Pasarelas peatonales sostenibles: cómo optimizar su diseño para reducir costes económicos y ambientales

Este artículo se centra en la aplicación práctica de la evaluación del ciclo de vida (LCA) para optimizar el impacto ambiental y los costes de los puentes peatonales compuestos de acero y hormigón. Los autores utilizan el algoritmo de búsqueda de armonía multiobjetivo (MOHS) para identificar soluciones de diseño que minimicen simultáneamente las emisiones de CO₂, la energía incorporada y los costes de construcción. Los resultados muestran una relación directa y lineal entre el coste, las emisiones de CO₂ y la energía incorporada, lo que sugiere que las soluciones económicamente eficientes también son beneficiosas para el medio ambiente. Se analizan escenarios alternativos, como variaciones en la resistencia del hormigón y fluctuaciones en el precio de los materiales, para evaluar su impacto en los resultados de la optimización. En última instancia, el estudio demuestra la eficacia de combinar la optimización estructural con la evaluación del ciclo de vida para fomentar un diseño de infraestructura más sostenible.

El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. Se trata de una colaboración internacional de nuestro grupo con investigadores brasileños. A continuación se recoge un resumen sintético del trabajo.

El sector de la construcción es uno de los que más recursos consume y más emisiones de gases de efecto invernadero genera. Según el Programa de las Naciones Unidas para el Medio Ambiente, este sector consume alrededor del 34 % de la energía mundial y es responsable de aproximadamente el 37 % de las emisiones de CO₂. Ante esta realidad, mejorar la sostenibilidad de las infraestructuras es fundamental para alcanzar los Objetivos de Desarrollo Sostenible (ODS) de la ONU. En este contexto, el artículo «Aplicación práctica de la evaluación del ciclo de vida para optimizar el impacto ambiental de los puentes peatonales de acero y hormigón», de Fernando Luiz Tres Junior y colaboradores, muestra cómo la combinación de la optimización estructural multiobjetivo y la evaluación del ciclo de vida permite diseñar un puente peatonal que reduce simultáneamente su coste económico, las emisiones de CO₂ y la energía incorporada, sin sacrificar la seguridad ni la funcionalidad.

El trabajo aporta varias conclusiones relevantes. Una de las más importantes es que los objetivos de minimizar el coste y el impacto ambiental no son opuestos, sino que las soluciones más baratas también son más sostenibles. Además, el estudio cuantifica con precisión la relación entre estos factores, por lo que es posible estimar cómo varía el impacto ambiental en función del presupuesto. Otra aportación destacable es la validación práctica de la metodología: la combinación de técnicas de optimización y bases de datos de evaluación del ciclo de vida (LCA, por sus siglas en inglés) conduce a soluciones óptimas y robustas, incluso ante cambios en parámetros como la resistencia del hormigón o las fluctuaciones de precios.

El caso de estudio consiste en un puente peatonal de 17,5 m de luz y 3 m de ancho ubicado en el sur de Brasil. La estructura combina vigas de acero soldadas y una losa de hormigón armado, unidas mediante conectores de corte. Las variables de diseño incluyen el espesor y la resistencia del hormigón, las dimensiones de las vigas de acero y el grado de interacción entre ambos materiales. Estas variables pueden adoptar distintos valores discretos, lo que da lugar a más de 700 000 millones de combinaciones posibles. El objetivo de la optimización es hallar las mejores soluciones en términos de coste económico, emisiones de CO₂ y energía incorporada, cumpliendo siempre con la normativa brasileña sobre seguridad estructural y confort frente a vibraciones.

Para evaluar el impacto ambiental de los materiales, los autores utilizaron dos bases de datos. En el caso del acero de las vigas, utilizaron una base de datos internacional, que contiene datos globales sobre emisiones y consumo de energía. En el caso del hormigón y las armaduras, recurrieron a datos locales de producción del sur de Brasil. Además, analizaron dos escenarios alternativos para comprobar la solidez de las soluciones: uno con hormigón de menor resistencia (20 MPa en lugar de 40 MPa) y otro con precios más altos para los materiales (como ocurrió durante la pandemia en 2022).

Todas las soluciones se verificaron para garantizar que cumplían los requisitos normativos de seguridad y servicio, incluidos los estados límite últimos, las deformaciones y las vibraciones. Las soluciones que no superaban estas comprobaciones eran penalizadas y el algoritmo de optimización las descartaba. Para la optimización, utilizaron el algoritmo Multiobjective Harmony Search (MOHS), inspirado en la improvisación musical, que busca soluciones que «armonizan» los distintos objetivos. Este algoritmo genera y mejora iterativamente las soluciones hasta construir la denominada «frontera de Pareto», que recoge las mejores alternativas posibles sin que ninguna sea mejor en todos los objetivos a la vez.

Los resultados muestran que estos tres objetivos —coste, emisiones de CO₂ y energía incorporada— están estrechamente relacionados y no entran en conflicto entre sí. Se evita la emisión de 1 kg de CO₂ por cada 6,56 reales brasileños ahorrados por metro de puente, y se reducen 1 MJ de energía por cada 0,70 reales. Además, por cada 9,3 MJ ahorrados se evita la emisión de 1 kg de CO₂. Estas relaciones lineales reflejan que, al reducir el consumo de materiales, se consigue simultáneamente un ahorro económico y un menor impacto medioambiental.

Las soluciones óptimas obtenidas tienen características muy similares entre sí. La losa de hormigón tiene un espesor de 12 cm y la viga de acero mide aproximadamente 860 mm de altura, con un espesor del alma de 6,35 mm, y mantiene la clásica proporción luz/altura cercana a 20. La anchura de las alas superior e inferior de la viga varía, siendo la inferior más ancha y gruesa. En todos los casos, la interacción entre el acero y el hormigón es completa (grado de interacción igual a 1).

Al considerar el escenario con hormigón de menor resistencia, se observó un aumento del coste total del 3 %, debido a que fue necesario añadir más acero para compensar la menor resistencia del hormigón. En cuanto al impacto ambiental, las emisiones de CO₂ apenas se redujeron (menos de un 1 %), mientras que la energía incorporada aumentó alrededor de un 4 %. En el escenario con precios más altos de los materiales, se obtuvieron dos soluciones óptimas: una más barata, pero con mayores emisiones, y otra más cara y sostenible. En ambos casos, las diferencias entre las soluciones fueron pequeñas y se mantuvo la relación lineal entre los objetivos.

En conclusión, este trabajo demuestra que es posible diseñar puentes peatonales más económicos y sostenibles combinando optimización estructural y LCA. La reducción del consumo de materiales no solo abarata la estructura, sino que también disminuye las emisiones de CO₂ y la energía incorporada. Además, el uso de hormigón de alta resistencia reduce la cantidad de acero necesaria, lo que tiene un impacto positivo en el coste y la sostenibilidad. Las soluciones óptimas resultaron muy similares al modificar las condiciones del diseño o del mercado, lo que confirma la solidez de la metodología.

Este tipo de estudios es especialmente valioso en los países en desarrollo, donde las necesidades de infraestructuras son elevadas y los recursos económicos, limitados. El diseño de estructuras asequibles y sostenibles contribuye al desarrollo regional y a la lucha contra el cambio climático. Los autores recomiendan ampliar futuras investigaciones para incluir también el impacto social y considerar así los tres pilares de la sostenibilidad: el económico, el ambiental y el social. También recomiendan analizar el ciclo de vida completo de la estructura, incluyendo el mantenimiento y la demolición. Por último, esta metodología podría aplicarse fácilmente a otros tipos de infraestructuras, como puentes para vehículos o edificios.

En definitiva, este trabajo no solo muestra cómo reducir costes y emisiones en un puente peatonal concreto, sino que también abre la puerta a un diseño más sostenible de nuestras infraestructuras. Es un claro ejemplo de cómo la ingeniería civil puede ser una aliada clave en el desarrollo sostenible.

Referencia:

Tres Junior, F.L., Yepes, V., de Medeiros, G.F., Kripka, M. (2025). Practical Application of LCA to Optimize Environmental Impacts of Steel–concrete Footbridges. In: Brandli, L., Rosa, F.D., Petrorius, R., Veiga Avila, L., Filho, W.L. (eds) The Contribution of Life Cycle Analyses and Circular Economy to the Sustainable Development Goals. World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-031-85300-5_22

Glosario de términos clave

  • Evaluación del ciclo de vida (LCA): Una metodología para estimar los impactos ambientales resultantes de la fabricación de un producto o servicio, examinando cada etapa de su ciclo de vida, desde la extracción de recursos naturales hasta su eliminación.
  • Emisiones de CO2: La cantidad de dióxido de carbono liberada a la atmósfera, utilizada como un criterio clave para evaluar el impacto ambiental en este estudio.
  • Energía incorporada: La suma total de energía necesaria para producir un producto, desde la extracción de las materias primas hasta el final del proceso de fabricación, utilizada como otro criterio de impacto ambiental.
  • Optimización multi-objetivo: Un proceso de optimización que considera múltiples funciones objetivo que deben minimizarse o maximizarse simultáneamente. Produce un conjunto de soluciones no dominadas o Pareto-óptimas.
  • Algoritmo de búsqueda de armonía multi-objetivo (MOHS): Un algoritmo metaheurístico basado en la improvisación musical, adaptado para resolver problemas de optimización multi-objetivo.
  • Pasarela mixta de hormigón y acero: Una estructura que combina elementos de acero y hormigón de manera que trabajen juntos como una sola unidad para soportar cargas, aprovechando las fortalezas de ambos materiales.
  • Frontera de Pareto: Una representación gráfica que conecta el conjunto de soluciones no dominadas (Pareto-óptimas) en un problema de optimización multi-objetivo, lo que permite analizar las compensaciones entre los objetivos.
  • Solución no dominada (Pareto-Óptima): Una solución para la cual no existe otra solución admisible que mejore simultáneamente todas las funciones objetivo. Mejorar un objetivo solo es posible a expensas de al menos otro.
  • Grado de interacción (α): Una variable de diseño en vigas compuestas que representa el nivel de conexión entre el acero y el hormigón, influyendo en su comportamiento estructural combinado.
  • Estado límite último (ULS): Verificaciones relacionadas con la capacidad de la estructura para resistir las cargas máximas sin colapsar, incluyendo la tensión de cizallamiento y el momento de flexión.
  • Estado límite de servicio (SLS): Verificaciones relacionadas con el rendimiento de la estructura bajo cargas normales para garantizar la comodidad y la funcionalidad, como la limitación de los desplazamientos y las aceleraciones.
  • Penalización: Un método utilizado en algoritmos de optimización para hacer que las soluciones que no cumplen con las restricciones de diseño sean menos atractivas para el algoritmo, agregando un valor a la función objetivo.

Comunicaciones presentadas al IX Congreso Internacional de Estructuras de ACHE

Durante los días 25-27 de junio de 2025 tendrá lugar el IX Congreso Internacional de Estructuras (ACHE), que servirá una vez más para fortalecer los lazos nacionales e internacionales de profesionales y especialistas en el campo de las estructuras. Como en ocasiones anteriores, los objetivos fundamentales de este congreso son, por un lado, dar a conocer los avances, estudios y realizaciones recientemente alcanzados en el ámbito estructural (en edificación y en ingeniería civil e industrial) y, por otro, exponer a sus miembros, amigos y a toda la sociedad las actividades de nuestra asociación, que realiza una labor de difusión técnica sin ánimo de lucro. La situación actual, marcada por la internacionalización y la competitividad, hace imprescindible la innovación tecnológica y el intercambio de experiencias y puntos de vista entre profesionales e investigadores de la edificación y la ingeniería civil, que el Congreso facilitará mediante coloquios y debates paralelos a las sesiones de ponencias.

La ciudad elegida en esta ocasión es Granada, que cuenta con una de las universidades más antiguas de Europa y una rica historia que ha dejado numerosos hitos en su paisaje urbano y cultural. Se trata de una ciudad cosmopolita, donde a lo largo de su historia se han dado cita varias culturas, y es un ejemplo de los valores e intereses compartidos de la Unión Europea. Cuenta, además, con lugares como la Alhambra, el Generalife o el Albaycín, declarados Patrimonio de la Humanidad por la Unesco. La ciudad ofrece, además, interesantes ofertas culturales. La ciudad ofrece, además, interesantes ofertas culturales en las fechas de celebración del Congreso, como el Festival Internacional de Música y Danza. El Congreso tendrá su sede en la Escuela de Ingeniería de Caminos, Canales y Puertos, que fue fundada como quinta escuela española en 1988. Una escuela situada en pleno centro de la ciudad, moderna, magníficamente comunicada a través de transporte público (metro y autobús) y con numerosos hoteles cercanos.

La Asociación Española de Ingeniería Estructural (ACHE), entidad de carácter no lucrativo y declarada de utilidad pública, tiene como fines fomentar el progreso en los ámbitos del hormigón estructural y de las estructuras de obra civil y edificación en general, y canalizar la participación española en asociaciones análogas de carácter internacional. Para ello, desarrolla líneas de investigación, docencia, divulgación, formación continua y prenormalización. Entre otras actividades, ACHE publica monografías técnicas, edita la revista cuatrimestral Hormigón y Acero y administra una página web con amplio contenido técnico. Entre los eventos que organiza, destacan el Congreso Trienal de Estructuras y numerosas jornadas técnicas. ACHE cuenta con centenares de miembros (ingenieros, arquitectos, químicos y otros profesionales vinculados al sector), muchos de los cuales participan generosamente en comisiones técnicas y en los más de 25 grupos de trabajo activos que elaboran documentos científicos sobre aspectos relevantes de las estructuras y que se difunden entre todos los asociados.

Nuestro grupo de investigación, dentro del proyecto de investigación RESILIFE, presenta varias comunicaciones. Además, tengo el honor de participar en Comité Científico del Congreso. A continuación os paso los resúmenes.

SÁNCHEZ-GARRIDO, A.; NAVARRO, I.J.; YEPES, V. (2025). Resiliencia para la sostenibilidad de las estructuras de edificación mediante forjados con losas aligeradas biaxiales. IX Congreso Internacional de Estructuras, 25-27 de junio, Granada (Spain).

Los Métodos Modernos de Construcción (MMC) están revolucionando la industria al ofrecer soluciones sostenibles que reducen el impacto ambiental en el ciclo de vida de los edificios. Un ejemplo son las losas aligeradas biaxiales de hormigón, que optimizan el uso de materiales. Sin embargo, la corrosión en entornos agresivos supone un desafío importante para la resiliencia de estas estructuras. Este estudio propone una metodología para evaluar estrategias de mantenimiento reactivo en MMC expuestas a cloruros, analizando seis alternativas de diseño y utilizando un modelo FUCOM-TOPSIS para integrar criterios de sostenibilidad económica y medioambiental.

YEPES, V.; ALCALÁ, J.; GARCÍA, J.A.; KRIPKA, J. (2025). Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas. IX Congreso Internacional de Estructuras, 25-27 de junio, Granada (Spain).

Los desastres naturales y humanos causan grandes pérdidas humanas y económicas. RESILIFE optimiza el diseño y construcción de estructuras híbridas modulares, sostenibles y resilientes a eventos extremos, equiparables en seguridad a las tradicionales. Utiliza inteligencia artificial, metaheurísticas híbridas, aprendizaje profundo y teoría de juegos para evaluar y mejorar la resiliencia. Con técnicas multicriterio como lógica neutrosófica y redes bayesianas, optimiza diseño, mantenimiento y reparación, reduciendo costes y mejorando la recuperación social y ambiental.

YEPES-BELLVER, L.; NAVARRO, I.J.; ALCALÁ, J.; YEPES, V. (2025). Redes neuronales y Kriging para la optimización de la huella de carbono de puentes losa pretensados. IX Congreso Internacional de Estructuras, 25-27 de junio, Granada (Spain).

El artículo compara el rendimiento de los modelos Kriging y de redes neuronales para optimizar las emisiones de CO₂ en puentes de losa pretensada. Las redes neuronales presentan un menor error medio, pero ambos modelos destacan por conducir hacia áreas prometedoras en el espacio de soluciones. Las recomendaciones incluyen maximizar la esbeltez y reducir el uso de hormigón y armaduras, compensando con un incremento controlado de estas. Aunque los modelos proporcionan superficies de respuesta precisas, es esencial realizar una optimización heurística para obtener mínimos locales más exactos, lo que contribuye a diseños más sostenibles y eficientes.

 

Aportaciones al Congreso sobre Optimización de Estructuras HPSM/OPTI 2025, Edimburgo (Reino Unido)

Los días 10 a 12 de junio de 2025 se celebró en Edimburgo (Reino Unido) uno de los congresos más importantes sobre optimización de estructuras: “12th International Conference on High Performance and Optimum Design of Structures and Materials, HPSM/OPTI 2025“. He participado en dicho congreso tanto en su Comité Científico como Invited Speaker.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València. Además, es uno de los resultados de la tesis doctoral de Lorena Yepes.

En cuanto la comunicación esté publicada en el libro de ponencias, os pasaré el enlace para su descarga gratuita. A continuación os paso el resumen de la comunicación presentada.

El artículo «Multi-Attribute Decision-Making in Prestressed Concrete Road Flyover Design», propone una innovadora metodología para optimizar el diseño de puentes de hormigón pretensado teniendo en cuenta simultáneamente tres criterios clave: el coste económico, las emisiones de CO₂ y la energía incorporada en los materiales. Su objetivo es encontrar soluciones de compromiso que equilibren sostenibilidad y eficiencia estructural.

Aportaciones principales del estudio

Este trabajo aporta un enfoque sistemático y práctico para integrar criterios medioambientales y económicos en el diseño de pasos elevados. Frente a las metodologías tradicionales que suelen priorizar únicamente el coste, los autores aplican técnicas de toma de decisiones multicriterio para considerar también el impacto ambiental desde el inicio del proceso proyectual. Además, ofrecen pautas concretas para diseños preliminares que buscan un equilibrio entre coste, emisiones y consumo energético.

Metodología empleada

La investigación se basa en técnicas avanzadas de optimización y modelado. En primer lugar, se utilizaron 50 soluciones iniciales de diseño generadas mediante un muestreo estadístico conocido como Latin Hypercube Sampling, que explora diferentes combinaciones de parámetros como la resistencia del hormigón, la anchura de la base y la profundidad del tablero.

A continuación, se aplicó un modelo de sustitución de tipo Kriging, capaz de estimar con gran precisión los resultados estructurales sin necesidad de cálculos exhaustivos para cada diseño. Esto permitió ampliar el análisis a 1.000 soluciones adicionales simuladas.

Con todas las alternativas sobre la mesa, se extrajo la “frontera de Pareto”, un conjunto de soluciones no dominadas que representan los mejores compromisos posibles entre los tres objetivos. Finalmente, se aplicaron distintos escenarios de toma de decisiones multiatributo, asignando diferentes pesos a cada criterio, para seleccionar los diseños más equilibrados.

Resultados más relevantes

El análisis reveló que los diseños más sostenibles tienen características comunes: una relación entre canto del tablero y luz principal cercana a 1/30 y una resistencia del hormigón de 40 MPa. Estas configuraciones permiten reducir tanto el consumo de materiales como las emisiones sin comprometer la viabilidad estructural.

Dependiendo del peso asignado a cada criterio (coste, emisiones, energía), se identificaron varias soluciones óptimas, destacando especialmente dos (denominadas #6 y #13) por su buen rendimiento integral. Curiosamente, priorizar solo el coste lleva a soluciones con mayor canto, mientras que priorizar el medio ambiente genera estructuras más esbeltas y materialmente eficientes.

Conclusiones y recomendaciones

El estudio concluye que aplicar técnicas de decisión multicriterio en la ingeniería civil permite diseñar infraestructuras más sostenibles y racionales, sin sacrificar funcionalidad ni economía. Se recomienda considerar desde fases tempranas del diseño variables ambientales clave como las emisiones o la energía embebida, además de los costes.

Asimismo, los autores sugieren incorporar la participación de los diferentes agentes implicados (ingenieros, administraciones, ciudadanía) para lograr soluciones más equilibradas y duraderas.

Este trabajo representa un avance hacia una práctica de la ingeniería más alineada con los Objetivos de Desarrollo Sostenible, y especialmente con el ODS 9, que promueve infraestructuras resilientes, sostenibles e innovadoras.

Referencia:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Multi-attribute decision-making in prestressed concrete road flyover design. International Conference on High Performance and Optimum Design of Structures and Materials, HPSM/OPTI 2025, 10-12 June 2025, Edinburgh, UK.

Tesis doctoral: Optimización multicriterio para el diseño sostenible de puentes postesados mediante metamodelos

De izquierda a derecha: Julián Alcalá, Salvador Ivorra, Lorena Yepes, Tatiana García y Antonio Tomás.

Hoy, 6 de junio de 2025, ha tenido lugar la defensa de la tesis doctoral de Dª. Lorena Yepes Bellver, titulada “Multi-criteria optimization for sustainable design of post-tensioned concrete slab bridges using metamodels”, dirigida por el profesor Julián Alcalá González. La tesis ha obtenido la máxima calificación de sobresaliente «cum laude». A continuación, presentamos un pequeño resumen de la misma.

Esta tesis utiliza técnicas de modelización sustitutiva para optimizar los costes económicos y medioambientales en puentes losa de hormigón postesado hormigonado in situ. El objetivo principal de esta investigación es desarrollar una metodología sistemática que permita optimizar el diseño de puentes, reduciendo los costes, las emisiones de CO₂ y la energía necesaria para construir este tipo de puentes sin comprometer la viabilidad estructural o económica. El marco de optimización propuesto consta de dos fases secuenciales: la primera se centra en ampliar el espacio de búsqueda y la segunda intensifica la búsqueda de soluciones óptimas. El metamodelo basado en Kriging realiza una optimización heurística que da como resultado un diseño con emisiones de CO₂ significativamente menores que los diseños convencionales. El estudio revela que una relación de esbeltez de aproximadamente 1/30 arroja resultados óptimos, ya que se reduce el consumo de material y se mantiene la integridad estructural. Además, el aumento de la armadura pasiva compensa la reducción de hormigón y armadura activa, lo que da como resultado un diseño más sostenible. Por otra parte, se identifica una compensación entre costes y emisiones que muestra que un modesto aumento de los costes de construcción (menos del 1 %) puede reducir sustancialmente las emisiones de CO₂ (más del 2 %), lo que demuestra que el diseño de puentes sostenibles puede ser económicamente viable.

La investigación explora más a fondo la optimización de la energía incorporada en la construcción de pasos elevados de carreteras anuladas mediante el uso de muestreo por hipercubo latino y optimización basada en Kriging. La metodología permite identificar los parámetros críticos de diseño, como los altos coeficientes de esbeltez (en torno a 1/28), el uso mínimo de hormigón y armadura activa, y el aumento de la armadura pasiva para mejorar la eficiencia energética. Aunque en el estudio se emplearon Kriging y redes neuronales artificiales (RNA), Kriging demostró ser más eficaz a la hora de identificar óptimos locales, a pesar de que las redes neuronales ofrecen predicciones absolutas más precisas. Esto pone de manifiesto la eficacia de los modelos sustitutos a la hora de orientar las decisiones de diseño sostenible, incluso cuando los modelos no ofrecen predicciones absolutas perfectamente exactas.

En el contexto de la optimización de costes para puentes de losa postesada, el estudio demuestra el potencial del modelado sustitutivo combinado con la simulación del recocido. Los resultados muestran que el método de optimización basado en Kriging conduce a una reducción de costes del 6,54 %, principalmente mediante la minimización del uso de materiales, concretamente de hormigón en un 14,8 % y de acero activo en un 11,25 %. Estas reducciones en el consumo de material se consiguen manteniendo la integridad estructural y la capacidad de servicio del puente, lo que convierte al modelado sustitutivo en una herramienta práctica y eficaz para la optimización económica en el diseño de puentes.

El estudio también evalúa la forma de optimizar las emisiones de CO₂ en pasos elevados de carreteras pretensadas. Se identifican los parámetros óptimos de diseño, como grados de hormigón entre C-35 y C-40 MPa, profundidades del tablero entre 1,10 y 1,30 m, y anchuras de base entre 3,20 y 3,80 m. La red neuronal mostró las predicciones más precisas entre los modelos predictivos analizados, con los errores medios absolutos (MAE) y cuadrados medios (RMSE) más bajos. Estos resultados subrayan la importancia de seleccionar el modelo predictivo adecuado para optimizar las emisiones de CO₂ en el diseño de puentes y destacan el valor de utilizar modelos sustitutivos para mejorar la sostenibilidad en los proyectos de ingeniería civil.

Por último, la investigación integra la toma de decisiones multicriterio (MCDM) con la optimización basada en Kriging para evaluar y optimizar los diseños de puentes en relación con objetivos económicos, medioambientales y estructurales. El enfoque MCDM permite evaluar de manera más exhaustiva las alternativas de diseño al tener en cuenta las compensaciones entre coste, impacto ambiental y rendimiento estructural. Esta integración contribuye al desarrollo sostenible de las infraestructuras, ya que facilita la selección de diseños óptimos que se ajusten a los objetivos de sostenibilidad.

En conclusión, esta tesis demuestra que el modelado sustitutivo, que utiliza explícitamente el Kriging y redes neuronales artificiales, es un enfoque práctico para optimizar las dimensiones medioambiental y económica del diseño de puentes. El marco de optimización en dos fases que aquí se presenta proporciona una metodología eficiente desde el punto de vista computacional que permite identificar soluciones de diseño óptimas y sostenibles que cumplen las restricciones estructurales y económicas. Los resultados sugieren que la metodología es aplicable a proyectos de infraestructuras a gran escala y sentarán las bases para futuras investigaciones. Futuros estudios podrían investigar el uso de algoritmos y modelos de optimización adicionales para perfeccionar aún más el proceso de optimización y mejorar la aplicabilidad de estas metodologías en proyectos reales.

Referencias:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Predictive modeling for carbon footprint optimization of prestressed road flyovers. Applied Sciences15(17), 9591. DOI:10.3390/app15179591

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. Social Life Cycle Assessment of Railway Track Substructure Alternatives. J. Clean. Prod. 2024, 450, 142008.

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450. DOI:10.3390/su16198450

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Fases de un estudio de investigación operativa

La investigación operativa busca determinar la solución óptima para un problema de decisión con recursos limitados. Se trata de un procedimiento científico que analiza las actividades de un sistema de organización.

Las principales componentes de un modelo de investigación operativa son: alternativas, restricciones y un criterio objetivo para elegir la mejor opción. Las alternativas se representan como variables desconocidas que luego se utilizan para construir las restricciones y la función objetivo mediante métodos matemáticos. El modelo matemático establece la relación entre estas variables, restricciones y función objetivo. La solución consiste en asignar valores a las variables para optimizar (maximizar o minimizar) la función objetivo y cumplir con las restricciones. A esta solución se le denomina solución posible óptima.

El enfoque del estudio de la ingeniería de operaciones está relacionado con la toma de decisiones para aprovechar al máximo los recursos limitados. Para ello, utiliza herramientas y modelos adaptados a las necesidades para facilitar la toma de decisiones en la resolución de problemas. Implica un trabajo en equipo entre analistas y clientes, con una estrecha colaboración. Los analistas aportan conocimientos de modelado y el cliente, experiencia y cooperación.

Como herramienta para la toma de decisiones, la investigación de operaciones combina ciencia y arte. Es ciencia por sus técnicas matemáticas y arte, porque el éxito en todas las fases, antes y después de resolver el modelo matemático, depende de la creatividad y experiencia del equipo. La práctica efectiva de la investigación de operaciones requiere más que competencia analítica, e incluye la capacidad de juzgar cuándo y cómo utilizar una técnica, así como habilidades de comunicación y adaptación organizativa.

Es complicado recomendar acciones específicas, como las de la teoría precisa de los modelos matemáticos, para abordar factores intangibles. Solo pueden ofrecerse directrices generales para aplicar la investigación de operaciones en la práctica.

El estudio de investigación operativa consta de varias etapas principales, entre las que destacan las siguientes:

  1. Formulación y definición del problema.
  2. Construcción del modelo.
  3. Solución del modelo.
  4. Verificación del modelo y de la solución.
  5. Puesta en práctica y mantenimiento de la solución.

Aunque las fases del proyecto suelen iniciarse en el orden establecido, no suelen completarse en el mismo orden. La interacción entre las fases requiere revisarlas y actualizarlas continuamente hasta la finalización del proyecto. La tercera fase es la única de carácter puramente matemático, ya que en ella se aplican las técnicas y teorías matemáticas necesarias para resolver el problema. El éxito de las demás etapas depende más de la práctica que de la teoría, siendo la experiencia el factor clave para su correcta ejecución.

Definir el problema implica determinar su alcance, tarea que lleva a cabo todo el equipo de investigación de operaciones. El resultado final debe identificar tres elementos principales: 1) descripción de las alternativas de decisión, 2) determinación del objetivo del estudio y 3) especificación de las restricciones del sistema modelado. Además, se deben recolectar los datos necesarios.

La formulación del modelo es quizá la fase más delicada del proceso, ya que consiste en traducir el problema a relaciones matemáticas. Si el modelo se ajusta a un modelo matemático estándar, como la programación lineal, puede resolverse con los algoritmos correspondientes. Para ello, deben definirse las variables de decisión, la función objetivo y las restricciones. Si las relaciones son demasiado complejas para una solución analítica, se puede simplificar el modelo mediante un método heurístico o recurrir a una simulación aproximada. En algunos casos, puede ser necesaria una combinación de modelos matemáticos, simulaciones y heurísticas para resolver el problema de toma de decisiones.

La solución del modelo es la fase más sencilla de la investigación de operaciones, ya que utiliza algoritmos de optimización bien definidos para encontrar la solución óptima. Un aspecto clave es el análisis de sensibilidad, que proporciona información sobre la forma en que la solución óptima responde a cambios en los parámetros del modelo. Esto es crucial cuando los parámetros no se pueden estimar con precisión, puesto que permite estudiar cómo varía la solución cerca de los valores estimados.

La validación del modelo verifica si cumple su propósito, es decir, si predice adecuadamente el comportamiento del sistema estudiado. Para ello, se evalúa si la solución tiene sentido y si los resultados son aceptables, comparando la solución con datos históricos para verificar si habría sido la correcta. Sin embargo, esto no garantiza que el futuro imite al pasado. Si el modelo representa un sistema nuevo sin datos históricos, se puede usar una simulación como herramienta independiente para comprobar los resultados del modelo matemático.

La implantación de la solución de un modelo validado consiste en traducir los resultados en instrucciones claras para quienes gestionarán el sistema recomendado. Esta tarea recae principalmente en el equipo de investigación de operaciones. En esta fase, el equipo debe capacitar al personal encargado de aplicar el modelo, asegurándose de que puedan traducir sus resultados en instrucciones de operación y usarlo correctamente para tomar decisiones sobre los problemas que motivaron su creación.

Os dejo algún vídeo al respecto.

Referencias:

Altier, W. J. (1999). The thinking manager’s toolbox: Effective processes for problem solving and decision making. Oxford University Press.

Checkland, P. (1999). Systems thinking, system practice. Wiley.

Evans, J. (1991). Creative thinking in the decision and management sciences. South-Western Publishing.

Gass, S. (1990). Model world: Danger, beware the user as a modeler. Interfaces, 20(3), 60-64.

Morris, W. (1967). On the art of modeling. Management Science, 13, B707-B717.

Paulos, J. A. (1988). Innumeracy: Mathematical illiteracy and its consequences. Hill and Wang.

Taha, H. A., & Taha, H. A. (2003). Operations research: an introduction (Vol. 7). Upper Saddle River, NJ: Prentice hall.

Willemain, T. R. (1994). Insights on modeling from a dozen experts. Operations Research, 42(2), 213-222.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Diseño optimizado de edificios de pórticos de hormigón armado frente al colapso progresivo mediante metamodelos

El diseño estructural de los edificios plantea importantes retos para garantizar su seguridad y sostenibilidad. El colapso progresivo, provocado por eventos extremos como terremotos o explosiones, puede ocasionar daños catastróficos. Para reducir este riesgo, se propone una metodología de diseño apoyada en metamodelos que combina optimización estructural y criterios de seguridad, y que tiene en cuenta elementos que a menudo se pasan por alto, como los forjados, las pantallas de arriostramiento y la interacción suelo-estructura (SSI, por sus siglas en inglés).

El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. También es fruto de la colaboración con investigadores de Brasil y Cuba.

Metodología

Descripción del problema

Se estudiaron cinco edificios de pórticos de hormigón armado con diferentes configuraciones de plantas y luces. Las estructuras incluyen vigas, columnas, forjados y pantallas de arriostramiento. Además, se incorporó el diseño optimizado de cimentaciones, considerando la interacción con el suelo mediante modelos de elasticidad lineal. Las dimensiones de los elementos estructurales se ajustaron siguiendo las normas internacionales de diseño y se consideraron distintas combinaciones de carga para evaluar escenarios críticos.

Se realizaron simulaciones numéricas avanzadas que tuvieron en cuenta escenarios de carga extremos, incluyendo la pérdida de columnas críticas en diversas posiciones. En el análisis se tuvieron en cuenta factores de seguridad, límites de servicio y fallos estructurales para determinar los diseños óptimos. También se tuvieron en cuenta criterios de sostenibilidad y se midieron las emisiones de CO₂ asociadas a cada solución.

Optimización basada en un diseño robusto frente al colapso progresivo (ObRDPC)

La metodología ObRDPC se centra en minimizar las emisiones de CO₂ como función objetivo, garantizando simultáneamente la robustez estructural mediante restricciones de seguridad. Para evaluar el colapso progresivo y simular la pérdida de columnas críticas, así como analizar la redistribución de cargas, se empleó el método de camino alternativo (AP). La metodología incluye la verificación de estados límite últimos y de servicio, lo que garantiza el cumplimiento de los requisitos normativos.

El proceso de optimización incluye la definición precisa de las variables de diseño, como las dimensiones de las vigas, columnas y cimentaciones, así como el tipo de hormigón utilizado. Para maximizar la eficiencia estructural y minimizar los costos ambientales, se aplican técnicas de programación matemática.

Modelización de forjados y pantallas de arriostramiento

  • Forjados: se modelaron como elementos tipo placa de 12 cm de espesor y se conectaron a las vigas mediante nodos rígidos para asegurar la continuidad estructural. Se realizó una discretización adecuada para representar su comportamiento realista ante cargas verticales y horizontales. El análisis incluyó el comportamiento a flexión, los efectos de cargas concentradas y la interacción con los elementos perimetrales. Se consideraron diferentes configuraciones de refuerzo para maximizar la resistencia y minimizar las deformaciones.
  • Pantallas de arriostramiento: representadas mediante diagonales equivalentes elásticas, según las especificaciones normativas. Se definieron sus propiedades mecánicas mediante modelos experimentales previos, incluyendo el módulo de elasticidad y la resistencia a compresión. Se estudiaron distintos tipos de mampostería y su influencia en la resistencia general. Las pantallas de arriostramiento también se evaluaron como elementos activos en la redistribución de cargas después de eventos que provocan la pérdida de soporte, lo que mejora la estabilidad global del sistema estructural.

Interacción suelo-estructura (SSI)

Se consideró el asentamiento diferencial de las cimentaciones mediante coeficientes de rigidez calculados según modelos elásticos. El suelo se modeló como un medio elástico semiespacial. En el análisis se incluyó la interacción entre la superestructura y el terreno para capturar los efectos de asentamientos desiguales y su impacto en el estado de esfuerzos y deformaciones.

En el análisis se tuvieron en cuenta diferentes tipos de suelos, desde arcillas de baja resistencia hasta suelos granulares compactados. Se realizaron estudios paramétricos para evaluar la sensibilidad del sistema a variaciones en la rigidez del terreno y el módulo de elasticidad del hormigón.

Cinco estudios de casos que consideran la modelización de cimientos, forjados y pantallas de arriostramiento.

Optimización asistida por metamodelos

Se utilizaron técnicas avanzadas de optimización asistida por metamodelos para reducir la carga computacional. El proceso incluyó un muestreo inicial mediante muestreo hipercúbico latino para cubrir eficientemente el espacio de diseño, seguido de la construcción del metamodelo a través de técnicas de interpolación Kriging para aproximar las respuestas estructurales, evaluando múltiples configuraciones para garantizar la precisión. Posteriormente, se aplicó una optimización global utilizando algoritmos evolutivos, como la Biogeography-based Optimization (BBO), para explorar soluciones factibles y un método iterativo para refinar las soluciones y garantizar su viabilidad en condiciones críticas.

Resultados

Impacto de forjados y pantallas de arriostramiento

La inclusión de forjados y pantallas de arriostramiento mejoró significativamente la redistribución de cargas y la resistencia al colapso progresivo. El análisis mostró una reducción del 11 % en el impacto ambiental para diseños resistentes al colapso, en comparación con modelos que solo consideran vigas y columnas.

Se observó una mejora notable en la capacidad de redistribución de cargas después de la pérdida de columnas críticas. Las pantallas de arriostramiento actuaron como elementos resistentes adicionales, mitigando fallos en los elementos primarios y reduciendo los desplazamientos globales.

Comparación de enfoques de diseño

Se observó que aumentar el número de niveles incrementa la robustez estructural debido a la mayor redundancia de elementos. Sin embargo, el incremento de la longitud de las luces de las vigas reduce esta capacidad, por lo que es necesario utilizar secciones más robustas y aplicar mayores refuerzos.

Los modelos con luces de 8 m presentaron un aumento del 50 % en las emisiones de CO₂ cuando no se incluyeron forjados ni pantallas de arriostramiento. Al incorporarlos, se consiguió reducir este incremento a la mitad.

Recomendaciones prácticas para el diseño estructural

  1. Incluir forjados y pantallas de arriostramiento: Su integración mejora significativamente la resistencia al colapso progresivo, particularmente en edificios con luces amplias.
  2. Optimizar secciones estructurales: Diseñar secciones de vigas y columnas equilibrando rigidez y eficiencia económica.
  3. Evaluar diferentes tipos de cimentaciones: Incorporar análisis de interacción suelo-estructura para definir bases óptimas.
  4. Aplicar análisis paramétricos: Evaluar la sensibilidad de los diseños a variaciones en la resistencia del hormigón y las condiciones geotécnicas.
  5. Considerar combinaciones de carga extremas: Simular múltiples fallos para garantizar diseños robustos y seguros.

Conclusión

La optimización basada en un diseño robusto frente al colapso progresivo (ObRDPC) permite diseñar estructuras resistentes al colapso progresivo con menor impacto medioambiental. El uso de metamodelos y la consideración de forjados, pantallas de arriostramiento y la interacción suelo-estructura mejoran significativamente la seguridad estructural y la sostenibilidad del diseño. Se recomienda ampliar esta investigación a otros tipos de estructuras y condiciones geotécnicas complejas para validar y perfeccionar la metodología propuesta.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Metamodel-assisted design optimization of robust-to-progressive-collapse RC frame buildings considering the impact of floor slabs, infill walls, and SSI implementation. Engineering Structures, 325:119487. DOI:10.1016/j.engstruct.2024.119487

Como el artículo se ha publicado en abierto, lo podéis descargar aquí:

Pincha aquí para descargar

Modelización y métodos de optimización aplicados al consumo energético en los ferrocarriles

El sector ferroviario, reconocido por su eficiencia energética, sigue siendo objeto de investigación para mejorar su sostenibilidad. Pese a representar solo el 2 % del consumo energético del transporte en Europa, su relevancia en el transporte de mercancías y pasajeros impulsa la investigación para reducir su huella de carbono. La necesidad de reducir las emisiones de gases de efecto invernadero y mejorar la competitividad económica ha llevado a realizar estudios exhaustivos centrados en el consumo energético ferroviario.

 

Modelización del consumo energético

El modelado del consumo energético permite evaluar y simular el rendimiento de los trenes sin necesidad de realizar pruebas experimentales. Las técnicas de modelado se clasifican principalmente en modelos deterministas y métodos alternativos, como redes neuronales y modelos estocásticos. Estos enfoques permiten analizar múltiples escenarios operativos y optimizar las decisiones estratégicas y operativas.

Modelos deterministas

El enfoque predominante utiliza ecuaciones basadas en la ecuación de Davis, que describe la resistencia al movimiento del tren en función de factores como la velocidad, la masa y la fricción. Su modularidad permite incluir características como frenos regenerativos y sistemas de almacenamiento a bordo. Aunque estos modelos son fiables, requieren numerosos parámetros técnicos, algunos de los cuales son difíciles de obtener debido a su complejidad técnica y a la necesidad de realizar mediciones precisas.

La ecuación de Davis se amplía con frecuencia para incorporar factores como la inclinación de la vía, la resistencia aerodinámica y la fricción en curvas. Estas ampliaciones permiten crear simuladores más detallados que evalúan trayectorias específicas y condiciones operativas complejas. Algunos estudios incluyen incluso el consumo de sistemas auxiliares, como el aire acondicionado y la iluminación, lo que mejora la precisión.

Además, el modelado detallado permite tener en cuenta aspectos como la variación de la masa del tren debida a la carga de pasajeros o mercancías, así como las condiciones meteorológicas y la interacción entre trenes en redes densas. Gracias a estas mejoras, los simuladores no solo evalúan el consumo energético, sino también el impacto de distintas estrategias operativas.

Alternativas al enfoque determinista

Los modelos basados en redes neuronales (Neural Networks) y en técnicas estocásticas (Stochastic Methods) han sido menos explorados, pero ofrecen flexibilidad y pueden manejar incertidumbres como retrasos y cambios en la carga de pasajeros. Las redes neuronales permiten entrenar modelos a partir de grandes volúmenes de datos operativos, lo que les permite aprender patrones complejos que los modelos deterministas podrían pasar por alto. Sin embargo, estos métodos requieren grandes volúmenes de datos y procesos de entrenamiento complejos.

Los modelos estocásticos integran factores aleatorios, como fallos en el sistema y condiciones meteorológicas. Su uso es particularmente relevante en redes ferroviarias densas, donde las interacciones entre trenes generan escenarios difíciles de prever mediante métodos deterministas. Los estudios actuales sugieren que estas técnicas podrían aplicarse a la gestión en tiempo real de las redes ferroviarias para mejorar la eficiencia global.

Métodos de optimización

La optimización del consumo energético ferroviario implica resolver problemas complejos, desde la gestión de perfiles de velocidad hasta la distribución de tiempos de espera y la configuración de infraestructuras. Estos estudios buscan minimizar el consumo energético sin comprometer los tiempos de viaje ni la capacidad operativa.

La formulación de problemas de optimización se basa en variables como los tiempos de viaje, los perfiles de velocidad, el consumo energético y la utilización de las infraestructuras, y su enfoque varía en función de si se optimiza un solo tren o un sistema completo. Las metodologías utilizadas incluyen la optimización unidimensional, que se centra en variables individuales como, por ejemplo, minimizar el tiempo de viaje o el consumo energético, y la optimización multidimensional, que aborda simultáneamente varios factores como el tiempo, el consumo energético, los costos operativos y las emisiones contaminantes. Los problemas de optimización pueden ser estáticos, donde se consideran condiciones fijas, o dinámicos, que ajustan decisiones en tiempo real con datos operativos actualizados.

Los métodos de optimización incluyen la búsqueda directa, que evalúa todas las soluciones posibles y es adecuada para problemas simples con pocos parámetros, y el análisis de principios máximos, que obtiene soluciones exactas mediante ecuaciones matemáticas avanzadas, aunque para ello sea necesario realizar simplificaciones y hacerlos computacionalmente viables. Las metaheurísticas, inspiradas en procesos naturales, se utilizan ampliamente por su capacidad para gestionar espacios de solución complejos. Entre ellas destacan los algoritmos genéticos, que han demostrado su versatilidad y eficacia en numerosos estudios. También se emplean técnicas como la optimización por enjambre de partículas y la optimización por colonias de hormigas, que son útiles en problemas específicos como, por ejemplo, la asignación de horarios y rutas óptimas. Además, la optimización basada en aprendizaje combina aprendizaje individual y colectivo para mejorar los resultados en contextos operativos cambiantes.

Los métodos de optimización también incluyen técnicas como la programación lineal, la programación dinámica y los algoritmos híbridos, que combinan diferentes enfoques para superar las limitaciones de cada uno de ellos. Las técnicas más avanzadas integran sistemas de inteligencia artificial y algoritmos de predicción para ajustar dinámicamente los parámetros operativos.

Discusión y análisis estadístico

Un análisis estadístico muestra que los modelos deterministas predominan debido a su precisión y facilidad para incluir múltiples factores. En optimización, los algoritmos genéticos son ampliamente preferidos, aunque métodos como la optimización por enjambre de partículas han demostrado ser eficaces en ciertos problemas.

Estudios recientes sugieren la posibilidad de combinar diferentes algoritmos para cubrir todo el espacio de soluciones y abordar problemas complejos que incluyen interacciones entre múltiples trenes y redes ferroviarias completas. Estas estrategias son esenciales para implementar operaciones ferroviarias completamente autónomas y sostenibles.

Además, el uso de análisis estadísticos avanzados, como el análisis de correspondencias y el modelado predictivo, permite identificar patrones ocultos y mejorar la precisión de los modelos y algoritmos utilizados.

Conclusión

La combinación de modelos deterministas y técnicas complementarias podría mejorar la precisión de los estudios. En optimización, el desarrollo de enfoques híbridos que combinen diferentes algoritmos metaheurísticos podría suponer un gran avance en la gestión energética ferroviaria. La integración de datos en tiempo real y técnicas de aprendizaje automático (Machine Learning Techniques) podría revolucionar el campo y llevar a sistemas ferroviarios más sostenibles y eficientes.

Referencia:

MARTÍNEZ-FERNÁNDEZ, P.; VILLALBA-SANCHÍS, I.; YEPES, V.; INSA-FRANCO, R. (2019). A review of modelling and optimisation methods applied to railways energy consumption. Journal of Cleaner Production, 222:153-162. DOI:10.1016/j.jclepro.2019.03.037

Os dejo la versión autor del artículo, para su consulta.

Pincha aquí para descargar

Tesis doctoral: Optimización social y ambiental de estructuras prefabricadas de hormigón armado bajo presupuestos restrictivos

De izquierda a derecha: Julián Alcalá, Tatiana García, Andrés Ruiz, Salvador Ivorra, Antonio Tomás y Víctor Yepes

Ayer, 4 de diciembre de 2024, tuvo lugar la defensa de la tesis doctoral de D. Andrés Ruiz Vélez, titulada “Optimal design of socially and environmentally efficient reinforced concrete precast modular road frames under constrained budgets”, dirigida por los profesores Víctor Yepes Piqueras y Julián Alcalá González. La tesis recibió la calificación de sobresaliente «cum laude». A continuación, presentamos un pequeño resumen de la misma.

Resumen:

La infraestructura de transporte es esencial para el desarrollo humano, ya que impulsa el crecimiento industrial y promueve la evolución social al mejorar la interacción y la conectividad. Su construcción actúa como un catalizador de transformaciones socioeconómicas, puesto que fomenta las economías locales y facilita el flujo de recursos y de la fuerza laboral. Sin embargo, la creciente concienciación sobre los impactos negativos de las prácticas insostenibles en la ingeniería de la construcción exige una transición hacia métodos más responsables. Históricamente, la viabilidad económica ha sido el enfoque principal en ingeniería estructural. No obstante, en la actualidad se otorga mayor relevancia a la evaluación de los impactos a lo largo del ciclo de vida de los proyectos. Aunque este enfoque supone un avance en la integración del diseño estructural con los objetivos de desarrollo sostenible, todavía no abarca plenamente la complejidad y diversidad que implica la sostenibilidad a lo largo de todo el ciclo de vida de las infraestructuras.

Esta tesis doctoral desarrolla de manera sistemática un marco de diseño que integra la sostenibilidad en la construcción de infraestructuras de transporte. Se propone un enfoque modular y prefabricado para proyectos de estructuras viales, que se posiciona como una alternativa más eficiente y atractiva frente a los métodos tradicionales de hormigonado in situ. El diseño estructural, junto con los procesos ambientales y sociales asociados al ciclo de vida de la estructura, se modela mediante un enfoque matemático avanzado. Este modelo permite aplicar técnicas de optimización monoobjetivo y multiobjetivo, combinadas con algoritmos multicriterio de toma de decisiones. Dada la complejidad y la diversidad de variables involucradas, el uso de métodos exactos de optimización no es viable. Por ello, la investigación adopta metaheurísticas híbridas y basadas en entornos para minimizar el coste final de la estructura desde una perspectiva monoobjetivo. Entre las técnicas evaluadas, las metaheurísticas de recocido simulado y aceptación por umbrales, calibradas con cadenas de mayor longitud, ofrecen resultados de alta calidad, aunque con un considerable esfuerzo computacional. En contraste, una versión híbrida del recocido simulado enriquecida con un operador de mutación común en algoritmos basados en poblaciones alcanza soluciones de calidad comparable con un menor esfuerzo computacional. La hibridación de metaheurísticas se presenta como una estrategia eficaz para ampliar las capacidades exploratorias de estos algoritmos, optimizando el equilibrio entre la calidad de los resultados y la eficiencia computacional.

El análisis del ciclo de vida de diferentes configuraciones de marcos con un coste óptimo revela claras ventajas ambientales del enfoque modular prefabricado en comparación con la construcción convencional in situ. Sin embargo, las implicaciones sociales son más complejas y destacan la relevancia de incorporar los impactos del ciclo de vida como funciones objetivo en el proceso de optimización. Este hallazgo subraya la necesidad de emplear técnicas multicriterio para evaluar y clasificar eficazmente las alternativas. De este modo, se garantiza un equilibrio adecuado entre los impactos ambientales y sociales, y se asegura una toma de decisiones más integral y sostenible dentro del marco del diseño y la planificación.

Esta investigación desarrolla operadores de cruce, mutación y reparación diseñados para discretizar eficazmente el problema de optimización, dotando así a los algoritmos genéticos y evolutivos de la capacidad necesaria para abordar la complejidad del proceso de optimización multiobjetivo. En particular, el operador de reparación estadístico muestra un buen rendimiento cuando se combina con los algoritmos genéticos NSGA-II y NSGA-III, así como con el algoritmo evolutivo RVEA. Aunque existen diferencias metodológicas entre estas técnicas, la herramienta de toma de decisiones FUCA produce clasificaciones equivalentes a las obtenidas mediante el método de ponderación aditiva simple. Esta coherencia también se observa con técnicas como TOPSIS, PROMETHEE y VIKOR. Para garantizar la imparcialidad en la ponderación de criterios, se aplica un proceso de cálculo basado en la teoría de la entropía, lo que proporciona un enfoque metódico a las técnicas de decisión multicriterio. La integración de algoritmos de optimización multiobjetivo con herramientas de decisión multicriterio en un marco de diseño fundamentado en modelos matemáticos permite identificar y clasificar diseños óptimos no dominados. Estos diseños logran un equilibrio integral entre las dimensiones económica, ambiental y social, y promueven la sostenibilidad del ciclo de vida de la estructura.

Referencias:

RUIZ-VÉLEZ, A.; GARCÍA, J.; PARTSKHALADZE, G.; ALCALÁ, J.; YEPES, V. (2024). Enhanced Structural Design of Prestressed Arched Trusses through Multi-Objective Optimization and MCDM. Mathematics, 12(16), 2567. DOI:10.3390/math12162567

RUIZ-VÉLEZ, A.; GARCÍA, J.; ALCALÁ, J.; YEPES, V. (2024). Enhancing Robustness in Precast Modular Frame Optimization: Integrating NSGA-II, NSGA-III, and RVEA for Sustainable Infrastructure. Mathematics, 12(10):1478. DOI:10.3390/math12101478

RUIZ-VÉLEZ, A.; GARCÍA, J.; ALCALÁ, J.; YEPES, V. (2024). Sustainable Road Infrastructure Decision-Making: Custom NSGA-II with Repair Operators for Multi-objective Optimization. Mathematics, 12(5):730. DOI:10.3390/math12050730

RUIZ-VÉLEZ, A.; ALCALÁ, J.; YEPES, V. (2023). A parametric study of optimum road modular hinged frames by hybrid metaheuristics. Materials, 16(3):931. DOI:10.3390/ma16030931

RUIZ-VÉLEZ, A.; ALCALÁ, J.; YEPES, V. (2023). Optimal design of sustainable reinforced concrete precast hinged frames. Materials, 16(1):204. DOI:10.3390/ma16010204

RUIZ-VÉLEZ, A.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2023). Perspectiva social de un marco modular óptimo: Análisis integral del ciclo de vida. Revista CIATEC-UPF, 15(1):1-19. DOI:10.5335/ciatec.v15i1.14974

RUIZ-VÉLEZ, A.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2022). Optimización de marcos articulados prefabricados de hormigón armado mediante recocido simulado. Revista CIATEC-UPF, 14(3):41-55. DOI:10.5335/ciatec.v14i3.14079

 

Predimensionamiento óptimo de tableros de puentes losa pretensados aligerados

Figura 1. Vista aérea de paso superior. Google Maps.

El artículo de investigación presentado en el 28th International Congress on Project Management and Engineering por los autores Yepes-Bellver, Martínez-Pagán, Alcalá, y Yepes es un análisis integral del predimensionamiento de los tableros de puentes losa pretensados aligerados.

Este informe detalla su importancia y sugiere mejoras en el diseño estructural mediante la optimización con métodos avanzados como el modelo Kriging y algoritmos de optimización heurística.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

1. Contexto del empleo de los puentes losa pretensados aligerados

Los puentes de losa pretensada son fundamentales en las infraestructuras de carreteras y vías ferroviarias debido a su capacidad para cubrir luces de entre 10 y 45 metros, lo que los hace más resistentes, duraderos y adaptables a distintos diseños geométricos. El coste de estos puentes suele representar entre un 5 % y un 15 % de los gastos totales de una infraestructura de transporte. Además, los puentes losa ofrecen una mayor flexibilidad y una apariencia estética superior, ya que eliminan las juntas de calzada, lo que mejora la comodidad y reduce el desgaste del tablero al tráfico.

Principales ventajas de los puentes losa pretensados:

  • Resistencia y durabilidad: estos puentes ofrecen una alta resistencia a la torsión y la flexión, por lo que son ideales para soportar cargas variables y condiciones climáticas adversas.
  • Versatilidad en el diseño: gracias a su construcción in situ, es posible adaptarlos a terrenos irregulares o a condiciones complejas, como curvas pronunciadas y anchos variados, lo que permite construirlos con rasantes bajas.
  • Ahorro de materiales y costes: Al diseñarse sin juntas y con posibilidades de aligeramiento, su mantenimiento resulta menos costoso en comparación con otras tipologías.

2. Predimensionamiento y limitaciones en los métodos actuales

El predimensionamiento es esencial en la fase preliminar del diseño de puentes con losas pretensadas. Tradicionalmente, los ingenieros utilizan reglas empíricas basadas en la experiencia para definir parámetros geométricos iniciales, como el espesor de la losa, la relación entre el canto y la luz y la cantidad de armadura activa y pasiva. Sin embargo, estos métodos tradicionales tienen limitaciones en cuanto a eficiencia y sostenibilidad, ya que no optimizan el uso de materiales ni reducen el impacto ambiental.

Desventajas de los métodos convencionales de predimensionamiento:

  • Rigidez en el diseño: los métodos empíricos pueden ser inflexibles, lo que limita las opciones de diseño y hace que la estructura no se adapte eficientemente a los criterios de optimización moderna.
  • Ineficiencia económica y ambiental: al no tener en cuenta factores de sostenibilidad y costes, estos métodos pueden provocar un uso excesivo de materiales, lo que aumenta la huella de carbono y el consumo energético.

3. Propuesta de optimización con modelos Kriging y metaheurísticas

La propuesta de los investigadores consiste en aplicar una optimización bifase mediante modelos Kriging combinados con el recocido simulado, un algoritmo heurístico. Esta técnica permite reducir el tiempo de cómputo en comparación con los métodos de optimización tradicionales sin perder precisión. La optimización se centra en tres objetivos clave:

  • Minimización del coste
  • Reducción de emisiones de CO₂
  • Disminución del consumo energético

El Kriging, un tipo de metamodelo, facilita la interpolación de datos en una muestra determinada, lo que permite que los valores estimados sean predictivos y evite el alto coste computacional que conllevan las simulaciones estructurales completas. Para implementar esta técnica, se usa un muestreo de hipercubo latino (LHS), que permite generar variaciones en el diseño inicial de los puentes y proporciona una base sobre la que se aplica el modelo Kriging para ajustar las alternativas optimizadas de diseño.

4. Resultados y comparación con diseños convencionales

A continuación, se exponen los principales hallazgos del estudio, basados en la optimización de puentes reales y en la comparación con métodos empíricos:

  • Esbeltez y espesor de la losa: la investigación recomienda que aumentar la relación entre el canto y la luz mejora la sostenibilidad del diseño. Los puentes optimizados presentan relaciones de hasta 1/30, en comparación con el rango usual de 1/22 a 1/25.
  • Volumen de hormigón y armaduras: los resultados muestran una disminución del volumen de hormigón y del número de armaduras activas necesarias, mientras que aumenta el número de armaduras pasivas. Este ajuste permite reducir tanto el coste como las emisiones.
  • Uso de materiales de construcción: se recomienda el uso de hormigón de resistencia entre 35 y 40 MPa para obtener una combinación óptima entre coste y sostenibilidad. La cantidad de aligeramientos interiores y exteriores también contribuye significativamente a la reducción del peso total sin comprometer la resistencia.

Comparativa de materiales:

  • Cuantía de hormigón: entre 0,55 y 0,70 m³ por m² de losa. La optimización reduce el consumo a 0,60 m³ para puentes económicos y a 0,55 m³ para priorizar la reducción de emisiones.
  • Armadura activa: la cantidad recomendada es inferior a 17 kg/m² de tablero. Esto representa una reducción significativa en comparación con los diseños tradicionales, que promedian alrededor de 22,64 kg/m².
  • Armadura pasiva: se debe aumentar la cuantía hasta 125 kg/m³ para proyectos de alta sostenibilidad, en contraste con los valores convencionales.

5. Herramientas prácticas para los proyectistas: nomogramas para el predimensionamiento

Uno de los aportes más valiosos del estudio es la creación de nomogramas que permiten a los ingenieros realizar predimensionamientos precisos con un mínimo de datos. Los nomogramas se desarrollaron mediante modelos de regresión múltiple y ofrecen una forma rápida de estimar:

  • La cantidad de hormigón necesaria.
  • El espesor de la losa.
  • La armadura activa en función de la luz del puente y los aligeramientos aplicados.

Estos nomogramas son útiles en las primeras fases de diseño, ya que permiten obtener valores cercanos a los óptimos de manera rápida y eficiente. Los gráficos incluyen secuencias de cálculo específicas con ejemplos de puentes con luces de 34 m y aligeramientos medios (interior de 0,20 m³/m² y exterior de 0,40 m³/m²), lo que facilita un proceso de diseño preliminar que cumple con criterios de sostenibilidad.

Figura 2. Nomograma para estimar el canto del tablero (m). Fuente: Yepes-Bellver et al. (2024)

6. Recomendaciones para el diseño sostenible de puentes losa pretensados aligerados

Basándose en los resultados de optimización, el estudio recomienda ajustar ciertos parámetros de diseño para mejorar la sostenibilidad y reducir los costes:

  • Aumento de la relación canto/luz: se debe aumentar la relación a 1/26 o incluso 1/30 para conseguir diseños sostenibles.
  • Reducción del hormigón utilizado: limitar el uso de hormigón a 0,60 m³/m², o menos si la prioridad es reducir las emisiones.
    Cuantía de armaduras: para la armadura pasiva, se recomienda un mínimo de 125 kg/m³, mientras que la armadura activa debe reducirse a 15 kg/m² de losa.
    Aligeramientos amplios: utilizar aligeramientos significativos (interior de 0,20 m³/m² y exterior de 0,50 m³/m²) para reducir el peso estructural y minimizar el material empleado.

7. Conclusión: innovación en el diseño de infraestructuras sostenibles

El uso de modelos predictivos, como el Kriging, y de técnicas de optimización avanzada en el diseño de puentes supone un gran avance hacia la construcción de infraestructuras sostenibles y eficientes. Estos métodos permiten reducir costes y minimizar el impacto ambiental, dos factores críticos en la ingeniería moderna. Al promover estos enfoques, la investigación allana el camino hacia políticas de infraestructura más responsables y sostenibles, un objetivo alineado con los Objetivos de Desarrollo Sostenible (ODS).

8. Perspectivas futuras: expansión de la metodología de optimización

Los autores proponen continuar esta línea de investigación aplicando el modelo Kriging y otros metamodelos a diversas estructuras de ingeniería civil, como marcos de carretera, muros de contención y otros tipos de puentes. Esta expansión podría sentar las bases para nuevos estándares en el diseño de infraestructuras sostenibles.

Este estudio se presenta como una herramienta esencial para ingenieros y proyectistas interesados en mejorar el diseño estructural mediante métodos modernos de optimización, ya que ofrece un enfoque práctico y avanzado para lograr una ingeniería civil más sostenible.

Os dejo la presentación que se hizo en el congreso:

Como está publicado en abierto, os dejo la comunicación completa a continuación:

Pincha aquí para descargar

Referencia:

YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P.; ALCALÁ, J.; YEPES, V. (2024). Análisis del predimensionamiento de tableros óptimos de puentes losa pretensados aligerados y su incidencia en el proyecto estructural. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain), pp. 407-419. DOI:10.61547/2402010

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Impacto social y económico de los resultados previstos del proyecto de investigación RESILIFE

Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En varios artículos anteriores ya presentamos muchos de los aspectos que justifican el proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo queremos resaltar la línea de trabajo del grupo de investigación y las razones por las cuales este proyecto supone un salto cualitativo.

Entre los Objetivos de Desarrollo Sostenible (ODS) para 2030, destaca la necesidad de construir infraestructuras resilientes. Entre 2003 y 2013, los desastres naturales y humanos causaron más de 1,1 millones de muertes, afectaron a más de 2000 millones de personas y generaron pérdidas de 1,5 billones de dólares. Los apagones en las redes eléctricas por condiciones meteorológicas adversas costaron entre 18 000 y 33 000 millones de dólares entre 2003 y 2012. Los errores de construcción y diseño indujeron el 65 % de los casos de colapso progresivo. En Europa, solo la mitad de las reparaciones de los edificios de hormigón fueron efectivas, a pesar de que los costes de rehabilitación suponen casi la mitad de las inversiones anuales en construcción. El mercado mundial de construcción de infraestructuras, valorado en 2,242 mil millones de dólares en 2021, se proyecta a 3,267 mil millones para 2027, con un crecimiento anual del 6,48 %.

Ante este panorama, un diseño adecuado y medidas preventivas locales son cruciales para salvar vidas e infraestructuras, pero, además de reducir el riesgo, son una fuente de creación de empleo especializado que debe formarse en estas técnicas. Por tanto, se espera un impacto social y económico relevante del proyecto RESILIFE. Publicaciones previas del grupo de investigación centradas en la optimización multiobjetivo (sin considerar la toma de decisiones multicriterio derivada de la participación social) muestran ahorros de entre el 10 y el 50 % en costes, ahorro de materiales, reducción de emisiones de CO₂ y consumo de energía. Por otra parte, en proyectos anteriores se hizo hincapié en los aspectos sociales de la optimización de las infraestructuras. Ello supuso incluir aspectos relativos a la seguridad de las personas, la equidad social intergeneracional, aspectos relacionados con la salud, la educación, la integración del análisis de género, etc., que ahora se incluyen en este proyecto. El grupo dispone de la metodología para su inclusión en la construcción industrializada modular y las estructuras híbridas. En este sentido, la construcción modular industrializada (también llamada off-site) ofrece ventajas significativas, ya que permite ahorros de hasta el 50 % en los plazos, reduce el desperdicio, se fabrica con tolerancias estrictas y mejora la seguridad al estandarizar los procesos en fábrica. Permite ahorros de hasta el 50 % en los plazos, reduce el desperdicio, se fabrica con tolerancias estrictas y mejora la seguridad al estandarizar los procesos en fábrica. Además, la pandemia ha demostrado, por ejemplo, en la construcción de dos hospitales de campaña en Wuhan (China) en solo 12 días, que este tipo de construcción modular puede solucionar graves problemas de alto impacto social y económico en situaciones de crisis futuras. También, existe una creciente demanda social de vivienda que, en países como Suecia o Japón, ha utilizado la construcción modular de forma masiva.

Los resultados del proyecto RESILIFE pretenden profundizar en las ventajas sociales y económicas. Basta con observar cómo los desastres naturales y, por desgracia, los conflictos bélicos actuales están destruyendo las viviendas e infraestructuras de forma masiva, afectando principalmente a las mujeres y los niños. El esfuerzo por diseñar estructuras capaces de resistir alguno de estos eventos extremos, o en su caso, facilitar la reparación de forma rápida y eficaz, permite reducir considerablemente el sufrimiento de las personas. Además, optar por soluciones que minimicen el colapso progresivo de los edificios y mejoren la eficiencia de la rehabilitación puede tener un impacto significativo. Mejorar el diseño resiliente de las infraestructuras para reducir el impacto en un 10 % supondría una disminución de al menos 15 000 millones de dólares y 10 000 muertes anuales a nivel mundial. Asimismo, los resultados obtenidos por la optimización resiliente vendrían a completar la línea de investigación realizada en el ICITECH por el profesor José M. Adam y su equipo para evitar el colapso progresivo de las estructuras, investigación que cuenta con una fuerte inversión en modelización física y numérica. Esta especialización en la investigación del ICITECH sitúa a nuestro país en una posición tecnológica de gran importancia en el ámbito de la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.