Os presento la segunda edición ampliada del libro que he publicado sobre procedimientos de construcción de cimentaciones y estructuras de contención. El libro trata de los aspectos relacionados con los procedimientos constructivos, maquinaria y equipos auxiliares empleados en la construcción de cimentaciones superficiales, cimentaciones profundas, pilotes, cajones, estructuras de contención de tierras, muros, pantallas de hormigón, anclajes, entibaciones y tablestacas. Pero se ha ampliado esta edición con tres capítulos nuevos dedicados a los procedimientos de contención y control de las aguas subterráneas. Además, de incluir la bibliografía para ampliar conocimientos, se incluyen cuestiones de autoevaluación con respuestas y un tesauro para el aprendizaje de los conceptos más importantes de estos temas. Este texto tiene como objetivo apoyar los contenidos lectivos de los programas de los estudios de grado relacionados con la ingeniería civil, la edificación y las obras públicas.
El libro tiene 480 páginas, 439 figuras y fotografías, así como 430 cuestiones de autoevaluación resueltas. Los contenidos de esta publicación han sido evaluados mediante el sistema doble ciego, siguiendo el procedimiento que se recoge en: http://www.upv.es/entidades/AEUPV/info/891747normalc.html
Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Es director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.
Cuando se está realizando una excavación para el vaciado, por ejemplo, de unos sótanos de un edificio, lo primero que se plantea es si es necesario algún sistema de contención provisional (muros pantalla, muro berlinés, tablestacas, suelo armado o apuntalamiento provisional) hasta que se permita construir unos muros o estructuras de contención definitiva de las tierras. Sin embargo, a veces no se precisa de una estructura de contención provisional, pues se puede ejecutar, bajo determinadas condiciones, el vaciado mediante una excavación vertical o en talud, mediante bermas o bien mediante bataches. Este artículo explica la excavación por bataches.
La primera consideración a tener en cuenta es que solo se podrán acometer excavaciones sin una contención provisional en el caso de que no se vea perjudicada por las aguas subterráneas o cuando no exista afección sobre estructuras vecinas o servicios públicos. Por tanto, la excavación por bataches solo será aplicable en el caso de que el vaciado se encuentre por encima del nivel freático, no existan cimentaciones próximas y se puedan mantener los taludes estables o se puedan apuntalar. En este caso, la excavación por bataches permite el vaciado mediante etapas. El sistema se basa en la excavación alterna de tramos del frente de una berma perimetral previamente ejecutada. En el caso de edificaciones, la excavación por bataches es habitual para un solo sótano, aunque se podrían excavar dos o tres sótanos con un sistema más complejo basado en la creación de anillos descendentes, normalmente anclados.
Tal y como se muestra en la Figura 2, el batache es la excavación que queda vertical entre dos espaldones, que actúan a modo de contrafuerte de terreno. Según la norma NTE-ADZ, el ancho E del batache no podrá superar los 2 m, ni tampoco podrá superar la altura vertical del espaldón HE, los 3 m (caso de realizar la excavación con maquinaria). En caso de que alguno de estos dos parámetros se incumpla, deberá procederse al entibado.
Con todo, hay que tener presente que en España las antiguas Normas Tecnológicas de la Edificación, NTE, del Ministerio de la Vivienda, se encuentran en desuso, haciendo referencia de forma genérica al ancho de excavación, sin tener en cuenta los parámetros geotécnicos del terreno. Por tanto, estas dimensiones límite de las NTE deben ser indicativas, pues se debería efectuar un estudio en mayor profundidad con datos reales para ajustar los límites en casos complejos. Por ejemplo, los anchos de los bataches podrían llegar incluso a 3-5 m en algunos casos concretos que requerirían un estudio en detalle, incluso la entibación.
Además, la norma NTE-CCT impone otra serie de restricciones a la hora de ejecutar un batache. Así, la berma superior del espaldón B deberá ser mayor a la mitad de la anchura E del batache; la distancia de la parte inferior del espaldón al paramento vertical A deberá ser mayor que su altura HE; además, la anchura del espaldón NE, deberá ser mayor a A.
Un aspecto de obra de gran interés es hacer coincidir el ancho E del batache con las dimensiones de las placas de encofrado. Sin embargo, la excavación deberá ser algo superior a la dimensión del elemento hormigonado, pues se debe permitir la presencia de las esperas de las armaduras horizontales. El exceso puede estimarse en unos 60 cm en cada lado, con un mínimo de 20-30 cm si se opta por doblar las armaduras. Por tanto, un batache de 2 m puede irse a unos 3 m, lo cual puede poner en riesgo la estabilidad de un terreno de baja cohesión durante la construcción (Cano et al., 2020).
El aspecto más importante de la excavación por bataches es el orden de ejecución, puesto que la excavación se realiza por tramos alternados para que el sostenimiento sea viable, buscando el efecto arco del terreno entre los espaldones para evitar el derrumbe. Hay que tener en cuenta que, una vez descubiertos los bataches, deben cubrirse por los muros lo más rápidamente posible, como mucho al día siguiente del descubrimiento del batache. Un posible orden de ejecución de los tramos podría ser el descrito en las Figuras 3 y 4. En primer lugar, se excavaría el batache A, ejecutándose dicho tramo de muro. A continuación se procede de la misma forma con el tramo B, y por último, con el C. Hay que tener en cuenta que la excavación mediante bataches normalmente se encofra a una sola cara el muro, dejando la otra sobre el terreno.
En la Figura 5 se observa el encofrado a una cara del muro de sótano y el ferrallado de un batache. Corresponde a la ejecución de un aparcamiento subterráneo.
Os dejo un vídeo que explica el procedimiento constructivo de muros mediante excavación por bataches. Espero que os sea útil.
En este otro vídeo, de Marcelo Pardo, también se explica el procedimiento constructivo de un muro de contención por la técnica de bataches.
A continuación os dejo las normas NTE-ADZ y NTE-CCT para su consulta.
Comparto este interesante trabajo de la universidad de Alicante en el que se estima la longitud máxima de los bataches para construir un muro de contención:
Hoy día existen técnicas de mejora que permiten acelerar el proceso de consolidación de un terreno blando (en general, limos y arcillas poco permeables) provocado por una precarga. Se puede utilizar tanto unas inclusiones verticales por columnas de grava, como la instalación de drenes verticales. Estas inclusiones se disponen en patrones de distribución uniforme, al tresbolillo o en forma de cuadrícula, uno cada 1,5-2,5 m2. La profundidad eficaz del tratamiento puede llegar hasta varias decenas de metros.
Este artículo se va a centrar en la técnica de drenes verticales. Los fines buscados con este método son alcanzar un grado de consolidación suficiente dentro de un plazo aceptable en el proyecto, modificando las variables de consolidación y tiempo. Con ello se aceleran los asientos por el drenaje, con asientos insignificantes tras la construcción. A diferencia de las columnas de grava, los drenes verticales no cumplen ningún tipo de función estructural, excepto la posible reducción del potencial de licuación en algunos suelos.
Los drenes verticales son columnas de material permeable instalados en suelos arcillosos compresibles para drenarlos, recogiendo y evacuando el agua expulsada durante la consolidación. Estos drenes acortan el recorrido de agua, pues al drenaje vertical existente se le suma el drenaje horizontal o radial que crea el dren vertical (Figura 2). Entre los drenes y la precarga se instalan geotextiles o bien una capa de arena para que los drenes estén en contacto con la atmósfera, a presión “cero” en su parte superior (Oteo et al., 2012).
El drenaje vertical es habitual en suelos blandos con estratos delgados o no muy profundos, suelos blandos con cargas moderadas, suelos blandos con cargas superficiales o construcciones donde es necesario reducir el asentamiento diferencial. Por tanto, son técnicas frecuentes en obras viales (carreteras o ferrocarriles), en explanaciones (aeropuertos, naves industriales, silos, depósitos), en obras hidráulicas (costas, puertos, presas) o en depósitos naturales (terraplenes y rellenos, vertederos).
Los drenes verticales pueden ser:
De arena ejecutados “in situ”
Prefabricados de arena
Drenes de mecha
Los drenes prefabricados de arena van empacados en una camisa filtrante. Los drenes de mecha o simplemente mechas son los más utilizados. Las mechas pueden ser tubos de plástico corrugado flexible, en cuyo interior hay un filtro cubierto. Los más comunes son los drenes de banda, por lo general de unos 100 mm de ancho (Figura 3).
La maquinaria empleada en la instalación de las mechas drenantes suele ser de gran tamaño, pero se consigue que no produzca perturbación en las distintas capas del terreno, siendo un sistema limpio que no genera residuos en el suelo. Con esta técnica se pueden llegar a 70 m de profundidad en caso necesario.
Las etapas del procedimiento constructivo son las siguientes:
Se sitúa la máquina en el emplazamiento. Las características de la mecha y el vástago deben combinar bien con el tipo de suelo a tratar
Se introduce el vástago junto a la mecha hasta la profundidad requerida. Se debe controlar la verticalidad del vástago y la colocación recta y estirada de la mecha.
Se extrae el vástago, dejando la mecha en el terreno.
Una vez extraído el vástago, se corta la mecha unos 30 cm por encima de la superficie el terreno
El Ministerio de Fomento (2002) recomienda una separación de prediseño para las mechas drenantes en función del tipo de suelo. Estando dispuestas en tresbolillo, la distancia será de 1,00 m en suelos arcillosos de elevada plasticidad; de 1,50 m en limos o arcillas de baja plasticidad; y de 2,00 m en arcillas donde se intercalen horizontalmente suelos más permeables como limos o arenas. Se debe fijar el tiempo de espera para determinado grado de consolidación, asiento o presiones intersticiales. Además, los aspectos que se deben controlar son la longitud hincada y los espaciamientos, la longitud externa de las mechas, el espesor y la granulometría de la capa drenante.
Entre las ventajas de los drenes prefabricados se encuentra su bajo coste, la mayor capacidad de drenaje, una instalación rápida, el uso de equipos ligeros y sencillos, proceso mecanizado, la continuidad del dren, la calidad constante y garantizada, la limpieza del emplazamiento, la alteración mínima del terreno y un transporte y acopio poco significativo.
Una técnica con una finalidad similar a los drenes verticales consiste en la utilización de drenes que disminuyen la presión hidrostática en taludes, consiguiéndose una mayor estabilidad de éstos. Se les denomina drenes californianos, y son tubos de PVC perforados (diámetro 65 mm) cubiertos con geotextil para filtrar el arrastre de sedimentos.
Os paso un vídeo explicativo que os resume brevemente las características principales de esta técnica de mejora del terreno.
En los vídeos que podéis ver a continuación se describen los trabajos de instalación de los drenes verticales. Espero que os sean de interés.
https://www.youtube.com/watch?v=TLLVOUtA1IU
Os dejo a continuación una pequeña descripción de la técnica de drenes verticales, cortesía de la empresa Menard.
BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
MITCHELL, J.K. (1981). Soil improvement: state-of-the-art report. 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 509-565.
OTEO, C.; OTEO, J. (2012). Innovaciones recientes en el campo de la mejora y refuerzo del terreno. Revista de Obras Públicas, 3534, 19-32.
VAN IMPE, W.F. (1989). Soil improvement techniques and their evolution. A.A. Balkema, Rotterdam, 77-88.
En artículos anteriores se habló de los materiales empleados en la inyección de terrenos, de las técnicas de inyección del terreno y de los tipos de lechadas y aplicabilidad de los materiales de inyección de terrenos. Como decíamos, esta técnica consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos. En este artículo nos centraremos en los procedimientos empleados en la inyección del terreno.
Un tubo facilita la inyección y evita que la lechada escape al exterior del taladro por el camino más fácil, que suele ser el contacto entre el terreno y el tubo de revestimiento o bien entre el obturador y el exterior del tubo de inyección. La inyección se puede realizar mediante los siguientes procedimientos:
Inyección desde la boca de la perforación: se vierte la lechada por gravedad desde la boca del sondeo, obturando en la parte superior. Se utiliza la técnica en rocas con grandes huecos.
Inyección ascendente: primero se hinca un tubo y se inyecta a medida que se extrae por tramos de 30 cm. La inyección se realiza por tramos sucesivos, empezando desde la parte inferior del terreno a inyectar hasta la zona superior. Se obtura a distintas profundidades y se aplican presiones de inyección decrecientes. Es una técnica más rápida y barata que la inyección por fases decrecientes, permitiendo independizar la perforación de la inyección.
Inyección al avance o por fases descendentes: se perfora un tramo, se retira el varillaje y se inyecta. Tras el fraguado ligero de la lechada, se perfora el tramo inyectado y un tramo nuevo, continuando el proceso. La idea es ir creando techos sucesivos que permitan ir aumentando la presión de inyección. Es una técnica cara, que debe evaluarse bien antes de su uso.
Inyección por fases repetitivas mediante tubos-manguito: se perfora y se introduce un tubo ranurado de 50-60 mm de diámetro, sin reperforación, cuyos orificios exteriores se cierran con manguitos de goma que actúan como válvulas anti-retorno, por los que sale la lechada. Se puede inyectar a cualquier nivel y orden o reinyectar mediante un doble obturador. Si se conoce la granulometría de cada capa, se puede ajustar la mezcla de inyección. La lechada de sellado debe ser de baja resistencia (0,3-0,5 MPa) y frágil. Para disminuir la resistencia se puede añadir un 3-4% de bentonita.
A continuación se describe el uso de cada una de estas técnicas en función si la inyección se realiza en terrenos rocosos o bien en terrenos sueltos.
Inyección en terrenos rocosos: Lo más habitual es utilizar la inyección por etapas descendentes y la inyección por etapas ascendentes. En macizos de calidad baja se emplea la inyección por etapas descendentes; aquí no tenemos la seguridad de que las paredes de la perforación se sostengan, no van a poder aguantar la presión de inyección, o la estructura geológica puentee la lechada, cementándose los obturadores, con la consiguiente pérdida de obturadores y taladro. En rocas de calidad media o alta se usa la inyección per etapas ascendentes.
Inyección en terrenos sueltos: Se utilizan las inyecciones descendentes, las inyecciones armadas, la inyección con puntaza perdida y el jet grouting. En las inyecciones descendentes se procede como en roca, pero la perforación se realiza a rotación con corona del mismo diámetro que la varilla y la inyección se realiza a través del varillaje de perforación. En las inyecciones armadas se introduce un tubo de paredes lisas dentro del taladro, perforando cada cierta distancia de modo que estas perforaciones se cubren con un manguito de caucho que sirve como válvula anti retorno; el espacio anular entre el tubo y las paredes de la perforación se rellena con una mezcla bentonita-cemento, de poca resistencia, que hace de obturador longitudinal y evita que la lechada fluya por la corona anular del taladro pero que se rompe al inyectar; la inyección se hace situando un obturador doble a nivel del manquito que se quiera inyectar. En la inyección con puntaza perdida se perfora con una puntaza de diámetro mayor que la varilla, inyectándose conforme se retira el varillaje; es un método barato con ciertas limitaciones. Con el jet grouting se realizan inyecciones a muy altas presiones, siendo procedimiento que se verá en detalle en una lección posterior.
El procedimiento más habitual es la inyección ascendente, con unas presiones normales de 1 a 3 MPa, aunque este rango se puede ampliar desde los 0,5 a los 8 MPa. Los taladros se separan entre 1 y 4 m. La relación entre el volumen inyectado y el de huecos del terreno es muy variable, entre el 40% en el caso de gravas abiertas o rellenos flojos mal compactados, al 10-20% para terrenos arenosos relativamente compactos. En la inyección de suelos, la técnica más común es la de tubo-manguito.
La longitud máxima de cada tramo de tratamiento varía entre 5 y 10 m. En suelos, la longitud tratada no suele superar el metro de longitud. Los taladros se separan según el tipo de terreno y las presiones que puedan aplicarse. En la Tabla 1 se indica la separación recomendada entre taladros de inyección, para algunas de las aplicaciones habituales:
De todas formas, es importante controlar la presión de la inyección, pues una presión nula puede indicar una pérdida de inyección, una presión excesiva puede dar lugar a levantamientos o giros en el caso de estructuras próximas. Siempre que sea posible se debe realizar un control informatizado de la perforación, así como medir y controlar la presión, el caudal y el volumen de las inyecciones en cada punto.
Por último, hay que tener presente que la inyección del terreno es una operación “ciega”, en el sentido que no se conoce realmente por dónde fluye la mezcla, por ejemplo, por desconocer la red de fracturación. Por tanto, se suelen extraer testigos después de las inyecciones para comprobar los resultados.
Referencias:
BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
En artículos anteriores se habló de los materiales empleados en la inyección de terrenos y de las técnicas de inyección del terreno. Como decíamos, esta técnica consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos. En este artículo nos centraremos en los tipos de lechadas y la aplicabilidad de los materiales empleados en la inyección del terreno.
Se pueden distinguir tres tipos de lechadas:
Suspensiones inestables: Normalmente son mezclas de cemento diluido con agua en exceso en proporciones variables, no homogéneas, que sedimentan cuando cesa la agitación. Se emplean en rocas o materiales granulares gruesos.
Suspensiones estables: Se obtienen por disolución de arcilla y cemento en agua. Con la dosificación adecuada, con una fuerte agitación y con aditivos estabilizadores, se consigue que no se produzca la sedimentación durante la inyección.
Líquidos o disoluciones: No contienen partículas sólidas en suspensión, encontrándose en solución o en emulsión los componentes químicos en el agua. Están constituidos por productos químicos como silicatos, resinas orgánicas y productos hidrocarbonados puros. Mantienen constante su viscosidad, hasta el momento de la solidificación.
El sistema de inyección utilizado en cada caso depende de numerosos parámetros como la granulometría, la porosidad, la porosidad, la permeabilidad y las condiciones del agua subterránea, especialmente su composición química y velocidad de circulación. Además, existen numerosos productos en el mercado que se pueden adecuar en mayor o menor medida a las características específicas del terreno, por lo que suele ser habitual consultar a empresas especializadas.
En la Figura 2 se puede ver la aplicabilidad de distintos tipos de inyecciones atendiendo al tamaño de las partículas del suelo a inyectar. Se aprecia que el jet grouting se aplica, en general, a todo tipo de tamaño de partículas, excluyendo los bolos.
Referencias:
BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
En un artículo anterior se habló de los materiales empleados en la inyección de terrenos. Como decíamos, esta técnica consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos. En este artículo nos centraremos en las técnicas de inyección del terreno.
Todo proceso de inyección presenta dos facetas características (Sanz, 1981):
Introducción y distribución en el medio de la mezcla de inyección. Para que ello sea posible debe adecuarse, de acuerdo con la morfología de los huecos del terreno, de una red de perforación auxiliar y de unas presiones de inyección adecuadas.
Transformación de la mezcla, que endurece según un proceso químico que puede ser desde el fraguado en el caso del cemento, a la transformación sol-gel, en el caso de inyecciones químicas.
Las técnicas de inyección se pueden dividir en los siguientes grupos (Figura 1):
Rellenos de huecos y fisuras: Se inyecta lechada en las fracturas, diaclasas o discontinuidades de las rocas; o se rellenan los huecos con una lechada con un alto contenido de partículas. En este caso, el producto se introduce básicamente por gravedad hasta colmatar los huecos. Con grandes huecos, conviene introducir en las lechadas áridos o productos de alto rendimiento volumétrico.
Inyecciones de impregnación: No existe rotura del terreno. Se emplean mezclas muy penetrantes, cuyo objetivo principal es disminuir la permeabilidad del terreno rellenando poros y fisuras. Se sustituye el agua o el gas intersticial con una lechada inyectada a baja presión para no producir desplazamientos de terreno.
Inyecciones de compactación o de desplazamiento: Se introducen morteros de alta fricción interna que comprimen el terreno flojo y lo desplaza lateralmente de forma controlada, sin que el material inyectado se mezcle con él.
Inyecciones de fracturación hidráulica o por tubos manquito: Se fractura el terreno mediante la inyección de la lechada a una presión que supere su resistencia a tracción y su presión de confinamiento. La lechada no penetra en los poros, sino que se introduce en las fisuras creadas por la presión utilizada, formándose lentejones que recomprimen el terreno. Esta técnica también se llama hidrofracturación, hidrofisuración, “hidrojacking” o “claquage”. Son útiles en inyecciones de consolidación, de compensación de asientos, e inyecciones armadas. Para ello se suelen realizar con tubos manguito.
Inyección de alta presión: Se excava y mezcla el terreno con un chorro de lechada a alta velocidad (jet-grouting).
Las propiedades más importantes de las mezclas de inyección son las siguientes (Muzas, 2007):
Estabilidad y posibilidad de segregación: una velocidad pequeña del fluido puede sedimentar la mezcla y paralizar la inyección.
Viscosidad del producto: determina la presión y la velocidad de inyección.
Propiedades reológicas: comportamiento de la lechada a lo largo del tiempo.
Tiempo de fraguado: limita el plazo de utilización del producto en la inyección.
Volumen del producto fraguado: en las mezclas con agua, puede haber decantación o pérdida de agua al terreno contiguo, con disminución del volumen final.
Resistencia del producto fraguado.
Durabilidad: permanencia del producto fraguado a largo plazo.
En cuanto a los parámetros de la inyección, los más importantes son la velocidad de la inyección, el volumen de inyección, y la presión de inyección. La presión está muy relacionada con el tipo de terreno y con la viscosidad del producto, aconsejándose un valor límite.
He preparado un pequeño vídeo donde os explico brevemente estas técnicas de inyección de terrenos.
Os dejo un vídeo donde vemos la instalación de tubos-manguito para trabajos de inyección de compensación.
Referencias:
BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
La Norma UNE-EN 14991:2008 contempla los requisitos y los criterios básicos de prestaciones y especifica, donde sea aplicable, los valores mínimos de los elementos prefabricados para cimentaciones (comprende pilares con elementos de cimentación integrados, elementos de cimentación en cáliz, cálices, etc.) fabricados con hormigón armado de peso normal para estructuras de edificaciones de acuerdo con la Norma Europea EN 1992-1-1.
La presencia de suelos con permeabilidad muy alta o macizos rocosos muy fracturados pueden hacer que los bombeos sean excesivamente costosos y se precisen otro tipo de técnicas para controlar el nivel freático. Una forma de cambiar la permeabilidad de un terreno, y por tanto, contener mediante barrera el agua subterránea, es mediante la inyección del terreno. La técnica, muy utilizada también como mejora del terreno, consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos (Figura 1).
El tratamiento del terreno con inyecciones depende tanto de las peculiaridades del medio a tratar como de las características del producto de inyección, así como de la forma en la que este producto se introduce en el medio.
Este procedimiento constructivo se inició en Francia, siendo su inventor Charles Bérigny en 1802, quien inyectó morteros de cemento, alguna vez asociados con puzolanas. Si bien al principio solo se pretendían rellenar huecos colocando el mortero líquido por gravedad, poco a poco se perfeccionaron las inyecciones, a partir de 1920-1930, donde la construcción de ferrocarriles abrió paso a las grandes obras hidráulicas.
Las aplicaciones más frecuentes de la inyección del terreno son los tratamientos de las cimentaciones de presas, el refuerzo de cimentaciones o recalce de edificios, así como la construcción de túneles. Sin embargo, hay que ser prudentes con estos procedimientos, pues la inyección de grandes volúmenes de material en el terreno puede causar desplazamientos. Además, el material inyectado tiende a moverse a través de las capas más permeables o a través de grietas débiles, surgiendo a menudo a distancias considerables del punto de inyección.
En el caso de las inyecciones de impermeabilización, el objetivo fundamental es reducir la permeabilidad del terreno. Son tratamientos muy habituales en presas, en túneles y en excavaciones en general, cuando se realizan trabajos bajo nivel freático. Se emplean como mezclas de inyección lechadas y productos químicos como los geles de silicato, aunque también es posible realizar inyecciones de colmatación de huecos mediante arenas sin cemento con objeto de disminuir la permeabilidad, permitiendo el drenaje. A medida que la permeabilidad del medio disminuye, se deben emplear fluidos de menor viscosidad para conseguir la suficiente penetración en el terreno.
Al fluido inyectado se le conoce como mortero de inyección, los cuales pueden ser conglomerados hidráulicos, materiales arcillosos, arenas y filleres, agua y productos químicos. El componente más habitual en las inyecciones es el cemento, el cual puede ir acompañado por distintos productos. Los materiales utilizados en la inyección son los siguientes:
Conglomerantes hidráulicos: Incluyen los cementos y productos similares empleados en suspensión cuando se preparan las lechadas. La granulometría del conglomerante hidráulico de la lechada es un factor importante, pues guarda relación con las dimensiones de los huecos o fisuras o huecos existentes.
Materiales arcillosos: Las arcillas naturales, de tipo bentonítico, activadas o modificadas, se utilizan en las lechadas elaboradas con cemento, pues reducen la sedimentación y varían la viscosidad y la cohesión de la lechada, mejorando la bombeabilidad.
Arena y filleres: Se adicionan a las lechadas de cemento y a las suspensiones de arcilla para variar su consistencia, mejorando de esta forma su comportamiento frente a la acción del agua, su resistencia mecánica y su deformabilidad. Generalmente se utilizan arenas naturales o gravas, filleres calcáreos o silíceos, puzolanas y cenizas volantes, exentos de elementos perjudiciales.
Agua
Productos químicos: Se utilizan silicatos y sus reactivos, resinas acrílicas y epoxi, materiales procedentes de lignina y poliuretanos, siempre que cumplan la legislación ambiental vigente. Los aditivos son productos orgánicos e inorgánicos que se añaden, en general en cantidades reducidas, a la lechada para modificar sus propiedades y controlar la viscosidad, el tiempo de fraguado y la estabilidad, durante la inyección, además de la resistencia, cohesión y permeabilidad una vez colocada la lechada. Como aditivos se utilizan, entre otros, superplastificantes, productos para retener agua y productos para arrastrar aire.
En la Tabla 1 se relacionan los distintos tipos de productos:
Os paso a continuación un vídeo explicativo de los materiales empleados en la inyección de terrenos.
Referencias:
BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.
La inyección de morteros líquidos se les conoce también por inyecciones químicas. Las lechadas químicas, también llamadas mezclas químicas, son soluciones puras sin partículas en suspensión, salvo que se añadan con alguna finalidad específica. Se caracterizan por su baja viscosidad, cercana al agua, por lo que penetran en los huecos por donde el agua puede filtrarse. Normalmente penetran en arenas finas, limos arenosos y fisuras de hasta 0,01 mm de apertura. La mezcla gelifica al cabo de cierto tiempo al cambiar bruscamente la viscosidad. Su mayor inconveniente es su alto precio, por lo que suelen utilizarse en casos específicos o combinados con otras técnicas, donde antes se ha inyectado con cemento.
Las mezclas líquidas se caracterizan por su viscosidad, que determina su penetrabilidad, por el tiempo que transcurre desde la fabricación de la mezcla hasta el comienzo de su gelificación y por las características del gel final como aglomerante del medio que recibe la inyección (Figura 2). Estas características se ven afectadas por las proporciones de la mezcla, incluida el agua y también de la temperatura, que modifica el tiempo de gelificación.
Las inyecciones químicas se componen de una base de inyección, un reactivo y un catalizador. Así, en el método de Joosten, una solución de silicato de sodio reacciona con una solución alcalina de cloruro cálcico para formar un concentrado de sílice, el llamado gel de sílice. Sin embargo, aparte de los geles de sílice, se pueden clasificar las mezclas químicas en otros tipos de genes y en resinas y espumas.
Se utilizan dos procesos de aplicación de las lechadas químicas. Las de doble acción (two-shot) consiste en inyectar el silicato sódico concentrado y luego una solución de cloruro cálcico que se inyecta a presión elevada que actúa como gelificante. Este procedimiento supone el coste de dos inyecciones y de los sondeos correspondientes. Para evitar esto, se utiliza el proceso de acción simple (one-shot) supone una única inyección de todos los productos, que se mezclan antes de inyectarse, pero diseñando la reacción de forma que la lechada solidifique o se convierta en gel en los huecos del suelo. Este segundo caso corresponde al caso de la reacción del silicato con acetato de etilo, formalmida, etc., o bien utilizando subproductos del tratamiento de las maderas, tales como las lejías lignosulfáticas coaguladas por adición de bicromatos alcalinos.
Los tipos más comunes de lechadas químicas son las siguientes (García Valcarce et al., 2003):
Geles duros (reactivos orgánicos):
A base de silicato de sodio
Mezcla de un lignosulfito y bentonita
Geles plásticos (reactivos inorgánicos):
A base de silicato de sodio y bentonita desfloculada
Geles de bentonita, arcilla o cemento
Resinas orgánicas
Monómeros acuosos, polímeros precondensados
Estas inyecciones no se aplican a terrenos con poros muy pequeños, como las arcillas y limos, que prácticamente no se pueden inyectar. Se podrían aplicar a arenas finas o loess, pero con costes muy elevados. Tampoco servirían con terrenos con huecos demasiado grandes ni cuando la mezcla presente una viscosidad elevada.
A continuación se describen los tres grandes grupos de lechadas químicas:
Geles de sílice: La base habitual es el silicato de sodio disuelto en agua. Esta base se mezcla con un reactivo endurecedor orgánico (geles duros) o mineral (gel o espuma), que, en función de la dosificación, regula la duración del fraguado. Las lechadas químicas de este tipo son las de mayor viscosidad, y su aplicación es adecuada en arenas finas o muy finas (k ϵ [10-3, 10-6] m/s). En roca se emplea cuando las fisuras son finas. Como reactivo inorgánico (fabricación de gel plástico), se usa principalmente el bicarbonato sódico, lo cual forma un gel blando de gelificación retardada, suficiente para la impermeabilización. Entre los reactivos orgánicos se puede mencionar el acetato de etilo, aunque hoy día se ha desplazado por otros productos, muchos bajo marcas comerciales.
Otros geles: Para aplicaciones particulares, se pueden utilizar otros tipos de lechadas químicas:
Geles mixtos: Mezcla de gel de sílice y resina acrílica, empleado para el tratamiento de fisuras activas.
Geles de arcilla: Mezcla de bentonita, silicato y un reactivo, muy utilizado en la impermeabilización de depósitos aluviales, para el remate de pantallas impermeables, así como proceso posterior a la inyección de lechadas de bentonita-cemento. También se utiliza cuando es difícil impermeabilizar con lechadas de cemento y cuando no se justifica el uso de gel.
Geles lignocromos: Mezclas de lignosulfatos que contienen un exhalante de cromo, altamente tóxico. Es habitual el lignosulfato de calcio y dicromato de sodio. Se usan también en la impermeabilización de depósitos aluviales complementando a las inyecciones de bentonita-cemento.
Resinas: Suelen ser soluciones de productos orgánicos en agua o en disolventes no acuosos, que polimerizan a temperatura ambiente en lugares cerrados. Se utiliza cuando no se puede inyectar otro producto por su viscosidad demasiado elevada. Se emplea en la impermeabilización de terrenos granulares finos o en el cierre de grietas de obras, especialmente presas y túneles. En estos últimos casos, o en la inyección en fisuras den estructuras de hormigón, aunque son muy caras, se pueden usar colas inyectadas, que son resinas de alta viscosidad como pueden ser las resinas epoxi especiales, poliéster, o productos acrílicos, que una vez polimerizan proporcionan mecánicas superiores a las del hormigón. Habría que hacer mención a los productos espumantes que incrementan su volumen con la formación de burbujas de gas (resinas de poliuretano). Un caso especial son los productos “sensibles al agua”, que permanecen líquidos hasta ser inyectados. Están formados por coloides orgánicos (poliol-isocianato) que pasan a espuma de poluiretano, en contacto con el agua, incrementando su volumen en más de 20 veces. Son las resinas de poluiretano acuarreactivas (resinas P.A.).
En la Figura 3 se representa el campo de aplicación de distintas inyecciones químicas en función de la permeabilidad del terreno. Puede verse que las mezclas químicas, especialmente las resinas acrílicas y fenólicas, presentan un mayor rango de aplicabilidad que las inyecciones de lechada de cemento o de arcilla-cemento. Los polímeros dan buen resultado cuando se requiere inyectar fracturas abiertas con agua en circulación, taponándose temporalmente las grietas para inyectar entonces las suspensiones de cemento, morteros y lechadas, que son más resistentes y de mayor durabilidad.
En la Figura 4 se observa, con carácter orientativo, el límite de inyectabilidad en función de la permeabilidad del suelo y los diámetros de los granos de lechada (Cambefort, 1968).
En la Figura 5 se han representado los materiales que se emplearían en la inyección de acuerdo con el tamaño de los granos del terreno.
A parte del coste de este tipo de tratamientos, hay que señalar que el agua marina puede modificar sustancialmente el tiempo de gelificación de varias soluciones de este tipo. Además, normalmente este tipo de tratamientos son provisionales, útiles durante la fase constructiva, pues la durabilidad de este tipo de productos puede ser muy variable.
Referencias:
BELL, F.G. (1978). Foundation engineering in difficult ground. Butterworths, London.
BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.
TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
Las ataguías de tierra son diques que se usan en obras que tengan suficiente espacio y que dispongan de materiales adecuados (Figura 1). Son idóneas para pequeñas alturas de agua (sobre 3 m) que no estén en movimiento. El material no debe contener tierra vegetal y se debe compactar para lograr la mayor impermeabilidad y estabilidad.
Se suelen usar taludes de 3/2 en el paramento de aguas arriba y de 2/1 en el de aguas abajo, con un ancho de coronación de al menos 1,50 m (Figura 2). Se preverá también una altura mínima de 1 m sobre las crecidas normales. Si el talud de la ataguía se somete a un flujo hidráulico, se debe proteger mediante un pedraplén o cualquier otro procedimiento que impida la socavación; pero en este caso hay que sopesar el coste económico de este recubrimiento frente a otros procedimientos constructivos.
Un mismo material puede ser idóneo o no en función de cómo se construya la ataguía. Por ejemplo, si se utiliza una arcilla que ha de descargarse bajo el agua, el ablandamiento que va a experimentar impedirá conseguir pendientes estables. En cambio, este mismo material dispuesto en seco y correctamente compactado es muy adecuado por su baja permeabilidad. Se pueden disponer también núcleos de material impermeable y dejar los lados con otro material, incluso escollera si se quiere proteger de las corrientes de agua.
En el caso de no ser suficiente la impermeabilidad del material empleado, también es posible una ataguía mixta colocando una tablestaca en el centro de la ataguía de tierra (Figura 3). Las tablestacas se atornillan en cabeza a un perfil metálico que las enlaza.
Puede reducirse el espacio ocupado por la ataguía si se respalda la ataguía con un macizo de tierras aguas abajo, siempre y cuando las tablestacas presenten resistencia suficiente a los empujes (Figura 4). En este caso, es conveniente evitar las socavaciones de las tablestacas disponiendo escollera a su pie, aguas arriba.
Aún se podría minimizar el espacio ocupado si utilizamos dos cortinas de tablestacas y entre ellas construimos un macizo de tierras que de estabilidad al conjunto, y que mejore la estanqueidad de las cortinas si el material es arcilloso (Figura 5). En este caso, también se dispone escollera aguas arriba y una berma de tierras aguas abajo.
Siempre que se utilicen tablestacas, se debe garantizar su estabilización mediante apuntalamiento, arriostradas por tirantes, anclajes o cualquier otro procedimiento. Además, el empotramiento deberá ser suficiente para soportar los empujes, contener el flujo hidráulico y evitar el fenómeno del sifonamiento, entre otros. Hay que tener presente que el nivel freático desciende más rápido en el interior de la tablestaca que en el exterior, lo cual implican gradientes hidráulicos que pueden desestabilizar el fondo. Se recomienda cubrir el fondo de la excavación con una capa de arena y de grava. El agua que queda contenida en el recinto debe ser evacuada, normalmente por bombeo.
Cuando no se tenga la necesidad de crear recintos estancos, sino zonas de aguas tranquilas, no hay necesidad de crear ataguías impermeables, pues su función es únicamente romper la corriente o el oleaje. En estos casos se pueden utilizar las ataguías de escollera y de gaviones. En este último caso, se pueden usar también como protección del espaldón las ataguías (Figura 6).
En la Figura 7 se puede observar una ataguía formada por sacos de arena.
Las ataguías de escollera (rock-fill cofferdam) se construyen de forma similar a las ataguías de tierra, pero con la posibilidad de pendientes más pronunciadas. La escollera se dispone de forma que los huecos se pueden rellenar parcialmente con tierra y material granular. Si se quiere conseguir impermeabilidad, tanto la coronación como la pendiente aguas arriba requieren de una membrana impemeabilizante protegida con un pedraplén para proteger la ataguía contra el oleaje. La altura puede ser de hasta 3 m, con una pendiente entre 1:1,5 y 1:1,25. En caso de rebase por oleaje, el daño no es tan importante como en el caso de ataguías de tierra. Esta tipología se utiliza si la escollera está disponible en las cercanías.
REFERENCIAS:
GALABRÚ, P. (2004). Cimentaciones y túneles. Tratado de procedimientos generales de construcción. Editorial Reverte, Barcelona.
POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.