¿Cuándo hay que comprar o renovar la maquinaria empleada en la construcción?

La adquisición de maquinaria puede motivarse, bien por la implantación de un proceso novedoso, por la mejora de otro ya existente, por el incremento de la capacidad de producción, o simplemente por una sustitución periódica de otra máquina similar que llegó al término de su vida económica. El conocimiento de las causas que provocan la pérdida de valor de las máquinas proporciona las pautas para su renovación, que dependerán, en gran medida, de las disponibilidades y circunstancias de la empresa. El envejecimiento de los equipos, una producción baja o con unos costes elevados y el mercado de maquinaria nueva y usada son algunos de los criterios que deberían guiar a la empresa en la adquisición de una máquina. Además, deben considerarse otros factores como el estado general de la economía, el futuro de la empresa y sus necesidades inmediatas, los objetivos a largo plazo y la selección de los medios adecuados para sus logros. Sin embargo, la realidad es que la necesidad concreta que surge en una obra determinada es la que plantea la adquisición de una nueva máquina.

El problema de la renovación es independiente de la dimensión de las organizaciones. Las pequeñas empresas deben afrontar el reemplazamiento de los equipos con la misma amplitud que las grandes, so pena de soportar serios problemas de descapitalización y de incrementos en los costes de producción. Las opciones a la compra de un equipo nuevo son la gran reparación, el alquiler, el arrendamiento financiero y la compra de máquinas usadas. Siempre que la empresa pueda abordar la adquisición de un nuevo equipo, son los criterios de rentabilidad económica durante la vida útil los que decidirán la opción más adecuada en cada caso. Como variantes a la adquisición de equipos para grandes obras, en ocasiones se compran los equipos para una obra y se venden a terceros cuando se termina, o bien se adquieren con el compromiso de recompra por parte del vendedor. Con ello se evita que estos equipos graven al parque de maquinaria por su falta de empleo. La maquinaria propia representa para la empresa un mayor potencial y prestigio, sin embargo supone un mayor inmovilizado, el riesgo de paralización si no existe suficiente obra, la necesidad de contar con un parque o servicio de maquinaria y el riesgo de personal excedente cuando se paran las máquinas. Una alternativa puede ser el alquiler.

Para profundizar un poco más en este tema, os paso un vídeo Polimedia sobre el tema. Espero que os guste.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Problemas resueltos de movimiento de tierras y compactación

En el año 1997 se editó un libro de problemas que se llamó “Equipos de movimiento de tierras y compactación. Problemas resueltos“. Aunque ya han pasado años, me apetecía empezar la semana haciendo algunos comentarios sobre esta publicación.

Uno de los peores defectos que puede tener una escuela de ingeniería es desligarse de la realidad. Si bien es cierto que la investigación debe ocupar una parte de las tareas a las que se debe encomendar la universidad, también es cierto que una escuela de ingenieros debe formar profesionales capaces de abordar problemas reales cotidianos. El movimiento de tierras y las labores de compactación son, probablemente, una de las tareas más habituales de cualquier obra de ingeniería civil. Sin embargo, es habitual que en numerosas escuelas esta faceta se presente con una profundidad más bien teórica, siendo lo práctico secundario.

Este tipo de reflexión me hizo coleccionar datos, casos resueltos y problemas reales que tuve que afrontar en mis primeros años de práctica profesional. Al principio era una colección dispersa cuyo único objetivo era sistematizar mi trabajo habitual en obras lineales, casi todas ellas autovías y carreteras. Sin embargo, cuando empecé mi labor universitaria, me di cuenta que este material podía ser de extraordinaria importancia para nuestros alumnos.

En este libro, que seguro necesita alguna revisión, se abordan aspectos económicos, de producción, mantenimiento, reparación, etc. Además aparecen casos resueltos relacionados con el control de calidad, tramos de prueba, propiedades de los suelos y otros que creo son de interés. Además, aparecen en forma de cuestionario tipo test preguntas que aparecieron en los primeros años de docencia de la asignatura de Procedimientos de Construcción que pueden servir para aclarar algunas ideas y conceptos. Por último, se han incorporado aspectos de otras disciplinas que son de aplicación directa al problema de los equipos de producción de este tipo de unidad de obra: ensayos de fiabilidad, el problema del transporte, el problema de la asignación, caminos mínimos entre nodos, etc. Son un total de 100 problemas resueltos, 166 preguntas tipo test y un apéndice de tablas aplicables a este tipo de problemas. Creo que, en este momento, no existe una publicación similar en español.

Os dejo a continuación algunas direcciones desde donde se puede acceder a esta publicación. Espero que no se haya agotado.

http://books.google.es/books/about/Equipos_de_movimiento_de_tierras_y_compa.html?id=BCDpMloopMcC

http://www.amazon.es/Equipos-Movimiento-Compactaci%C3%B3n-Problemas-Resueltos/dp/8477215510

http://www.casadellibro.com/opiniones-libro/equipos-de-movimiento-de-tierras-y-compactacion-problemas-resuel-tos/9788477215516/946443

Referencia:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

¿Por qué es tan importante la productividad?

Cuando se habla de productividad en el sector de la construcción, siempre se dice que ésta es baja en relación con otro tipo de industrias. Incluso también es común opinar sobre la baja productividad que tienen los trabajadores en un país o en otro, lo cual influye fuertemente en la competitividad. Parece evidente que, cuanto más seamos de producir con unos recursos dados, más competitivos podremos ser. En este post vamos a divulgar, de forma sencilla, un par de ideas en relación con este concepto tan importante y de tanta transcendencia en nuestro sector.

La productividad es la relación entre los bienes y servicios producidos y los recursos empleados para ello. Existen otros ratios que se refieren sólo a uno o a varios de los recursos empleados: productividad de la mano de obra directa, de la indirecta, de la maquinaria, de los materiales, del dinero, etc. La productividad es vital para el desarrollo de cualquier actividad empresarial, pues aquellas que no la mejoran respecto a su competencia están condenadas a desaparecer.

El estudio y la medición del trabajo son técnicas que han demostrado en la industria su eficiencia para mejorar la productividad. La construcción es un sector caracterizado por su trashumancia, por series de fabricación o unidades de obras limitadas, con un bajo grado de especialización, con personal contratado temporal elevado, con la existencia de subcontratistas, etc. Sin embargo ello no es óbice para la mejora de la productividad y la reducción de los costes.

Un incremento en la producción no refleja necesariamente un incremento en la productividad. Por ejemplo, si las entradas crecen en forma proporcional a las salidas, entonces la productividad es la misma. Para conseguir aumentar la productividad se debe buscar la eficiencia en todos los procesos que constituyen la actividad de la empresa. Según la OIT (Oficina Internacional del Trabajo), los medios directos para aumentar la productividad pueden resumirse en los siguientes:

a)      Inversión de capital:

  1. Idear nuevos procedimientos básicos o mejorar fundamentalmente los existentes.
  2. Instalar maquinaria o equipo más moderno, de mayor capacidad o modernizar los existentes.

b)      Mejor dirección:

  1. Reducir el contenido de trabajo del producto.
  2. Reducir el contenido de trabajo del proceso.
  3. Reducir el tiempo improductivo, ya sea imputable a la dirección o a los trabajadores.

La productividad no debe confundirse con el rendimiento, que es la relación entre lo realizado y lo previsto, ya sea en relación con la producción o con el tiempo destinado a realizar una actividad. El rendimiento contribuye a aumentar o disminuir la productividad sin modificar los medios de producción, sino su eficiencia.

La pérdida de productividad se debe, en lo que al tiempo de ejecución de los trabajos se refiere, a que el tiempo total invertido en la operación presenta ineficiencias por diversas causas. Así, el tiempo de trabajo se puede descomponer en (ver Figura):

Tiempo total invertido en un trabajo
Tiempo total invertido en un trabajo

a)            Contenido base de trabajo: la cantidad de trabajo, expresada en horas-hombre y horas-máquina, que sería necesario emplear para fabricar el producto o para desarrollar la actividad si el proyecto fuese perfecto, si el procedimiento o método de fabricación o de ejecución estuviesen perfectamente puestos a punto, si no existiesen pérdidas de tiempo imputables a cualquier causa (a parte de las pausas concedidas al ejecutor para el oportuno descanso). Por tanto el contenido base de trabajo es el tiempo mínimo irreducible de ejecución.

b)            Trabajo innecesario: es un trabajo suplementario debido a un mal diseño o especificaciones del producto, o bien a métodos ineficaces de producción o de funcionamiento.

c)            Tiempo inefectivo o improductivo: debido a una deficiente dirección o imputable al trabajador.

Os paso a continuación como referencias algunos títulos de los libros de apuntes que seguimos en las clases de Procedimientos de Construcción en la Escuela de Ingenieros de Caminos de Valencia. En próximos posts seguiremos profundizando en estos aspectos tan importantes para los jefes de obra.

Referencias

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 157 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

¿Qué es el Value Stream Mapping o mapa de flujo del valor?

Ejemplo de mapa de la cadena de valor. http://engineeringhelps.wordpress.com/

El mapa del flujo de valor es una herramienta utilizada en Lean manufacturing para analizar los flujos de materiales e información que se requieren para poner a disposición del cliente un producto o servicio, identificando las pérdidas de valor o desperdicios. Esta herramienta se desarrolló en Toyota donde se conocía con el nombre de Mapa del flujo de materiales e información.

Con este tipo de herramientas se pueden detectar para desarrollar una ventaja competitiva y evitar fallos en el proceso, además de crear un lenguaje normalizado dentro de la empresa para una mejor efectividad de los procesos y del personal. Se trata de intensificar los esfuerzos en aquellos procesos donde se produzcan más fallos o que aporten más valor a la producción. Aunque el mapa del flujo de valor se asocia tradicionalmente con el sector industrial, ha demostrado su efectividad para mejorar procesos en otros sectores, como el de servicios, logística, hospitalarios, desarrollo de software, etc.  El mapa de la cadena de valor  nos proporciona por si solo las respuestas pues es una herramienta muy útil en cualquier tipo de actividad de mejora.

Se pueden utilizar muchos tipos de símbolos para realizar estos mapas de flujo. Os dejo un ejemplo en la siguiente figura:

DIAGRAMA DE FLUJO

Fases para su implantación:

  1. Identificar el producto o servicio
  2. Dibujar el mapa de flujo de valor tal como está el proceso, mostrando cada una de las etapas, las esperas y las informaciones que se requieren para entregar el producto o servicio. Existen símbolos estandarizados que representan los distintos elementos de la cadena de valor.
  3. Identificar sobre el mapa los desperdicios que se encuentran (aquello que no aporta valor para el cliente). Para ello suelen buscarse los 7 desperdicios según el lean: sobreproducción, tiempo de espera, transportes innecesarios, exceso de procesado, inventario, movimientos innecesarios y defectos.
  4. Dibujar el mapa de estado futuro, es decir, el mapa como queda una vez eliminados los desperdicios.
  5. Implementar un plan de acciones de mejora (eventos kaizen) para llegar al mapa de estado futuro.

A continuación os dejo varios Polimedias de la Universitat Politècnica de València donde se explican bien esta herramienta. En el primero Juan Antonio Marín García nos explica la herramienta VSM, en qué consiste y qué puede aportar para la mejora de procesos.

En este otro vídeo se muestran los principales símbolos que representan el movimiento de información en un mapa de la cadena de valor. Su autor es Julio García Sabater. Espero que os guste.

 

 

Acoplamiento de máquinas de transporte y movimiento de tierras

Un caso habitual en la construcción consiste en la utilización de varias máquinas cuyos ciclos individuales de trabajo tienen un intervalo común. Por ejemplo, una cargadora con varios camiones, o bien un equipo de mototraíllas convencionales ayudadas en su carga por un tractor. En estos casos, los ciclos individuales de las máquinas se pueden agrupar formando un ciclo del equipo que se repite periódicamente.

Al recurso que limita la producción de un equipo se le denomina cuello de botella. Su identificación es esencial porque cualquier cambio introducido en el funcionamiento repercutirá en la capacidad de producción del equipo, y por ende, en su productividad.  El recurso que causa el estrangulamiento es el que determina la producción del equipo. Se define como factor de acoplamiento o “match factor” a la relación entre la máxima producción posible de los equipos auxiliares respecto a la máxima producción posible de los equipos principales. El coste más bajo de producción se obtiene para factores de acoplamiento próximos a la unidad, pero por debajo de ella.

Para aclarar estos conceptos tan importantes en el cálculo de producciones y costes en las máquinas de movimiento de tierras, os paso este Polimedia para divulgar los conceptos básicos. Espero que os guste.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

Tendencia al gigantismo en la maquinaria de obras públicas y minería

La maquinaria ha cambiado rápidamente con las innovaciones tecnológicas. Se ha derivado hacia la especialización, evolucionando unas hacia el gigantismo para obtener grandes producciones, mientras otras se han convertido en diminutas y versátiles. En otros casos se ha buscado la polivalencia del trabajo en equipos pequeños y medianos. Los medios informáticos han auxiliado y mejorado los sistemas de los equipos. La maquinaria va siendo cada vez más fiable, segura y cómoda para el operador, facilitándole las labores de conservación. En general se observa una preocupación creciente por la seguridad, el medio ambiente y la calidad.

Como muestra de la tendencia al gigantismo en la maquinaria de ingeniería civil y minería, os paso un pequeño documental donde se muestran brevemente estas megamáquinas. Espero que os guste.

Os paso ejemplos de máquinas gigantes. La grúa torre Kroll K-10000 es la más grande del mundo. Fue fabricada por la marca danesa Kroll y es capaz de levantar pesos de 132 toneladas de carga máxima y 91 toneladas a una distancia máxima de 100 m.

El Bulldozer D575A-3SD tiene casi 5 metros de altura y fue diseñado y fabricado en Japón. Esta potente máquina rebasa los 12 m de ancho y puede mover más de 215 toneladas de una sola vez.

La Bagger 288, es una excavadora giratoria empleada fundamentalmente en trabajos de minería. Una vez entró en funcionamiento, se convirtió en el vehículo de carga sobre tierra firme más grande del mundo. Mide 220 metros de largo, 96 de alto y 46 de ancho.

El BelAZ 75710 pesa 810 toneladas, 210 toneladas más que el Caterpillar, y tiene una capacidad de carga de 450 toneladas. Cuenta con dos motores turbodiésel de 16 cilindros asociados que generan 4.600 caballos con un par máximo de 18.626 Nm.

La motoniveladora ACCO se considera la mayor motoniveladora del mundo. Esta máquina pesa unas 200 toneladas y contiene dos motores Caterpillar, uno de 1000 CV en la parte trasera y otro de 700 CV en la parte delantera, la cual pertenece a la cabeza tractora de una mototraílla Caterpillar 657. La hoja o cuchilla posee una longitud de 10 m.

 

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

¿Podemos cumplir con las tolerancias exigidas en obra?

No es raro verse en una situación comprometida cuando vemos que nuestra planta de fabricación de hormigón o de aglomerado asfáltico empieza a no cumplir con las exigencias de calidad del producto terminado. Empezamos a buscar culpables por todos los sitios y no nos damos cuenta que el problema está en el procedimiento, las máquinas empleadas o las propias personas. En definitiva, nuestro proceso es incapaz de cumplir con las tolerancias solicitadas para nuestro producto. Hay que tener esta idea muy clara pues existe cierta variabilidad debida a causas comunes que sólo se podrá solucionar si se cambia la máquina o el proceso, lo cual implica una decisión por parte de la alta dirección. Este aspecto lo hemos explicado en un artículo anterior.

Después de comprobar que el proceso está bajo control, el siguiente paso es saber si es un proceso capaz, es decir, si cumple con las especificaciones técnicas deseadas, o lo que es lo mismo, comprobar si el proceso cumple el objetivo funcional. Se espera que el resultado de un proceso cumpla con los requerimientos o las tolerancias que ha establecido el cliente. El departamento de ingeniería puede llevar a cabo un estudio sobre la capacidad del proceso para determinar en que medida el proceso cumple con las expectativas.

La habilidad de un proceso para cumplir con la especificación puede expresarse con un solo número, el índice de capacidad del proceso o puede calcularse a partir de los gráficos de control. En cualquier caso es necesario tomar las mediciones necesarias para que el departamento de ingeniera tenga la certeza de que el proceso es estable, y que la media y variabilidad de este se pueden calcular con seguridad. El control de proceso estadístico define técnicas para diferenciar de manera adecuada entre procesos estables, procesos cuyo promedio se desvía poco a poco y procesos con una variabilidad cada vez mayor. Los índices de capacidad del proceso son solo significativos en caso de que el proceso sea estable (sometidos a un control estadístico).

Para aclarar estas ideas, o paso un Polimedia explicativo que espero os guste.

¿Qué errores se comenten con los buldóceres?

En la entrada de hoy vamos a dar recomendaciones para el trabajo con los tractores sobre cadenas, también llamados buldóceres (bulldozers, en inglés). En español también se conocen como explanadoras o topadoras. La operación de las máquinas es un tema de gran trascendencia tanto económica como de seguridad. Una mala operación acarrea no sólo pérdidas de producción y encarecimiento de las unidades de obra, sino que en muchas ocasiones representa un maltrato de las máquinas y un problema grave de seguridad para las personas.

Siguiendo el carácter divulgativo de estas entradas, os paso un Polimedia referido a las recomendaciones que deberían seguirse para operar con los buldóceres.  Espero que os guste.

 

También podéis calcular, a continuación, cuál sería la capacidad de  producción de un bulldozer excavando:  https://laboratoriosvirtuales.upv.es/eslabon/CapacidadBulldozer/ 

Bulldozer

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Dimensionamiento de una explotación minera con una dragalina

DragalinaUna dragalina es una excavadora accionada por cables, compuesta por una pluma de grúa, con una polea de guía en su pie y un balde o cucharón de arrastre unido a la máquina solamente por cables. La máquina así dispuesta arrastra hacia sí el balde que ha lanzado y se va llenando a medida que es arrastrado, tirando de él la máquina y se vacía automáticamente en el momento en que se suelta el cable de dragado. Es la máquina de cables más utilizada hoy día, porque combina las operaciones de excavación, elevación y transporte, distinguiéndose de las demás por su trabajo mediante el arrastre del material.

La dragalina se ha concebido especialmente para operaciones de gran radio, o bien cuando los puntos de excavación y vertido están muy alejados entre sí y no se requiere gran precisión en la descarga; no obstante, cuando la distancia al vertedero es mayor de la correspondiente al alcance de la pluma, puede usarse el balde de arrastre para cargar vehículos, aunque opera mejor vertiendo directamente. Como, durante la excavación, las fuerzas aplicadas a la cuchara se reducen al propio peso del cucharón y al esfuerzo de tracción, se comprende que este aparato no pueda excavar materiales tan duros como los que se extraen mediante la pala cargadora o la retroexcavadora. Es especialmente adecuado en la extracción de canteras de balasto, yacimientos de gravas y arenas, terrenos pantanosos, bajo el mar o en el río, materiales sueltos, para nivelación de terrenos vírgenes, para la formación de grandes canales y para la descubierta de minas y canteras de cierta importancia.

A continuación, dejamos un objeto de aprendizaje donde nuestros alumnos tratan de entender cómo varía tanto el factor de alcance de una dragalina como la altura de la escombrera en función de la potencia del mineral, de la altura de contacto del pie de la escombrera con el frente lateral del mineral, con la anchura de corte de la explotación, con el espesor del estéril, con los ángulos del talud del estéril y del escombro, y con el factor de esponjamiento del estéril. Espero que os resulte útil.

Referencias:
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1995). Manual de arranque, carga y transporte en minería a cielo abierto. Ministerio de Industria y Energía.
  • YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 253 pág.
  • YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.
  • YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp.

 


Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.