Algunos de los tuits favoritos y más retuiteados en ingeniería y construcción

¿Qué significa que un tuit es favorito o es muy retuiteado? Probablemente, es que ha llamado la atención por algún motivo, es útil, interesante, ingenioso, presenta alguna fotografía espectacular o bien está tocando un tema candente. Pues bien, os dejo una muestra no exhaustiva de unos cuantos tuits que se han difundido por la red que tienen que ver con el mundo de la construcción, la ingeniería o la arquitectura. Seguro que seguirán aumentando sus retuits y más que seguro que se me olvidan muchos. He usado para ello la herramienta Favstar. Espero que os gusten. Por cierto, me podéis seguir en @vyepesp

 

https://twitter.com/Ing_Civ/status/495646215275839488

 

 

Caracterización estadística de tableros pretensados para carreteras

El presente artículo presenta una caracterización estadística de una muestra de 87 tableros reales de pasos superiores pretensados de canto constante para carreteras. El objetivo principal es encontrar fórmulas de predimensionamiento con el mínimo número de datos posible que permita mejorar el diseño previo de estas estructuras. Para ello se ha realizado un análisis exploratorio y otro multivariante de las variables geométricas determinantes, de las cuantías de materiales y del coste, tanto para tableros macizos como aligerados. Los modelos de regresión han permitido deducir que el canto y la armadura activa quedan bien explicados por la luz, mientras que la cuantía de hormigón lo es por el canto. La variable que mejor explica (71,3%) el coste por unidad de superficie de tablero en losa maciza es el canto, mientras que en las aligeradas es la luz (51,9%). Las losas macizas son económicas en vanos inferiores a los 19,24 m. La luz principal y los voladizos, junto con la anchura del tablero para el caso de losas macizas, o el aligeramiento interior en el caso de las aligeradas, bastan para predimensionar la losa, con errores razonables en la estimación económica.


Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los tramos de prueba en la compactación de suelos

Figura 1. Tramo de prueba de suelo seleccionado. https://twitter.com/cytemsl/status/888377967256244224/photo/1

La compactación de suelos suele ser uno de los procedimientos constructivos donde las patologías suelen aparecer debido a su mala ejecución. Debido a la multitud de factores que influyen en la compactación, para grandes volúmenes de obra, se aconseja la realización de tramos de prueba, donde se pueden establecer los criterios que, bajo la perspectiva económica, sean óptimos para llegar a la compactación especificada. Los tramos de prueba no suelen estar justificados en el caso de que los materiales sean suficientemente homogéneos y siempre resulta interesante cuando nos encontramos ante yacimientos importantes. En otro caso, no resulta económica su ejecución. Estos tramos de prueba están formados por una cuña, cuyo espesor llega hasta el máximo que se considere para el equipo empleado. Veamos brevemente cómo se puede determinar el espesor de tongada y número de pasadas óptimo.

Figura 2. Esquema de tramo de prueba (Rojo, 1988)

La humedad y naturaleza del suelo, el espesor de compactación, el equipo seleccionado para realizar la compactación, la velocidad de trabajo y el número de pases, entre otros, están relacionados entre sí, y con ellos se puede alcanzar la densidad exigida para cada caso. Ésta propiedad es cambiante con la profundidad de la capa, con una variación que depende del equipo de compactación, por lo que consideraremos una densidad media de capa. Los pliegos de condiciones pueden exigir que la compactación media de la capa sea superior a un determinado valor, mediante su densidad especificada, o bien que la compactación en cualquier punto sea superior a determinado valor. Hoy día se tienen en cuenta no sólo los valores medios, sino su dispersión.

La densidad es en general débil en los primeros centímetros, alcanzando su máximo a los 10 o 20 cm. y disminuyendo con rapidez de forma variable, según los materiales y el compactador utilizado. Sin embargo, el efecto de compactación de capas sucesivas produce un aumento de la compactación de forma que la densidad media de la capa se aproxima a la obtenida con el método de ensayo.

Figura 3. Distribución de la compactación en profundidad

Los máximos de las curvas de compactación, con el número de pases, van situándose cada vez más profundos cuando la compactación es vibratoria; en cambio van acercándose a la superficie en el caso de compactación por amasado (pata de cabra). Se dice en este último caso que la compactación es de “abajo hacia arriba”, tal y como vimos en un punto anterior.

El contenido de agua tiene un valor decisivo en la elección del grosor de la tongada, ya que para cada grueso existe una humedad óptima, creciendo ambas variables de forma conjunta. A mayor humedad, más efectiva es la acción del compactador en profundidad. Esta consideración es de gran importancia económica, ya que se puede elegir un grosor de capa en función de la humedad natural, antes de corregirla. También es decisivo a la hora de calcular rendimientos, tener perfectamente establecido el número de pases, que es menor con el espesor de capa.

Estos tramos de prueba están formados por una cuña, cuyo espesor llega hasta el máximo que se considere para el equipo empleado. Se miden las densidades que se obtienen en función del grosor de capa y del número de pases, formándose curvas como las reflejadas en la Figura 3.

Figura 4. Curvas de resultados del tramo de pruebas

Una vez se obtiene el conjunto de puntos “a”, “b”, etc., se elige el par formado por el número de pases y el espesor de tongada de mayor producción horaria.

El Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes establece en su artículo 330 que “cuando lo indique el Proyecto o lo aconsejen las características del material o de la obra, y previa autorización del Director de las Obras, las determinaciones “in situ” de densidad, humedad, y módulo de deformación se complementarán por otras, como los ensayos de huella ejecutados según NLT 256 o el método de “Control de procedimiento” a partir de bandas de ensayo previas. En estas últimas deberán quedar definidas, para permitir su control posterior, las operaciones de ejecución, equipos de extendido y compactación, espesores de tongada, humedad del material y número de pasadas, debiendo comprobarse en esas bandas de ensayo que se cumplen las condiciones de densidad, saturación, módulo de deformación y relación de módulos que se acaban de establecer. En estas bandas o terraplenes de ensayo el número de tongadas a realizar será, al menos, de tres (3)”.

A continuación os dejamos un Polimedia donde se recoge una somera explicación a la realización de estos tramos de prueba.

Referencias:

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Seminario Internacional: “Metodologías avanzadas para la gestión de proyectos de construcción”

¿Es interesante un doble doctorado para un ingeniero con una universidad americana? Es posible que sí. Con este motivo me han invitado a participar en el seminario internacional “Metodologías avanzadas para la gestión de proyectos de construcción” que se realizará los días 10 y 12 de Septiembre en la Cámara Chilena de la Construcción. Este Seminario está dirigido a Ingenieros, arquitectos y profesionales de la industria de ingeniería y construcción.

Además será de gran interés para alumnos interesados en ingresar a un programa de doctorado en el área de la gestión de proyectos de construcción debido a que presentarán académicos de  las Universidades  de Boulder (Colorado), Waterloo (Canadá) y Politécnica de Valencia (España) con cuyas Universidades existen convenios de Doble Doctorado. El cuadro de profesores que van a impartir el seminario lo podéis encontrar en este enlace: http://web.ing.puc.cl/~seminariopro/relatores.html. Además, podés visitar www.ing.puc.cl/Seminarioproyectos2014

Por mi parte, os dejo el programa por si os interesa. En el caso de que no podáis asistir a estas jornadas, os dejaré información sobre cómo han transcurrido y las posibilidades que podéis tener de cursar este doble doctorado.

 

Descargar (PDF, 20KB)

 

 

 

 

Algo sobre cajones flotantes

Cajones flotantes de hormigón en Marín (Pontevedra), ejecutados por Sacyr

Los cajones flotantes constituyen estructuras de grandes dimensiones que por su sección transversal aligerada – multicelular – pueden flotar una vez terminadas. Eso les confiere una gran versatilidad en cuanto a construcción (mediante hormigonado deslizante), transporte flotando y colocación en la obra portuaria, ya sea para muelles, diques u otros. Las infraestructuras típicas que emplean este tipo de cajones son los muelles y otras estructuras de atraque, los diques de abrigo verticales y los diques especiales tipo flotante. Este tipo de estructura flotante es una tipología ampliamente empleada en la construcción de diques en los puertos españoles. Son, sin duda, las mayores piezas prefabricadas de hormigón, con moles que pueden llegar a más de 10.000 m3 de hormigón.

Desde el punto de vista económico, existen razones para apoyar la construcción de diques flotantes. En efecto, el ahorro más significativo que ofrecen estas estructuras frente a los diques rompeolas, o los de gravedad, se da en grandes profundidades, ya que su coste de construcción es prácticamente independiente de la profundidad, mientras que el de un dique en talud crece exponencialmente con la misma. Este ahorro se debe fundamentalmente al ahorro de volumen de escollera y materiales de relleno, respecto a los diques en talud o a las banquetas de los diques verticales.

Las condiciones y limitaciones que presenta el cálculo necesario para la fabricación de los cajones flotantes están relacionadas, fundamentalmente con las importantes las interacciones entre los pesos de los elementos en construcción y los empujes de los elementos flotantes, pues de ellas se derivan los posibles riesgos como son la pérdida de estabilidad, riesgos de varada en el fondo, etc. Asimismo,  los criterios con los que se fijan los parámetros de cálculo son, fundamentalmente, los siguientes: estabilidad hidrostática del conjunto cajón-pontona, presión suficiente entre cajón y pontona para asegurar el contacto durante la construcción y el mantenimiento de un francobordo mínimo para proteger al hormigón en el fraguado y que no afecte a la estabilidad del cajón.

Cajón flotante remolcado hasta su posición final. http://www.dragados.com/upload/MONACO%205.jpg

Para aquellos de vosotros interesados, existen algunas referencias que pueden informar del estado actual de los avances tecnológicos a este respecto. Así, por ejemplo, un hito en este tema es el “Manual para el diseño y la ejecución de cajones flotantes de hormigón armado para obras portuarias”, editado por Puertos del Estado en el año 2006 (ISBN: 84-88975-55-4). En este manual se ofrecen a los usuarios los criterios necesarios para el diseño, construcción y mantenimiento de cajones de hormigón armado, con la aplicación específica de la EHE y la consideración de las recomendaciones del programa ROM.

Asimismo, se consideran muy interesantes las referencias relativas a algunas realizaciones en el ámbito nacional o internacional. Así, las primeras obras de cajones que se construyeron en España lo fueron en el muelle de Levante del Puerto de Huelva, en 1932, con 8 m de calado máximo. En los años 80 se generalizó la construcción de obras de atraque de cajones aprovechando el auge de los puertos comerciales y en la década de los 90 se extendió su uso en la construcción de diques verticales. A modo de ejemplo, la prolongación del Muelle de Poniente de Palma de Mallorca necesitó la fabricación de siete cajones flotantes que se fabricaron en Cartagena y se remolcaron unas 250 millas. La referencia se puede ver en Sáenz et al (1996): “Fabricación y remolque de los cajones de hormigón para la prolongación del muelle de Poniente en el puerto de Palma de Mallorca”, Revista de Obras Públicas, 143(3357):57-68. La realización en los últimos años de diques verticales de 28 m de calado en la dársena de Escombreras en Cartagena hace que la tecnología de nuestro país sólo sea equiparable a la de Japón.

Otro aspecto importante es la verificación de la armadura de cortante exigida a la norma EHE. La experiencia acumulada indica que es normalmente innecesaria esta armadura, aunque la norma EHE la imponga.  Un análisis al respecto puede verse en el artículo de Pita, Grau y Pérez sobre el diseño de cajones flotantes (http://www.fhecor.es/files/ARW/ES_OBRASPORTUARIAS.pdf). También sería resaltable el trabajo de investigación realizado por el CEDEX en relación con el comportamiento del hormigón de los cajones flotantes, en la zona de carrera de mareas. Los resultados pueden verse en la revista Puertos, en su número 136 del año 2006 (http://www.puertos.es/export/download/ROM_PDFs/RecomendaCAJONES.pdf).

Una de las referencias importantes a nivel internacional es la guía práctica del PIANC(1994). “Floating breakwaters. A practical guide for design and construction.” Report of the Working Group nº 13 of the Permanent Technical Committee II. Supplement to bulletin nº 85. Permanent International Association of Navigation Congresses. Otra referencia normalmente empleada es la de Michael L. Giles and Robert M. Sorensen (1978). “Prototype scale mooring load and transmission tests for a floating tire breakwater”. Technical paper nº. 78-3. U.S. ARMY, CORPS OF ENGINEERS. COASTAL ENGINEERING RESEARCH CENTER.

Resulta de interés citar una de las realizaciones más ambiciosas a nivel internacional. Se trata del mayor dique flotante del mundo, realizado en el Puerto de Algeciras para ampliar el puerto deportivo de la Condamine en el Principado de Mónaco, que comportó una larga travesía por aguas del Mediterráneo. Las características de este hito se pueden ver en un artículo firmado por Barceló, Hue y Peset en la Revista de Obras Públicas, en su número 3432 de abril del 2003 (pp. 81-110). Bastan, pues, unas cuantas referencias en cuanto a la bibliografía y a las realizaciones para comprobar que la tecnología necesaria para la construcción de cajones flotantes está consolidada, siendo España un referente a nivel internacional.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

¿Qué aportó el Antiguo Egipto a la ingeniería?

Pirámide de Kefrén y la Gran Esfinge de Guiza. Imagen: Ian Sewell (2014) https://commons.wikimedia.org/wiki/File:SphinxGiza.jpg

Es difícil calcular el número de artículos, posts, comentarios o reportajes sobre las pirámides o sobre el Antiguo Egipto. Algunos muy serios, otros rozando lo exotérico. Aquí, evidentemente, no podemos más que dar dos pinceladas sobre el tema. Sin embargo, tras otros posts que ya hemos hecho sobre la ingeniería de otros tiempos, es imposible saltarnos esta época tan determinante. Vamos, pues, a ello.

La piedra se trabajó desde muy antiguo en civilizaciones como Mesopotamia, Egipto o América Central, con estructuras que han llegado hasta hoy. Los egipcios tenían a su disposición excelentes canteras de piedra y un buen sistema de transporte a través del Nilo, además de una gran fuerza de trabajo. Todo ello les permitió convertirse en el primer pueblo capaz de construir en piedra a gran escala, como fue el caso de los templos y las pirámides. No menos grandiosas fueron algunas de sus obras como el muro que rodeaba Menfis, antigua capital a sólo 19 km de El Cairo actual. Allí además se hizo necesaria la construcción de diques y canales, además de sofisticados sistemas de regadío que propiciaron la agrimensura y la matemática correspondiente. Un ejemplo de artilugio que inventaron en aquella época, y que incluso aún se utilizan hoy día, es el “shaduf” que servía para elevar el agua cuando a las tierras de cultivo.

Cigoñal egipcio pintado en la tumba de Ipuy. Deir el-Medina. Fuente: https://commons.wikimedia.org/wiki/File:Ipuy_shaduf.jpg

La mayor pirámide fue la de Keops, construida entre los años 4235 y 2450 a.C. Tenía 230,4 m por lado en la base cuadrada y originalmente medía 146,3 m de altura. Contenía unos 2 300 000 bloques de piedra, de cerca de 1,1 toneladas en promedio. Teniendo en cuenta el conocimiento limitado de la geometría y la falta de instrumentos de ese tiempo, fue una proeza notable. Basta indicar que solo se cometió un error máximo de unos 6 minutos de arco respecto a la alineación norte sur, este oeste, mientras que la base no fue un cuadrado perfecto por solo 17,78 cm. Se trata de un monumento capaz de resistir 6000 años, representando un hito de la capacidad técnica de los humanos. El probable método de construcción de las pirámides se basaba en la construcción de rampas provisionales por las que se arrastraban las piedras sobre rodillos de madera, aunque incluso hoy en día resulta asombroso que se pudiera dar una productividad tan alta en los trabajos, capaz de levantar dichos monumentos en tiempos tan cortos de tiempo. Algunos bloques, de hasta 120 toneladas, se arrastraban por ciertos de hombres sobre rampas inclinadas construidas de ladrillo, cuya superficie de barro humedecían para hacerla más resbaladiza. Los equipos de arrastre utilizaban cuerdas tejidas con papiros retorcidos.

La Gran Pirámide de Guiza. Imagen: Nina Aldin Thune (2005). Fuente: https://commons.wikimedia.org/wiki/File:Kheops-Pyramid.jpg

En estas fechas tan remotas, los antiguos ya conocían las ventajas de cimentar en roca o en terreno estable. Así, la gran Pirámide de Keops fue cimentada en una superficie rocosa nivelada. Parece ser que el primer camino que registra la historia es el que construyó este faraón, para transportar los materiales para la construcción de su pirámide. Las grandes losas empleadas en este camino indican que los egipcios eran ya conscientes de la necesidad de repartir las cargas sobre el terreno, con objeto de no superar su capacidad portante. Resulta sorprendente comprobar que la construcción de las pirámides, que se inició sobre el año 3000 a.C. durara solo unos cien años. Estas estructuras antiguas únicamente son comparables a la Gran Muralla China.

Los autores de las obras públicas más antiguas son anónimos. El nombre del primer ingeniero conocido fue Imhotep, constructor de la pirámide de peldaños en Saqqara (Egipto) hacia el 2650 a.C. Tal fue su sabiduría y habilidad que se le consideró como un dios tras su muerte. A partir de este momento y mientras estuvo en vigor la antigua civilización egipcia, fue normal que quedara constancia de los nombres de los autores de sus principales monumentos, que ocupaban altísimos cargos en la corte real y estaban vinculados a la clase sacerdotal.

Los templos eran producto de sucesivas fases constructivas, remodelados periódicamente para crear conjuntos cada vez más grandiosos. En el templo de Amón en Karnak, Egipto (1530-323 a.C.), los edificios se dispusieron en la ruta que enlazaba el embarcadero del Nilo con el templo de Luxor. Este conjunto se levantó a lo largo de 1200 años y ocupó una superficie de 21,4 hectáreas. Para su construcción, el edificio se iba rellenando de tierra a medida que se construía, formando un plano sobre el que erigir los bloques y dinteles de piedra. Al finalizar se excavaba la tierra, haciendo surgir el volumen de su interior.

Avenida de esfinges en la entrada del templo de Luxor. Imagen: Jerzy Strzelecki (2005). Fuente: https://commons.wikimedia.org/wiki/File:Kheops-Pyramid.jpg

Tras Imhotep, los egipcios, persas, griegos y romanos desarrollaron la ingeniería civil de una forma empírica, pero basándose en la aritmética, la geometría y en unos incipientes conocimientos físicos. Con todo, resulta incomprensible que la obra de estos ingenieros no se reconociese como obras de ingeniería, sino, acaso, como arquitectura.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La presa de Jawa, posíblemente la más antigua documentada

Sistema hidráulico de Jawa (Jordania). https://historiacivil.wordpress.com/2012/09/28/presa-de-jawa/

¿Una presa en la Edad del Bronce? Como vamos a comprobar a continuación en este breve artículo, resulta sorprendente ver cómo en aquella época se empezaron a manejar, de forma totalmente intuitiva, conceptos básicos en ingeniería de presas como el de núcleo, impermeabilización, etc.  Lo cierto es que, hace 5000 años, apareció una ciudad en medio del desierto que pudo tener perfectamente 2000 habitantes y cuya supervivencia se debió a una gestión inteligente del agua. Y cuya desaparición ocurrió cuando este sistema de suministro sucumbió.

Siempre resulta arriesgado afirmar cuál ha sido la primera vez que alguien ha hecho algo. Lo mismo ocurre con las construcciones, y en particular, las presas. En este caso, vamos a dedicar unas líneas a las presas más antiguas conocidas, localizadas en Jawa, a unos 100 km al nordeste de la capital jordana de Ammán. Se trata de un sistema de suministro de agua que se construyó alrededor del 3000 a.C. que tuvo un breve pero intenso esplendor en aquella época. Realmente se trataba de cinco embalses, con una capacidad conjunta próxima a 46.000 m3, capaces de generar un espacio habitable en medio del desierto. La idea era captar las escorrentías de lluvias en los cortos inviernos y de las pequeñas cuencas hidrográficas a través de Wadi Rajil, que alcanza a recoger 2.000.000 m3 en la actualidad y es probable suponer que en el pasado manejaban los mismos volúmenes, de los cuales solo el 3% s distribuía para la ciudad de Jawa.

Pero quizá lo que más nos interesa, por ser una construcción innovadora en su momento, es la presa mayor, de gravedad. Las presas y canales, aunque rudimentarias para los estándares modernos, estaban más allá de la capacidad de los agricultores y fueron construidas por sociedades organizadas en comunidad. Otras obras de gran escala, incluyeron sistemas de diques para minimizar los daños de las inundaciones. Su construcción se basa en una estructura de dos muros de mampostería seca con un núcleo de tierra. Tenía una altura de 4,50 m, una longitud de 80 m en coronación y un grosor en el núcleo de la presa de 2 m. En el frente del talón, aguas arriba de la presa, se dispuso una capa impermeable. La estabilidad de la estructura se consiguió con un terraplén aguas abajo. La elevación de la presa un metro más fue siguiendo los mismos principios, aunque el ancho del núcleo de tierra se incrementó a unos 7 m. Se dispuso un relleno de roca detrás del muro de aguas arriba para facilitar el drenaje durante el vaciado del embalse. De esta manera la pared fue protegida contra los riesgos de presiones traseras del agua.

Sección transversal de la presa Jawa. https://historiacivil.wordpress.com/2012/09/28/presa-de-jawa/

 

Por razones aún desconocidas, la ciudad sucumbió tan rápido como creció, quizá víctima de su propio éxito, por una presión demográfica excesiva sobre los sistemas de abastecimiento de agua.

 

Intervención en una playa: justificación y técnicas

Playa de Almadrá (provincia de Castellón). Imagen: (c) V. Yepes

¿Hay que adoptar algún tipo de estrategia para defender nuestras playas de la regresión, del previsible cambio climático, de las agresiones sufridas por una mala planificación? Es evidente que si queremos preservar la biodiversidad de este medio y la importancia económica que proviene del turismo, hay que buscar soluciones que compatibilicen todos estos problemas, siendo probablemente la estrategia de “no hacer nada” la peor de todas ellas.

Una playa, en su estado “normal”, no necesita ningún tipo de intervención. El propio Ministerio de Medio Ambiente (2008) en un documento denominado Directrices sobre actuaciones en playas establece que una playa se encuentra en su estado “normal”, cuando su comportamiento sólo está condicionado por los agentes y el medio natural, sin coacciones de origen humano o aquellas que teniendo actuación humana en su modelado, el tiempo transcurrido es tal que la población considera este estado como el propio de la playa. Para que el funcionamiento dinámico de las playas sea el correcto, a grandes rasgos deben darse dos condiciones:

El uso de un proyecto como vínculo en los estudios de ingeniería

¿Cómo se podría mejorar la docencia de una ingeniería? ¿Es mejor un enfoque científico o profesional? ¿Cómo se pueden conjugar los enfoques más adecuados para que el aprendizaje sea efectivo? Son preguntas de respuesta compleja, pues depende mucho de las circunstancias y del perfil profesional al que vaya dirigido la pregunta.

En el caso del Máster Universitario en Planificación y Gestión en Ingeniería Civil (MAPGIC), se ha optado por un planteamiento que consideramos de gran interés. Se trata de hacer girar las asignaturas que constituyen el programa de posgrado en torno a un proyecto constructivo real. Esta idea, cuyo planteamiento es más sencillo de explicar que de aplicar, supone un gran esfuerzo del profesorado de coordinación. Las ventajas son más que evidentes. Si se elige un proyecto adecuado, el alumno es capaz de enlazar lo aprendido con un caso real. Pero mejor será dejar la comunicación que presentamos recientemente a la Conferencia INTED 2014 que se celebró en Valencia en el mes de marzo y que a continuación os paso.

SEGADO, S.; YEPES, V.; CATALÁ, J.; PELLICER, E. (2014). A portfolio approach to a M.Sc. degree in construction management using a common project. 8th International Technology, Education and Development Conference, INTED 2014, Valencia (Spain),  10-12 March,  pp. 2020-2029. 

Descargar (PDF, 449KB)

Reflexiones sobre el 6º Foro PTEC de debate

PTECEl pasado 10 de junio de 2014 se celebró en la Escuela de Ingenieros de Caminos de Valencia el 6º Foro PTEC de debate bajo el título “La I+D+i en la mejora de los procesos de construcción”. Es el momento de realizar algunas reflexiones sobre este evento que, desde mi punto de vista, acabó siendo un éxito tanto en asistencia como en contenidos desarrollados. Además, este foro tiene un sentido especial para mí, siendo profesor de la asignatura “Procedimientos de Construcción” de los grados de ingeniería civil y de obras públicas, además de la asignatura “Gestión de la innovación en el sector de la construcción”, en el Máster Universitario en Planificación y Gestión en la Ingeniería Civil”. Esperamos que nuestra Universitat Politècnica de València sea en breve miembro activo del PTEC.

Para aquellos de vosotros interesados en la Plataforma Tecnológica Española de Construcción, os remito a su página web: http://www.plataformaptec.com/

PTEC 3
Inauguración del Foro por parte de las autoridades

Lo primero que me gustaría resaltar es la pertinencia del tema elegido. Los procedimientos constructivos forman la piedra angular de la innovación tanto en las empresas constructoras como en todas aquellas otras que les sirven de apoyo tecnológico. Es por ello que el Grupo de Trabajo específico PTEC sobre Procesos de Construcción presenta un valor añadido indudable. Dicho grupo está coordinado por la empresa CYPE Ingenieros, el Instituto Tecnológico de Aragón ITA y la Universidad Politécnica de Madrid. Dentro del Foro presentaron dos trabajos, uno relacionado con la construcción de túneles y otro sobre la rehabilitación de envolventes de edificios. A este respecto me gustaría apuntar que son dos buenas iniciativas, aunque existe un campo muy amplio donde poder avanzar y donde se hace necesaria la participación de más empresas, universidades y centros de investigación.

Alguna de las notas que tomé en las jornadas no tienen desperdicio (algunas me preocupan especialmente):

  • La innovación no es suficiente para ser competitivo. No debe ser un objetivo en sí mismo.
  • El sector de la construcción no es un objetivo prioritario en los planes autonómicos que financian la innovación. Los sectores clave son otros: turismo, salud, productos innovadores (donde la cerámica tiene algo de cancha), la industria del motor, el calzado…
  • Los objetivos del PTEC se centran en la internacionalización, el impulso de la innovación y la mejora de la imagen del sector de la construcción.
  • Opinión de que el sector de la construcción, un sector maduro, no necesita I+D+i, sino inversión.

 

 

PTEC 1
Visita de las instalaciones del ICITECH

El programa seguido fue el siguiente:

Sesión de apertura

 Presidencia:

  • Isabel Bonig. Consellera de Infraestructuras, Territorio y Medio Ambiente de la Generalitat Valenciana
  • Francisco J. Mora. Rector de la Universidad Politécnica de Valencia
  • Juan Lazcano. Presidente del Patronato Fundación PTEC y Presidente de la Confederación Nacional de la Construcción CNC

 Coordinación: Jesús Rodríguez. Director Gerente de la PTEC

 Ponencias:

  • Competitividad e Innovación: La I+D+I en la estrategia de política industrial (Epi 2020, Ris3 CV y Estrategia H2020). José Monzonís, Secretario Autonómico de Industria y Energía, Consellería de Economía, Industria, Turismo y Empleo de la Generalitat Valenciana.
  • Oportunidades para la I+D+i sobre procesos de construcción en el programa I+D+i europeo Horizonte 2020. Rikardo Bueno. Tecnalia.

 1ª mesa redonda “La mejora de los procesos de construcción mediante la innovación en maquinaria y equipos auxiliares”

 Presidencia: Miguel Ángel García Muro. Director General de Investigación e Innovación, Departamento de Industria e Innovación del Gobierno de Aragón.

Coordinación: Benjamín Bentura. ANMPOYC (Asociación de fabricantes exportadores de maquinaria de construcción, obra pública y minería)

Ponencias:

  • Trabajos de la PTEC en la mejora de los procesos de construcción mediante la aplicación de la maquinaria y los equipos auxiliares en la excavación de túneles y en la rehabilitación de la envolvente de los edificios. Carlos Millán (Instituto Tecnológico de Aragón ITA) y Jose Luis Alapont. (Instituto de Restauración del Patrimonio IRP-UPV).
  • Innovación en máquinas de proyección de hormigón para construcciones subterráneas. Ignacio Martínez de Osaba. Putzmeister.
  • Nuevas soluciones en medios auxiliares para la rehabilitación de envolventes de edificios. Mikel Martínez. Ulma Construcción
  • Sistemas innovadores de encofrado y armado para la mejora del proceso de ejecución de elementos complejos de hormigón. Carlos Bárcena. Dragados.
  • Mejoras en los procesos de construcción con mezclas bituminosas. Jesús Felipo. Pavasal

2ª Mesa redonda “La mejora de los procesos de construcción mediante el uso innovador de las tecnologías de la información y comunicación”.

Presidencia: José Vicente Dómine, Director General de Obras Públicas, Proyectos urbanos y Vivienda, Consellería de Infraestructuras, Territorio y Medio Ambiente de la Generalitat Valenciana

Coordinación: Benjamín González. CYPE ingenieros

Ponencias:

  1. El papel de las nuevas tecnologías TIC en la industria. Clara Pezuela. ATOS/Planetic
  2. Las nuevas tecnologías aplicadas a los procesos de construcción. Nuevas tecnologías en seguridad y prevención de riesgos laborales (proyecto FHT). Lisardo M. Fort. CYES.
  3. Nuevos sistemas de prevención colectiva inteligente en entornos dinámicos de infraestructuras lineales(Proyecto Precoil). Octavio Nieto-Taladriz. UPM
  4. Building Information Model (BIM) en el sector de la construcción: BIM, una metodología que revoluciona la forma de hacer los proyectos de construcción. David Carlos Martínez Gómez. IBIM; BIM: Retos nacionales. Fernando Blanco. Acciona.

 Nota: se llevará a cabo una visita a las 16:00 h al Instituto de Ciencia y Tecnología del Hormigón ICITECH.

Fue especialmente interesante la visita que se realizó al ICITECH, donde el público asistente pudo comprobar las capacidades de nuestras instalaciones y el trabajo de los grupos de investigación. Os dejo el póster que presentamos nosotros, el grupo de investigación sobre “Optimización de Procedimientos Constructivos”. Espero que os guste.