diferentes papeles para distintas personas de la organización, con denominaciones peculiares y características. El directivo que va a definir, concretar, monitorizar y apoyar los proyectos de mejora se designa Champion. Para desarrollar estos proyectos se escogen y preparan expertos conocidos con los nombres de Master Black Belt, Black Belt y Green Belt, quienes se convierten en los agentes de cambio, en conjunto con los equipos de trabajo seleccionados para los mismos.

LA METODOLOGÍA SEIS SIGMA

El proceso comienza con un “cambio radical… de actitud”. La Dirección debe ser consciente de que la mejora continua ya no es suficiente para alcanzar los objetivos estratégicos, financieros y operativos. La mejora radical es necesaria para reducir con rapidez los desperdicios crónicos.

Los proyectos son seleccionados en función de los beneficios. La empresa Seis Sigma aporta una metodología de mejora basada en un esquema denominado DMAIC: Definir los problemas y situaciones a mejorar, Medir para obtener la información y los datos, Analizar la información recogida, Incorporar y emprender mejoras en los procesos y, finalmente, Controlar o rediseñar los procesos o productos existentes. Las claves del DMAIC se encuentran en:

  • Medir el problema. Siempre es necesario tener una clara noción de los defectos que se están produciendo, tanto en cantidad como en coste.
  • Enfocarse al cliente. Sus necesidades y requerimientos son fundamentales, y deben tenerse siempre en consideración.
  • Verificar la causa raíz. Es necesario llegar hasta la causa relevante de los problemas, y no quedarse en los efectos.
  • Romper los malos hábitos. Un cambio verdadero requiere soluciones creativas.
  • Gestionar los riesgos. La prueba y el perfeccionamiento de las soluciones es una parte esencial de Seis Sigma.
  • Medir los resultados. El seguimiento de cualquier solución significa comprobar su impacto real.
  • Sostener el cambio. La clave final es conseguir que el cambio perdure.

La metodología DMAIC hace mucho énfasis en el proceso de medición, análisis y mejora y no está planteada como un proceso de mejora continua, pues los proyectos Seis Sigma deben tener una duración limitada en el tiempo. Los proyectos Seis Sigma surgen bajo el liderazgo de la Dirección, quien identifica las áreas a mejorar, define la constitución de los equipos y garantiza el enfoque hacia el cliente y sus necesidades y a los ahorros económicos. Sin embargo, antes de que un equipo Seis Sigma aborde el ciclo de la mejora, han de desarrollarse una serie de actividades necesarias para el éxito del proyecto: (1) identificación y selección de proyectos, (2) constitución del equipo, (3) definición del proyecto, (4) formación de los miembros del equipo, (5) ejecución del proceso DMAIC y (6) extensión de la solución.

Seis Sigma utiliza casi todo el arsenal de herramientas conocidas en el mundo de la calidad. Sin embargo, no son los instrumentos los que fundamentan por sí solos el éxito de la metodología Seis Sigma; de hecho, es la infraestructura humana y su formación la que con estas herramientas consigue el éxito.

Metodología DMAIC para la mejora
Metodología DMAIC para la mejora

Referencias:

  • DE BENITO, C.M. La mejora continua en la gestión de calidad. Seis sigma, el camino para la excelencia. Economía Industrial, 331, p. 59-66.
  • HARRY, M.; SCHROEDER, R. Six Sigma. Ed. Rosetta Books, 2000.
  • MEMBRADO, J. Curso Seis Sigma. Una estrategia de mejora. Qualitas Hodie, 95, p. 16-21.
  • PÉREZ, J.B.; SABADOR, A. Calidad del diseño en la construcción. Ed. Díaz de Santos, 2004.
  • YEPES, V.; PELLICER, E. (2005). Aplicación de la metodología seis sigma en la mejora de resultados de los proyectos de construcción. Actas IX Congreso Internacional de Ingeniería de Proyectos. Málaga, 22, 23 y 25 de junio de 2005, libro CD, 9 pp. ISBN: 84-89791-09-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué es “Lean Construction”?

Profesor Lauri Koskela
Profesor Lauri Koskela

Lean Construction constituye una nueva filosofía orientada hacia la administración de la producción en construcción, cuyo objetivo fundamental es la eliminación de las actividades que no agregan valor (pérdidas). Este modelo denominado “construcción sin pérdidas”, propuesto por Lauri Koskela (1992) , analiza los principios y las aplicaciones del JIT (justo a tiempo) y TQM (gestión de la calidad total). Esta filosofía introduce cambios conceptuales en la gestión de la construcción con el objeto de mejorar la productividad enfocando todos los esfuerzos en la estabilidad del flujo de trabajo.

Una herramienta de planificación y control desarrollada por Ballard y Howell para reducir las pérdidas del proceso productivo es la denominada “último planificador” (Last Planner System). El método incluye la definición de unidades de producción y el control del flujo de actividades, mediante asignaciones de trabajo. Asimismo, sirve para detectar el origen de los problemas y tomar las decisiones correspondientes para ajustar las operaciones, lo cual incide directamente en la productividad.

Os dejo unos vídeos introductorios al tema que espero os gusten.

Enlaces de interés:

Lean Construction Institute: http://www.leanconstruction.org/

Spanish Group for Lean Construction: http://www.leanconstruction.es/

¿Por qué las máquinas pierden tanto tiempo en las obras?

Cargadora de descarga lateral¿Qué hace una máquina desde que llega a una obra? ¿Por qué se pierde dinero en una obra cuando las máquinas se encuentran paradas? Resulta evidente que es totalmente engañoso intentar hacer un presupuesto de una obra con datos erróneos en relación con la producción de los equipos, el uso del tiempo de la máquina, la organización de la obra, etc. Existen técnicos sin mucha experiencia que piensan que los datos de producción o incluso los costes horarios de las máquinas son datos que alguien nos tiene que dar y que se pueden buscar en folletos e incluso por internet. En este post vamos a intentar divulgar alguno de los conceptos básicos que tienen que ver con la producción de los equipos y que iremos ampliando en otros posts posteriores. Espero que os guste.

De los días que una máquina permanece en una obra, sólo una parte es reconocida por la legislación laboral y la organización de la obra para trabajar: es el tiempo de calendario laborable. El resto del tiempo la máquina permanece estacionada o puede ser utilizado para su mantenimiento o reparación. Las máquinas sólo pueden aprovechar un número de horas del calendario laborable denominado tiempo laborable real Hl debido a circunstancias fortuitas como los fenómenos atmosféricos, las huelgas, las catástrofes y otros motivos no previstos. La máquina se encuentra operativa, apta y dispuesta para el trabajo durante el tiempo de máquina en disposición Hd. Cuando la máquina se encuentra fuera de disposición, unas horas Hm se emplean en tareas previsibles como el mantenimiento, y otras horas Ha son imprevisibles como las reparaciones de averías. Un equipo en estado operativo puede estar parado Hp horas por causas ajenas a la propia máquina debido a una deficiente organización de la obra, a la falta de tajo, a la imprevisión de los suministros, al mal dimensionamiento de los equipos, a las averías de otras máquinas, etc. Por tanto una máquina sólo dispone de un tiempo de trabajo útil Hu, donde puede producir durante Ht horas, o bien realizando trabajos no productivos o complementarios como cambios o preparación de tajos durante Hc horas.

Os paso a continuación un Polimedia donde se repasan estos conceptos y se profundiza sobre el fondo horario de una máquina en una obra. También os dejo como referencia algunos títulos de los libros de apuntes que seguimos en las clases de Procedimientos de Construcción en la Escuela de Ingenieros de Caminos de Valencia.

 Referencias

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.