Drenajes horizontales instalados mediante zanjadoras

Figura 1. Zanjadora instalando dren horizontal. https://www.jedipumps.com/dewatering.htm

Si se quiere rebajar el nivel freático en la excavación de un cimiento, sótano de edificio, en obras lineales de poca profundidad como líneas ferroviarias o carreteras, o en zanjas longitudinales para abastecimiento de agua potable, alcantarillado, líneas eléctricas, gaseoductos, oleoductos, etc., se puede realizar mediante la colocación de un dren horizontal (horizontal well dewatering) instalado mediante una zanjadora (dewatering trenchers) (Figura 1).

A diferencia del drenaje desde pozos filtrantes, el drenaje se instala en posición horizontal, justo debajo de la zona a drenar (Figura 2). Los drenes horizontales suelen ser muy efectivos en terrenos granulares.

Figura 2. Esquema del drenaje horizontal y del bombeo. https://www.groundwatereng.com/dewatering-techniques/horizontal-wells

La instalación de este sistema es relativamente sencilla. La zanjadora abre una zanja de unos 30 cm de ancho e instala en primer lugar un tubo sin perforar seguido de un tubo perforado, normalmente de material plástico (Figura 3). El dren se recubre de un geotextil para evitar la entrada de limos y arenas y posteriormente se rellena la zanja. En el caso de que el terreno sea de baja permeabilidad, la zanja se puede rellenar con grava filtrante en lugar del terreno original.

La longitud del dren la determina su diámetro, la naturaleza del terreno y el nivel freático. Normalmente las longitudes de drenaje son de unos 50 m, aunque pueden llegar a 100 m, y los diámetros entre 80 y 100 mm. El dren horizontal se suele instalar a unos 6-7 m de profundidad, pues a mayores distancias el coste se incremente significativamente. Tras instalar la tubería, se conecta la parte del tubo sin perforar a una bomba. Mientras se bombea agua, se puede trabajar en seco.

Figura 3. Esquema de la apertura de zanja para la instalación del dren horizontal. https://www.inter-drain.com/index.php/en/applications/horizontal-dewatering

Además de la facilidad en la instalación del drenaje, una ventaja del sistema es que la maquinaria de la obra puede circular por encima sin restricciones, al tratarse de un drenaje subterráneo. Además, se reduce hasta en un 30% el volumen necesario de agua a extraer, con la consiguiente reducción en el consumo de combustible o electricidad.

Os paso unos vídeos al respecto. Espero que os sean útiles.

REFERENCIAS:

  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenaje horizontal con pozos radiales

Figura 1. Pozo Ranney. https://infogram.com/obras-de-toma-1g0n2owd8340p4y

Los pozos radiales o de drenes horizontales consisten en diversos tubos perforados horizontales, que se disponen desde un pozo revestido de hormigón, de un diámetro suficiente para permitir el acceso de varios operarios (Figura 1). El objetivo es extender el radio efectivo del pozo para aumentar el caudal específico de drenaje. De hecho, el pozo con drenes horizontales se comporta, considerando aparte las pérdidas de carga interiores, como un pozo vertical de gran radio.

Los pozos horizontales son útiles en suelos donde no se pueden utilizar zanjas drenantes, pozos profundos o wellpoints, no siendo recomendable en suelos estratificados. Es típico en excavaciones profundas a través de terrenos permeables (aluviales y zonas muy karstificadas), hasta llegar a una capa impermeable.

El agua fluye dentro del pozo desde los tubos perforados horizontales, bombeándose el agua al exterior. Los drenes se pueden perforar con cierta inclinación hacia arriba para penetrar en más de un horizonte de acuífero. Estos drenes se colocan mediante martillos neumáticos o por inyección. La longitud de los drenes varía en función del área a drenar, pudiendo variar de 30 a 100 m de longitud.

Figura 2. Esquema de pozo radial. http://ocw.bib.upct.es/pluginfile.php/6012/mod_resource/content/1/Tema_03_CAPT_AGUAS_SUB.pdf

Según el procedimiento constructivo para instalar los drenes horizontales, se denominan pozos Ranney, Fehlmann o Preussag:

  • Pozos Ranney: las perforaciones radiales se realizan con los mismos tubos filtrantes definitivos, quedando directamente instalados. Son tubos de acero, de paredes gruesas y ranuras alargadas en sentido longitudinal.
  • Pozos Fehlmann: utiliza tubos de perforación, de unos 250-300 mm de diámetro, que se retiran después de la colocación de los filtros, pudiéndose utilizar de nuevo. De esta forma se puede elegir el material y abertura de las ranuras de los tubos filtrantes según las propiedades químicas del agua y con la granulometría y permeabilidad del terreno.
  • Pozos Preussag: emplea tubos de perforación similares al sistema Fehlmann, colocando después prefiltros de arena. A veces la colocación de estos prefiltros puede ser complicada y difícilmente adaptable a posibles variaciones de la granulometría a lo largo del dren.

El procedimiento constructivo presenta dos fases características, la construcción del pozo central e instalación de los drenes horizontales. El pozo central se construye hincando cilindros de hormigón, de unos 3-4 m de diámetro, a medida que se excava. Este cajón se introduce en el suelo por el sistema de “cajones indios“, por excavación interior sin achique previo. Cuando la profundidad del pozo alcanza la cota prevista, se hormigona el fondo construyendo un tapón bajo el agua.

En el caso del sistema Fehlmann, los colectores se hincan con un equipo de empuje instalado sobre una plataforma en el fondo del pozo. Para facilitarla se coloca una punta reforzada, denominada piloto, que desagrega el terreno facilitando el avance. En el interior de estos tubos se colocan los tubos filtrantes, de forma que los tubos estancos se retiran para volverse a utilizar, quedan abandonado en el terreno el piloto. Este tubo con punta reforzada puede comunicar con el interior del pozo central por medio de una tubería auxiliar llamada tubería de desarenado. La presión del agua sobre los agujeros del azuche crea una corriente de agua a gran velocidad por el interior de la tubería de desarenado cuando se abre una válvula en el interior del pozo. Posteriormente durante el servicio de la captación, la cámara sirve como elemento receptor y depósito de los caudales extraídos y para facilitar las maniobras de cierre y apertura de cada dren.

Los rendimientos para construir un pozo de este tipo pueden ser de 5-7 m por semana para el pozo central y de 8-10 m diarios para la penetración de los tubos horizontales.

Figura 3. Hinca de tubería en sistema Fehlmann. http://ocw.bib.upct.es/pluginfile.php/6012/mod_resource/content/1/Tema_03_CAPT_AGUAS_SUB.pdf

Destacan las siguientes ventajas de los pozos radiales: permiten, para igual velocidad de flujo, caudales superiores a los pozos ordinarios; se puede regular cada colector por separado, pudiendo cerrarlos para el mantenimiento; baja velocidad de entrada del agua a los drenes (hasta 30 veces menor que en los pozos ordinarios), por lo que disminuyen los arrastres; no le afectan tanto las fluctuaciones del nivel freático como a los pozos ordinarios; además, como los drenes permanecen siempre sumergidos, se reducen los fenómenos de corrosión e incrustaciones. Sin embargo, es necesaria una fuerte inversión inicial y un alto grado de especialización en la construcción, con acuíferos no demasiado profundos (aunque hay realizaciones de hasta 70 m). Además, el hincado de los drenes limita su uso a acuíferos granulares poco compactos de granulometría variable.

El rendimiento hidráulico en estos pozos supera de 45 a 60% la producción de un pozo ordinario de diámetro similar, pudiendo llegar, en capas freáticas, a caudales de 200 a 400 l/s. Si los pozos están cerca de un río, el caudal sube de 750 a 1150 l/s.

Se puede estimar el caudal Q (m3/s) de un pozo radial en régimen normal de servicio en función de del radio del pozo r (m), de la altura del agua sobre la solera en régimen normal h (m) y del coeficiente de permeabilidad del terreno k (m/s):

De la ecuación se observa que el caudal depende del radio y de la altura del agua sobre la solera y como no se puede hacer mucho para aumentar esta última, debe actuarse sobre el radio, que puede ser grande.

Os dejo varios vídeos explicativos de este tipo de pozos radiales.

Os dejo a continuación un artículo donde se explica cómo se ejecutó un pozo Ranney, en este caso para aumentar el abastecimiento de agua en Málaga.

Descargar (PDF, 6.64MB)

REFERENCIAS:

  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenes de penetración transversal: drenes californianos

Figura 1. Drenes californianos. http://civogal.com/drenes-californianos

Cuando se quiere reducir las presiones intersticiales en taludes y zonas de difícil acceso, son muy útiles los drenes de penetración transversal. Son perforaciones ascendentes comúnmente llamadas drenes californianos (horizontal drains), debido a que el Departamento de Carretas de California empezó a utilizarlo a partir de los últimos años de la década de 1930.

Son perforaciones de pequeño diámetro y gran longitud realizadas frecuentemente con los mismos carros perforadores empleados en la instalación de bulones o ejecución de sondeos. En su interior se dispone un tubo de policloruro de vinilo (PVC) ranurado, de un diámetro mínimo de 50 mm capaces de soportar cierta carga por si la perforación colapsara, tubo en ocasiones rodeado de un geotextil que actúe de filtrante para evitar el taponamiento o la erosión interna del terreno al escapar los finos. No obstante, si las deformaciones esperadas superan al radio del tubo, entonces se utilizan drenes metálicos. Asimismo, se pueden disponer drenes sin tubo interior, especialmente en roca sana, donde no se esperen movimientos que obstruyan la perforación, ni materiales que puedan obstruirla.

Los drenes se disponen con una pequeña inclinación, de al menos el 3% sobre la horizontal, normalmente entre 5-10º, para evacuar el agua por gravedad, debiéndose introducir, al menos, en 2-3 m en la zona de acumulación de agua. Es por ello que a veces también se llaman drenes subhorizontales. Se debe dejar también, entre 2 y 3 m del tubo más próximo a la boca del taladro sin orificios ni ranuras. En otras ocasiones se pueden disponer más inclinados, incluso en vertical en galerías de drenaje.

Los drenes de penetración transversal tienen como objeto reducir las presiones intersticiales, agotar un embalsamiento de agua o rebajar el nivel freático. En el caso de taludes, los drenes se utilizan para estabilizar deslizamientos profundos, tal y como se puede apreciar en la Figura 2. Son especialmente eficaces en terrenos permeables, rocas fisuradas o cuando interceptan capas permeables saturadas, perdiendo eficacia en suelos arcillosos homogéneos.

Figura 2. Localización del nivel freático antes y después de la instalación de un dren horizontal

Si bien la disposición de los drenes depende de las condiciones hidrogeológicas y morfológicas del talud o ladera, normalmente se disponen 1-2 filas de tubos distanciados entre 7 y 30 m, siendo lo más frecuente entre 10 y 15 m. En el caso de taludes de más de 60 m de altura, se disponen bermas y una línea de drenes al pie de cada berma, recogiendo el agua a una cuneta impermeable. Con alturas superiores a 100 m, la longitud de perforación necesaria es tan alta que su coste se dispara. Si en nivel freático se encuentra entre 30 y 60 m por encima del pie del talud, se prolongan los drenes desde el pie hasta una profundidad igual a la altura del talud, con un máximo de 90-100 m.

La perforación simultánea de los drenes con desmontes de alturas superiores al de la maquinaria ordinaria facilita su ejecución y mejora las condiciones de drenaje durante la excavación. No se emplean lodos tixotrópicos durante la perforación, sino entubaciones provisionales al atravesar terrenos inestables o tramos de falla, hasta instalar el tubo definitivo. El agua drenada por los tubos debe canalizarse adecuadamente a cunetas u otros elementos del drenaje superficial. Además, estos drenes deben someterse a revisiones periódicas, con un mantenimiento que incluya su limpieza con aire a presión.

Los drenes de penetración transversal presentan como ventajas su rápida y sencilla instalación en comparación con otros sistemas de drenaje profundo, permite alcanzar toda la superficie del talud, puede ejecutarse una vez iniciadas las inestabilidades y el desagüe se realiza por gravedad, sin el uso de bombas o sistemas auxiliares. Sin embargo, su área de influencia es limitada en comparación con otros sistemas de drenaje profundo y se ejecutan una vez hecho el talud, por lo que su estabilidad puede complicarse.

Como información complementaria, os dejo la ficha técnica realizada por GEOCISA sobre al ejecución de anclajes y drenes californianos en el castillo de Jadraque (Guadalajara).

Descargar (PDF, 277KB)

REFERENCIAS:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenaje mediante pozos horizontales ejecutados mediante perforación horizontal dirigida

Figura 1. Maquinaria para la perforación horizontal dirigida PHD.  https://trenchlesstechnology.com/hdd-pipe-ramming-used-install-water-wastewater-lines-wood-buffalo/

La técnica de la Perforación Horizontal Dirigida PHD (Horizontal Directional Drilling, HDD) es un método empleado para la instalación de tuberías que evita la apertura de zanjas a cielo abierto (trenchless) minimizando el movimiento de tierras (Figura 1). Se utiliza fundamentalmente para la instalación de líneas de comunicación (fibra óptica, cables de datos), líneas eléctricas, gaseoductos, oleoductos y conducciones de agua a presión. A mediados de 1990, esta técnica se adaptó para instalar pozos de drenaje de aguas contaminadas en zonas industriales, estaciones de servicio o similares. Sin embargo, también es útil para realizar drenajes horizontales (Horizontal Directional Drilling Wells, HDDW)  en áreas inaccesibles o donde realizar perforaciones en superficie no es factible, pudiéndose llegar a distancias de 3000 m de longitud. Con todo, PHD es una técnica que requiere una fuerte planificación, pues requiere de operaciones especializadas.

Un pozo horizontal puede sustituir a 10-30 pozos verticales, dependiendo de las circunstancias de cada caso (Figura 2). En efecto, un solo pozo horizontal intersecta el nivel freático en la mayor parte de su longitud, extendiendo el cono de depresión del freático a lo largo de su recorrido. Por ejemplo, un pozo poco profundo de unos 15 m precisa de unos 60 m de perforación horizontal para alcanzar la cota prevista. En cambio, una red de pozos verticales para interceptar el mismo nivel freático requiere de múltiples pozos y decenas de tubería vertical no productiva (sin rejilla). Además, el pozo horizontal requiere solo de una bomba y una tubería de evacuación al punto de vertido o tratamiento, al contrario que los pozos verticales, donde cada uno de ellos precisa de una bomba. La Figura 2b muestra cómo un pozo horizontal con cierta pendiente puede drenar un terreno en talud simplemente por gravedad.

Figura 2. (a) Drenaje mediante pozos verticales frente a (b) drenaje mediante pozo horizontal.

La mayor diferencia entre los usos habituales del PHD en relación a su uso como drenajes horizontales es que el fluido de perforación usado aquí son polímeros biodegradables, en vez de bentonita. La razón es evitar la reducción de la permeabilidad del terreno asociada a la perforación.

Según el procedimiento de instalación, los drenes horizontales ejecutados mediante PHD se pueden clasificar en doble o simple entrada (Figura 3):

  • Instalación con doble entrada (Figura 3a): Se taladra la perforación piloto desde una fosa de lanzamiento. La perforación desciende en la entrada para luego emerger en la fosa de recepción. Este procedimiento es el más comúnmente utilizado por permitir un mejor control de la estabilidad de la perforación en comparación con los métodos de simple entrada.
  • Instalación de simple entrada (Figura 3b): Este método, también llamado de perforación ciega (blind-ended hole) se utiliza cuando no hay fosa de recepción y el pozo se instala desde un solo extremo. Aquí el escariado para ampliar la perforación se realiza empujando, en vez de tirando, como es el caso de la doble entrada, existiendo el riesgo de que la perforación ampliada no siga la perforación piloto. Las longitudes alcanzadas con este sistema son significativamente menores que las de doble entrada.
Figura 3. Pozos horizontales realizados mediante Perforación Horizontal Dirigida. (a) Con doble entrada, (b) con una sola entrada.

La instalación de la rejilla es una operación más complicada en los pozos HDD que en los pozos verticales convencionales, tanto por la longitud como por la desviación en la dirección. Las rejillas se instalan arrastrando a través de la perforación en el caso de doble entrada, y empujando en el caso de simple entrada. Estas rejillas normalmente son de polietileno de alta densidad (PEAD), de acero al carbono o acero inoxidable. El porcentaje de ranuras de la rejilla es menor que en los pozos verticales para asegurar su resistencia a tracción o compresión. Como es difícil instalar un filtro granular alrededor de la rejilla, normalmente se usan filtros de grava preenvasados, mallas o geotextiles convenientemente protegidos para resistir su instalación.

Os dejo unos polimedias para explicar brevemente el procedimiento de la perforación horizontal dirigida. Espero que os sea de interés.

A continuación os dejo un par de vídeos explicativos.

REFERENCIAS:

  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clasificaciones de las técnicas de mejora y refuerzo del terreno

Figura 1. Vibrosustitución. https://www.trevispa.com/es/Tecnolog%C3%ADas/vibrosustituci%C3%B3n

Un terreno, por bueno que sea, puede tratarse para mejorar sus características o reforzarlo. Se trata normalmente de mejorar la capacidad portante, reducir la deformabilidad, reducir la permeabilidad o acelerar la consolidación. Para ello se emplean un conjunto de técnicas que pueden aplicarse a multitud de situaciones, desde el cimiento de una presa hasta los casos más comunes como pueden ser los terrenos blandos. Los primeros métodos se emplearon para aumentar la capacidad portante o para estabilizar suelos granulares. Pero pronto se amplió el campo de aplicación a terrenos cohesivos. Sin embargo, no hay que olvidar que siempre existe la posibilidad de retirar el suelo y sustituirlo por otro mejor, siendo, por tanto, la primera de las soluciones que deben tenerse en cuenta. Los terrenos granulares deformables o licuables y los terrenos cohesivos blandos o deformables son los que habitualmente son objeto de mejora; sin embargo, también hay terrenos difíciles que pueden requerir tratamiento como los expansivos, los colapsables, los residuales, los altamente compresibles, los duros degradables, los kársticos, los suelos dispersivos o las arcillas susceptibles, entre otros. La profundidad de la mejora puede variar desde menos de un metro en el caso de la compactación superficial con rodillo vibrante hasta más de 100 m en el caso de tratamientos con inyecciones (Ministerio de Fomento, 2002).

Antes de describir las distintas clasificaciones que se han utilizado para las técnicas de mejora del terreno, podemos enunciar las que contempla la Guía de Cimentaciones en Obras de Carretera (Ministerio de Fomento, 2002). Son las siguientes: sustitución, compactación con rodillo, precarga, mechas drenantes, vibración profunda, compactación dinámica, inyecciones, inyecciones de alta presión (jet-grouting), columnas de grava, columnas de suelo-cemento, claveteado o cosido del terreno (bulones), geosintéticos, explosivos, tratamientos térmicos, congelación y electro-ósmosis.

Mitchell (1981) realizó una clasificación de los tratamientos del terreno atendiendo a su granulometría. En la Figura 2 se puede ver, de forma aproximada, el campo de aplicación de las técnicas.

Figura 2. Aplicabilidad de las técnicas de mejora del terreno atendiendo a su granulometría (Mitchell, 1981)

También se pueden clasificar las técnicas de mejora del terreno en función de la temporalidad de la técnica (Van Impe, 1989). En la Figura 3 se clasifican los métodos en temporales, que se limitan al periodo de ejecución de la obra, y en permanentes, atendiendo o no a la adición de materiales en el terreno.

Figura 3. Clasificación de las técnicas de mejora de terreno. Adaptado de Van Impe (1989)

En cambio, Schaefer (1997) distinguió las técnicas en tres grupos, las de mejora de terreno (ground improvement), las de refuerzo del terreno (ground reinforcement) y las de tratamiento del terreno (ground treatment). En la Tabla 1 se ha recogido esta distinción. Sin embargo, a veces no está clara la diferencia entre el tratamiento, la mejora o el refuerzo. El Ministerio de Fomento (2002) incluye en un mismo grupo a los métodos de refuerzo y mejora, llamando a ambos métodos de mejora. El caso de las columnas de gravas sería, por ejemplo, tanto un refuerzo como una mejora.

Tabla 1. Clasificación de los métodos de mejora, refuerzo y tratamiento de terrenos (Schaefer, 1997)

El Comité Técnico TC17 de la Sociedad Internacional de Mecánica de Suelos e Ingeniería Geotécnica, ISSMG clasificó los métodos de mejora en cinco grupos:

  1. Mejora del terreno sin adiciones en suelos no cohesivos o materiales de relleno: Compactación dinámica, vibrocompactación, compactación por explosivos, compactación por impulso eléctrico y compactación superficial (incluyendo la compactación dinámica rápida).
  2. Mejora del terreno sin adiciones en suelos cohesivos: Sustitución/desplazamiento (incluyendo la reducción de carga mediante materiales ligeros), precarga mediante relleno (incluyendo el empleo de drenes verticales), precarga mediante vacío (incluyendo la combinación de relleno y vacío, consolidación dinámica con drenaje mejorado (incluyendo el empleo de vacío), electro-ósmosis o consolidación electro-cinética, estabilización térmica usando calentamiento o congelación y compactación por hidrovoladura.
  3. Mejora del terreno con adiciones o inclusiones: vibrosustitución o columnas de grava, sustitución dinámica, pilotes de arena compactada, columnas encapsuladas con geotextiles, inclusiones rígidas, columnas reforzadas con geosintéticos o rellenos pilotados, métodos microbianos y otros métodos no convencionales (formación de pilotes de arena mediante explosivos y el uso de bambú, madera y otros productos naturales).
  4. Mejora del terreno con adiciones tipo inyección: Inyección de partículas, inyección química, métodos de mezclado (incluyendo la mezcla previa y la estabilización profunda), jet grouting, inyecciones de compactación y inyecciones de compensación.
  5. Refuerzo del terreno: tierra reforzada con acero o geosintéticos, anclajes al terreno o claveteado del terreno y métodos biológicos mediante vegetación.

Como puede observarse, el número de clasificaciones posibles es muy alto. Dejo a continuación las recomendaciones de la Guía de Cimentaciones (Ministerio de Fomento, 2002) respecto a la aplicabilidad de las principales técnicas de mejora del terreno.

Tabla 2. Campo de aplicación de las principales técnicas de mejora del terreno (Ministerio de Fomento, 2002)

Por último, os dejo un artículo de Carlos Oteo y Javier Oteo sobre las innovaciones recientes en el campo de la mejora y refuerzo del terreno, publicado en la Revista de Obras Públicas en el año 2012.

Descargar (PDF, 2.54MB)

REFERENCIAS:

  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • MITCHELL, J.K. (1981). Soil improvement: state-of-the-art report. 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 509-565.
  • OTEO, C.; OTEO, J. (2012). Innovaciones recientes en el campo de la mejora y refuerzo del terreno. Revista de Obras Públicas, 3534, 19-32.
  • VAN IMPE, W.F. (1989). Soil improvement techniques and their evolution. A.A. Balkema, Rotterdam, 77-88.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactación con explosivos

Figura 1. Compactación con explosivos con cargas confinadas. http://62.129.205.139/en/microblasting/

La compactación de un suelo mediante explosivos se considera una técnica de mejora del terreno de carácter permanente y que no precisa de adición de materiales. Se trata de colocar cargas explosivas en profundidad que, en suelos granulares poco densos -con menos del 20% de limos o del 5% de arcillas-, provocan su licuefacción y posterior consolidación. Con ello se consiguen asientos generalizados en su superficie y, por tanto, un aumento de su peso específico. Fue en Rusia, en 1936, donde tuvieron lugar las primeras compactaciones mediante explosivos, incluso bajo el agua. En España se han utilizado en el puerto de Valencia para consolidar rellenos hidráulicos, resolviendo el tratamiento del terreno en solo dos meses (Romana y Ronda, 1997).

Este procedimiento es más eficiente que la vibrocompactación, por la aplicación de mayor energía, pero siempre que se domine la técnica. También es muy aplicable en suelos con grandes bolos, suelos vinos o con niveles superiores más rígidos, donde otras técnicas no son útiles. Los resultados son muy buenos, pudiéndose incrementar la densidad relativa de una arena floja en un 15-30%. Se trata de un procedimiento rápido y económico, no siendo necesario el empleo de una maquinaria especial. Suele terminarse el tratamiento con una compactación final de tipo superficial mediante rodillos vibrantes.

Como inconvenientes a este método cabría destacar el efecto de las explosiones sobre estructuras próximas al radio de acción, la falta de uniformidad en el terreno tratado, el factor psicológico negativo asociado al uso de explosivos y el cumplimiento de la normativa relacionada con los explosivos, especialmente en áreas pobladas. A veces se pueden utilizar productos expansivos no explosivos para evitar algunos de estos problemas. Por otra parte, el control de resultados requiere una exploración geotécnica posterior para evaluar el efecto del tratamiento.

En función de la situación donde se aloje la carga del explosivo, las voladuras pueden ser confinadas (la carga se coloca dentro de la capa del suelo, Figura 1), superficiales (en la superficie del terreno, Figura 2) o subacúaticas (pero por encima del nivel del terreno a compactar, Figura 3). Lo más normal es usar voladuras confinadas.

Figura 2. Voladuras superficiales.  http://62.129.205.139/en/microblasting/

 

Figura 3. Voladuras subacuáticas. http://62.129.205.139/en/microblasting/

Se puede definir el radio de influencia del tratamiento como la superficie cuyo asiento es mayor a 1 cm. La fórmula empírica que define dicha zona (López Jimeno et al., 1995) es

Rmin = K · Q1/3

donde Q es la carga del explosivo en kg y K un coeficiente adimensional que depende del tipo de suelo, según la Tabla siguiente:

Tabla 1. Coeficiente K para definir el radio de influencia de la compactación con explosivos (López Jimeno et al., 1995)

De forma aproximada, las cargas se suelen colocar a una profundidad en torno al 75% de la profundidad del estrato a compactar, con una separación entre cargas entre 5 y 15 m. Suelen utilizarse cargas del orden de 10 a 30 g de dinamita (o TNT, o amonita) por m3 de suelo. Para mayor detalle en el cálculo y diseño de la cantidad de explosivo, el radio de acción de la carga efectiva, el espesor de la carga efectiva, el espesor de la capa compactada, la profundidad a la que debe situarse la carga y el radio del dren de arena creado, pueden consultarse textos especializados. Hemos dejado un artículo al respecto al final del artículo.

Os dejo algunos vídeos al respecto. Observad cómo tras la explosión de las cargas, existe una salida importante de agua a presión.

Descargar (PDF, 1.43MB)

REFERENCIAS:

  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • LÓPEZ JIMENO, C. et al. (1995). Manual de perforación y voladuras de rocas. Instituto Tecnológico Geominero de España.
  • ROMANA, M.; RONDA, J. (1997). Consolidación por voladuras de un relleno hidráulico en el puerto de Valencia. Boletín de la Sociedad Española de Mecánica del Suelo y Cimentaciones, 126.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.