Optimización sostenible de puentes losa postesados usando metamodelos

Durante los días 12 a 14 de septiembre de 2022 tuvo lugar en las Palmas de Gran Canaria el Congreso de Métodos Numéricos en Ingeniería CMN 2022. El objetivo de este congreso es actuar como un foro en que se recopilen los trabajos científicos y técnicos más relevantes en el área de los métodos numéricos y la mecánica computacional, así como sus aplicaciones prácticas.  CMN 2022 está organizado conjuntamente por las sociedades de métodos numéricos española (SEMNI), portuguesa (APMTAC) y por el Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI) de la Universidad de Las Palmas de Gran Canaria (ULPGC).

Dentro de este congreso tuve la ocasión de actuar como presidente, junto con el profesor David Greiner, de la sesión paralela denominada “Optimization, metaheuristics and evolutionary algorithms in civil engineering“. Además, nuestro grupo de investigación presentó un trabajo de investigación sobre la optimización de puentes mediante metamodelos Kriging. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Os dejo la comunicación en español por si os resultara de interés.

Referencia:

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). Sustainable optimization of post-tensioned cast-in-place concrete slab road bridges using metamodels. Congress on Numerical Methods in Engineering CMN2022, 12-14 September 2022, Las Palmas de Gran Canaria, Spain, pp. 166-185. ISBN: 978-84-123222-9-3

Descargar (PDF, 1.61MB)

Aplicación de optimización kriging para la búsqueda de estructuras óptimas robustas

Redheugh Bridge, Newcastle. © Copyright Stephen Richards and licensed for reuse under this Creative Commons Licence.

En todos los problemas estructurales existe una variabilidad o incertidumbre asociada. En el diseño de estructuras hay parámetros de diseño como las dimensiones de la estructura, las características mecánicas de los materiales o las cargas de diseño que pueden tener variaciones respecto al valor de diseño. Lo mismo ocurre a la hora de valorar una función objetivo asociada la estructura. Por un lado, a la hora de diseñar una estructura, el valor nominal utilizado es aquel que tiene una baja probabilidad de ocurrir (por ejemplo, la resistencia característica del hormigón es aquella que tiene una probabilidad del 5% de fallo). Además, se asignan coeficientes de seguridad asociados a una probabilidad de fallo determinada. Por otro lado, a la hora de valorar una función objetivo, como el coste o algún impacto medioambiental, el valor unitario de esta función suele ser la media. Dado este enfoque, la optimización estructural se convierte en una optimización determinista que desprecia los efectos de la incertidumbre asociada. Esto significa que la estructura tiene un comportamiento óptimo solo bajo las condiciones definidas inicialmente, pudiendo la respuesta variar significativamente cuando los valores se alejan de los valores de diseño.

A continuación os dejo una comunicación que presentamos en el 5th International Conference on Mechanical Models in Structural Engineering, que se celebró del 23 al 25 de octubre de 2019 en Alicante (España). Se trata de la optimización de un puente de sección en cajón de hormigón postesado utilizando un metamodelo tipo Krigring.

Abstract:

All the structural problems have an associated variability or uncertainty. In the design of structures, there are parameters such as the dimensions of the structure, the mechanical characteristics of the materials, or the loads that can have variations concerning the design value. The goal of robust design optimization is to obtain the optimum design and be less sensitive to variations of these uncertain initial parameters. The main limitation of the robust design optimization is the high computational cost required due to the high number of optimizations that must be made to assess the sensitivity of the objective response of the problem. For this reason, the kriging model is applied to carry out the optimization process more efficiently. This work will apply robust design optimization to a continuous pedestrian bridge of prestressed concrete and box sections.

Keywords:

Post-tensioned concrete; Box-girder bridge; Robust design optimization; RDO; Kriging

Reference:

YEPES, V.; PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T. (2019). Aplicación de optimización Kriging para la búsqueda de estructuras óptimas robustas. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain, pp. 81-94. ISBN: 978–84–17924–58–4

Descargar (PDF, 886KB)

Optimización de puentes mixtos mediante aceptación por umbrales

Hemos presentado en el 11th International Conference on Bridge Maintenance, Safety and Management IABMAS 2022, una comunicación sobre la optimización de puentes mixtos mediante el algoritmo de aceptación por umbrales. Este congreso se desarrolla en Barcelona, del 11 al 15 de julio del 2022. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La complejidad de la optimización de los puentes se debe, entre otras razones, a que el diseño de este tipo de estructuras presenta muchas variables. Estas generan un espacio de soluciones con demasiadas posibilidades para ser evaluadas en su totalidad. Por ello, en este trabajo se ha realizado la optimización de un puente mixto de vigas cajón considerando el coste como función objetivo mediante el uso de métodos heurísticos. Para lograr este objetivo, se ha elegido un Operador de Aceptación de Umbral con Mutación (TAMO) para la optimización estructural de un puente compuesto de acero-hormigón. La adición de celdas en las conexiones entre almas y alas mejora el comportamiento estructural de la sección transversal. El diseño de doble acción compuesta propuesto permite reducir el número de rigidizadores para este caso de estudio. Este método automatiza el proceso de optimización de un diseño inicial de un puente de material compuesto, permitiendo alcanzar diseños óptimos sin necesidad de contar con una experiencia significativa en el diseño estructural de puentes.

Abstract

The bridge optimization’s complexity is due to the design of this type of structure’s many variables. These generate a space of solutions with too many possibilities to be evaluated in their totality. Because of this, in this work, the optimization of a steel-concrete composite box girder bridge has been performed considering cost as an objective function by using heuristic methods. To achieve this objective, a Threshold Accepting with a Mutation Operator (TAMO) has been chosen for the structural optimization of a steel-concrete composite bridge. The addition of cells on the connections between webs and flanges improves the cross-section structural behaviour. The proposed double composite-action design allows for reducing the number of stiffeners for this study case. This method automatizes the optimization process of an initial design of a composite bridge, allowing it to reach optimum designs without significant expertise in bridge structural design.

Reference:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Steel-concrete composite bridge optimization through threshold accepting. 11th International Conference on Bridge Maintenance, Safety and Management IABMAS 2022, 11-15 July 2022, Barcelona, Spain.

Descargar (PDF, 760KB)

 

Optimización de las emisiones de CO₂ en la construcción de puentes losa postesados utilizando metamodelos

Acaban de publicarnos un artículo en la revista Materials, revista indexada en el primer cuartil del JCR. En este caso se ha optimizado, mediante un metamodelo tipo Kriging, las emisiones de CO₂ de un puente losa postesado aligerado. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Se trata de un trabajo de investigación en el que se ha propuesto una metodología novedosa, bifase, que utilizando un metamodelo tipo Kriging y con un muestreo inteligente del espacio de soluciones, permite optimizar problemas de alto nivel de complejidad computacional. Es el caso de las estructuras de hormigón, y en este trabajo en particular, de un tablero de puente losa pretensado aligerado. Por tanto, el objetivo general de este trabajo es proponer y comprobar la aplicabilidad de una metodología que permita la reducción energética y reducción de las emisiones de CO₂ en la construcción del tablero de un puente losa pretensado aligerado. La metodología propuesta tiene carácter general, pudiéndose aplicar a la optimización de cualquier otro tipo de estructura para optimizar distintas funciones objetivo. El diseño de la metodología propuesta presenta dos fases secuenciales de optimización, la primera fase de diversificación y la segunda fase de intensificación de la búsqueda de los óptimos.

Abstract:

This paper deals with optimizing embedded carbon dioxide (CO₂) emissions using surrogate modeling, whether it is the deck of a post-tensioned cast-in-place concrete slab bridge or any other design structure. The main contribution of this proposal is that it allows optimizing structures methodically and sequentially. The approach presents two sequential phases of optimization, the first one of diversification and the second one of intensification of the search for optimums. Finally, with the amount of CO₂ emissions and the differentiating characteristics of each design, a heuristic optimization based on a Kriging metamodel is performed. An optimized solution with lower emissions than the analyzed sample is obtained. If CO₂ emissions were to be reduced, design recommendations would be to use slendernesses as high as possible, in the range of 1/30, which implies a more significant amount of passive reinforcement. This increase in passive reinforcement is compensated by reducing the measurement of concrete and active reinforcement. Another important conclusion is that reducing emissions is related to cost savings. Furthermore, it has been corroborated that for a cost increase of less than 1%, decreases in emissions emitted into the atmosphere of more than 2% can be achieved.

Keywords:

CO₂ emission; optimization; metamodel; Kriging; post-tensioned concrete; structural optimization

Reference:

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Descargar (PDF, 1.4MB)

 

Diseño de experimentos para la calibración de la heurística de optimización de muros de contrafuertes

Variables geométricas del muro de contrafuertes

En la actualidad, los técnicos se enfrentan al desafío de encontrar soluciones estructurales más eficientes cumpliendo con todas las restricciones de seguridad y funcionalidad. Como ayuda a este reto, surgen las técnicas de optimización heurísticas. El algoritmo aplicado en este artículo es el Recocido Simulado o Simulated Annealing (SA). La estructura sobre la que se emplea esta metodología es un muro de contrafuertes de hormigón armado de 11 metros de altura. La eficiencia del algoritmo depende de la elección de los parámetros más adecuados que lo definen. Para ello, se realiza un diseño de experimentos factorial fraccionado que permite, a través de un análisis estadístico, detectar aquellos parámetros de la heurística que más afectan al resultado de la solución obtenida.

Referencia:

MARTÍ, J.V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Diseño de experimentos para la calibración de la heurística de optimización de muros de contrafuertes. VIII Congreso de la Asociación Española de Ingeniería Estructural ACHE. Santander, 2022, 10 pp.

Descargar (PDF, 450KB)

Diseño óptimo de depósitos de agua elevados de hormigón armado bajo cargas sísmicas

Acaban de publicarnos un artículo en Applied Sciences, revista indexada en el JCR. Se trata de la optimización heurística de un depósito elevado de agua de hormigón armado bajo acciones sísmicas.  El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Este artículo trata del diseño sísmico de las columnas de 35 depósitos elevados de almacenamiento de agua de hormigón armado. Los depósitos constan de un tronco cónico superior, una columna de sección cuadrada hueca variable y una cimentación superficial sobre una capa de arena. Las cinco alturas de columna consideradas son 20, 25, 30, 35 y 40 m. Los cinco depósitos se someten a siete grados de carga sísmica caracterizados por la aceleración pico del suelo de referencia en el Eurocódigo 8. Los depósitos elevados se diseñan según las prescripciones completas del Eurocódigo 2, el Eurocódigo 8 y el Código Estructural español. Esto incluye las cargas variables por sismicidad, viento, nieve, etc., junto con la acción del peso propio y las cargas muertas. El método de diseño de optimización considerado es una variante del algoritmo del solterón, un método de aceptación de umbral adaptativo con un movimiento de vecindad basado en el operador de mutación de los algoritmos genéticos. Los resultados de las columnas muestran la alta no linealidad del problema, pues las fuerzas sísmicas horizontales dependen de la rigidez y la altura de las columnas. Las principales características de los depósitos optimizados dan una orientación para el diseño práctico de este tipo de depósitos de agua elevados de hormigón armado.

El artículo se puede descargar, pues está en abierto, en la siguiente dirección: https://www.mdpi.com/2076-3417/12/11/5635

Abstract:

This paper deals with the seismic column design of 35 elevated RC water storage tanks. Tanks comprise a top conic trunk reservoir, a column with variable hollow square cross-sections, and a shallow foundation on a sand layer. The five-column heights considered are 20, 25, 30, 35, and 40 m. The five tanks are subjected to seven degrees of seismic loading characterized by the reference peak ground acceleration in Eurocode 8. The elevated tanks are designed against the full prescriptions of Eurocode 2, Eurocode 8, and the Spaniard Structural Code of Practice. This includes variable loads for seismicity, wind, snow, etc., together with the action of self-weight and dead loads. The optimization design method considered is a variant of the old bachelor algorithm, an adaptive threshold acceptance method with a neighborhood move based on the mutation operator from genetic algorithms. Column results show the high nonlinearity of the problem since the horizontal seismic forces depend on the rigidity and height of the columns. The main features of the optimized tanks give guidance for the practical design of this kind of elevated RC water tank.

Keywords:

Concrete structures; economic optimization; elevated water tanks; old bachelor algorithm; seismic loading; structural design

Reference:

MARTÍNEZ-MARTÍN, F.J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; ALCALÁ, J. (2022). Optimization design of RC elevated water tanks under seismic loads. Applied Sciences, 12(11):5635. DOI:10.3390/app12115635

Os paso a continuación el artículo para que podáis consultarlo.

Descargar (PDF, 5.88MB)

 

Optimización de la vía en placa mediante metamodelos para mejorar la sostenibilidad de la construcción ferroviaria

Acaban de publicarnos un artículo en el Journal of Construction Engineering and Management-ASCE, revista indexada en el primer cuartil del JCR. Se trata de optimizar la vía en placa mediante metamodelos para mejorar la sostenibilidad de la construcción ferroviaria. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Este artículo no está publicado en abierto, pero podéis encontrarlo, solicitándolo, en esta dirección: https://www.researchgate.net/publication/360243758_Slab_Track_Optimization_Using_Metamodels_to_Improve_Rail_Construction_Sustainability o bien descargarlo directamente de la página web de ASCE: https://ascelibrary.org/doi/full/10.1061/%28ASCE%29CO.1943-7862.0002288

El ferrocarril es un medio de transporte eficaz, sin embargo, la construcción y el mantenimiento de las vías férreas tienen un impacto medioambiental importante en términos de emisiones de CO2 y uso de materias primas. Esto es especialmente cierto en el caso de la vía en placa, pues necesitan grandes cantidades de hormigón. También son más caras de construir que las vías convencionales con balasto, pero requieren menos mantenimiento y presentan otras ventajas que las convierten en una buena alternativa, especialmente para las líneas de alta velocidad. Para contribuir a un ferrocarril más sostenible, este trabajo pretende optimizar el diseño de una de las tipologías de vía en placa más comunes: RHEDA 2000. El objetivo principal es reducir la cantidad de hormigón necesaria para construir la losa sin comprometer su rendimiento y durabilidad. Para ello, se utilizó un modelo basado en el método de los elementos finitos (MEF) de la vía, emparejado con un metamodelo de kriging que permite analizar múltiples opciones de espesor de la losa y resistencia del hormigón de forma puntual. Mediante kriging, se obtuvieron soluciones óptimas que se validaron a través del modelo MEF para garantizar el cumplimiento de las restricciones mecánicas y geométricas predefinidas. Partiendo de una configuración inicial con una losa de 30 cm de hormigón con una resistencia característica de 40 MPa, se llegó a una solución optimizada, consistente en una losa de 24 cm de hormigón con una resistencia de 45 MPa, que arroja una reducción de costes del 17,5%. Este proceso puede aplicarse ahora a otras tipologías de losas para obtener diseños más sostenibles.

Abstract:

Railways are an efficient transport mode, but building and maintaining railway tracks have a significant environmental impact in terms of CO2 emissions and the use of raw materials. This is particularly true for slab tracks, which require large quantities of concrete. They are also more expensive to build than conventional ballasted tracks, but require less maintenance and have other advantages that make them a good alternative, especially for high-speed lines. To contribute to more sustainable railways, this paper aims to optimize the design of one of the most common slab track typologies: RHEDA 2000. The main objective is to reduce the amount of concrete required to build the slab without compromising its performance and durability. To do so, a model based on the finite-element method (FEM) of the track was used, paired with a kriging metamodel to allow analyzing multiple options of slab thickness and concrete strength in a timely manner. By means of kriging, optimal solutions were obtained and then validated through the FEM model to ensure that predefined mechanical and geometrical constraints were met. Starting from an initial setup with a 30-cm slab made of concrete with a characteristic strength of 40 MPa, an optimized solution was reached, consisting of a 24-cm slab made of concrete with a strength of 45 MPa, which yields a cost reduction of 17.5%. This process may be now applied to other slab typologies to obtain more sustainable designs.

Keywords:

Slab track; Optimization; Latin hypercube; Kriging; Finite-element method (FEM).

Reference:

MARTÍNEZ FERNÁNDEZ, P.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2022). Slab track optimisation using metamodels to improve rail construction sustainabilityJournal of Construction Engineering and Management, 148(7):04022053. DOI:10.1061/(ASCE)CO.1943-7862.0002288

Primer Congreso CONSTRUC LATAM 2022

Tengo el honor de anunciar la invitación recibida por parte de los organizadores del Primer Congreso CONTRUC LATAM 2022 para impartir una conferencia el lunes 16 de mayo de 2022, a las 15:00 horas (hora de Colombia) cuyo tema es “Gestión del mantenimiento de las carreteras con presupuestos restringidos“, en la Sala 2: pavimentos. La conferencia se realizará en línea.

 

El evento lo organiza el Instituto de Especialización en Construcción y Vialidad, que es un instituto de enseñanza especializada que cuenta con la colaboración de docentes nacionales e internacionales de reconocido prestigio. Cuenta con sedes en Perú y Bolivia. Los temas de los que tratará el congreso son los de geotecnia, puentes, construcción, transporte y tránsito, obras de infraestructura y pavimentos.

El enlace a la página web del congreso con la información correspondiente se encuentra en: https://www.construclatam.com/

Investigación de vanguardia en el diseño óptimo y ejecución de los puentes construidos con vigas artesas

Figura 1. Montaje de una viga artesa

La construcción con hormigón prefabricado presenta claras ventajas económicas cuando se fabrican en taller piezas en grandes series. El ahorro en material y en mano de obra, la elevada calidad en el producto y el rápido montaje son razones que justifican, por sí solas, el uso de la construcción prefabricada. Sin embargo, hoy en día existen motivos adicionales basados en beneficios sociales y medioambientales que justifican la adopción de la tecnología del hormigón prefabricado. Asimismo, los proyectistas han tomado buena nota de las ventajas del prefabricado cuando se trata de construir puentes con luces moderadas, de 10 a 50 m. En estos casos, la disminución del peso resulta fundamental para reducir los costes de elevación y transporte de las piezas. En este contexto, la optimización estructural del coste necesario para construir un puente de vigas prefabricadas constituye un área de gran interés,especialmente cuando se realizan grandes series de piezas.

Siguiendo esta línea de trabajo, nuestro grupo de investigación se ha centrado en los últimos años en el diseño automatizado de puentes de vigas artesa prefabricadas de hormigón pretensado (HP) empleados como pasos superiores sobre vías de comunicación. Las luces vienen impuestas por las dimensiones de la vía inferior, con rangos habituales que oscilan entre los 20 y los 40 m. Estos puentes consisten en vigas de HP con forma de U con losa superior colaborante (Figura 2) y un tablero de hormigón, parcialmente prefabricado o construido “in situ”. Esta tipología cuenta a su favor, entre otras, con las ventajas derivadas de la prefabricación, como por ejemplo la construcción industrializada, los moldes reutilizables, los plazos reducidos de ejecución en obra y la baja interferencia con el tráfico inferior. La solución de viga en U permite eliminar completamente los poco agraciados cabezales sobre pila de los tableros de viga en doble T.

Figura 2. Esquema longitudinal del puente y sección transversal del tablero

Resulta interesante comparar la mejor solución alcanzada por alguno de los algoritmos desarrollados por nuestro gruporespecto a una estructura realmente construida y calculada mediante procedimientos habituales. Se han comprobado para casos similares ahorros apreciables en torno al 7-8%. Sin embargo, en algún caso extremo, como el caso del viaducto 1 del tramo Muro de Alcoy-Puerto de Albaida del proyecto de construcción de la autovía del Mediterráneo, el ahorro se ha estimado en un 50% (Martí et al., 2014). En este caso, el puente tenía una luz de 35 m y un ancho de tablero igual al de la solución optimizada, siendo el ahorro alcanzado tan importante a causa de las diferencias en la medición de las unidades de obra en materiales que pueden apreciarse en la Tabla 1.

Tabla 1. Comparación de las mediciones en las unidades de obra significativas correspondientes al viaducto 1 del tramo Muro de Alcoy-Puerto de Albaida, de luz 35 m, respecto a la solución optimizada (Martí et al., 2014)

Resulta evidente que los resultados alcanzados por nuestro grupo de investigación pueden ser de gran interés para su transferencia a las empresas de prefabricados, constructoras y proyectistas. Este diseño automatizado supone un auténtico revulsivo en la forma de entender el proyecto de las estructuras. No obstante, ciertas prácticas comunes como introducir en los proyectos estructuras prefabricadas sobredimensionadas y luego ajustarlas durante la obra (con los consiguientes ahorros para las partes) pueden verse afectadas por este tipo de diseño optimizado. Esta mala praxis puede ser un impedimento para que el diseño optimizado entre a formar parte de la práctica habitual en nuestro sector.

Os dejo a continuación un vídeo del GRUPO BERTOLÍN donde distintos técnicos nos explican las características de los puentes construidos con vigas artesas, sus partes principales y los procesos de ingeniería, mostrando como ejemplo diferentes estructuras en las que Bertolín trabaja actualmente: 4 estructuras en la variante norte de Bétera, acceso a Torrente por el barranco de Chiva, duplicación del puente de Malilla en Valencia y la mejora del acceso de la V30 a la V31.

A continuación os dejo las publicaciones científicas que ha realizado nuestro grupo de investigación al respecto de los puentes de vigas artesa. Estamos, cómo no, en disposición de realizar transferencia tecnológica a las empresas que así nos lo soliciten.

Referencias:

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. DOI:10.3390/su10030685

PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. DOI:10.3390/su9101864

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI:10.1016/j.acme.2017.02.006

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2017). Design optimization of precast-prestressed concrete road bridges with steel fiber-reinforcement by a hybrid evolutionary algorithm. International Journal of Computational Methods and Experimental Measurements, 5(2):179-189.

MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI:10.1016/j.jclepro.2016.02.024

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI:10.1016/j.autcon.2014.10.013

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2014). Automated design of prestressed concrete precast road bridges with hybrid memetic algorithms. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(3), 145-154. DOI:10.1016/j.rimni.2013.04.010

MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48:342-352. DOI:10.1016/j.engstruct.2012.09.014

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Objetivos y metodología del proyecto de investigación HYDELIFE

Figura 1. Instituto de Ciencia y Tecnología del Hormigón (ICITECH)
Figura 1. Laboratorio de materiales del Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En varios artículos anteriores detallamos los antecedentes, la motivación, las hipótesis de partida, así como la trascendencia del proyecto de investigación HYDELIFE. Ahora vamos a explicar los objetivos y la metodología de este proyecto, del cual soy investigador principal: Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos (PID2020-117056RB-I00). Los investigadores de este proyecto pertenemos al Instituto de Ciencia y Tecnología del Hormigón (ICITECH).

El objetivo general perseguido se basa en afrontar el reto social que supone la creación y la conservación de las construcciones modulares y puentes mixtos en escenarios de fuertes restricciones presupuestarias, mediante la resolución de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas. Para ello se precisa un salto científico capaz de integrar a los distintos actores y grupos de expertos en la toma de decisiones considerando criterios de sostenibilidad social y ambiental a lo largo de todo el ciclo de vida de las infraestructuras considerando la variabilidad inherente al mundo real. Para integrar las incertidumbres que afectan al sistema, se propone aplicar técnicas metaheurísticas híbridas basadas en fiabilidad, aplicadas no sólo al proyecto de nuevas estructuras, sino al mantenimiento de las actuales. Un estudio de sensibilidad de los escenarios presupuestarios y de las hipótesis tomadas en los inventarios del análisis del ciclo de vida proporcionará conocimiento no trivial sobre las mejores prácticas. Esta metodología será aplicable también a otro tipo de infraestructuras.

El objetivo general se desarrollará mediante los objetivos específicos mostrados en la Figura 2 y que se describen a continuación, de los cuales será responsable el investigador principal:

  • OE-1: Análisis de funciones de distribución específicas para el diseño óptimo basado en fiabilidad que integre aspectos ambientales, sociales y económicos que sirva para la toma de decisión multicriterio.
  • OE-2: Determinación de indicadores clave basados en redes bayesianas y lógica neutrosófica para garantizar una efectiva integración de la sostenibilidad ambiental y social en la licitación de proyectos mantenimiento de construcciones modulares, puentes mixtos e híbridos.
  • OE-3: Identificación de estrategias de mantenimiento robusto óptimo de construcciones modulares y puentes mixtos y estructuras híbridas.
  • OE-4: Formulación y resolución del problema de optimización multiobjetivo que contemple el ciclo completo de construcciones modulares, puentes mixtos y estructuras híbridas mediante metaheurísticas híbridas.
  • OE-5: Comparación del diseño robusto óptimo respecto a la optimización heurística considerando incertidumbres en los escenarios presupuestarios y en las hipótesis del análisis del ciclo de vida.
  • OE-6: Difusión de resultados y redacción de informes.
Figura 2.- Objetivos específicos del proyecto HYDELIFE

Metodología propuesta en relación con los objetivos y con el estado del arte

El análisis del estado del arte alumbró dos huecos en la investigación, el empleo de metaheurísticas híbridas con Deep Learning y su aplicación a construcciones modulares, puentes mixtos y estructuras híbridas. Además, el empleo de la lógica neutrosófica y las redes bayesianas abre puertas en el ámbito de la decisión multicriterio. Estas novedades se combinan en la metodología con técnicas y disciplinas ya empleadas en otros proyectos: análisis del ciclo de vida, análisis basado en fiabilidad, diseño óptimo robusto, metamodelos y técnicas de minería de datos. Por tanto, se trata de una combinación integrada cuyo objetivo es la priorización del tipo de diseño, en el caso de estructuras de nueva planta, o bien de su mantenimiento, basándose en criterios de sostenibilidad social y ambiental bajo presupuestos restrictivos, considerando la variabilidad inherente a los problemas reales.

La Figura 3 muestra el esquema metodológico propuesto para HYDELIFE, relacionando las fases con los objetivos propuestos. Se utiliza un enfoque mixto e interactivo, donde el decisor proporciona información sobre las preferencias al analista que, tras una optimización multiobjetivo basada en fiabilidad y metamodelos, aporta un conjunto de soluciones eficientes que el responsable debe evaluar antes de tomar su decisión. Por tanto, la novedad de la propuesta metodológica trifase se basa en la integración de técnicas de información a priori, donde el decisor (grupos de interés) informa de las preferencias al analista (en cuanto a tipologías, métodos constructivos, conservación, etc.), produciéndose con esta información una optimización multiobjetivo capaz de generar alternativas eficientes utilizando la variabilidad en los parámetros, variables y restricciones. La última fase pasa por un proceso de información a posteriori para que el decisor contemple aspectos no considerados en la optimización para dar la solución final completa.

Figura 3.- Esquema metodológico diseñado para HYDELIFE en relación con los objetivos

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

En este momento llevamos seis meses de trabajo, pues el proyecto comenzó en septiembre del 2021. Pero ya podemos dar algunos resultados que se pueden ver en la siguiente lista de referencias.

Referencias:

MARTÍNEZ FERNÁNDEZ, P.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2022). Slab track optimisation using metamodels to improve rail construction sustainabilityJournal of Construction Engineering and Management, (accepted, in press).

MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization, 65:46. DOI:10.1007/s00158-021-03154-0

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

YEPES, V.; LOPEZ, S. (2021). Knowledge management in the construction industry: Current state of knowledge and future research. Journal of Civil Engineering and Management, 27(8):671-680. DOI:10.3846/jcem.2021.16006

SIERRA, L.; ARAYA, F.; YEPES, V. (2021). Consideration of uncertainty and multiple disciplines in the determination of sustainable criteria for rural roads using neutrosophic logic.  Sustainability, 13(17):9854. DOI:10.3390/su13179854

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

HOOSE, A.; YEPES, V.; KRIPKA, M. (2021). Selection of Production Mix in the Agricultural Machinery Industry considering Sustainability in Decision Making. Sustainability, 13(16), 9110. DOI:10.3390/su13169110

MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879. DOI:10.1109/ACCESS.2021.3102215

MARTÍN, R.; YEPES, V. (2021). Bridging the gap between landscape and management within marinas: A review. Land, 10(8), 821. DOI:10.3390/land10080821

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

BIANCHI, P.F.; YEPES, V.; VITORIO, P.C., Jr.; KRIPKA, M. (2021). Study of alternatives for the design of sustainable low-income housing in BrazilSustainability, 13(9):4757. DOI:10.3390/su13094757

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homesEnvironmental Impact Assessment Review, 89:106572. DOI:10.1016/j.eiar.2021.106572

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2021). Neutrosophic completion technique for incomplete higher-order AHP comparison matrices. Mathematics, 9(5):496. DOI:10.3390/math9050496

TANG, M.; LIAO, H.; YEPES, V.; LAURINAVICIUS, A.; TUPENAITE, L. (2021). Quantifiying and mapping the evolution of a leader journal in the field of civil engineering. Journal of Civil Engineering and Management, 27(2):100-116. DOI:10.3846/jcem.2021.14365

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

GARCÍA, J.; ASTORGA, G.; YEPES, V. (2021). An analysis of a KNN perturbation operator: an application to the binarization of continuous metaheuristics. Mathematics, 9(3):225. DOI:10.3390/math9030225.

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.