Aportaciones al Congreso sobre Optimización de Estructuras HPSM/OPTI 2025, Edimburgo (Reino Unido)

Los días 10 a 12 de junio de 2025 se celebró en Edimburgo (Reino Unido) uno de los congresos más importantes sobre optimización de estructuras: “12th International Conference on High Performance and Optimum Design of Structures and Materials, HPSM/OPTI 2025“. He participado en dicho congreso tanto en su Comité Científico como Invited Speaker.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València. Además, es uno de los resultados de la tesis doctoral de Lorena Yepes.

En cuanto la comunicación esté publicada en el libro de ponencias, os pasaré el enlace para su descarga gratuita. A continuación os paso el resumen de la comunicación presentada.

El artículo «Multi-Attribute Decision-Making in Prestressed Concrete Road Flyover Design», propone una innovadora metodología para optimizar el diseño de puentes de hormigón pretensado teniendo en cuenta simultáneamente tres criterios clave: el coste económico, las emisiones de CO₂ y la energía incorporada en los materiales. Su objetivo es encontrar soluciones de compromiso que equilibren sostenibilidad y eficiencia estructural.

Aportaciones principales del estudio

Este trabajo aporta un enfoque sistemático y práctico para integrar criterios medioambientales y económicos en el diseño de pasos elevados. Frente a las metodologías tradicionales que suelen priorizar únicamente el coste, los autores aplican técnicas de toma de decisiones multicriterio para considerar también el impacto ambiental desde el inicio del proceso proyectual. Además, ofrecen pautas concretas para diseños preliminares que buscan un equilibrio entre coste, emisiones y consumo energético.

Metodología empleada

La investigación se basa en técnicas avanzadas de optimización y modelado. En primer lugar, se utilizaron 50 soluciones iniciales de diseño generadas mediante un muestreo estadístico conocido como Latin Hypercube Sampling, que explora diferentes combinaciones de parámetros como la resistencia del hormigón, la anchura de la base y la profundidad del tablero.

A continuación, se aplicó un modelo de sustitución de tipo Kriging, capaz de estimar con gran precisión los resultados estructurales sin necesidad de cálculos exhaustivos para cada diseño. Esto permitió ampliar el análisis a 1.000 soluciones adicionales simuladas.

Con todas las alternativas sobre la mesa, se extrajo la “frontera de Pareto”, un conjunto de soluciones no dominadas que representan los mejores compromisos posibles entre los tres objetivos. Finalmente, se aplicaron distintos escenarios de toma de decisiones multiatributo, asignando diferentes pesos a cada criterio, para seleccionar los diseños más equilibrados.

Resultados más relevantes

El análisis reveló que los diseños más sostenibles tienen características comunes: una relación entre canto del tablero y luz principal cercana a 1/30 y una resistencia del hormigón de 40 MPa. Estas configuraciones permiten reducir tanto el consumo de materiales como las emisiones sin comprometer la viabilidad estructural.

Dependiendo del peso asignado a cada criterio (coste, emisiones, energía), se identificaron varias soluciones óptimas, destacando especialmente dos (denominadas #6 y #13) por su buen rendimiento integral. Curiosamente, priorizar solo el coste lleva a soluciones con mayor canto, mientras que priorizar el medio ambiente genera estructuras más esbeltas y materialmente eficientes.

Conclusiones y recomendaciones

El estudio concluye que aplicar técnicas de decisión multicriterio en la ingeniería civil permite diseñar infraestructuras más sostenibles y racionales, sin sacrificar funcionalidad ni economía. Se recomienda considerar desde fases tempranas del diseño variables ambientales clave como las emisiones o la energía embebida, además de los costes.

Asimismo, los autores sugieren incorporar la participación de los diferentes agentes implicados (ingenieros, administraciones, ciudadanía) para lograr soluciones más equilibradas y duraderas.

Este trabajo representa un avance hacia una práctica de la ingeniería más alineada con los Objetivos de Desarrollo Sostenible, y especialmente con el ODS 9, que promueve infraestructuras resilientes, sostenibles e innovadoras.

Referencia:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Multi-attribute decision-making in prestressed concrete road flyover design. International Conference on High Performance and Optimum Design of Structures and Materials, HPSM/OPTI 2025, 10-12 June 2025, Edinburgh, UK.

Tesis doctoral: Optimización multicriterio para el diseño sostenible de puentes postesados mediante metamodelos

De izquierda a derecha: Julián Alcalá, Salvador Ivorra, Lorena Yepes, Tatiana García y Antonio Tomás.

Hoy, 6 de junio de 2025, ha tenido lugar la defensa de la tesis doctoral de Dª. Lorena Yepes Bellver, titulada “Multi-criteria optimization for sustainable design of post-tensioned concrete slab bridges using metamodels”, dirigida por el profesor Julián Alcalá González. La tesis ha obtenido la máxima calificación de sobresaliente «cum laude». A continuación, presentamos un pequeño resumen de la misma.

Esta tesis utiliza técnicas de modelización sustitutiva para optimizar los costes económicos y medioambientales en puentes losa de hormigón postesado hormigonado in situ. El objetivo principal de esta investigación es desarrollar una metodología sistemática que permita optimizar el diseño de puentes, reduciendo los costes, las emisiones de CO₂ y la energía necesaria para construir este tipo de puentes sin comprometer la viabilidad estructural o económica. El marco de optimización propuesto consta de dos fases secuenciales: la primera se centra en ampliar el espacio de búsqueda y la segunda intensifica la búsqueda de soluciones óptimas. El metamodelo basado en Kriging realiza una optimización heurística que da como resultado un diseño con emisiones de CO₂ significativamente menores que los diseños convencionales. El estudio revela que una relación de esbeltez de aproximadamente 1/30 arroja resultados óptimos, ya que se reduce el consumo de material y se mantiene la integridad estructural. Además, el aumento de la armadura pasiva compensa la reducción de hormigón y armadura activa, lo que da como resultado un diseño más sostenible. Por otra parte, se identifica una compensación entre costes y emisiones que muestra que un modesto aumento de los costes de construcción (menos del 1 %) puede reducir sustancialmente las emisiones de CO₂ (más del 2 %), lo que demuestra que el diseño de puentes sostenibles puede ser económicamente viable.

La investigación explora más a fondo la optimización de la energía incorporada en la construcción de pasos elevados de carreteras anuladas mediante el uso de muestreo por hipercubo latino y optimización basada en Kriging. La metodología permite identificar los parámetros críticos de diseño, como los altos coeficientes de esbeltez (en torno a 1/28), el uso mínimo de hormigón y armadura activa, y el aumento de la armadura pasiva para mejorar la eficiencia energética. Aunque en el estudio se emplearon Kriging y redes neuronales artificiales (RNA), Kriging demostró ser más eficaz a la hora de identificar óptimos locales, a pesar de que las redes neuronales ofrecen predicciones absolutas más precisas. Esto pone de manifiesto la eficacia de los modelos sustitutos a la hora de orientar las decisiones de diseño sostenible, incluso cuando los modelos no ofrecen predicciones absolutas perfectamente exactas.

En el contexto de la optimización de costes para puentes de losa postesada, el estudio demuestra el potencial del modelado sustitutivo combinado con la simulación del recocido. Los resultados muestran que el método de optimización basado en Kriging conduce a una reducción de costes del 6,54 %, principalmente mediante la minimización del uso de materiales, concretamente de hormigón en un 14,8 % y de acero activo en un 11,25 %. Estas reducciones en el consumo de material se consiguen manteniendo la integridad estructural y la capacidad de servicio del puente, lo que convierte al modelado sustitutivo en una herramienta práctica y eficaz para la optimización económica en el diseño de puentes.

El estudio también evalúa la forma de optimizar las emisiones de CO₂ en pasos elevados de carreteras pretensadas. Se identifican los parámetros óptimos de diseño, como grados de hormigón entre C-35 y C-40 MPa, profundidades del tablero entre 1,10 y 1,30 m, y anchuras de base entre 3,20 y 3,80 m. La red neuronal mostró las predicciones más precisas entre los modelos predictivos analizados, con los errores medios absolutos (MAE) y cuadrados medios (RMSE) más bajos. Estos resultados subrayan la importancia de seleccionar el modelo predictivo adecuado para optimizar las emisiones de CO₂ en el diseño de puentes y destacan el valor de utilizar modelos sustitutivos para mejorar la sostenibilidad en los proyectos de ingeniería civil.

Por último, la investigación integra la toma de decisiones multicriterio (MCDM) con la optimización basada en Kriging para evaluar y optimizar los diseños de puentes en relación con objetivos económicos, medioambientales y estructurales. El enfoque MCDM permite evaluar de manera más exhaustiva las alternativas de diseño al tener en cuenta las compensaciones entre coste, impacto ambiental y rendimiento estructural. Esta integración contribuye al desarrollo sostenible de las infraestructuras, ya que facilita la selección de diseños óptimos que se ajusten a los objetivos de sostenibilidad.

En conclusión, esta tesis demuestra que el modelado sustitutivo, que utiliza explícitamente el Kriging y redes neuronales artificiales, es un enfoque práctico para optimizar las dimensiones medioambiental y económica del diseño de puentes. El marco de optimización en dos fases que aquí se presenta proporciona una metodología eficiente desde el punto de vista computacional que permite identificar soluciones de diseño óptimas y sostenibles que cumplen las restricciones estructurales y económicas. Los resultados sugieren que la metodología es aplicable a proyectos de infraestructuras a gran escala y sentarán las bases para futuras investigaciones. Futuros estudios podrían investigar el uso de algoritmos y modelos de optimización adicionales para perfeccionar aún más el proceso de optimización y mejorar la aplicabilidad de estas metodologías en proyectos reales.

Referencias:

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. Social Life Cycle Assessment of Railway Track Substructure Alternatives. J. Clean. Prod. 2024, 450, 142008.

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450. DOI:10.3390/su16198450

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Fracturación hidráulica

De US Environmental Protection Agency, Office of Research and Development, Washington, DC – “The Hydraulic Fracturing Water Cycle”, Dominio público, https://commons.wikimedia.org/w/index.php?curid=25673027

La fracturación hidráulica, comúnmente conocida como fracking, es una técnica que se utiliza para extraer hidrocarburos, como el gas natural y el petróleo, de formaciones rocosas subterráneas de baja permeabilidad, especialmente lutitas o esquistos. Este método ha revolucionado la industria energética, ya que permite acceder a recursos que antes eran inaccesibles, contribuyendo significativamente a la diversificación de las fuentes de energía.

El fracking consiste en perforar un pozo vertical hasta alcanzar la formación rocosa objetivo. Una vez en la profundidad deseada, la perforación se desvía horizontalmente, extendiéndose varios kilómetros dentro de la capa de lutita. A través de este pozo se inyecta una mezcla de agua, arena y productos químicos a alta presión. Esta presión fractura la roca, creando fisuras por las que se liberan los hidrocarburos atrapados, que son posteriormente extraídos a la superficie.

Evolución histórica de la fracturación hidráulica

El desarrollo del fracking no es un fenómeno reciente, sino el resultado de una evolución que se inició hace dos siglos. En 1821, la perforación del primer pozo comercial de gas de lutita cerca de Fredonia, en Nueva York, marcó el inicio de la explotación de este tipo de gas. Aunque este recurso era útil para la iluminación doméstica, no adquirió relevancia económica hasta mucho después. No fue hasta después de la Segunda Guerra Mundial, en un contexto de crecimiento industrial y demanda energética acelerada, cuando el gas natural comenzó a jugar un papel clave.

En las décadas de 1980 y 1990, los productores se enfrentaron al declive de los yacimientos convencionales y comenzaron a buscar alternativas en formaciones de baja permeabilidad, como el gas de las capas de carbón (CBM) y el gas de lutita (shale gas). Sin embargo, estos recursos presentaban limitaciones tecnológicas significativas, especialmente en lo que respecta a la capacidad para extraer hidrocarburos atrapados en micro o nanoporos. No fue hasta 2005 cuando la combinación de fracturación hidráulica y perforación horizontal demostró plenamente su viabilidad, lo que supuso un cambio de paradigma en la industria energética global.

El fracking ha transformado el panorama energético de países como Estados Unidos, donde se ha convertido en uno de los principales productores de petróleo y gas a nivel mundial. Sin embargo, esta técnica ha generado debates y regulaciones en diversas regiones debido a sus implicaciones ambientales. En Europa, por ejemplo, se ha analizado la dependencia del gas obtenido por fracking en otros países y se han criticado estas prácticas.

La historia del fracking es también una historia de innovación. Desde la mejora de los motores de fondo y los sistemas de telemetría hasta el diseño de fracturas más eficientes, cada avance ha contribuido a aumentar la recuperación de hidrocarburos y a reducir los costes asociados. Sin embargo, el desarrollo de estas tecnologías ha planteado también nuevos desafíos ambientales y sociales que no existían en las explotaciones convencionales.

De Battenbrook – Trabajo propio, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=30796394

Fundamentos técnicos de la fracturación hidráulica

El fracking combina dos tecnologías clave: la perforación horizontal y la fracturación hidráulica. Ambas se han desarrollado para abordar el desafío que supone la extracción de hidrocarburos de yacimientos de baja permeabilidad, caracterizados por una porosidad extremadamente reducida y escasas conexiones entre los poros. Este tipo de formación geológica requiere la creación artificial de caminos por donde los hidrocarburos puedan fluir hacia los pozos de producción.

  • La perforación horizontal: Este enfoque, en contraste con la perforación vertical tradicional, permite acceder a una zona más extensa de la formación productora. Un pozo puede extenderse lateralmente varios kilómetros dentro del yacimiento, lo que aumenta considerablemente la cantidad de hidrocarburos que pueden recuperarse. Esto es especialmente relevante en yacimientos continuos como el gas de lutita, donde los hidrocarburos están distribuidos uniformemente en capas sedimentarias.
  • La fracturación hidráulica: Este proceso consiste en inyectar un fluido compuesto de agua, arena y aditivos químicos a alta presión. El agua actúa como medio de transporte, la arena como material de soporte de fracturas y los aditivos cumplen diversas funciones, como reducir la fricción, evitar la corrosión y mejorar la eficiencia del proceso. La fracturación crea redes de microfracturas en la roca madre, lo que aumenta la permeabilidad y permite que el gas o el petróleo fluyan hacia el pozo.
  • Avances tecnológicos adicionales: El uso de la telemetría avanzada (logging while drilling y measurement while drilling) proporciona datos en tiempo real sobre las condiciones del subsuelo. Esto permite ajustar la dirección del pozo y optimizar el diseño de las fracturas para maximizar la producción. Además, las fracturas multietapa, que dividen la sección horizontal del pozo en segmentos individuales, han demostrado ser una estrategia eficaz para estimular formaciones de gran tamaño.

Uno de los desafíos de los yacimientos de gas no convencional es el rápido declive de la producción. Este fenómeno obliga a perforar nuevos pozos de manera constante para mantener niveles de producción comercialmente viables. Por lo tanto, la explotación del gas de lutita es una actividad intensiva y duradera que requiere una planificación meticulosa y una inversión considerable.

Cómo funciona la fracturación hidráulica. https://www.todoporhacer.org/la-fractura-hidraulica/

Impactos ambientales del fracking

La fracturación hidráulica ha generado preocupaciones significativas en torno a su impacto ambiental, especialmente en lo que respecta al consumo de agua, la contaminación de acuíferos, la emisión de gases de efecto invernadero y la sismicidad inducida. Estas preocupaciones están respaldadas por pruebas documentadas que detallan tanto los riesgos como las medidas de mitigación disponibles.

  1. Consumo de agua: Cada pozo de fracturación hidráulica requiere entre 8000 y 15 000 m³ de agua, dependiendo de factores como la profundidad del pozo y el número de etapas de fracturación. Esta cantidad de agua es considerable, particularmente en regiones con recursos hídricos limitados. Para mitigar este impacto, se ha propuesto reutilizar las aguas de retorno y utilizar fuentes no convencionales de agua, como las salobres. Es esencial investigar previamente la disponibilidad de agua superficial y subterránea para garantizar la sostenibilidad del proyecto.
  2. Contaminación de acuíferos: Aunque las zonas de fractura están separadas de los acuíferos por capas de roca impermeable, las fugas a través de defectos en la cementación de los pozos suponen un riesgo. Los fluidos de fracturación, que contienen metano y aditivos químicos, pueden migrar hacia los acuíferos superficiales en caso de fallo estructural. Por ello, es esencial realizar un seguimiento continuo y diseñar adecuadamente los pozos para prevenir estos incidentes.
  3. Sismicidad inducida: La fracturación hidráulica puede causar micro-sismos de baja intensidad, imperceptibles sin instrumentos especializados. En raras ocasiones, la inyección en áreas cercanas a fallas activas ha generado sismos de mayor magnitud, aunque el límite superior para estos eventos es de 3 en la escala de Richter. La evaluación geológica previa y el monitoreo continuo son fundamentales para minimizar este riesgo.
  4. Gestión de aguas residuales: Las aguas de retorno contienen minerales disueltos, compuestos químicos y, ocasionalmente, materiales radiactivos naturales (NORM). Las estrategias de mitigación incluyen el tratamiento de residuos, la evaporación y la reutilización del agua reciclada. Estas medidas no solo reducen la demanda de agua dulce, sino que también minimizan el impacto ambiental.

Retos sociales y económicos

El desarrollo de la fracturación hidráulica enfrenta múltiples retos sociales y económicos. En términos sociales, la aceptación pública es fundamental. La percepción de riesgo asociada a la contaminación del agua, la sismicidad y la ocupación del terreno puede generar resistencia en las comunidades locales. Por otro lado, el fracking ofrece beneficios económicos significativos, como la reducción de la dependencia energética de las importaciones y la creación de empleo.

En España, las estimaciones de recursos prospectivos varían considerablemente. Según la Agencia Estadounidense de Información Energética (EIA), el país cuenta con 226 bcm de gas técnicamente recuperable, mientras que otros estudios elevan esta cifra a 1978 bcm. Estas reservas tienen el potencial de abastecer la demanda nacional durante décadas, aunque su desarrollo enfrenta desafíos como la falta de infraestructura y los altos costes de perforación.

Desde el punto de vista económico, el fracking es competitivo. El coste medio de extracción se estima en 5 céntimos de euro por kWh, lo que lo convierte en una opción viable frente a otras fuentes de energía. Sin embargo, para garantizar la sostenibilidad del sector, los beneficios deben equilibrarse con los riesgos ambientales y sociales.

Conclusiones

La fracturación hidráulica es una tecnología innovadora que ha transformado la industria energética. Aunque ofrece oportunidades significativas para la diversificación y la seguridad energética, su implementación debe abordarse con un enfoque integral que contemple tanto los beneficios económicos como sus posibles impactos ambientales y sociales. Es necesario realizar una evaluación cuidadosa y aplicar regulaciones estrictas para mitigar riesgos y garantizar una explotación sostenible de los recursos naturales. El desarrollo de recursos no convencionales en España requerirá una planificación meticulosa, un marco regulatorio sólido y un compromiso transparente con las comunidades locales.

Al adoptar medidas de mitigación efectivas y avanzar en tecnologías más sostenibles, el fracking puede desempeñar un papel crucial en la transición hacia un sistema energético más diversificado y seguro, minimizando al mismo tiempo su impacto ambiental y social.

Os dejo algunos vídeos al respecto.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Modelización y métodos de optimización aplicados al consumo energético en los ferrocarriles

El sector ferroviario, reconocido por su eficiencia energética, sigue siendo objeto de investigación para mejorar su sostenibilidad. Pese a representar solo el 2 % del consumo energético del transporte en Europa, su relevancia en el transporte de mercancías y pasajeros impulsa la investigación para reducir su huella de carbono. La necesidad de reducir las emisiones de gases de efecto invernadero y mejorar la competitividad económica ha llevado a realizar estudios exhaustivos centrados en el consumo energético ferroviario.

 

Modelización del consumo energético

El modelado del consumo energético permite evaluar y simular el rendimiento de los trenes sin necesidad de realizar pruebas experimentales. Las técnicas de modelado se clasifican principalmente en modelos deterministas y métodos alternativos, como redes neuronales y modelos estocásticos. Estos enfoques permiten analizar múltiples escenarios operativos y optimizar las decisiones estratégicas y operativas.

Modelos deterministas

El enfoque predominante utiliza ecuaciones basadas en la ecuación de Davis, que describe la resistencia al movimiento del tren en función de factores como la velocidad, la masa y la fricción. Su modularidad permite incluir características como frenos regenerativos y sistemas de almacenamiento a bordo. Aunque estos modelos son fiables, requieren numerosos parámetros técnicos, algunos de los cuales son difíciles de obtener debido a su complejidad técnica y a la necesidad de realizar mediciones precisas.

La ecuación de Davis se amplía con frecuencia para incorporar factores como la inclinación de la vía, la resistencia aerodinámica y la fricción en curvas. Estas ampliaciones permiten crear simuladores más detallados que evalúan trayectorias específicas y condiciones operativas complejas. Algunos estudios incluyen incluso el consumo de sistemas auxiliares, como el aire acondicionado y la iluminación, lo que mejora la precisión.

Además, el modelado detallado permite tener en cuenta aspectos como la variación de la masa del tren debida a la carga de pasajeros o mercancías, así como las condiciones meteorológicas y la interacción entre trenes en redes densas. Gracias a estas mejoras, los simuladores no solo evalúan el consumo energético, sino también el impacto de distintas estrategias operativas.

Alternativas al enfoque determinista

Los modelos basados en redes neuronales (Neural Networks) y en técnicas estocásticas (Stochastic Methods) han sido menos explorados, pero ofrecen flexibilidad y pueden manejar incertidumbres como retrasos y cambios en la carga de pasajeros. Las redes neuronales permiten entrenar modelos a partir de grandes volúmenes de datos operativos, lo que les permite aprender patrones complejos que los modelos deterministas podrían pasar por alto. Sin embargo, estos métodos requieren grandes volúmenes de datos y procesos de entrenamiento complejos.

Los modelos estocásticos integran factores aleatorios, como fallos en el sistema y condiciones meteorológicas. Su uso es particularmente relevante en redes ferroviarias densas, donde las interacciones entre trenes generan escenarios difíciles de prever mediante métodos deterministas. Los estudios actuales sugieren que estas técnicas podrían aplicarse a la gestión en tiempo real de las redes ferroviarias para mejorar la eficiencia global.

Métodos de optimización

La optimización del consumo energético ferroviario implica resolver problemas complejos, desde la gestión de perfiles de velocidad hasta la distribución de tiempos de espera y la configuración de infraestructuras. Estos estudios buscan minimizar el consumo energético sin comprometer los tiempos de viaje ni la capacidad operativa.

La formulación de problemas de optimización se basa en variables como los tiempos de viaje, los perfiles de velocidad, el consumo energético y la utilización de las infraestructuras, y su enfoque varía en función de si se optimiza un solo tren o un sistema completo. Las metodologías utilizadas incluyen la optimización unidimensional, que se centra en variables individuales como, por ejemplo, minimizar el tiempo de viaje o el consumo energético, y la optimización multidimensional, que aborda simultáneamente varios factores como el tiempo, el consumo energético, los costos operativos y las emisiones contaminantes. Los problemas de optimización pueden ser estáticos, donde se consideran condiciones fijas, o dinámicos, que ajustan decisiones en tiempo real con datos operativos actualizados.

Los métodos de optimización incluyen la búsqueda directa, que evalúa todas las soluciones posibles y es adecuada para problemas simples con pocos parámetros, y el análisis de principios máximos, que obtiene soluciones exactas mediante ecuaciones matemáticas avanzadas, aunque para ello sea necesario realizar simplificaciones y hacerlos computacionalmente viables. Las metaheurísticas, inspiradas en procesos naturales, se utilizan ampliamente por su capacidad para gestionar espacios de solución complejos. Entre ellas destacan los algoritmos genéticos, que han demostrado su versatilidad y eficacia en numerosos estudios. También se emplean técnicas como la optimización por enjambre de partículas y la optimización por colonias de hormigas, que son útiles en problemas específicos como, por ejemplo, la asignación de horarios y rutas óptimas. Además, la optimización basada en aprendizaje combina aprendizaje individual y colectivo para mejorar los resultados en contextos operativos cambiantes.

Los métodos de optimización también incluyen técnicas como la programación lineal, la programación dinámica y los algoritmos híbridos, que combinan diferentes enfoques para superar las limitaciones de cada uno de ellos. Las técnicas más avanzadas integran sistemas de inteligencia artificial y algoritmos de predicción para ajustar dinámicamente los parámetros operativos.

Discusión y análisis estadístico

Un análisis estadístico muestra que los modelos deterministas predominan debido a su precisión y facilidad para incluir múltiples factores. En optimización, los algoritmos genéticos son ampliamente preferidos, aunque métodos como la optimización por enjambre de partículas han demostrado ser eficaces en ciertos problemas.

Estudios recientes sugieren la posibilidad de combinar diferentes algoritmos para cubrir todo el espacio de soluciones y abordar problemas complejos que incluyen interacciones entre múltiples trenes y redes ferroviarias completas. Estas estrategias son esenciales para implementar operaciones ferroviarias completamente autónomas y sostenibles.

Además, el uso de análisis estadísticos avanzados, como el análisis de correspondencias y el modelado predictivo, permite identificar patrones ocultos y mejorar la precisión de los modelos y algoritmos utilizados.

Conclusión

La combinación de modelos deterministas y técnicas complementarias podría mejorar la precisión de los estudios. En optimización, el desarrollo de enfoques híbridos que combinen diferentes algoritmos metaheurísticos podría suponer un gran avance en la gestión energética ferroviaria. La integración de datos en tiempo real y técnicas de aprendizaje automático (Machine Learning Techniques) podría revolucionar el campo y llevar a sistemas ferroviarios más sostenibles y eficientes.

Referencia:

MARTÍNEZ-FERNÁNDEZ, P.; VILLALBA-SANCHÍS, I.; YEPES, V.; INSA-FRANCO, R. (2019). A review of modelling and optimisation methods applied to railways energy consumption. Journal of Cleaner Production, 222:153-162. DOI:10.1016/j.jclepro.2019.03.037

Os dejo la versión autor del artículo, para su consulta.

Descargar (PDF, 517KB)

Nomograma para el cálculo energético en la molienda de minerales según la Ley de Bond

En un artículo previo, explicamos cómo se utiliza la Ley de Bond para calcular la energía necesaria para fragmentar un material, incluso proporcionando un ejemplo resuelto en el que se aplicó a un equipo de trituración para obtener un tamaño de áridos. En este artículo, presentaremos un nuevo nomograma que ha sido creado en colaboración con los profesores Pedro Martínez-Pagán, Daniel Boulet y Jaime E. Sepúlveda, específicamente diseñado para tamaños de partícula más pequeños. Este nomograma se emplea para una molienda con un molino de bolas para un tipo de mineral en particular. Esperamos que tanto el nomograma como el ejercicio resuelto sean de su interés.

Descargar (PDF, 286KB)

Referencias:

FUEYO, L. (1999). Equipos de trituración, molienda y clasificación: tecnología, diseño y aplicación. Editorial Rocas y Minerales. 1ª edición. Fueyo Editores. Madrid, 371 pp. ISBN: 84-923128-2-3.

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia.

MARTÍNEZ PAGÁN, P. (2021). Ejercicios resueltos de plantas de tratamiento de recursos minerales. Universidad Politécnica de Cartagena, CRAI Biblioteca, Cartagena, 211 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización de inteligencia de enjambre híbrida para puentes mixtos de bajo consumo energético

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. Se trata del empleo de métodos de optimización de inteligencia de enjambre híbrida para puentes mixtos de acero-hormigón de bajo consumo energético. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La optimización de puentes es un reto matemático importante, ya que existen un gran número de configuraciones posibles. En este trabajo, se han considerado la energía incorporada y el coste como funciones objetivo para la optimización de vigas cajón mixtas de hormigón y acero. La energía incorporada se eligió como criterio de sostenibilidad para poder comparar los resultados con el coste. Para ello, se empleó el algoritmo TAMO de búsqueda global estocástica, la búsqueda de cuco (CS) de inteligencia de enjambre y los algoritmos seno-coseno (SCA). Para que los algoritmos SCA y SC pudieran resolver el problema de optimización de puentes con variables discretas, se aplicó la discretización mediante la técnica de agrupación k-means. Como resultado, se observó que SC producía valores objetivos de la función de energía comparables a los de TAMO, y reducía el tiempo de cálculo en un 25,79 %. Además, la optimización de costes y de la energía revelaron que cada euro ahorrado usando metodologías metaheurísticas disminuía el consumo de energía para este problema de optimización en 0,584 kW-h. Asimismo, al incluir celdas en las partes superior e inferior de las almas, se mejoró el comportamiento de la sección, así como los resultados de optimización para los dos objetivos de optimización. Este estudio concluye que el diseño de doble acción compuesta sobre apoyos hace innecesarios los rigidizadores longitudinales continuos en el ala inferior.

Abstract:

Bridge optimization is a significant challenge, given the huge number of possible configurations of the problem. Embodied energy and cost were taken as objective functions for a box-girder steel–concrete optimization problem, considering both as single-objective. Embodied energy was chosen as a sustainable criterion to compare the results with cost. The stochastic global search TAMO algorithm, the swarm intelligence cuckoo search (CS), and sine cosine algorithms (SCA) were used to achieve this goal. To allow the SCA and SC techniques to solve the discrete bridge optimization problem, the discretization technique applying the k-means clustering technique was used. As a result, SC was found to produce objective energy function values comparable to TAMO while reducing the computation time by 25.79%. In addition, the cost optimization and embodied energy analysis revealed that each euro saved using metaheuristic methodologies decreased the energy consumption for this optimization problem by 0.584 kW·h. Additionally, by including cells in the upper and lower parts of the webs, the behavior of the section was improved, as were the optimization outcomes for the two optimization objectives. This study concludes that double composite action design on supports makes the continuous longitudinal stiffeners in the bottom flange unnecessary.

Keywords:

Swarm intelligence; steel–concrete composite structures; bridges; optimization; metaheuristics; sustainability.

Reference:

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2023). Hybrid swarm intelligence optimization methods for low-embodied energy steel-concrete composite bridges. Mathematics, 11(1):140. DOI: 10.3390/math11010140

Dejo a continuación el artículo, que se puede descargar y compartir, pues está publicado en abierto.

Descargar (PDF, 1.07MB)

Energía necesaria para la fragmentación del material: Ley de Bond (1951)

En el procesamiento de áridos se necesita energía para reducir el tamaño del material que entra en una máquina de fragmentación. Calcular la energía necesaria no solo es interesante desde el punto de vista teórico, sino que también permite estimar el coste energético de la operación.

Cuando se aplica una fuerza para romper una partícula, esta se deforma primero y almacena la energía aplicada. Si la fuerza aplicada supera el límite de resistencia del material, este se rompe y se consume cierta energía; la energía sobrante se transforma en calor, ruido y energía cinética, entre otras cosas.

Existen distintas leyes que proporcionan la energía necesaria para una operación de fragmentación determinada. La Ley de Rittinger es adecuada para partículas finas, de diámetro inferior a 74 μm, y dice que el área de la nueva superficie producida por el nuevo machaqueo o molienda es directamente proporcional al trabajo útil consumido. La Ley de Kick se aplica a partículas gruesas, de diámetro mayor a 10 cm, y dice que el trabajo requerido es directamente proporcional a la reducción de volumen entre las partículas antes y después de la operación de fragmentación o molienda.

Sin embargo, F. C. Bond (1951), a partir del estudio de un gran número de instalaciones, dedujo su Ley de Bond, que dice que el trabajo consumido es proporcional a la nueva longitud de fisura producida por la rotura de las partículas, pues una vez creada la fisura, la roca parte. Esta ley cubre el vacío de las otras dos leyes anteriores, para diámetros superiores a 74 μm y menores a 10 cm.

Para entender esta ley y otros conceptos, como la razón de reducción o la curva granulométrica, os dejo un problema resuelto y varios vídeos que espero que os resulten interesantes.

Descargar (PDF, 238KB)

Referencias:

FUEYO, L. (1999). Equipos de trituración, molienda y clasificación: tecnología, diseño y aplicación. Editorial Rocas y Minerales. 1ª edición. Fueyo Editores. Madrid, 371 pp. ISBN: 84-923128-2-3.

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia.

MARTÍNEZ PAGÁN, P. (2021). Ejercicios resueltos de plantas de tratamiento de recursos minerales. Universidad Politécnica de Cartagena, CRAI Biblioteca, Cartagena, 211 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Análisis de ciclo de vida de aislamientos reciclados en edificación para diferentes condiciones climáticas en España

Acaban de publicarnos un artículo en la revista Resources, Conservation and Recycling, revista de alto impacto indexada en el JCR. En este caso se ha realizado un análisis del ciclo de vida de los aislamientos utilizados en edificación reciclados y no reciclados, atendiendo a las diferentes condiciones climáticas de España. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El sector de la construcción representa más del 40% del consumo de energía en la Unión Europea, así como una de las causas significativas de impacto ambiental. Por ello, este sector necesita políticas que promuevan la eficiencia energética de los edificios. Uno de los componentes estructurales más importantes para alcanzar esta eficiencia energética son las fachadas. En este trabajo se elige la fachada ventilada por su mejor comportamiento de aislamiento térmico. El impacto ambiental de la fachada ventilada depende del material de aislamiento térmico. El objetivo de este trabajo es evaluar el impacto ambiental de diferentes fachadas ventiladas en función de su comportamiento de aislamiento térmico. Para ello, se aplica la evaluación del ciclo de vida en fachadas ventiladas con diferentes materiales en distintas ubicaciones. Los materiales estudiados son la lana de roca, el corcho natural y el corcho reciclado, y las ubicaciones consideradas son las diferentes zonas climáticas de España. Para llegar a una evaluación ambiental completa se considera todo el ciclo de vida de las fachadas ventiladas, desde la cuna hasta la tumba. Para ello se utiliza el software Open LCA con la base de datos Ecoinvent con el método ReCiPe. Los resultados muestran que el corcho reciclado es el aislamiento térmico con menor impacto ambiental, independientemente de la ubicación.

Abstract:

The construction sector represents more than 40% of energy consumption in the European Union, as well as one of the biggest causes of environmental impact. Therefore, this sector needs a great deal of intervention through policies that promote the energetic efficiency of the buildings. One of the most important structural components to reach this energetic efficiency is the facades. In this work, the facade ventilated is chosen due to its better thermal insulation behaviour. The environmental impact of the facade ventilated depends on the thermal insulation material. The goal of this paper is to evaluate the environmental impact of different ventilated facades according to their thermal insulation behavior. For this purpose, the life-cycle assessment is applied in ventilated facades with different materials in different locations. The materials studied are the rock wool, the natural cork and the recycled cork, and the locations considered are the different climatic areas of Spain. To reach a complete environmental assessment all the ventilated facades life-cycle is considered, from cradle to grave. To do this we use the Open LCA software with the Ecoinvent database with the ReCiPe method. The results show that the recycled cork is the thermal insulation with the lowest environmental impact regardless the location.

Keywords:

Life cycle assessment; ReCiPe; Facade ventilated; Thermal insulation; Sustainability

Reference:

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

Descargar (PDF, 1.25MB)

Revisión de los métodos de optimización aplicados al consumo de energía en ferrocarriles

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production, revista de ELSEVIER indexada en el primer decil del JCR. Se trata de un artículo de revisión del estado del arte donde se analizan 52 artículos científicos relacionados con el consumo energético en ferrocarriles. Se analizan dos áreas principales: las técnicas de modelización utilizadas para simular el movimiento de los trenes y el consumo de energía, y los métodos de optimización utilizados para conseguir una circulación ferroviaria más eficiente. Se describen brevemente los métodos más utilizados en cada caso y se analizan las principales tendencias encontradas. Además, se ha realizado un estudio estadístico para reconocer las relaciones entre los métodos y las variables de optimización. Se encontró que los modelos determinísticos basados en la ecuación de Davis son, con diferencia (85% de los trabajos revisados), los más comunes en términos de modelización. En cuanto a la optimización, los métodos meta-heurísticos son la opción preferida (57,8%), en particular los Algoritmos Genéticos. Este artículo forma parte de nuestra línea de investigación BRIDLIFE en la que se pretenden optimizar las infraestructuras atendiendo no sólo a su coste, sino al impacto ambiental y social que generan a lo largo de su ciclo de vida.

El artículo lo podéis descargar GRATUITAMENTE hasta el 3 de mayo de 2019 en el siguiente enlace: https://authors.elsevier.com/a/1YjHX3QCo9Uqa3

Abstract:

Railways are a rather efficient transport mean, and yet there is increasing interest in reducing their energy consumption and making them more sustainable in the current context of climate change. Many studies try to model, analyse and optimise the energy consumed by railways, and there is a wide diversity of methods, techniques and approaches regarding how to formulate and solve this problem. This paper aims to provide insight into this topic by reviewing up to 52 papers related to railways energy consumption. Two main areas are analysed: modelling techniques used to simulate train(s) movement and energy consumption, and optimisation methods used to achieve more efficient train circulations in railway networks. The most used methods in each case are briefly described and the main trends found are analysed. Furthermore, a statistical study has been carried out to recognise relationships between methods and optimisation variables. It was found that deterministic models based on the Davis equation are by far (85% of the papers reviewed) the most common in terms of modelling. As for optimisation, meta-heuristic methods are the preferred choice (57.8%), particularly Genetic Algorithms.

Keywords:

Railways
Energy efficiency
Modelling
Optimisation
Meta-heuristics

Reference:

MARTÍNEZ-FERNÁNDEZ, P.; VILLALBA-SANCHÍS, I.; INSA-FRANCO, R.; YEPES, V. (2019). A review of modelling and optimisation methods applied to railways energy consumption. Journal of Cleaner Production, 222:153-162. DOI:10.1016/j.jclepro.2019.03.037

 

 

Método acelerado de optimización de puentes en cajón

 

Acaban de publicarnos en Engineering Structures, revista de ELSEVIER indexada en el primer cuartil del JCR, un artículo en el que hemos propuesto un novedoso método de optimización que acelera los cálculo al emplear Kriging como metamodelo en los cálculos intermedios de las iteraciones de un proceso de optimización heurística. Se ha aplicado en la optimización de la energía requerida para la construcción de un puente en cajón de hormigón pretensado, pero la metodología es aplicable al cálculo de cualquier estructura. Este artículo forma parte del proyecto de investigación DIMALIFE. Como se ha publicado en abierto, os puedo pasar el artículo completo, que os podéis descargar también en la propia revista.

ABSTRACT:

Structural optimization is normally carried out by means of conventional heuristic optimization due to the complexity of the structural problems. However, the conventional heuristic optimization still consumes a large amount of time. The use of metamodels helps to reduce the computational cost of the optimization and, along these lines, kriging-based heuristic optimization is presented as an alternative to carry out an accelerated optimization of complex problems. In this work, conventional heuristic optimization and kriging-based heuristic optimization will be applied to reach the optimal solution of a continuous box-girder pedestrian bridge of three spans with a low embodied energy. For this purpose, different penalizations and different initial sample sizes will be studied and compared. This work shows that kriging-based heuristic optimization provides results close to those of conventional heuristic optimization using less time. For the sample size of 50, the best solution differs about 2.54% compared to the conventional heuristic optimization, and reduces the computational cost by 99.06%. Therefore, the use of a kriging model in structural design problems offers a new means of solving certain structural problems that require a very high computational cost and reduces the difficulty of other problems.

KEYWORDS: Low-embodied energy; Post-tensioned concrete; Box-girder bridge; Structural optimization; Metamodel; Kriging

REFERENCE:
PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015