Pocas veces se incorporan en los proyectos de puentes actuales las variables sociales como factores determinantes de su diseño. Tampoco se dedica la atención suficiente al análisis del coste del ciclo de vida para evaluar la mejor alternativa posible de diseño. Considerar en nuestros proyectos este tipo de variables podría reducir, por ejemplo, en un 60% los costes de mantenimiento. También se constataría el hecho de que incrementar solamente 5 mm el recubrimiento de las armaduras de las estructuras de hormigón podría reducir el coste del mantenimiento en un 40%. Un ejemplo de la aplicación de este tipo de metodologías es la que nos acaban de publicar en la revista Sustainability. Allí se ha analizado el coste del ciclo de vida de las medidas de prevención aplicado a un puente de hormigón postesado expuesto al ataque de clorhídricos. Para ello se ha elegido el puente de la Isla de Arosa, en Galicia (España). Os dejo el artículo completo y la referencia.
Referencia:
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides.Sustainability, 10(3):845. doi:10.3390/su10030845 .
Es más, ¿es posible que un ordenador sea capaz de diseñar de forma automática estructuras óptimas sin darle ninguna pista o información previa? Estoy convencido que a la vuelta de un par de años, todos los programas comerciales tendrán paquetes de optimización estructural que permitirán reducciones de coste en torno al 5-15% respecto a los programas actuales. Ya os adelanto que esta nueva tecnología va a traer consigo nuevas patologías en las estructuras de hormigón, que con la optimización se parecen más a las estructuras metálicas. Con el tiempo habrá que introducir capítulos o restricciones en las futuras versiones de la EHE o de los Eurocódigos. En este post vamos a continuar comentando aspectos relacionados con la modelización matemática, la optimización combinatoria, las metaheurísticas y los algoritmos.
Toda esta aventura la empezamos en el año 2002, con el primer curso de doctorado sobre optimización heurística en la ingeniería civil, que luego hemos ido ampliando y mejorando en el actual Máster Oficial en Ingeniería del Hormigón. Ya tenemos varias tesis doctorales y artículos científicos al respecto para aquellos de vosotros curiosos o interesados en el tema. Para aquellos que queráis ver algunas aplicaciones concretas, os recomiendo el siguiente capítulo de libro que escribimos sobre la optimización de distintas estructuras con un algoritmo tan simple como la cristalización simulada. Para aquellos otros que tengáis más curiosidad, os dejo algunas publicaciones de nuestro grupo de investigación en el apartado de referencias.
Os paso, para abrir boca, una forma sencilla de optimizar a través de este Polimedia. Espero que os guste.
Referencias:
MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs.Journal of Cleaner Production, 164:872-884. https://authors.elsevier.com/a/1VLOP3QCo9NDzg
GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks.Structural and Multidisciplinary Optimization, 56(1):139-150. doi: 10.1007/s00158-017-1653-0
YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges.Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI: 10.1016/j.acme.2017.02.006
MOLINA-MORENO, F.; GARCÍA-SEGURA; MARTÍ, J.V.; YEPES, V. (2017). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms.Engineering Structures, 134:205-216. DOI: 10.1016/j.engstruct.2016.12.042
GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety.Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy.Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges.Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
LUZ, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica.Informes de la Construcción, 67(540), e114. DOI: 10.3989/ic.14.089
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement.Journal of Structural Engineering ASCE, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058(descargar versión autor)
YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems.Archives of Civil and Mechanical Engineering, 15(4):1024-1036. doi:10.1016/j.acme.2015.05.001
YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm.Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7):1190 – 1205. ISSN: 1679-7817. (link)
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2013). Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos.Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, DOI: http://dx.doi.org/10.1016/j.rimni.2013.04.010.
TORRES-MACHÍ, C.; YEPES, V.; ALCALA, J.; PELLICER, E. (2013). Optimization of high-performance concrete structures by variable neighborhood search.International Journal of Civil Engineering, 11(2):90-99 . ISSN: 1735-0522. (link)
MARTÍNEZ-MARTÍN, F.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts.Structural Engineering and Mechanics, 45(6): 723-740. (link)
MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms.Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering, 13(6):420-432. DOI: 10.1631/jzus.A1100304. ISSN 1673-565X (Print); ISSN 1862-1775 (Online). (link)
MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing.Engineering Structures, 48:342-352. DOI:10.1016/j.engstruct.2012.09.014. ISSN: 0141-0296.(link)
YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy.Journal of Computing in Civil Engineering ASCE, 26 (3):378-386. DOI: 10.1061/(ASCE)CP.1943-5487.0000140. ISNN: 0887-3801. (link)
CARBONELL, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2011). Búsqueda exhaustiva por entornos aplicada al diseño económico de bóvedas de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):227-235. (link) [Global best local search applied to the economic design of reinforced concrete vauls]
CARBONELL, A.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2011). Heuristic optimization of reinforced concrete road vault underpasses.Advances in Engineering Software, 42(4): 151-159. ISSN: 0965-9978. (link)
MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2011). Estudio paramétrico de pilas para viaductos de carretera.Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):236-250. (link)
MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; ALCALÁ, J. (2011). Design of tall bridge piers by ant colony optimization.Engineering Structures, 33:2320-2329.
PEREA, C.; YEPES, V.; ALCALÁ, J.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2010). A parametric study of optimum road frame bridges by threshold acceptance.Indian Journal of Engineering & Materials Sciences, 17(6):427-437. ISSN: 0971-4588. (link)
PAYÁ-ZAFORTEZA, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing.Meccanica, 45(5): 693-704. DOI 10.1007/s11012-010-9285-0. ISSN: 0025-6455. (link)
MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2010). Design of prestressed concrete precast pedestrian bridges by heuristic optimization.Advances in Engineering Software, 41(7-8): 916-922. http://dx.doi.org/10.1016/j.advengsoft.2010.05.003
MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections.Computers & Structures, 88: 375-386. ISSN: 0045-7949. (link)
PAYÁ, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-EfficientDesign of Reinforced Concrete Building Frames.Engineering Structures, 31: 1501-1508. ISSN: 0141-0296. (link)
YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated Annealing. Engineering Structures, 30(3): 821-830. ISSN: 0141-0296. (link)
PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization.Advances in Engineering Software, 39(8): 676-688. ISSN: 0965-9978. (link)
PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing.Computer-Aided Civil and Infrastructure Engineering, 23(8): 596-610. ISSN: 1093-9687. (link)
PAYÁ, I.; YEPES, V.; CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F. (2006). Optimización heurística de pórticos de edificación de hormigón armado.Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 22(3): 241-259. [Heuristic optimization of reinforced concrete building frames]. (link)
El objetivo del proyecto BRIDLIFE consiste en desarrollar una metodología que permita incorporar un análisis del ciclo de vida de vida de puentes de hormigón pretensado definiendo un proceso de toma de decisiones que integre los aspectos sociales y medioambientales mediante técnicas analíticas de toma de decisiones multicriterio. Los resultados esperados pretenden detallar qué tipologías, actuaciones de conservación y alternativas de demolición y reutilización son adecuadas para minimizar los impactos, dentro de una política de fuerte limitación presupuestaria que compromete seriamente la construcción y conservación de las infraestructuras.
Referencia:
YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V.; ALCALÁ, J.; PELLICER, E. (2017). Puentes pretensados de alta eficiencia social y medioambiental bajo presupuestos restrictivos: Proyecto BRIDLIFE. VII Congreso de ACHE, A Coruña, junio.
Hoy se juega la final de la Champions. Es la excusa perfecta para comentar un método basado en la toma de decisiones AHP que permite valorar y priorizar a los jugadores de fútbol. No entraré en si son o no abusivos los sueldos de los jugadores. Lo bien cierto es que determinados deportes mueven cifras millonarias y tienen una importancia económica de primer orden.
Es por ello que, simplemente, os paso un curso completo on-line donde se explica paso a paso la técnica. Mi objetivo es que la podáis utilizar en otros ámbitos de vuestra profesión o en problemas cotidianos. Veréis que no es tan difícil.
El curso se llama “Valoración y priorización de futbolistas OnLine” y es de la Universitat Politècnica de València.
Acaban de publicarnos un artículo donde se utilizan cuatro algoritmos heurísticos: Descent Local Search, Threshold Accepting Algorithm with Mutation Operation, Genetic Algorithm y Memetic Algorithm para el diseño automático de puentes pretensados.
YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges.Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI: 10.1016/j.acme.2017.02.006
Abstract:
This paper deals with the cost optimization of road bridges consisting of concrete slabs prepared in situ and two precast-prestressed U-shaped beams of self-compacting concrete. It shows the efficiency of four heuristic algorithms applied to a problem of 59 discrete variables. The four algorithms are the Descent Local Search (DLS), a threshold accepting algorithm with mutation operation (TAMO), the Genetic Algorithm (GA), and the Memetic Algorithm (MA). The heuristic optimization algorithms are applied to a bridge with a span length of 35 m and a width of 12 m. A performance analysis is run for the different heuristics, based on a study of Pareto optimal solutions between execution time and efficiency. The best results were obtained with TAMO for a minimum cost of 104184 euros. Among the key findings of the study, the practical use of these heuristics in real cases stands out. Furthermore, the knowledge gained from the investigation of the algorithms allows a range of values for the design optimization of such structures and pre-dimensioning of the variables to be recommended.
CUESTIÓN 1. ¿Qué documentos, al menos, debe contener la Planificación de una Obra?
La Planificación constituye un instrumento básico a nivel operativo diario a todos los niveles de producción durante todo el desarrollo de la obra que debe contener, al menos, los siguientes documentos:
Programa detallado del proceso de ejecución elegido
Necesidades de recursos físicos situados en el tiempo y en el espacio
Una valoración del coste del proceso constructivo elegido
Un programa de actuaciones sobre calidad
Un programa de actuaciones sobre seguridad
Un diseño del sistema de información para el control de ejecución
CUESTIÓN 2. ¿Qué fases se deben seguir para realizar la planificación de una obra?
La preparación de la planificación de la obra sigue, en general, las siguientes fases:
Determinación de las cantidades de obra a realizar
Elección de las tecnologías a emplear en cada proceso
Determinación de la productividad de los recursos aportados
Cálculo de los tiempos parciales
Definición del encadenamiento entre los procesos
Programa fechado
Determinación de recursos
Determinación de los costes de los recursos
Estimación de costes
CUESTIÓN 3. ¿Qué diferencia existe entre “planning” y “scheduling” cuando nos referimos a la programación de una obra?
Estas dos palabras inglesas reflejan claramente dos conceptos diferentes referidos a un programa sin fechas y a un programa con fechas. El primero recoge la concatenación lógica entre las diferentes actividades, sin relacionarlas con ningún periodo del año, ni con ninguna fecha determinada que pueda exigirse en el contrato. El segundo es el encaje concreto del anterior en el calendario dentro del cual debe desarrollarse contractualmente la obra; no contiene imprecisiones en cuanto a las fechas en que debe iniciarse ninguna actividad a pesar de que sean actividades con holguras; esto supone haber tomado una decisión sobre estas actividades con holguras.
CUESTIÓN 4. ¿Qué se entiende por “Programación en Cascada”?
La Programación en Cascada es una técnica de presentación progresiva del Programa de Obra a los mandos que han de cumplirlo, permitiendo de esta forma un seguimiento del programa inicial y creando un clima de colaboración entre todo el equipo que compone una obra. Se hace normalmente mediante diagramas de barras del último mes y los tres siguientes, acompañando de una programación detallada de las próximas dos semanas, desglosando lo que corresponde a cada mando. En obras grandes o complejas, se suelen realizar reuniones semanales de coordinación para el análisis del avance del programa y para planificar y discutir los trabajos a realizar en la semana siguiente. Suele ser recomendable implicar en tales reuniones a los subcontratistas.
CUESTIÓN 5. ¿Qué podemos hacer cuando en un tajo no se están logrando los rendimientos previstos en la planificación de la obra?
Se puede hacer lo siguiente:
Comprobar si la desviación es persistente
Comprobar si la cadena de mandos ha comprendido lo que tiene que hacer
Comprobar si los recursos operacionales aportados son los previstos
Comprobar si hay deficiencias en los suministros
Comprobar el estado físico de las máquinas
Hacer un estudio mediante las técnicas de análisis de productividad para revisar los ciclos de cada proceso, buscando mejoras organizativas en el tajo que permitan llegar a obtener los máximos rendimientos
Comprobar si los rendimientos de la planificación son correctos
CUESTIÓN 6. ¿Qué ocurre si se sobrepasa la holgura libre de una actividad, pero no llega a agotarse la holgura total de la misma?
Al sobrepasarse la holgura libre estamos modificando el tiempo esperado del suceso al que llega la actividad, es decir, se altera el tiempo de inicio de las actividades siguientes. Sin embargo, al no sobrepasar la holgura total, no estaremos retrasando el plazo final de la obra.
CUESTIÓN 7. ¿Qué datos se consideran necesarios para poder definir el programa de una obra siguiendo la metodología PERT?
Los objetivos intermedios y finales que es preciso alcanzar para construir la obra
Las actividades y el orden en que han de desarrollarse, así como las condiciones de cualquier tipo que relacionen dichas actividades para poder conseguir los objetivos del programa
Los medios que cada actividad, y, por tanto, el conjunto de todas, requiere para poder desarrollarse en unos tiempos determinados
El plazo final esperable para cada uno de los objetivos
La probabilidad de conseguir acabar dentro de dichos plazos
CUESTIÓN 8. ¿Qué diferencia existe entre los métodos de asignación y los de nivelación de recursos?
Se entiende por métodos de asignación de recursos, aquellos que tienen por objetivo el que, en ningún momento, los recursos necesarios para realizar una determinada tarea, superen a los disponibles, aunque ello suponga un incremento de tiempo en el plazo final de ejecución de la obra. En consecuencia, se trata de minimizar el plazo de ejecución sin incrementar los recursos disponibles. Análogamente, se entiende por métodos de nivelación de recursos, aquellos que tienen por objetivo, el mantener lo más uniforme posible el consumo de recursos y, en consecuencia, su histograma de cargas, sin que el plazo inicial de ejecución de la obra se incremente.
Asimismo, os dejo algunos vídeos sobre el tema que espero que os sean de interés:
Referencias:
PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.
YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2012). Técnicas de planificación y control de obras. Editorial de la Universitat Politècnica de València. Ref. 189.
Labor productivity is one the least studied areas within the construction industry. Productivity improvements achieve high cost savings with minimal investment. Due to the fact that profit margins are small on construction projects, cost savings associated with productivity are crucial to becoming a successful contractor. The chief setback to improving labor productivity is measuring labor productivity.
However, labor productivity involves many aspects. The aim of this research is to focus in some of them such as construction trades and how different factors affect their labor productivity through benchmarking in both online and hard copy format. A list of 37 construction trades was selected based on the Construction Industry Council of Hong Kong (CIC) in order to see their construction cost, labor cost and labor shortage criticality and their automation level. A list of 40 factors affecting the labor productivity was selected based on experts at The Hong Kong University of Science and Technology, in order to see in which level they affect the critical construction trades labor productivity found previously. Both results were analyzed using the relative importance index (RII).
These results are used in an additional case study, based on the comparison of them with another study with the same objectives did by some colleagues from The Hong Kong University of Science and Technology. An additional improvement of the labor productivity can be done by the mixture of both studies.
Results found previously can be used in a future study to create a tool to help contractor’s grade productivity on their projects in the preplanning stage and plan improvements in the most beneficial areas.
Reference:
ZABALLOS, I. (2016). Study on Improving Labor Productivity in the Construction Industry. The Cases of Europe and Hong Kong. Trabajo Final de Grado. Universitat Politècnica de València.
Nos acaban de publicar en línea en la revista Structural and Multidisciplinary Optimization (revista indexada en JCR en el primer cuartil) un trabajo de investigación en el que utilizamos las redes neuronales artificiales junto para el diseño multiobjetivo de puentes postesados de carreteras. Os paso a continuación el resumen y el enlace al artículo por si os resulta de interés. El enlace del artículo es el siguiente: http://link.springer.com/article/10.1007%2Fs00158-017-1653-0
Referencia:
García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, doi:10.1007/s00158-017-1653-0
Abstract:
In order to minimize the total expected cost, bridges have to be designed for safety and durability. This paper considers the cost, the safety, and the corrosion initiation time to design post-tensioned concrete box-girder road bridges. The deck is modeled by finite elements based on problem variables such as the cross-section geometry, the concrete grade, and the reinforcing and post-tensioning steel. An integrated multi-objective harmony search with artificial neural networks (ANNs) is proposed to reduce the high computing time required for the finite-element analysis and the increment in conflicting objectives. ANNs are trained through the results of previous bridge performance evaluations. Then, ANNs are used to evaluate the constraints and provide a direction towards the Pareto front. Finally, exact methods actualize and improve the Pareto set. The results show that the harmony search parameters should be progressively changed in a diversification-intensification strategy. This methodology provides trade-off solutions that are the cheapest ones for the safety and durability levels considered. Therefore, it is possible to choose an alternative that can be easily adjusted to each need.
¿Es posible un mantenimiento sostenible de las carreteras cuando apenas existen presupuestos para ello?
A continuación os dejo el enlace a un artículo científico que nos acaban de publicar donde se muestra la posibilidad de utilizar técnicas de optimización heurística para conseguirlo.
TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions.Journal of Cleaner Production, 148:90-102. http://www.sciencedirect.com/science/article/pii/S0959652617301142
Abstract:
Transport sector constitutes the second largest source of global greenhouse gas (GHG) emissions, being the road transportation the main contributor of these emissions. Efforts in the road sector have traditionally focused on vehicle emissions and infrastructure is typically not included in the emissions account. Road environmental impact is estimated to increase by 10% if the stages of road design, construction, and operation were considered. Previous literature has widely study sustainable practices in pavement design and construction, with little attention paid to maintenance. Current state of practice reveals that pavement managers barely consider environmental performance and their evaluations solely rely on technical and economic criteria. This situation creates the need to incorporate, in an integrated manner, technical, economic, and environmental aspects in the design of maintenance programs. The main objective of this research is to develop a tool for the optimal design of sustainable maintenance programs. Given a maintenance budget, the tool aims to maximize the long-term effectiveness of the network while minimizing GHG emissions derived from the application of maintenance treatments. The capability of the proposed tool is analyzed in a case study dealing with an urban pavement network. In comparison to the traditional maintenance policy, the proposed tool designs maintenance programs that increase the average network condition by up to 22% and reduces GHG emissions by 12%. This application also analyzes the effect of different budgetary scenarios in the technical and environmental performance of the network. This application helps pavement managers in the trade-off between budget and network performance.
En las empresas constructoras, la forma de asignar los costes en obra a veces oculta o camufla los verdaderos costes en los que se incurre para producir determinada unidad de obra. En este post se da repaso a una técnica bien conocida en el ámbito empresarial, pero que se aplica muy poco en el ámbito de la industria de la construcción. Se trata del sistema de costes basado en actividades (Catalá y Yepes, 1999).
La utilización del Sistema de Costes basados en Actividades (ABC) “Activity-Based Costing” -introducido a finales de los 80 para mejorar la determinación del coste del producto y servicio prestado por una empresa, se ha considerado como una herramienta de análisis poderosa en los últimos años, pues presenta ventajas frente a otras herramientas como la asignación de costes tradicional (“full” y “direct costing“). El ABC imputa metódicamente todos los costes indirectos de una empresa a las “actividades” que los hacen necesarios, y luego distribuye los costes de las actividades entre los productos. Esta técnica analiza las tareas como parte de un proceso, permitiendo obtener información valiosa que es capaz de eliminar aquellas que no aportan valor añadido a la empresa constructora, dentro de un objetivo de mejora continua de la organización.
La noción de cadena de valor refuerza la necesidad de hacer un análisis desagregado de costes, en otras palabras, la unidad relevante para el análisis estratégico de costes son las actividades y no los productos o servicios finales. Manejar costes a nivel de unidad de obra supone moverse en un plano demasiado agregado para que puedan alcanzarse conclusiones verdaderamente significativas desde un punto de vista competitivo. Si una actividad es común a varios productos, la información importante en costes no es la que procede de cada uno de ellos, sino la creada por el efecto combinado de todos los productos o servicios que comparten dicha actividad.
El sistema ABC establece la asignación de los costes indirectos no por el volumen de ventas, sino por la utilización efectiva que para cada producto se hace de una actividad concreta. La imputación de los costes indirectos se establece en dos etapas. En primer lugar, los costes no asignables directamente a cada una de las unidades de obra, deberían agruparse respecto a centros de coste que tuviesen un nexo común —siendo esta etapa de asignación típicamente utilizada para evaluar los resultados del responsable del Grupo de Actividades—, y en una segunda etapa se seleccionarían las medidas de asignación de los gastos a cada una de las unidades de obra utilizando relaciones causa-efecto. Cada eslabón o actividad diferenciada puede tener su cost driver o inductor de coste, que son aquellos factores estructurales que determinan el comportamiento del coste dentro de cada actividad y que componen la cadena de valor de un negocio.
La metodología empleada en los sistemas ABC es la siguiente:
1.Identificación de las diferentes actividades.
2.Definición de los inductores de coste para cuantificar el volumen de costes vinculados a cada actividad.
3.Agrupación de las actividades homogéneas que se desarrollen en los diferentes centros de responsabilidad y determinación del coste unitario del inductor de coste.
4.Determinación del coste del producto o servicio final mediante la agregación de costes asignados a los diferentes componentes intermedios que lo integran.
La aplicación de los sistemas ABC en la construcción se centra en las actividades realizadas para producir cada unidad de obra. El coste de las actividades se asigna a cada unidad de obra basándose en los consumos que, de dichas actividades se realizan. Por tanto, la diferencia respecto a la metodología expuesta en el punto anterior es clara: no existe una asignación arbitrariamente lineal.
Un sistema ABC se estructuraría, como mínimo, en cuatro diferentes categorías o tipos de actividades:
·Actividades de Nivel Unitario, realizadas cada vez que se produce una unidad de producto.
·Actividades de Nivel Lote, realizadas cada vez que un lote de producto es producido.
·Actividades de Mantenimiento, que se realizan como una necesidad para mantener la producción de cada diferente tipo de producto.
·Actividades de Apoyo, que sustenten el funcionamiento general del proceso de fabricación.
Dentro de las tres primeras categorías, es posible asignar sus costes generados a cada una de las unidades de obra correspondientes. Sin embargo, las actividades de apoyo en obra tales como limpieza y seguridad de las instalaciones, labores de carácter administrativo, etc. se intentarán asignar para evitar, en lo posible, su imputación arbitraria a las unidades. En algunas ocasiones no deberían atribuirse estos costes de apoyo a las unidades de obra, ya que su arbitraria asignación no añade información económica susceptible de establecer acciones correctoras para dicha unidad.
Los costes determinados con el sistema ABC no coinciden con el obtenido de forma tradicional, pues, al eliminar determinados sesgos, distorsiona menos el coste real de la unidad de obra. Por tanto, con sistemas de coste basados en las actividades se obtiene información de mayor calidad para la gestión de una empresa constructora.
El análisis planteado se hace más complejo que el tradicional, puesto que no se trata solo de diferenciar actividades, sino también de investigar por separado en cada una de ellas cuál es el factor que propulsa su comportamiento, de su coste. La asignación no rigurosa de los costes no imputables directamente a cada unidad de obra, puede fácilmente camuflar ineficiencias de la empresa constructora, compensando costes entre las diversas unidades, perdiéndose, por tanto, oportunidades de mejora en la competitividad.
Referencias
CATALÁ, J.; YEPES, V. (1999). Aplicación del sistema de costes ABC en la gestión de proyectos y obras. Forum Calidad, 102:42-47. Junio. Depósito Legal: M-9765-1989. ISSN: 1139-5567. Edita: Forum Calidad, S.R.L. Alcobendas (Madrid). (pdf)