Drenaje de excavaciones mediante bombeo desde pozos filtrantes

Figura 1. https://www.griffindewatering.com/construction-dewatering/deep-well-system/

Una excavación bajo nivel freático se puede realizar mediante un sistema de bombeo desde pozos filtrantes. Se trata de pozos profundos (deep wells), separados en función de su radio de acción, cada uno de los cuales tiene su propia bomba sumergible en el fondo de la perforación con salida a la superficie mediante una tubería.

La potencia y el reducido tamaño de algunas electrobombas centrífugas permite su colocación en el fondo de pozos y extraer con ellas el agua por encima de la cota de excavación. De esta forma se consigue un descenso temporal del nivel freático con la consiguiente desecación del terreno.

 

Se llaman pozos filtrantes pues disponen de una capa de material filtrante de granulometría adecuada para evitar el lavado de finos. De este modo, el nivel freático queda deprimido alrededor del pozo, hasta alcanzar un equilibrio entre el caudal de agua achicado por las bombas y la que se introduce en cada pozo debido a la permeabilidad del terreno (Figura 2).

La profundidad del pozo no está limitada y se suele dejar un margen de perforación en material permeable por debajo del freático mínimo. Es un sistema de drenaje especialmente útil cuando se necesita un gran descenso del nivel freático y particularmente adecuado en terrenos que aumentan su permeabilidad con la profundidad, llegando a terrenos granulares. La acción de estas bombas sumergidas a profundidades variables, hasta 25-30 m, facilita el bombeo de caudales de unos 300 l/min, en radios de acción de unos 20 m.

Figura 2. Agotamiento profundo del nivel freático mediante un pozo filtrante. Elaboración propia basado en Pérez Valcárcel (2004).
Figura 3. Sección transversal de un pozo filtrante. Elaboración propia basado en García Valcarce et al. (1995).

La ejecución de este drenaje profundo pasa por la instalación, durante la perforación del pozo, de un tubo recubierto por una camisa provisional de acero que se retira posteriormente. Al mismo tiempo que se retira la camisa, se rellena el hueco por un filtro formado con arena y grava con la granulometría adecuada. Este tubo está ranurado a partir de una determinada profundidad y se encuentra recubierto por varios tamices (Figura 3). Por último, se bombea el agua sucia y se instala la bomba sumergible.

En definitiva, el procedimiento constructivo del sistema de pozos drenantes sería el siguiente:

 

  1. Se introduce a presión, hinca o vibración, una tubería de unos 400-600 mm de diámetro. Los tramos se unen mediante roscado a medida que avanza la perforación hasta llegar a la cota prevista.
  2. Se extrae el terreno y se vacía el interior del tubo provisional.
  3. Se introduce por el hueco un tubo filtrante de 150-300 mm de diámetro. Cerrado en su base y perforado con orificios de 1 a 2 cm hasta cierta altura; en esa altura, el tubo va envuelto en un filtro formado por una o varias mallas de latón, cobre o estaño, que impiden la colmatación de los orificios durante el bombeo.
  4. La bomba se deposita en el fondo.
  5. Se rellena el espacio entre el tubo filtrante y el tubo provisional con un material granular que facilita la entrada del agua.
  6. Se retira el tubo provisional con el mismo gato o martinete de hinca.

En la Figura 3 se presenta una sección transversal típica de un pozo filtrante, aunque pueden existir múltiples variantes. Los pozos filtrantes presentan un diámetro entre 150 y 500 mm, dependiendo del tamaño de las bombas sumergibles, con filtros de una longitud entre 5 y 25 m. Se debe comprobar que el espesor de la capa material permeable, bajo el que debe rebajarse el nivel freático, sea suficiente para garantizar la inmersión eficaz del filtro y de la bomba.

Los pozos se disponen en batería, a una distancia entre ellos que garantice que el rebajamiento del nivel freático sea suficiente para mantener la excavación seca (Figura 4). La separación típica entre ellos se sitúa entre 6 y 70 m, dependiendo del rebaje deseado, de la permeabilidad del terreno, de las fuentes de filtración y de la altura de inmersión disponible para las bombas.

Figura 4. Efecto de la separación entre pozos en la depresión del nivel freático. Elaboración propia basado en Tomlinson (1982).

En un terreno muy permeable, como son unas gravas, la depresión formada es muy plana, pudiéndose colocar los pozos más distanciados. En cambio, con arenas limosas, menos permeables, las depresiones formadas presentan curvas más pronunciadas, por lo que la separación será menor. Evidentemente, a mayor separación entre pozos, se necesitarán bombas de mayor capacidad.

Por otra parte, los pozos podrán separarse si la capa impermeable se encuentra alejada al fondo de la excavación. En caso de estar este estrato cercano al fondo de la excavación, se tendrán que acercar los pozos para que el rebajamiento funcione adecuadamente.

En cuanto a las ventajas del sistema de pozos filtrantes destacan las siguientes:

  • Es adecuado para reducir las presiones intersticiales en acuíferos confinados.
  • Se puede combinar con el uso de well-points.
  • Pueden quedar fuera del recinto de excavación, sin interferir en el resto de procedimientos constructivos.

Como inconveniente cabe destacar su coste elevado. Además, es importante señalar que la propia excavación del pozo y la depresión del nivel freático suelen aumentar los asientos en superficie, por lo que se debe prestar un especial cuidado ante estructuras próximas.

Os paso un vídeo de la empresa Perforaciones Ferrer S.L. en la que se describe el sistema de control del nivel freático para la construcción del Centro Comercial Arena (Valencia).

Os dejo algún vídeo sobre la ejecución de este sistema de drenaje.

https://www.youtube.com/watch?v=EXOQgRaNFdE

REFERENCIAS:

  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenaje de excavaciones mediante bombeo desde zanjas perimetrales

Figura 1. https://gharpedia.com/blog/dewatering-methods-for-waterlogged-area/

El agotamiento del agua a cielo abierto (open sump pumping) de grandes excavaciones puede realizarse mediante bombeo desde zanjas perimetrales a la excavación (dewatering by constructing drains). Estas zanjas, más profundas que la excavación principal, llevan el agua a unos pozos o sumideros donde una bomba la evacua fuera de la excavación. En el caso de áreas extensas, incluso se pueden disponer zanjas intermedias, además de las perimetrales. Se trata de un sistema de poca complejidad y, normalmente, de menor coste frente a otros sistemas.

Tanto las zanjas como los sumideros se realizan con maquinaria de excavación convencional. Las bombas deben ser suficientemente robustas como para afrontar el manejo de partículas sólidas y finos. Este sistema presenta problemas con suelos granulares, por su poca estabilidad cuando se encuentran saturados. Se trata de un sistema que solo es útil cuando el volumen de agua aportado por el terreno no es muy alto. La zanja drenante se rellena de árido graduado para garantizar su integridad y retener los finos, evitando la erosión del suelo; pero si los suelos son suficientemente estables y cohesivos, no se precisa de dicho relleno.

En el caso de que se deba drenar una cantidad de agua importante, se debe incrementar la sección de la zanja, aumentar la pendiente, e incluso, colocar tuberías horizontales fisuradas dentro de la zanja drenante para favorecer la circulación del agua hacia los sumideros. Antes de disponer los áridos que rodean esta tubería, se coloca una membrana de geotextil para evitar la salida de finos. A este tipo zanja con tubería horizontal fisurada, de unas dimensiones de 0,50 m x 0,50 m (o superior) se le denomina drenaje francés (French drain).

El sistema es adecuado para descensos someros del nivel freático, entre 1 y 2 m, donde el nivel previo al bombeo se encuentre próximo a la superficie del terreno. En efecto, en condiciones de presión atmosférica, el máximo nivel de aspiración real de la bomba se reduce a unos 7,5 m, como mucho. Es por eso que excavaciones a mayor profundidad requeriría de una batería escalonada de bombas o bien utilizar bombas sumergibles.

Figura 2. Sistema de bombeo con zanja perimetral desde pozos abiertos.

La profundidad de las zanjas y sumideros puede aumentarse a medida que avanza la excavación (Figura 3). El fondo de las zanjas debe mantenerse 0,30-0,60 m por debajo del fondo de la excavación. En excavaciones pequeñas, la profundidad de las zanjas puede ser de 0,30 a 0,60 m con un ancho de 0,40 m y una relación de inclinación de 1:1-1:1,5. También se dispone una pequeña pendiente de 0,2-0,5 % para el buen drenaje de la zanja. Los sumideros suelen ser cúbicos, de 1 m de lado. El espaciamiento de centro a centro de los sumideros a lo largo de la línea central de las zanjas puede variar de 20 a  a 30 m. El sumidero final debe ser lo suficientemente profundo como para que, cuando se bombee hacia afuera, se drene toda la excavación. El fondo del sumidero se sitúa entre 0,40 y 1,00 m por debajo de las zanjas. Las paredes del sumidero se pueden reforzar con tablas de madera y otro material. Para evitar el arrastre de partículas finas suele revestirse el sumidero con un material filtrante. El bombeo debe realizarse de forma continua hasta que terminen las operaciones.

Figura 2. Profundización de zanjas perimetrales y sumideros. https://link.springer.com/chapter/10.1007/978-981-10-0669-2_4

Uno de los problemas del sistema es que la corriente subterránea de agua puede arrastrar partículas finas y aumentar la presión intersticial del terreno colindante, con el consiguiente riesgo de subsidencias o asientos indeseados en estructuras colindantes. En casos extremos se podría producir erosión interna, sifonamiento, roturas de fondo o deslizamiento de taludes. Este fenómeno puede producirse cuando las pendientes son pronunciadas o existe un potencial hidráulico elevado. Cuando hay filtración de agua por el talud de la excavación, a veces es suficiente proteger la base del talud (batter protection) con una berma de gravas o sacos de arena para evitar su erosión o fallo por colapso; pero en otros casos, sobre todo en zonas urbanas, el riesgo de inestabilidad de los taludes de la excavación aconseja la construcción de recintos cerrados con muros pantalla o tablestacas y bombear el agua que penetre en el recinto. En este caso resulta imprescindible asegurarse de que no existe levantamiento del fondo, sifonamiento o erosión interna.

REFERENCIAS:

  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clasificaciones de las técnicas de mejora y refuerzo del terreno

Figura 1. Vibrosustitución. https://www.trevispa.com/es/Tecnolog%C3%ADas/vibrosustituci%C3%B3n

Un terreno, por bueno que sea, puede tratarse para mejorar sus características o reforzarlo. Se trata normalmente de mejorar la capacidad portante, reducir la deformabilidad, reducir la permeabilidad o acelerar la consolidación. Para ello se emplean un conjunto de técnicas que pueden aplicarse a multitud de situaciones, desde el cimiento de una presa hasta los casos más comunes como pueden ser los terrenos blandos. Los primeros métodos se emplearon para aumentar la capacidad portante o para estabilizar suelos granulares. Pero pronto se amplió el campo de aplicación a terrenos cohesivos. Sin embargo, no hay que olvidar que siempre existe la posibilidad de retirar el suelo y sustituirlo por otro mejor, siendo, por tanto, la primera de las soluciones que deben tenerse en cuenta. Los terrenos granulares deformables o licuables y los terrenos cohesivos blandos o deformables son los que habitualmente son objeto de mejora; sin embargo, también hay terrenos difíciles que pueden requerir tratamiento como los expansivos, los colapsables, los residuales, los altamente compresibles, los duros degradables, los kársticos, los suelos dispersivos o las arcillas susceptibles, entre otros. La profundidad de la mejora puede variar desde menos de un metro en el caso de la compactación superficial con rodillo vibrante hasta más de 100 m en el caso de tratamientos con inyecciones (Ministerio de Fomento, 2002).

Antes de describir las distintas clasificaciones que se han utilizado para las técnicas de mejora del terreno, podemos enunciar las que contempla la Guía de Cimentaciones en Obras de Carretera (Ministerio de Fomento, 2002). Son las siguientes: sustitución, compactación con rodillo, precarga, mechas drenantes, vibración profunda, compactación dinámica, inyecciones, inyecciones de alta presión (jet-grouting), columnas de grava, columnas de suelo-cemento, claveteado o cosido del terreno (bulones), geosintéticos, explosivos, tratamientos térmicos, congelación y electro-ósmosis.

Mitchell (1981) realizó una clasificación de los tratamientos del terreno atendiendo a su granulometría. En la Figura 2 se puede ver, de forma aproximada, el campo de aplicación de las técnicas.

Figura 2. Aplicabilidad de las técnicas de mejora del terreno atendiendo a su granulometría (Mitchell, 1981)

También se pueden clasificar las técnicas de mejora del terreno en función de la temporalidad de la técnica (Van Impe, 1989). En la Figura 3 se clasifican los métodos en temporales, que se limitan al periodo de ejecución de la obra, y en permanentes, atendiendo o no a la adición de materiales en el terreno.

Figura 3. Clasificación de las técnicas de mejora de terreno. Adaptado de Van Impe (1989)

En cambio, Schaefer (1997) distinguió las técnicas en tres grupos, las de mejora de terreno (ground improvement), las de refuerzo del terreno (ground reinforcement) y las de tratamiento del terreno (ground treatment). En la Tabla 1 se ha recogido esta distinción. Sin embargo, a veces no está clara la diferencia entre el tratamiento, la mejora o el refuerzo. El Ministerio de Fomento (2002) incluye en un mismo grupo a los métodos de refuerzo y mejora, llamando a ambos métodos de mejora. El caso de las columnas de gravas sería, por ejemplo, tanto un refuerzo como una mejora.

Tabla 1. Clasificación de los métodos de mejora, refuerzo y tratamiento de terrenos (Schaefer, 1997)

El Comité Técnico TC17 de la Sociedad Internacional de Mecánica de Suelos e Ingeniería Geotécnica, ISSMG clasificó los métodos de mejora en cinco grupos:

  1. Mejora del terreno sin adiciones en suelos no cohesivos o materiales de relleno: Compactación dinámica, vibrocompactación, compactación por explosivos, compactación por impulso eléctrico y compactación superficial (incluyendo la compactación dinámica rápida).
  2. Mejora del terreno sin adiciones en suelos cohesivos: Sustitución/desplazamiento (incluyendo la reducción de carga mediante materiales ligeros), precarga mediante relleno (incluyendo el empleo de drenes verticales), precarga mediante vacío (incluyendo la combinación de relleno y vacío, consolidación dinámica con drenaje mejorado (incluyendo el empleo de vacío), electro-ósmosis o consolidación electro-cinética, estabilización térmica usando calentamiento o congelación y compactación por hidrovoladura.
  3. Mejora del terreno con adiciones o inclusiones: vibrosustitución o columnas de grava, sustitución dinámica, pilotes de arena compactada, columnas encapsuladas con geotextiles, inclusiones rígidas, columnas reforzadas con geosintéticos o rellenos pilotados, métodos microbianos y otros métodos no convencionales (formación de pilotes de arena mediante explosivos y el uso de bambú, madera y otros productos naturales).
  4. Mejora del terreno con adiciones tipo inyección: Inyección de partículas, inyección química, métodos de mezclado (incluyendo la mezcla previa y la estabilización profunda), jet grouting, inyecciones de compactación y inyecciones de compensación.
  5. Refuerzo del terreno: tierra reforzada con acero o geosintéticos, anclajes al terreno o claveteado del terreno y métodos biológicos mediante vegetación.

Como puede observarse, el número de clasificaciones posibles es muy alto. Dejo a continuación las recomendaciones de la Guía de Cimentaciones (Ministerio de Fomento, 2002) respecto a la aplicabilidad de las principales técnicas de mejora del terreno.

Tabla 2. Campo de aplicación de las principales técnicas de mejora del terreno (Ministerio de Fomento, 2002)

Por último, os dejo un artículo de Carlos Oteo y Javier Oteo sobre las innovaciones recientes en el campo de la mejora y refuerzo del terreno, publicado en la Revista de Obras Públicas en el año 2012.

Descargar (PDF, 2.54MB)

REFERENCIAS:

  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • MITCHELL, J.K. (1981). Soil improvement: state-of-the-art report. 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 509-565.
  • OTEO, C.; OTEO, J. (2012). Innovaciones recientes en el campo de la mejora y refuerzo del terreno. Revista de Obras Públicas, 3534, 19-32.
  • VAN IMPE, W.F. (1989). Soil improvement techniques and their evolution. A.A. Balkema, Rotterdam, 77-88.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactación con explosivos

Figura 1. Compactación con explosivos con cargas confinadas. http://62.129.205.139/en/microblasting/

La compactación de un suelo mediante explosivos se considera una técnica de mejora del terreno de carácter permanente y que no precisa de adición de materiales. Se trata de colocar cargas explosivas en profundidad que, en suelos granulares poco densos -con menos del 20% de limos o del 5% de arcillas-, provocan su licuefacción y posterior consolidación. Con ello se consiguen asientos generalizados en su superficie y, por tanto, un aumento de su peso específico. Fue en Rusia, en 1936, donde tuvieron lugar las primeras compactaciones mediante explosivos, incluso bajo el agua. En España se han utilizado en el puerto de Valencia para consolidar rellenos hidráulicos, resolviendo el tratamiento del terreno en solo dos meses (Romana y Ronda, 1997).

Este procedimiento es más eficiente que la vibrocompactación, por la aplicación de mayor energía, pero siempre que se domine la técnica. También es muy aplicable en suelos con grandes bolos, suelos vinos o con niveles superiores más rígidos, donde otras técnicas no son útiles. Los resultados son muy buenos, pudiéndose incrementar la densidad relativa de una arena floja en un 15-30%. Se trata de un procedimiento rápido y económico, no siendo necesario el empleo de una maquinaria especial. Suele terminarse el tratamiento con una compactación final de tipo superficial mediante rodillos vibrantes.

Como inconvenientes a este método cabría destacar el efecto de las explosiones sobre estructuras próximas al radio de acción, la falta de uniformidad en el terreno tratado, el factor psicológico negativo asociado al uso de explosivos y el cumplimiento de la normativa relacionada con los explosivos, especialmente en áreas pobladas. A veces se pueden utilizar productos expansivos no explosivos para evitar algunos de estos problemas. Por otra parte, el control de resultados requiere una exploración geotécnica posterior para evaluar el efecto del tratamiento.

En función de la situación donde se aloje la carga del explosivo, las voladuras pueden ser confinadas (la carga se coloca dentro de la capa del suelo, Figura 1), superficiales (en la superficie del terreno, Figura 2) o subacúaticas (pero por encima del nivel del terreno a compactar, Figura 3). Lo más normal es usar voladuras confinadas.

Figura 2. Voladuras superficiales.  http://62.129.205.139/en/microblasting/

 

Figura 3. Voladuras subacuáticas. http://62.129.205.139/en/microblasting/

Se puede definir el radio de influencia del tratamiento como la superficie cuyo asiento es mayor a 1 cm. La fórmula empírica que define dicha zona (López Jimeno et al., 1995) es

Rmin = K · Q1/3

donde Q es la carga del explosivo en kg y K un coeficiente adimensional que depende del tipo de suelo, según la Tabla siguiente:

Tabla 1. Coeficiente K para definir el radio de influencia de la compactación con explosivos (López Jimeno et al., 1995)

De forma aproximada, las cargas se suelen colocar a una profundidad en torno al 75% de la profundidad del estrato a compactar, con una separación entre cargas entre 5 y 15 m. Suelen utilizarse cargas del orden de 10 a 30 g de dinamita (o TNT, o amonita) por m3 de suelo. Para mayor detalle en el cálculo y diseño de la cantidad de explosivo, el radio de acción de la carga efectiva, el espesor de la carga efectiva, el espesor de la capa compactada, la profundidad a la que debe situarse la carga y el radio del dren de arena creado, pueden consultarse textos especializados. Hemos dejado un artículo al respecto al final del artículo.

Os dejo algunos vídeos al respecto. Observad cómo tras la explosión de las cargas, existe una salida importante de agua a presión.

Descargar (PDF, 1.43MB)

REFERENCIAS:

  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • LÓPEZ JIMENO, C. et al. (1995). Manual de perforación y voladuras de rocas. Instituto Tecnológico Geominero de España.
  • ROMANA, M.; RONDA, J. (1997). Consolidación por voladuras de un relleno hidráulico en el puerto de Valencia. Boletín de la Sociedad Española de Mecánica del Suelo y Cimentaciones, 126.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.