Simposio sobre optimización, metaheurísticas y algoritmos evolutivos aplicados a la ingeniería civil

En el marco del próximo Congreso de Métodos Numéricos en Ingeniería CMN, que se desarrollará del 12 al 14 de septiembre de 2024 en la Universidad de Aveiro (Portugal), tengo el placer de anunciar la organización de un simposio sobre optimización, metaheurísticas y algoritmos evolutivos aplicados a la ingeniería civil. Dicho evento lo organizamos en colaboración con los profesores David Greiner y Diogo Ribeiro.

El principal objetivo de este simposio es congregar a investigadores y estimular el interés por la presentación de trabajos que aborden nuevas perspectivas en el ámbito de la optimización, las metaheurísticas y los algoritmos evolutivos en las disciplinas de ingeniería computacional y civil. Las comunicaciones deben centrarse en metaheurísticas, algoritmos evolutivos y otras técnicas de optimización aplicadas a la resolución de problemas de diseño óptimo en los campos de la ingeniería computacional y civil, así como en temas relacionados.

Los algoritmos evolutivos constituyen un área de investigación interdisciplinaria que abarca diversos paradigmas inspirados en el principio darwiniano de la evolución. En la fase actual de investigación, se consideran, entre otros, los siguientes paradigmas: Algoritmos Genéticos, Programación Genética, Estrategias Evolutivas, Evolución Diferencial, etc., además de otros enfoques de metaheurísticas como la Optimización por Enjambre de Partículas.

Se extiende una cordial bienvenida a las aplicaciones de estos métodos de optimización y otros en el ámbito de la ingeniería computacional y civil, tanto para resolver problemas de optimización de objetivo único como de objetivo múltiple. Los temas que se abordarán, sin limitarse a ellos, incluyen en el ámbito de la ingeniería civil aspectos relacionados con el diseño estructural, como estructuras de hormigón y/o acero, geotecnia, acústica, hidráulica e infraestructura. En el ámbito de la ingeniería computacional, los temas relacionados incluyen ingeniería mecánica y aeronáutica, energías renovables y confiabilidad, entre otros.

Se alienta la exploración de aspectos de desarrollo tales como la modelización de sustitución, la paralelización, la hibridación y la realización de comparaciones de rendimiento entre distintos métodos, entre otros.

Os paso, a continuación, la propuesta del simposio.

Descargar (PDF, 132KB)

Puente internacional de Tui

Puente Internacional de Tui. Imagen: V. Yepes (2023)

El puente internacional de Tui, que se extiende sobre las aguas del río Miño, enlaza las poblaciones de Valença y Tuy, ubicadas en la frontera entre Portugal y España. Una de las características que lo distingue es su capacidad para atender el tráfico vehicular, facilitar la circulación ferroviaria y permitir el paso de peatones. Este atributo, poco frecuente en la época de su construcción, enfatiza su singularidad. Más allá de su funcionalidad, el puente cumple el papel de unificador entre dos ciudades que a lo largo de la historia han estado inmersas en disputas militares y estratégicas, principalmente debido a su separación por el cauce del río Miño.

Este puente se distingue por su diseño de estructura metálica en forma de celosía, tomando la apariencia de un cajón que se asienta sobre pilares de piedra robustos. Durante su construcción, se empleó el método de lanzar secciones metálicas previamente fabricadas en los accesos, apoyándolas temporalmente mientras sobresalían en voladizo sobre el río.

La estructura en sí está compuesta por una celosía metálica que consta de cinco vanos biapoyados. Los extremos tienen una longitud de 61,5 m cada uno, mientras que los tres vanos centrales miden 69 m. En el nivel inferior de esta celosía se encuentra el tablero para el tráfico vehicular, junto con una pasarela adicional destinada a peatones. Por otro lado, en la plataforma superior se aloja la vía férrea.

Aspecto de la sección del puente internacional de Tui. https://www.turismo.gal/recurso/-/detalle/19531/ponte-internacional-de-tui?langId=es_ES&tp=9&ctre=42

La disposición de los elementos se vio influenciada por la necesidad de mantener un espacio adecuado para el ferrocarril, así como por las emisiones de humo generadas por las locomotoras. Estas limitaciones jugaron un papel decisivo en la configuración definitiva de la estructura.

A pesar de los rumores que atribuyen el diseño del puente a Gustave Eiffel o a uno de sus discípulos, la verdad es que fue concebido por el ingeniero y diputado riojano Pelayo Mancebo y Ágreda. El origen del proyecto se remonta a junio de 1879 y probablemente contó con la asesoría de Eusebio Page, quien ocupaba el cargo de Jefe de la Comisión de Estudios de los Ferrocarriles Internacionales.

La construcción del puente se licitó en 1881, siendo adjudicada a la empresa belga “Braine le Comte” por 205.766.000 reales. Esta selección se dio en medio de una competencia que contó con otras siete propuestas, sobresaliendo en particular la presentada por el estudio de Eiffel. El coste de esta obra fue compartido por España y Portugal. La empresa belga introdujo algunas modificaciones al diseño original del proyecto, resaltando la elección de cambiar los pilares metálicos por pilares de piedra.

En términos de ingeniería, los primeros encargados de la obra fueron Eugenio y Ernesto Rolín, seguidos por Augusto Cazaux, quien ya había participado en la construcción de estructuras como el Viaducto de Madrid, así como en los viaductos de Redondela, Zaragoza y Santarém.

La construcción de esta magnífica obra se extendió a lo largo de 34 meses, desde noviembre de 1881 hasta octubre de 1884, y demandó la utilización de un total de 1.504 toneladas de hierro. Las piedras empleadas en la construcción de la sillería fueron extraídas de Lanhelas, Portugal. En enero de 1885, se llevaron a cabo pruebas de carga, utilizando locomotoras con un peso de hasta 68 toneladas, en concordancia con la normativa francesa.

Desde entonces, el puente ha requerido únicamente una intervención de reparación, que tuvo lugar en 1975 bajo la dirección del ingeniero portugués Edgar Cardoso. Esta actuación se centró en abordar una inclinación anormal que se había manifestado en la estructura.

La ceremonia oficial de inauguración del Puente Internacional se realizó el 25 de marzo de 1886, transcurriendo alrededor de un año y medio desde su entrada en funcionamiento. Este evento marcó un hito al sustituir las barcazas que hasta entonces habían servido como el vínculo de comunicación entre ambas ciudades.

Desde la inauguración del nuevo Puente Internacional en 1995, que se destaca por su modernidad y amplitud, se ha implementado la restricción del paso de vehículos pesados sobre la antigua estructura. Incluso para vehículos livianos, se desaconseja su uso, recomendándose las rutas de la autopista A-55 en España y la A3 en Portugal.

Os paso algún vídeo donde se pueden ver detalles del puente. Espero que os gusten.

Mejora de la evaluación de la sostenibilidad de puentes en entornos agresivos mediante la decisión grupal multicriterio

Acaban de publicarnos en DYNA, revista indexada en el JCR, un artículo sobre la mejora de la evaluación de la sostenibilidad de puentes en entornos agresivos mediante la decisión grupal multicriterio. Aborda el desafío de combinar las dimensiones económica, ambiental y social en un único indicador holístico para la toma de decisiones en el diseño de infraestructuras. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

  • El artículo contribuye al campo de la evaluación de la sostenibilidad de los puentes en entornos agresivos mediante la aplicación de técnicas de toma de decisiones grupales en el ámbito de los criterios múltiples. Aborda el desafío de combinar las dimensiones económica, ambiental y social en un único indicador holístico para la toma de decisiones en el diseño de infraestructuras.
  • El estudio evalúa cinco alternativas de diseño diferentes para un puente de hormigón expuesto a un entorno costero utilizando cuatro técnicas de toma de decisiones (ANP, TOPSIS, COPRAS y VIKOR). Los resultados indican que los hormigones que contienen pequeñas cantidades de humo de sílice funcionan mejor a lo largo de su ciclo de vida que otras soluciones que suelen aumentar la durabilidad.
  • La investigación contribuye al desarrollo de herramientas y métodos para evaluar la sostenibilidad de las infraestructuras y guiar las futuras acciones de diseño en diversas estructuras. Se alinea con el enfoque en promover las iniciativas de economía circular y el cumplimiento de los requisitos ambientales y sociales específicos en las licitaciones de proyectos públicos

Abstract:

The construction industry is increasingly recognized as critical in achieving Sustainable Development Goals. Construction activities and infrastructure have both beneficial and non-beneficial impacts, making infrastructure design a focal point of current research investigating how best to contribute to sustainability as society demands. Although methods exist to assess infrastructures’ economic, environmental, and social life cycle, the challenge remains in combining these dimensions into a single holistic indicator to facilitate decision-making. This study applies four decision-making techniques (ANP, TOPSIS, COPRAS, and VIKOR) to evaluate five different design alternatives for a concrete bridge exposed to a coastal environment. The results indicate that concretes containing even small amounts of silica fume perform better over their life cycle than other solutions usually considered to increase durability, such as water/cement ratio reduction or concrete cover increase.

Keywords:

Sustainable design, bridges, life cycle assessment, Analytic Network Process, TOPSIS, VIKOR, COPRAS, Multi-criteria decision-making

Reference:

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2023). Enhancing sustainability assessment of bridges in aggressive environments through multi-criteria group decision-making. DYNA, 98(5):477-483. DOI:10.6036/10816

Os paso el artículo en abierto, tanto en inglés como en español.

Descargar (PDF, 520KB)

Descargar (PDF, 390KB)

Un concepto a tener en cuenta en la ingeniería: las estructuras biónicas

El otro día estuve escuchando en Radio Nacional una entrevista muy interesante que hizo el periodista Miguel Ángel Domínguez sobre “arquitectura biónica” a la arquitecta y catedrática Rosa Cervera. La podéis escuchar en este enlace: https://www.rtve.es/play/audios/la-entrevista-de-radio-5/entrevista-radio-5-rosa-cervera/6828542/

Me resultó especialmente interesante el contenido del concepto de biónico, que yo asociaba a “brazos biónicos” o robótica. Sin embargo, mucho de lo que recoge este concepto está íntimamente relacionado con nuestras líneas de investigación: optimización, sostenibilidad, arquitectura amigable, estructuras robustas, modernos métodos de construcción, nuevos materiales, diseño paramétrico, BIM, etc.

Este concepto de emular las formas y eficiencia de la Naturaleza no es nuevo. Basta retrotraerse a la arquitectura de Gaudí para ver ese alejamiento de las líneas rectas, de lo artificial. En efecto, la arquitectura biónica es un enfoque de diseño y construcción que se inspira en formas naturales, alejándose de diseños rectangulares tradicionales. Surgió en el siglo XXI, destacando la practicidad y adoptando esquemas orgánicos de curvas y estructuras biológicas. Se opone a enfoques convencionales, buscando justificaciones estéticas y económicas. Se basa en la ciencia biónica, nacida en los años 60, que estudia organismos naturales para innovaciones industriales. La arquitectura biónica construye edificios inspirados en formas naturales, predefinidas y aplicadas con técnicas constructivas.

La arquitectura biónica se diferencia de la tradicional en varias áreas. Sus edificios son compactos y bioclimáticos, aprovechando la energía solar, con aislamiento térmico y acristalamiento doble. Presentan equipamiento especial como ventilación de doble flujo y calefacción solar. La cimentación imita raíces de árboles, otorgando aislamiento y resistencia sísmica. Las estructuras son flexibles y resistentes, inspiradas en formas orgánicas. Además, incorporan membranas interiores que regulan aire y luz natural.

En España, destaca, junto con Rosa Cervera, el arquitecto Javier Gómez Pioz. Ejemplifica esto con obras notables, como las torres inspiradas en la estructura de vértebras de peces en Calcuta. Pioz también lidera un ambicioso proyecto de la Torre Biónica en Shanghái, una megaestructura vertical de 1.228 m basada en principios biónicos. La adaptación y recuperación de construcciones existentes bajo estos principios también son resaltadas. Este enfoque desafía la arquitectura tradicional y plantea preguntas sobre la vida en ciudades verticales, pendientes de su aprobación.

Torre Biónica de Shangai. https://nanarquitectura.com/2021/05/05/la-arquitectura-bionica-y-su-equilibrio-con-la-naturaleza/18362

Todo ello nos lleva, directamente, a tener que empezar a definir un nuevo concepto: ingeniería biónica, hermanada con las estructuras de la arquitectura homónima. La ingeniería biónica se basa en los mismos principios que la arquitectura biónica, pero aplicados al diseño y desarrollo de soluciones ingenieriles. Se inspira en las formas, estructuras y procesos naturales para crear tecnologías y sistemas más eficientes y adaptativos. Al igual que en la arquitectura biónica, se busca mejorar la practicidad y la sostenibilidad al incorporar la eficiencia y la flexibilidad de la naturaleza en diseños industriales y tecnológicos. La ingeniería biónica aborda desafíos tecnológicos desde una perspectiva biológica, buscando soluciones innovadoras que optimicen el rendimiento y se adapten a entornos cambiantes. De esta forma, hay que empezar a pensar en puentes biónicos, urbanismo biónico, infraestructuras biónicas, etc. Un buen debate abierto.

Os dejo algunos vídeos donde se discuten estas ideas. Espero que os sea de interés.

Perspectiva social de un marco modular óptimo: análisis integral del ciclo de vida

Nos acaban de publicar en la Revista CIATEC-UPF (Revista de Ciências Exatas Aplicadas e Tecnológicas da Universidade de Passo Fundo, CIATEC-UPF – ISSN 2176-4565), un artículo relacionado con la optimización de pórticos de hormigón armado con sistemas de agrupación de columnas. Se trata de una colaboración con el profesor Moacir Kripka y está dentro del proyecto de investigación HYDELIFE.

Os paso a continuación el resumen y una copia descargable del artículo, pues está publicado en abierto. Espero que os sea de interés.

RESUMEN:

La perspectiva social es un aspecto fundamental en la construcción de infraestructuras sostenibles. Este estudio evalúa el análisis de ciclo de vida social de un marco articulado prefabricado de hormigón armado optimizado económicamente. Mediante el análisis de la contribución por fases al daño social total se identifica la fabricación como la etapa más influyente en el impacto social de la estructura. Adicionalmente, se verifica que la estructura modular presenta un impacto especialmente reducido en la etapa de construcción y final de vida útil. El análisis de los materiales y procesos más contribuyentes señala al acero de la armadura pasiva como el principal responsable tras el daño social de la estructura, seguido, pero en menor medida, por el hormigón y transporte. Los resultados destacan la importancia de considerar aspectos sociales en el desarrollo de la infraestructura de transporte, proporcionando información valiosa para responsables y partes interesadas en la toma de decisiones.

Palabras clave:

Marco articulado, prefabricado, análisis de ciclo de vida, optimización, sostenibilidad social

Referencia:

RUIZ-VÉLEZ, A.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2023). Perspectiva social de un marco modular óptimo: Análisis integral del ciclo de vida. Revista CIATEC-UPF, 15(1):1-19. DOI:10.5335/ciatec.v15i1.14974

Al tratarse de un artículo publicado en abierto, os dejo el mismo para su descarga. Espero que os sea de interés.

Descargar (PDF, 1.2MB)

La inteligencia artificial en la ingeniería civil: oportunidades y desafíos

Tengo el placer de compartir un artículo que se ha publicado en la revista IC Ingeniería Civil, que es una publicación mensual editada por el Colegio de Ingenieros Civiles de México. En este artículo se analiza el uso de la inteligencia artificial en la ingeniería civil, incluyendo la toma de decisiones, gestión de proyectos y monitorización de infraestructura. Destaca las oportunidades de la IA para elevar la calidad y la seguridad de las infraestructuras, reducir costos y acelerar la resolución de problemas complejos. También se señalan los desafíos y la necesidad de una colaboración interdisciplinaria para garantizar su utilización responsable y efectiva.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Referencia:

YEPES, V.; KRIPKA, M.; YEPES-BELLVER, L.; GARCÍA, J. (2023). La inteligencia artificial en la ingeniería civil: oportunidades y desafíos. IC Ingeniería Civil, 642:20-23.

Como se trata de un artículo en abierto, os lo paso para su lectura. Espero que os interese.

Descargar (PDF, 380KB)

Comunicaciones presentadas al 27th International Congress on Project Management and Engineering AEIPRO 2023

Durante los días 10-13 de julio de 2023 tiene lugar en Donostia-San Sebastián (Spain) el 27th International Congress on Project Management and Engineering AEIPRO 2023. Es una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes.

BRUN-IZQUIERDO, A.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2023). Optimización energética de tableros tipo losa pretensados aligerados mediante modelos Kriging. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).

El objetivo de este trabajo es desarrollar una metodología para optimizar la energía en la construcción de tableros losa pretensado aligerados. Se lleva a cabo un análisis de la sección transversal para determinar los parámetros de diseño a través de un estudio del estado del arte. A partir de ese análisis, se identifican las variables de diseño que mejorarán la eficiencia energética del tablero. La metodología se divide en dos fases: primero, se utiliza una técnica estadística llamada hipercubo latino para muestrear las variables del tablero y determinar una superficie de respuesta; y en segundo lugar, se optimiza la superficie de respuesta mediante un modelo de optimización basado en Kriging. Como resultado, se ha desarrollado una metodología que reduce el costo energético en la construcción de tableros losa pretensado aligerados. Las recomendaciones para mejorar la eficiencia energética incluyen emplear esbelteces elevadas (alrededor de 1/28), reducir el consumo de hormigón y armadura activa, y aumentar la cantidad de armadura pasiva.

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Durability assessment and re-design of coastal concrete bridge through a non-destructive damage detection method. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).

Los expertos y los gobiernos llevan tiempo centrándose en reducir los costes de reparación y mantenimiento de estructuras cruciales como los puentes mediante un mantenimiento y una reparación continuos. Este estudio explora la rentabilidad de dos métodos de predicción de daños mediante el método de densidad espectral de potencia (PSD) en comparación con el método convencional de detección de daños mediante el rediseño de diferentes espesores de recubrimiento de hormigón para un puente costero de hormigón armado. El estudio evalúa el impacto de los iones cloruro en la localización y extensión de los daños a lo largo de la vida útil del puente y compara los costes totales de mantenimiento y reparación. Los resultados muestran que, si bien el método PSD es eficaz para estructuras de hormigón con recubrimientos de hormigón bajos, el aumento del espesor del recubrimiento de hormigón puede dar lugar a mayores costes de reparación.

YEPES, V.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.J.; BLIGHT, T. (2023). Códigos abiertos basados en Python para la construcción de nomogramas y su aplicación en la ingeniería de proyectos. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).

La Nomografía es una disciplina científica que se encarga de representar gráficamente fórmulas complejas mediante nomogramas, permitiendo el cálculo de tres o más variables matemáticas. Durante el siglo XX, esta técnica fue ampliamente utilizada en áreas como la ingeniería, medicina, electrónica, ciencias físicas, biológicas, etc. Sin embargo, con la llegada de las calculadoras y computadoras, la construcción de nuevos nomogramas y su enseñanza en la universidad disminuyeron. En los últimos años, la nomografía ha resurgido gracias a la ayuda de códigos de programación como PyNomo y Nomogen, basados en Python, que pueden generar un nomograma en cuestión de segundos, frente a las horas que antes requerían. En este trabajo se presentan estos códigos abiertos y algunos nomogramas generados con ellos, analizando su usabilidad, precisión y contribución a la relación entre las variables de las expresiones matemáticas. Finalmente, se destacan las posibilidades del uso de los nomogramas en la enseñanza e ingeniería de proyectos.

Estribos cerrados de puentes

Figura 1. Esquema de estribo cerrado. Imagen: V. Yepes

El estribo cerrado es uno de los tipos más comunes de estribos utilizados en puentes. Consiste en un muro frontal, que constituye la estructura principal del estribo, aletas laterales (con o sin muro lateral), un murete guarda y una losa de transición. En la Figura 1 se puede ver el esquema de su sección transversal. El muro frontal se encarga de recibir la carga del tablero a través de los apoyos, los cuales permiten que el tablero se mueva de forma independiente a los movimientos ocasionados por las tierras circundantes. Además, el estribo cerrado se apoya en el terreno natural, en lugar de hacerlo sobre el terraplén, lo que ayuda a reducir los asientos a largo plazo. Esto es especialmente beneficioso para evitar asentamientos que podrían afectar al tablero si este fuera hiperestático.

El diseño de la parte superior del estribo se determina según el tipo de carga y los movimientos del tablero. Por otro lado, la parte inferior está influenciada por las acciones del tablero y el empuje de las tierras, especialmente cuando el estribo es alto. En el caso de puentes ferroviarios, donde el empuje horizontal en la parte superior debido al frenado es significativo, el diseño de la parte inferior del estribo, incluyendo la variación de los espesores, el tamaño del cimiento, entre otros aspectos, también se ve afectado por este efecto. En los viaductos destinados a trenes de alta velocidad, es común utilizar anclajes tipo Gewi o cables de pretensado para sujetar el tablero a uno de los estribos. Este estribo se denomina estribo fijo, mientras que la junta de dilatación se ubica en el estribo opuesto.

El cierre lateral del estribo depende de si hay posibilidad de derrame de tierras por delante de él. En el caso poco frecuente de estribos cerrados donde se pueda producir derrame, se soluciona colocando una pequeña aleta triangular perpendicular al muro frontal del estribo. La altura y longitud de la aleta dependerán del grosor del tablero y la inclinación del derrame del terraplén. En el caso más frecuente, donde no hay derrame de tierras por delante del estribo, existen dos soluciones posibles. La primera es extender muros en continuación del muro frontal, conocidos como “aletas en prolongación”. La segunda es disponer muros adyacentes al propio muro frontal y perpendiculares a este, conocidos como “muros en vuelta”. En este último caso, dependiendo de la altura del estribo y la inclinación de las tierras, puede ser necesario construir verdaderos muros de contención para contener el terraplén.

Este tipo de estribo permite no verter tierras por delante de él, lo cual es especialmente útil cuando se desea evitar invadir la vía inferior. En caso de que haya edificaciones cercanas, se puede extender lateralmente el estribo mediante la construcción de un muro en vuelta, que puede prolongarse según sea necesario. Estos muros en vuelta pueden tener un ángulo de 90º con el estribo (Figura 2), siguiendo la disposición del vial en caso de que el estribo se desvíe, o pueden formar un ángulo (generalmente de 30º) siguiendo la inclinación del terraplén.

Figura 2. Paso elevado sobre la línea del ferrocarril en el término municipal de Lodosa. http://www.navarra.es/NR/rdonlyres/36F08D42-4369-4D8F-B831-194DE72E5827/103157/110408op61b2.JPG

En el caso de estribos de gran altura, generalmente a partir de unos 8 m, existen dos opciones alternativas en lugar de mantener un espesor constante, que suele ser significativo y solo necesario en los últimos metros inferiores, donde el cortante y el momento flector son más altos. La primera opción es establecer un espesor variable, en la cual se suele cambiar el espesor cada 4 m, que coincide con la altura típica de las capas de hormigonado. La segunda opción es utilizar un muro frontal nervado con rigidizadores verticales. En este caso, el muro frontal transmite el empuje de las tierras a través de la flexión horizontal a los nervios, y estos, a su vez, lo transmiten verticalmente a la cimentación.

La impermeabilización es un elemento esencial en un estribo, tanto para garantizar su funcionalidad como para reducir los empujes del trasdós. Por esta razón, todos los estribos deben contar con una capa de material filtrante en el trasdós, así como con un tubo de drenaje en el fondo que permita la evacuación de las aguas acumuladas detrás del muro frontal hacia el exterior.

Los asientos que ocurren en el terraplén de acceso son más significativos que los que se producen en el muro. En los puentes de carretera, se evita el resalto abrupto que se generaría en la unión entre ambos elementos mediante el uso de una losa de transición. Esta losa se apoya en las tierras de un lado y en el muro del otro, proporcionando una transición suave entre ambos extremos. El tamaño de esta losa dependerá de la diferencia de asientos entre el muro y el terraplén, así como de la altura y calidad del terraplén. Por lo general, una losa de transición de 4 a 5 m de longitud suele ser suficiente (Manterola, 2006).

Os dejo un pequeño vídeo donde se explican los estribos de los puentes, incluido el estribo cerrado. Espero que os sea de interés.

Referencias:

ARENAS, J.J.; APARICIO, A.C. (1984). Estribos de puente de tramo recto. Santander: Universidad de Cantabria.

DIRECCIÓN GENERAL DE CARRETERAS (1994). Manual para el proyecto y ejecución de estructuras de suelo reforzado. Ministerio de Obras Públicas, Transportes y Medio Ambiente.

JURADO, C. (2016). Puentes (I). Evolución, tipología, normativa, cálculo. 2ª edición, Madrid.

MANTEROLA, J. (2006). Puentes II. Apuntes para su diseño, cálculo y construcción. Colección Escuelas. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328.

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nos ha dejado Florentino Regalado, referente en la ingeniería de caminos

Figura 1. Florentino Regalado Tesoro (1950-2023), en su despacho del estudio de ingenieros. https://www.informacion.es/alicante/2023/06/13/fallece-ingeniero-caminos-florentino-regalado-88628877.html

Hoy, martes 13 de junio de 2023, al momento de escribir estas palabras, me he enterado con pesar del fallecimiento de Florentino Regalado Tesoro.

Con su partida, no solo hemos perdido a un destacado ingeniero, sino también a un ser humano excepcional y querido amigo. Aunque de manera apresurada y sin poder abarcar todo lo que quisiera, no puedo evitar dedicar unas breves líneas en su memoria. Pido disculpas por lo mucho que me dejo en el tintero, pero seguro que me sabréis perdonar.

Florentino nació en Cáceres en 1950, en el seno de una humilde familia vinculada a unas tierras de la Marquesa de Camarena, cerca de Trujillo. Tras finalizar sus estudios de ingeniero de caminos, canales y puertos en Santander, se vino a Alicante para reunirse con su hermano Ricardo.

Alguno de vosotros podéis conocerlo por haber sido el fundador de la empresa CYPE, otros por su faceta docente, por sus innumerables proyectos. Su huella se extiende por toda la provincia de Alicante, con miles de proyectos destacados en edificios de gran altura, centros comerciales, hospitales, puentes y más. Pero yo lo tengo que recordar en sus últimos años como una gran persona. Una pequeña reseña la podéis ver en el periódico Información de Alicante, un periódico donde solía escribir sobre múltiples temas, porque como me dijo un día: “quien no escribe en Información, no es nadie en Alicante”: https://www.informacion.es/alicante/2020/12/12/alicante-cabeza-26233920.html

La última vez que estuve con él personalmente fue en el VIII Congreso de la Asociación Española de Ingeniería Estructural, ACHE, que tuvo lugar en Santander el año pasado. Este congreso se tuvo que retrasar varias veces debido a la pandemia y fue un punto de reencuentro para muchos de nosotros. Aproveché para preguntarle todo aquello de lo que tenía curiosidad. Su sentido común era abrumador y su experiencia en estructuras, desbordante. A modo de ejemplo, le insinué que hoy en día, abordar el cálculo de un rascacielos supone un trabajo de modelización matemática importante que, hace apenas 30 años, era absolutamente impensable. Y la pregunta era clara: ¿cómo calculábais los rascacielos de Benidorm? Claro, quería saber cómo a finales de los 80 se podía abordar el proyecto de la estructura de un edificio como el Gran Hotel Bali de Benidorm, de 186 metros de altura y 53 plantas. Su respuesta fue de lo más inteligente: “con un par de números en una servilleta, pe ele dos partido por ocho (sic)”. Lo que me quería decir es que lo relevante es la experiencia y la comprobación conceptual con grandes números y que, luego, ya vendrían los modelos matemáticos para afinar los resultados. Ingeniería pura. Hablando en ese mismo momento sobre el desastre del terremoto de Lorca, me dio una lección en dos minutos de lo que realmente era importante en un cálculo estructural en un sismo: los detalles constructivos. También hablamos de la salud, de la familia, y de todo tipo de temas. El último día del congreso me despedí de él. Estaba alegre, se iba con su familia a su tierra natal. Luego pude ver algunas fotografías que compartió. Fue la última vez que tuve la ocasión de verle en persona.

Florentino era un apasionado del “patrimonio construido”. Hace unos años ya me contó su preocupación por dejar un montón de escritos sobre este tema que había elaborado a lo largo de su vida y que no sabía bien a quién dejar. Me dejó una fracción pequeña de sus legajos en formato digital. Afortunadamente, no se ha perdido la totalidad de sus escritos, pues me consta que el Colegio de Ingenieros de Caminos ha recibido dicho legado, que hay que ordenar, clasificar y, en su momento, hacer visible.

También fue Florentino una voz independiente y libre que, sin problema alguno, compartía con cualquier interlocutor. Las redes sociales nos han permitido, a través de un grupo de WhatsApp de los ingenieros de caminos de Alicante, conocer sus ideas, sus puntos de vista y sus debates de todo tipo. Eso sí, siempre respetuoso con las ideas de los demás. Esta misma mañana, sin conocer la fatal noticia, algún compañero le preguntaba su opinión sobre el manifiesto de la Asociación de Ingenieros de Caminos, Canales y Puertos y de la Ingeniería Civil sobre la normativa sísmica. No llegamos a tiempo.

Voy a poner un par de anécdotas personales en ese tipo de debates que, como veréis, rezumaban sentido común por todos sus poros. El último intercambio de mensajes ocurrió el 1 de junio pasado. Hacía partícipe a mis compañeros del Premio a la Excelencia Docente que había recibido del Consejo Social de la Universidad Politécnica de Valencia. Florentino me dijo: “Lástima no haberte conocido siendo estudiante”, a lo cual le contesté: “Florentino, lástima no haber coincidido contigo profesionalmente para haber aprendido lo mucho que sabes”. Son unas palabras que valen mucho más que cualquier premio, pues vienen de alguien a quien admiro mucho.

Pero no siempre coincidíamos en nuestras opiniones. Especialmente en el ámbito de las nuevas tecnologías y de la inteligencia artificial. A una noticia recogida en la prensa sobre nuestras investigaciones en optimización de estructuras con algoritmos heurísticos, Florentino me dijo lo siguiente (el lenguaje es coloquial, escrito en WhatsApp, pero sin omitir ni cambiar nada): “Víctor no acabo de explicarme cuando más sabemos, más algoritmos, más normas, más laboratorios, más de todo, mucho más costosas resultan las estructuras. LAS ECONOMÍAS SON UN MITO. Una torre en Benidorm, podía llevarse entre 25 y 30 kg de acero m2. En la actualidad ha subido como poco a los 40. Y si te descuidas puedes fabricar un Titanic. ¿Qué puñetas está pasando?”. Mi respuesta: “Florentino, un ingeniero en su vida, puede calcular 1000 estructuras. Un algoritmo inteligente revisa más de un millón en media hora. Los ahorros existen, no es un mito. El tema es que ahora las consultoras no están aprovechando las ventajas de la investigación de vanguardia. Pero en poco tiempo lo harán”. Sin embargo, no acababa de estar de acuerdo Florentino conmigo y me replicaba: “Lamento discrepar de ti, pero si para la inteligencia natural es un mito absoluto (nadie podrá darnos lo que no tiene), ya me dirás en qué consiste una construcción inteligente, frente a una construcción bien parida y bien construida. Estamos dejándonos arrastrar por un lenguaje que yo ya no entiendo su significado”. Y para zanjar el tema, y terminar de forma elegante este pequeño debate, yo le contesté: “Florentino, estoy encantado de discutir este tipo de temas en un foro como este, de técnicos. A veces se nos olvida lo que somos con otros temas. Los algoritmos no son inteligencia. Son estrategias que utilizan la fuerza bruta del ordenador para hacernos fácil el trabajo. Ingenieros como Florentino son imprescindibles para dar sentido común a lo que se investiga. La experiencia es un grado”. Ya no me pudo rebatir más, ya notábamos todos que sus fuerzas estaban mermando. ¡Maldita enfermedad!

Para acabar esta pequeña reseña personal, me he bajado a la primera planta para rebuscar entre las tesis doctorales defendidas en el Departamento de Ingeniería de la Construcción de la Universidad Politécnica de Valencia. He encontrado los dos tomos de su tesis doctoral: “Investigación y revisión crítica del conocimiento y uso de los forjados reticulares en España, con propuestas de nuevos criterios para su diseño, análisis y construcción”, dirigida por el catedrático Juan José Moragues Terrades, y defendida en el año 2001. Como podéis ver, una tesis presentada ya en la madurez profesional de Florentino. Era otra época, donde el grado de doctor solo se buscaba en el ámbito académico, y donde la publicación de artículos en revistas científicas internacionales no dejaba de ser una anécdota frente a la valía profesional. En mi caso, aunque 14 años más joven, leí la tesis también tarde, en 2002, un año después, tras casi dos décadas de experiencia profesional en empresas constructoras y en la administración pública. Pero algo ya empezaba a cambiar, tanto en nuestra universidad como en la profesión.

Para los que tengáis curiosidad, os dejo el breve resumen de su tesis doctoral, tal y como lo escribió:

Partiendo de la realidad española del uso de los forjados reticulares, la tesis pretende sistematizar los criterios que se emplean y la razón y ser de los mismos, analizándolos arquitectónica, mecánica y constructivamente a la luz de las principales normas del mundo. Basándonos en nuestra experiencia, ensayos e investigaciones, de tipo numérico realizados sobre esta tipología de forjados, se establece, en nuestra opinión, toda una filosofía operativa que racionaliza y sistematiza el uso de los mismos, reflejando plenamente su comportamiento físico real al margen de consideraciones teóricas y escasamente representativas”.

Os dejo un par de entrevistas, también un par de conferencias donde podéis profundizar algo más en su visión personal de la ingeniería. Descansa en paz, Florentino. Te echaremos mucho de menos.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Proceso constructivo de un puente colgante

Figura 1. Gran Puente de Akashi Kaikyō, el puente colgante de mayor vano del mundo. Wikipedia.

El sistema de construcción de puentes colgantes tiene un impacto significativo en su estructura. Las fases principales en la ejecución de un puente colgante pasa por la construcción de las torres y contrapesos, el montaje de los cables principales y la ejecución del tablero.

Lo habitual es que el proceso constructivo comience con la ejecución de los anclajes y las torres. Los anclajes implican trabajos importantes de movimiento de tierras. Las torres o mástiles pueden ser de acero o de hormigón, presentando el desafío de la construcción en altura. En el caso del acero, se emplean técnicas bien desarrolladas de unión, como soldadura y tornillos de alta resistencia. Las torres de acero se montan por módulos prefabricados que se elevan mediante grúas trepadoras ancladas a la propia torre. En el caso del hormigón, se utilizan encofrados trepadores o deslizantes. En cualquier caso, se deben considerar los medios necesarios para elevar cargas de peso considerable a grandes alturas. Las grúas pueden ir creciendo a medida que las torres se elevan, estando ancladas a ellas.

Cuando los cables se anclan externamente, los contrapesos se vuelven indispensables y constituyen un elemento fundamental en la ejecución de la estructura. Los contrapesos requieren una precisa colocación de las piezas metálicas que servirán de anclaje al cable. En el caso de los puentes colgantes autoanclados, los cables principales se anclan al tablero, lo que elimina la necesidad de contrapesos. Por tanto, el tablero se convierte en el primer elemento a construir. Sin embargo, esta configuración conlleva la pérdida de una de las principales ventajas de la construcción de puentes colgantes, que es la capacidad de construir el tablero por etapas, sin importar la ubicación del puente.

Una vez ejecutadas las torres y los anclajes, es necesario proceder al montaje del cable principal, el cual constituye el elemento fundamental de la estructura resistente del puente colgante. El montaje de los cables principales es la fase más compleja, pues implica superar el vano existente entre las dos torres, lo que requiere tenderlo en el vacío. Se comienza lanzando unos cables guía, que son los primeros en abarcar la luz del puente y alcanzar los puntos de anclaje. En la mayoría de los puentes colgantes ubicados en áreas navegables, es posible pasar estos cables iniciales utilizando un remolcador. En la actualidad, este proceso ya no representa un problema gracias al uso de helicópteros e incluso drones.

Figura 2. Montaje de los cables en un puente colgante. https://www.ihi.co.jp/iis/en/technology/airspining/index.html

A partir del cable inicial, se instalan las pasarelas que se emplean para devanar los alambres del cable, ya sea mediante alambres individuales “in situ” (air spinning) o por cordones. Durante esta etapa, el viento representa el desafío más significativo, ya que puede ocasionar grandes desplazamientos laterales en la polea móvil. En algunas ocasiones, esto ha llevado a detener el proceso de montaje del puente, generando retrasos significativos en la construcción. Finalmente, se compacta el cable principal de manera discontinua por bandas de presión o de forma continua mediante recubrimiento de alambre.

En cuanto al montaje del tablero, se suele realizar por voladizos sucesivos, avanzando simétricamente desde una torre hacia el centro del vano y hacia los extremos. También es posible llevar las dovelas a su posición definitiva mediante flotación y elevarlas desde los cables principales con cabrestantes, colgándolas en su ubicación final con las péndolas.

Una vez se han montado los cables principales, adoptando la curva catenaria correspondiente a su propio peso, se procede al montaje del tablero. El proceso de montaje del tablero se suele realizar por voladizos sucesivos, avanzando simétricamente desde una torre hacia el centro del vano y hacia los extremos. Este método requiere el uso de grúas ubicadas sobre el tablero ya construido, capaces de elevar piezas de diferentes tamaños. También es posible llevar las dovelas estancas que se transportan flotando hasta su posición y se elevan elevarlas desde los cables principales con cabrestantes, colgándolas en su ubicación final con las péndolas. Este sistema de montaje resulta más económico que el anterior y, en este caso, la secuencia de montaje se ejecuta desde el centro del vano hacia las torres, de manera simétrica.

Os dejo algún vídeo sobre la construcción de este tipo de puentes. También os recomiendo mi artículo sobre la construcción del puente del Estrecho de Mackinac.

Referencias:

JURADO, C. (2016). Puentes (I). Evolución, tipología, normativa, cálculo. 2ª edición, Madrid.

MANTEROLA, J. (2006). Puentes II. Apuntes para su diseño, cálculo y construcción. Colección Escuelas. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.