Materiales de reparación del hormigón estructural

Deterioro prematuro del hormigón. Imagen: V. Yepes

No es extraño encontrar en medios de prensa noticias relacionadas con las costosas reparaciones de estructuras de hormigón de todo tipo. Lejos quedó la consideración del hormigón armado como un material resistente a cualquier tipo de ataque. La alcalinidad del hormigón y el recubrimiento de sus armaduras parecían suficientes para asegurar una larga vida útil para estas estructuras. Pues no, la vida útil de las estructuras de hormigón es una realidad que obliga a reparaciones si lo que se pretende es alcanzar una vida prevista suficientemente holgada. Sobre este tema ya hemos hablado en artículos anteriores. Por ejemplo, cuando poníamos en entredicho una vida útil de 100 años para los puentes; cuando exponíamos los métodos matemáticos para estimar la vida útil de los puentes; o cuando definíamos la durabilidad y la vida útil de las infraestructuras, entre otros muchos más artículos, a los que remitimos al lector dentro de este mismo blog.

En este artículo nos centramos en resumir, de forma breve, los materiales que se utilizan en la reparación del hormigón estructural. Estos materiales deben resistir acciones químicas, físicas o mecánicas que afecten a la durabilidad de la estructura y que requieran a su reparación. Fernández Cánovas (1994) indicaba que las condiciones que debe cumplir un material de reparación deberían ser, entre otras, las siguientes: mayor durabilidad que el material estructural existente; protección del acero al mejorar la alcalinidad del medio y aumentar la impermeabilidad; buena estabilidad dimensional con una mínima retracción y fluencia; y una buena adherencia tanto en acero como en hormigón. Además, como cualquier material de construcción, se debe exigir a estos productos requisitos relativos a la funcionalidad, seguridad, durabilidad, estética y economía.

Aunque es posible encontrar diversas clasificaciones de los materiales empleados en la reparación del hormigón estructural, la literatura europea los clasifica en tres grupos atendiendo al ligante que sirve de cohesión. Pueden ser estos ligantes hidráulicos, como el cemento; orgánicos, como las resinas sintéticas, o mixtos, es decir, que sean a la vez ligantes hidráulicos y orgánicos. Los ligantes hidráulicos pueden estar modificados o no por un polímero orgánico. Los productos basados en resinas sintéticas varían según la estructura del polímero resultante. Los materiales de base mixta se benefician tanto de las propiedades debidas al endurecimiento de los ligantes hidráulicos como de la reticulación del polímero.

Desde el 1 de Enero de 2009, es de obligado cumplimiento en toda la Unión Europea la Norma UNE-EN 1504, que especifica los requisitos para la identificación, comportamiento y seguridad de los productos y sistemas a utilizar para la reparación y protección estructural y no estructural del hormigón.

Veamos una pequeña clasificación de dichos materiales (Pelufo, 2003):

Materiales de base inorgánica

Se trata de productos basados en el cemento. Pueden ser de base inorgánica tradicional como los cementos portland (lechadas, morteros, microhormigones y hormigones). Las no tradicionales pueden emplear cemento portland, aluminoso, sin retracción, cementos basados en fosfato de magnesio, etc. Estos últimos son materiales de reparación con propiedades especiales: retracción compensada, endurecimiento rápido, altas resistencias, etc.

Materiales de base orgánica

Se basan en un aglomerante de resinas o polímeros, normalmente termoestables, como las resinas epoxídicas, los poliuretanos o los poliésteres. Estos ligantes polimerizan con un endurecedor. En el mercado existe una gran variedad de este tipo de materiales.

Materiales de base mixta

Hay quien opina que si el producto está compuesto por un conglomerante hidráulico y un polímero que se disuelve de forma estable en agua, éste producto pertenece al grupo de materiales de base inorgánica. No obstante, otros autores como Fernández Cánovas (1994) los consideran como materiales de base mixta. Estos productos de base mixta suelen tener por base cemento portland y polímeros termoplásticos. Las resinas que lo componen suelen ser acrílicas, estireno-butadieno, polivinilo y archilamidas. Como no podía ser de otra forma, las propiedades variarán en función de los componentes y proporciones utilizadas.

Os dejo algunos vídeos sobre este tema de la reparación de estructuras de hormigón. Espero que os gusten.

Referencias:

Fernández Cánovas; M. (1994). Patología y terapéutica del hormigón armado. 3ª edición, Servicio de Publicaciones del Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Pelufo, M.J. (2003). Caracterización del comportamiento mecánico y frente a la corrosión de morteros de reparación del hormigón estructural. Tesis doctoral. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil, Universidad Politécnica de Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Diseño de experimentos por bloques aleatorizados. Aplicación al control de calidad del hormigón

Laboratorio de materiales de ICITECH. https://icitech.webs.upv.es/index.php/home/laboratorio-de-materiales/

En la asignatura de “Modelos predictivos y de optimización de estructuras de hormigón”, del Máster en Ingeniería del Hormigón, se desarrollan laboratorios informáticos. En este caso, os traigo un ejemplo de aplicación de un diseño de experimentos. En este caso, un diseño de experimentos por bloques aleatorizados resuelto con SPSS y MINITAB.

Se pretende comparar la resistencia a compresión simple a 28 días obtenidos por cuatro laboratorios diferentes. Para ello se realizan cinco amasadas diferentes y se obtienen las resistencias medias para cada amasada por cada uno de los laboratorios. Los resultados se encuentran en la tabla que sigue.

Os paso la resolución de este laboratorio informático. Espero que os sea de interés.

Descargar (PDF, 410KB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Las cremas solares y los hormigones autolimpiables

Hormigón auto limpiable con nano partículas de TiO2. Iglesia Jubilar en Roma. https://nuevastecnologiasymateriales.com/otros-importantes-materiales-de-construccion-nano-estructurados/hormigon-autolimpiable/

¿Qué tendrá que ver una crema de protección solar y un hormigón que es capaz de limpiarse por sí solo? Pues el nexo común es el dióxido de titanio (TiO2). El titanio es el noveno elemento más común en la corteza terrestre, siendo un metal común en las plantas y los animales. Su combinación con el oxígeno es muy habitual en los minerales. Pues bien, es el dióxido de titanio un ingrediente activo del protector solar. Actúa como ingrediente de filtración de los rayos ultravioleta y protege la piel bloqueando la luz UV del sol.

Sin embargo, lo curioso es que si se fabrica un hormigón con cementos que incorporen como fotocatalizador el dióxido de titanio, éste degrada los componentes orgánicos que se adhieren a su superficie por efecto de los rayos UV de la luz solar. A estos hormigones se les llama autolimpiables o autolavables. Una inclusión de un 2% de dióxido de titanio es razonablemente económica para su comercialización.

La fotocatálisis descontamina de forma similar a la propia naturaleza. Al igual que la fotosíntesis, debido a la luz solar, puede eliminar el dióxido de carbono para producir materia orgánica; asimismo, la fotocatálisis elimina otros contaminantes comunes en la atmósfera, como óxidos de nitrógeno, óxidos de azufre y compuestos orgánicos volátiles, mediante un proceso de oxidación activado por energía solar. Se trata de “hormigones antipolución“, siendo el TiO2 el fotocatalizador más comúnmente utilizado.

Un ejemplo del empleo de hormigón descontaminante, en este caso reforzado con fibras, lo encontramos en la Torre Diagonal Zero en Barcelona. Se trata de una torre de 26 plantas con más de 100 m de altura construida por ACCIONA. A los paneles prefabricados empleados en este edificio, se les ha aplicado una veladura superficial transpirable e hidrófuga a base de silicatos cuya formulación incorpora dióxido de titanio.

Empleo de hormigón descontaminante en la Torre Diagonal Zero en Barcelona://www.hormigonespecial.com/blog/

Os dejo a continuación algunos vídeos explicativos.

 

Hormigón compactado con una pavimentadora. Ejemplo de un diseño factorial fraccionado resuelto con MINITAB

https://www.360enconcreto.com/blog/detalle/innovacion-y-tendencias/pavimentos-de-concreto-compactados-con-rodillo

En la asignatura de “Modelos predictivos y de optimización de estructuras de hormigón”, del Máster en Ingeniería del Hormigón, se desarrollan laboratorios informáticos. En este caso, os traigo un ejemplo de aplicación de un diseño de experimentos. En este caso, un diseño factorial fraccionado resuelto con MINITAB.

Se quiere determinar la mejor forma de elaborar hormigón compactado con una pavimentadora. La variable de respuesta es el porcentaje de compactación, medido con un densímetro nuclear. Tras una tormenta de ideas con expertos, se ha realizado un diseño de experimentos con 5 factores: el porcentaje de aditivo, la pavimentadora (A antigua, B moderna), el operador de la pavimentadora (A con poca experiencia, y B con mucha), el tipo de mezcla de hormigón y la temperatura del hormigón. Se ha tenido que realizar un diseño fraccionado puesto que el presupuesto limita el número de experimentos a un máximo de 12. Se pide que se analicen los resultados, que fueron los de la tabla siguiente:

Los datos de este caso provienen de la siguiente publicación: Arias, C.; Adanaqué, I.; Buestán, M. Optimización del proceso de elaboración de hormigón compactado con pavimentadora. Escuela Superior Politécnica del Litoral, Ecuador. http://www.dspace.espol.edu.ec/handle/123456789/4754

Os paso la resolución de este laboratorio informático. Espero que os sea de interés.

Descargar (PDF, 1.14MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

High Performance and Optimum Structures and Materials Encompassing Shock and Impact Loading HPSM/OPTI/SUSI 2022

This scientific event is a new edition of the High Performance and Optimum Design of Structures and Materials Conference and follows that originated in Southampton as long ago as 1989 and the Structures under Shock and Impact that started in Cambridge, Massachusetts, also in 1989.

The use of novel materials and new structural concepts nowadays is not restricted to highly technical areas like aerospace, aeronautical applications or the automotive industry, but affects all engineering fields including those such as civil engineering and architecture. The conference addresses issues involving advanced types of structures, particularly those based on new concepts. Contributions will highlight the latest development in design and manufacturing issues.

Most high-performance structures require the development of a generation of new materials, which can more easily resist a range of external stimuli or react in a non-conventional manner. Particular emphasis will be placed on intelligent structures and materials as well as the application of computational methods for their modelling, control and management.

The conference also addresses the topic of design optimisation. Contributions on numerical methods and different optimisation techniques are also welcome, as well as papers on new software. Optimisation problems of interest to the meeting involve those related to size, shape and topology of structures and materials. Optimisation techniques have much to offer to those involved in the design of new industrial products, as the appearance of powerful commercial computer codes has created a fertile field for the incorporation of optimisation in the design process in all engineering disciplines.

The performance of the structures under shock and impact loads is another objective of the meeting. The increasing need to protect civilian infrastructure and industrial facilities against unintentional loads arising from accidental impact and explosion events as well as terrorist attacks is reflected in the sustained interest worldwide. While advances have been made in the last decades, many challenges remain, such as developing more effective and efficient blast and impact mitigation approaches than those that currently exist or assessing the uncertainties associated with large and small scale testing and validation of numerical and analytical models. All of that aimed to a better understanding of critical issues relating to the testing behaviour, modelling and analyses of protective structures against blast and impact loading.

The meeting will provide a friendly and useful forum for the interchange of ideas and interaction amongst researchers, designers and scholars in the community to share advances in the scientific fields related to the conference topics.

All conference papers are archived in the Wessex Institute eLibrary (www.witpress.com/elibrary) where they are easily and permanently available in Open Access format to the international community.

Conference Topics

The following list covers some of the topics to be presented at HPSM/OPTI/SUSI 2022. Papers on other subjects related to the objectives of the conference are also welcome.

  • Composite materials
  • Material characterisation
  • Natural fibre composites
  • Nanocomposites
  • Green composites
  • Composites for automotive applications
  • Transformable structures
  • Environmentally friendly and sustainable structures
  • Reliability-based design optimisation
  • Non-deterministic approaches
  • Evolutionary methods in optimisation
  • Aerospace structures
  • Biomechanics application
  • Lightweight structures
  • Design for sustainability
  • Design for durability
  • Lifecycle assessment
  • Structural reliability
  • Smart materials and structures
  • Optimization of civil engineering structures
  • Optimization in mechanical engineering
  • Optimization in the car industry
  • Design optimization of tall buildings
  • Metaheuristic algorithms
  • New algorithms for size and topology optimisation
  • BIM tools for design optimization
  • Emerging materials
  • Impact and blast loading
  • Energy-absorbing issues
  • Computational and experimental results
  • Response of reinforced concrete under impact
  • Seismic behaviour
  • Protection of existing structures
  • Industrial accidents and explosions
  • Security issues
  • Response of composite structures to blast and impact
  • Vehicle impact
  • Ballistics analysis
  • Dynamic material behaviour
  • Fluid-structure interaction
  • Seismic soil-structure interaction
  • Case studies

More information: https://www.wessex.ac.uk/conferences/2022/hpsm-opti-susi-2022

Descargar (PDF, 198KB)

 

Francesc Macià y la primera obra de hormigón armado en España

Francesc Macià (1859-1933) https://es.wikipedia.org/wiki/Francesc_Maci%C3%A0

Francesc Macià i Llussà es conocido por su faceta política y como presidente de la Generalitat de Cataluña. Pero menos conocida es su vertiente como ingeniero militar y como autor de la primera obra construida en España con hormigón armado. Aquí vamos a hablar de los inicios de este novedoso material.

En efecto, fueron los ingenieros militares y los ingenieros de caminos los que mostraron en sus inicios un mayor interés por el empleo del hormigón armado, aunque sus trabajos no tuvieron mucha repercusión. Un ejemplo sería la propuesta del ingeniero de caminos José Nicolau en 1891 con el empleo de carriles embutidos en hormigón para crear un nuevo tipo de traviesas en una línea de ferrocarril catalana.

Pero es el depósito de agua de 1000 m3 construido en 1893 en Puigverd de Lleida por el capitán de ingenieros Francesc Macià, la primera construcción donde se utilizó el hormigón armado. Con 1.000 m³ de capacidad, descubierto y de planta circular de 25,30 m de diámetro, llama la atención el pequeño espesor de sus paredes de 6 cm, reforzadas con la malla de alambres característica del sistema Monier. Macià se decidió a introducir el hormigón armado en España, primero patentando un sistema similar y luego utilizando los derechos del sistema Monier, que comercializará en los siguientes años junto con los empresarios Batlle y Lecanda.

Depósito de agua de Puigverd de Lleida, construido en 1893 por Françesc Macià y aún en uso. http://www.cehopu.cedex.es/hormigon/fichas/img_ficha.php?id_img=52

Una inmensa dificultad para el desarrollo del hormigón lo suponía la inexistencia de fábricas de cemento Portland ya que hasta 1900 no se construyó la primera en Tudela-Veguín (Asturias), con 50 años de retraso en relación con instalaciones similares erigidas en Francia o Inglaterra. Posteriormente iniciaron su andadura las fábricas de Quinto (Zaragoza) y Añorga-Txiki de Rezola (San Sebastián), también en 1900, ya en 1902 la de “Asland”, en Barcelona y en 1903 la de Olatzagutia (Navarra).

Dado que la primera planta de cemento no se construyó en Tudela-Veguín (Asturias) hasta 1900, la ausencia de la Planta de Cemento Portland supuso para el desarrollo del hormigón grandes dificultades. Tengamos en cuenta que estas instalaciones aparecieron 50 años atrás de unas instalaciones similares construidas en Francia o Reino Unido. Posteriormente, también en 1900, las fábricas de Quinto (Zaragoza) y Añorga-Txiki de Rezola (San Sebastián) iniciaron su actividad, comenzando en 1902 la de “Asland” en Barcelona en “Asland” y, en 1903, la de Olatzagutia (Navarra).

Pero si queremos hablar realmente de los inicios del hormigón armado en España, no hay que olvidar a sus verdaderos impulsores, los ingenieros de caminos José Eugenio Ribera y Juan Manuel de Zafra y Esteban. Pero eso será objeto de otro artículo.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Dejar una estructura de hormigón sin reparación alguna: “El Elogio” de Chillida

Elogio del horizonte, de Eduardo Chillida (Gijón). Imagen: V. Yepes (2021)

Este verano tuve la ocasión de volver a visitar Gijón. En el Cerro de Santa Catalina se encuentra una obra escultórica de hormigón armado de grandes dimensiones denominada “Elogio del horizonte“, de Eduardo Chillida. Se trata de una obra de 10 metros de alto y 500 toneladas que se erigió en el año 1990.

Se trata de un lugar icónico de la ciudad, muy visitado y fotografiado por los numerosos visitantes que llegan de todas partes.

Lo curioso de todo esto es que me fijé que la estructura, que ya tiene 31 años de edad, empieza a sufrir el deterioro habitual de cualquier estructura de hormigón situada en ambiente marino. Se dejan ver las armaduras al aire oxidadas. Lo normal en estos casos, sería emprender una labor de mantenimiento para alargar la vida útil de la escultura.

Pero ahí está lo curioso de este asunto. Leyendo la prensa al respecto (La Nueva España, 03/08/17), pude ver que Chillida manifestó su voluntad en el contrato firmado con el municipio que “la integridad de la obra habrá de ser escrupulosamente respetada, quedando expresamente prohibida su transformación o mutilación”. Además, en el contrato se hace referencia al mantenimiento de la escultura de esta forma: “El Ayuntamiento se obliga a mantener la obra y su entorno en perfecto estado de conservación y mantenimiento, debiendo realizar las obras necesarias para tal menester, así como las de reparación para subsanar el deterioro que pudiera sufrir la obra, bien por el simple transcurso del tiempo, o la acción de terceros, lo que deberá hacerse siguiendo las instrucciones e indicaciones que señale el autor”. Eduardo Chillida falleció en 2002 y la familia Chillida, según el gobierno de Foro, indica que no se puede actuar para reparar “daños estructurales por el salitre” dado que “el autor quería que tuviese un envejecimiento natural”.

Detalle del inicio del deterioro de la escultura de Chillida. Imagen: V. Yepes (2021)

Y aquí viene lo curioso de este dilema. El autor, o al menos su familia así lo interpreta, parece que deseaba que la estructura fuera envejeciendo hasta su deterioro total como parte de su idea artística. No obstante, sin un mantenimiento, cualquier estructura se deteriorará irremediablemente. Los daños personales van a ser difícil que se den en un futuro, pues bastaría impedir el paso a la escultura, pero las generaciones futuras solo podrán ver la escultura original a través de fotografías o vídeos.

Supongo que se tendrá que respetar la voluntad de su autor. Si esto fuera así, será un buen ejemplo, a escala real, de cómo se va a deteriorar una estructura de hormigón, en este caso, muy masiva y sometida a su propio peso. No obstante, también es verdad que la escultura se financió con cargo a los vecinos de Gijón, por lo que algo tendrían que opinar.

En fin, tengo aquí un buen ejemplo para fomentar el debate en clase sobre los derechos de autor en la arquitectura y la ingeniería, así como la obligatoriedad, o no, de mantener las estructuras e incluso transformarlas si fuera necesario. Otro caso del que hablé en su momento es la falta de respeto a la voluntad de los autores del puente de Fernando Reig, en Alcoy: https://victoryepes.blogs.upv.es/2018/05/17/el-derecho-de-autor-en-las-obras-de-ingenieria-el-puente-fernando-reig-en-alcoy/.

Ahí dejo el debate.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Análisis comparativo del ciclo de vida de los puentes de hormigón y mixtos en función del reciclaje del acero

Acaban de publicarnos un artículo en la revista Materials, revista indexada en el primer cuartil del JCR. En este caso se ha realizado un análisis comparativo del ciclo de vida de los puentes de hormigón y mixtos en función del porcentaje de acero reciclado utilizado. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En este trabajo se propone la evaluación del ciclo de vida (ACV) y la comparación de cuatro alternativas de tableros de puentes para diferentes longitudes de vano con el fin de determinar cuáles son las soluciones más sostenibles. Se utiliza el método ReCiPe para realizar el análisis del ciclo de vida, mediante el cual se obtiene el valor de impacto para cada alternativa y longitud de vano. Se ha utilizado la base de datos Ecoinvent 3.3. El ciclo de vida se ha dividido en cuatro fases: fabricación, construcción, uso y mantenimiento, así como su desmantelación. Se han tenido en cuenta las incertidumbres asociadas, y los resultados se muestran tanto en los enfoques de punto medio como de punto final. Los resultados muestran que, para vanos inferiores a 17 m, la mejor alternativa es la losa maciza de hormigón pretensado. Para luces entre 17 y 25 m, dado que no se utiliza la solución de viga cajón, la losa aligerada de hormigón pretensado es la mejor alternativa. Para luces entre 25 y 40 m, la mejor solución depende del porcentaje de acero estructural reciclado. Si este porcentaje es superior al 90%, la mejor alternativa es el tablero de puente compuesto de vigas cajón. Sin embargo, si el porcentaje es inferior, la alternativa más limpia es el tablero de vigas cajón de hormigón pretensado. Por lo tanto, los resultados muestran la importancia de reciclar y reutilizar el acero estructural en los diseños de los tableros de los puentes.

Abstract:

Achieving sustainability is currently one of the main objectives, so a consensus between different environmental, social, and economic aspects is necessary. The construction sector is one of the main sectors responsible for environmental impacts worldwide. This paper proposes the life cycle assessment (LCA) and comparison of four bridge deck alternatives for different span lengths to determine which ones are the most sustainable solutions. The ReCiPe method is used to conduct the life cycle analysis, by means of which the impact value is obtained for every alternative and span length. The Ecoinvent 3.3 database has been used. The life cycle has been divided into four phases: manufacturing, construction, use and maintenance, and end of life. The associated uncertainties are considered, and the results are shown in both midpoint and endpoint approaches. The results of our research show that for span lengths less than 17 m, the best alternative is the prestressed concrete solid slab. For span lengths between 17 and 25 m, since the box-girder solution is not used, then the prestressed concrete lightened slab is the best alternative. For span lengths between 25 and 40 m, the best solution depends on the percentage of recycled structural steel. If this percentage is greater than 90%, then the best alternative is the composite box-girder bridge deck. However, if the percentage is lower, the cleanest alternative is the prestressed concrete box-girder deck. Therefore, the results show the importance of recycling and reusing structural steel in bridge deck designs.

Keywords:

Life cycle assessment; sustainability; structures; ReCiPe; environment; bridges

Referencia:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

Descargar (PDF, 1.29MB)

Salto cualitativo en el proyecto de investigación HYDELIFE

ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Universitat Politècnica de València

La línea de investigación emprendida por nuestro grupo no puede quedarse en la mera optimización económica del hormigón estructural, que podría ser un objetivo a corto plazo de interés evidente para las empresas constructoras o de prefabricados. En anteriores proyectos (HORSOST, BRIDLIFE, DIMALIFE) afrontados por nuestro grupo se abordó tanto el diseño eficiente de estructuras con hormigones no convencionales basados en criterios sostenibles multiobjetivo mediante el empleo de técnicas de minería de datos, como la toma de decisiones en la gestión del ciclo de vida de puentes pretensados de alta eficiencia social y medioambiental bajo presupuestos restrictivos. También se emplearon metamodelos y el diseño óptimo robusto y basado en fiabilidad para obtener diseños automáticos de puentes e infraestructuras que consideraban hormigones con baja huella de carbono, donde se incluían los aspectos de durabilidad, de consumo energético y de emisiones de CO2, de seguridad, y otros que se estudiaban a lo largo del ciclo de vida de las estructuras, en especial en puentes de hormigón pretensado, tanto prefabricados, como construidos “in situ”. Además, se emplearon técnicas de decisión multicriterio para abordar, en primer lugar, la decisión de la mejor tipología constructiva de un puente, y posteriormente, para decidir la mejor de las opciones resultantes de la frontera de Pareto.

La producción científica de estos proyectos fue significativa. Se ha abordado la optimización multiobjetivo (coste, CO2 y energía) de puentes con vigas artesa (Martí et al., 2015; Martí et al., 2016; Yepes et al., 2015;2017), de puentes cajón (García-Segura et al., 2016;2017a;b). Se ha abordado la optimización del mantenimiento de puentes en ambiente marino (Navarro et al., 2017;2018), del mantenimiento de redes de pavimento (Yepes et al., 2016; Torres-Machí, 2017). Se ha analizado la sostenibilidad social de las infraestructuras (Sierra et al., 2017a;b). Se han utilizado metodologías emergentes en la toma de decisiones como la lógica neutrosófica (Navarro et al., 2020) o redes bayesianas (Sierra et al., 2018). Se han utilizado en la optimización metamodelos de redes neuronales (García-Segura et al., 2017b), modelos kriging (Penadés-Plà et al., 2019), el análisis de fiabilidad (García-Segura et al., 2017a). Se han propuesto sistemas de indicadores de sostenibilidad social y medioambiental (Milani et al., 2020; Sánchez-Garrido y Yepes, 2020). Se ha aplicado el diseño robusto a los puentes (Penadés-Plà et al., 2020). Se ha analizado la resiliencia de las infraestructuras (Salas et al., 2020). Se han realizado análisis del ciclo de vida de estructuras e infraestructuras óptimas (Penadés-Plà et al. 2017; Zastrow et al., 2017; Pons et al., 2018;2020; Navarro et al. 2018; Zhou et al., 2020). También se encuentra en fase de evaluación la patente “Viga en cajón mixta acero-hormigón, P202030530” (Alcalá y Navarro, 2020), autor que forma parte del equipo de investigación.

Sin embargo, con el fin de poder dar un paso adelante, es necesario abordar las limitaciones y el alcance de estos proyectos previos. El proyecto HYDELIFE busca un salto cualitativo en nuestra línea de investigación que pretende superar algunas limitaciones en cuanto al alcance planteado hasta ahora. En primer lugar, no se puede perder la oportunidad de incorporar las técnicas emergentes procedentes del DL en la hibridación de las metaheurísticas, pues sería renunciar a la potencia predictiva de la inteligencia artificial y a la eficiencia de esta nueva generación de algoritmos. En segundo lugar, debe abordarse la construcción industrializada modular tanto en edificación como en obra civil, estudiando en detalle y confrontando los puentes mixtos y estructuras híbridas con las soluciones de hormigón en un análisis completo de ciclo de vida que incluya la sostenibilidad social y medioambiental. Para ello se pretende profundizar en las técnicas de decisión multicriterio emergentes como la lógica neutrosófica y otras como las redes bayesianas. En este contexto, a pesar de que se ha avanzado en la optimización multiobjetivo de las estructuras, en el mundo real existen incertidumbres, imperfecciones o desviaciones respecto a los parámetros utilizados en los códigos (propiedades del material, geometría, cargas, etc.). Una estructura óptima se encuentra cercana a la región de infactibilidad, por lo que es necesario incorporar las incertidumbres para proporcionar diseños más robustos y fiables (Martínez-Frutos et al., 2014), tanto desde el diseño basado en fiabilidad como en el diseño óptimo robusto.

El gran problema de la optimización multiobjetivo de estructuras al incorporar las incertidumbres es su muy elevado coste computacional. Tal y como hemos visto en algunos de nuestros trabajos, este problema lo hemos abordado con metamodelos que proporcionan una relación funcional aproximada de las variables de diseño respecto a sus respuestas con un número moderado de análisis completos. Sin embargo, las metaheurísticas híbridas basadas en DL emergen como técnicas que pueden mejorar estos planteamientos previos.

Los trabajos desarrollados hasta el momento por nuestro grupo de investigación han permitido avances importantes en el diseño automatizado y óptimo de las estructuras de hormigón con múltiples criterios a lo largo del ciclo de vida, sin embargo, existen una serie de limitaciones que este HYDELIFE tiene intención de superar:

  • Ampliación del análisis del ciclo de vida no solo a los puentes de hormigón, sino a otras tipologías como puentes mixtos y estructuras híbridas, además de estructuras industrializadas modulares.
  • Utilizar metaheurísticas híbridas basadas en la inteligencia artificial con un doble objetivo: mejorar la calidad de las soluciones al incorporar el aprendizaje profundo en la base de datos generadas en la búsqueda de los algoritmos y reducir los tiempos de cálculo.
  • Explorar el efecto de la aleatoriedad de los parámetros con la incorporación del diseño óptimo robusto y del diseño óptimo basado en fiabilidad para evitar que los proyectos reales optimizados sean infactibles ante pequeños cambios.
  • Profundización en las funciones de distribución de los impactos sociales y ambientales en las construcciones modulares y mixtas.
  • Profundización en la investigación dirigida a la fase de mantenimiento, centrando más el problema social que plantean las estructuras modulares y mixtas en servicio.
  • Analizar la sensibilidad que existe en las políticas presupuestarias poco sensibles a la realidad del sector en la gestión de las estructuras. Ello supone modelar distintos escenarios económicos y analizar las soluciones eficientes derivadas, especialmente en épocas de crisis.
  • Profundización en la determinación de los factores determinantes en la toma de decisión multicriterio.
  • Profundización en los costes de mantenimiento y los esperados en caso de fallo. Además, las incertidumbres asociadas con el deterioro requieren métodos probabilísticos.
  • Profundizar en el análisis de ciclo de vida la inclusión de la demolición y reutilización de los materiales de las infraestructuras, siendo una de las variables de diseño la durabilidad.

Lo indicado hasta ahora, que resume los antecedentes y las realizaciones del grupo, se podría sintetizar en los siguientes aspectos:

  1. La temática a investigar se ha ido profundizando en cada uno de los proyectos realizados, acorde a los objetivos previstos.
  2. Los estudios realizados estaban basados en la optimización multiobjetivo, la toma de decisiones a lo largo del ciclo de vida y el diseño robusto y basado en fiabilidad de puentes pretensados. El objetivo es dar un salto al incorporar en las metaheurísticas el aprendizaje profundo y ampliar el alcance a otro tipo de construcciones industrializadas modulares y puentes mixtos e híbridos.

Referencias

  • AFZAL, M.; LIU, Y.H.; CHENG, J.C.P.; GAN, V.J.L. (2020). Reinforced concrete structural design optimization: A critical review. Clean. Prod., 260:120623.
  • AGUADO, A. et al. (2012). Sustainability Assessment of Concrete Structures within the Spanish Structural Concrete Code. J Constr Eng Manage ASCE, 138(2):268-276.
  • ALCALÁ, J.; NAVARRO, F. (2020). Viga en cajón mixta acero-hormigón. Patente P202030530, 4 junio 2020.
  • AMERICAN ROAD & TRANSPORTATION BUILDERS ASSOCIATION (2019). 2019 Bridge Report. https://artbabridgereport.org/
  • BIONDINI, F., FRANGOPOL, D. M. (2016). Life-Cycle of Deteriorating Structural Systems under Uncertainty: Review. J Struct Eng ASCE, 142(9), F4016001.
  • CHACÓN, R. (2014). Vigas armadas híbridas de acero. Estado del conocimiento. Revista Ciencia e Ingeniería, 35(2):95-102.
  • FRANGOPOL, D. M. (2011). Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges. Struct Infrast Eng, 7(6), 389-413.
  • GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020b). The buttressed walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics, 8(6), 862.
  • GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020a). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics, 8(4), 555.
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Struct., 125:325-336.
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017a). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Multidiscip. Optim., 56(1):139-150.
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017b). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Struct., 145:381-391.
  • GOBIERNO DE ESPAÑA (2020). Estrategia Nacional de Inteligencia Artificial. https://www.lamoncloa.gob.es/presidente/actividades/Documents/2020/021220-ENIA.pdf
  • MARI, A. (2007). Educar para la sostenibilidad en el ámbito de la ingeniería. Conferencia de clausura. II Jornadas de enseñanza del hormigón estructural. ACHE, Madrid, pp. 33-49.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Clean. Prod., 120:231-240.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. J. Struct. Eng., 141(2): 04014114.
  • MARTÍNEZ-FRUTOS, J.; MARTÍ, P. (2014). Diseño óptimo robusto utilizando modelos Kriging: aplicación al diseño óptimo robusto de estructuras articuladas. Rev Int Metod Numer., 30(2):97-105.
  • MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Civ. Eng., 2020, 8823370.
  • MILANI, C.J.; YEPES, V.; KRIPKA, M. (2020). Proposal of sustainability indicators for the design of small-span bridges. J. Environ. Res. Public Health, 17(12):4488.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018a). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018b). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Impact Assess. Rev., 72:50-63.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018c). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Clean. Prod., 196: 698-713.
  • NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Impact Assess. Rev., 74:23-34.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Struct Infrast Eng, 16(7): 949-967.
  • PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864.
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Struct., 179:556-565.
  • PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265.
  • PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Clean. Prod., 192:411-420.
  • RAC Foundation. (2019). Bridge maintenance table – GB local authorities. https://www.racfoundation.org/media-centre/bridge-maintenance-backlog-grows
  • RAHMAN, M.M. (2014). Barriers of implementing modern methods of construction. Manage. Eng., 30(1):69-77.
  • SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. J. Environ. Res. Public Health, 17(3): 962.
  • SALEHI, H.; BURGUEÑO, R. (2018). Emerging artificial intelligence methods in structural engineering. Struct., 171:170-189.
  • SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Clean. Prod., 258: 120556.
  • SARMA, K.C.; ADELI, H. (1998). Cost optimization of concrete structures. J Struct Eng ASCE, 124(5): 570-578.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017a). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Impact Assess. Rev., 67:61-72.
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017b). Method for estimating the social sustainability of infrastructure projects. Impact Assess. Rev., 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Clean. Prod., 176:521-534.
  • TAFFESE, W.Z.; SISTONEN, E. (2017). Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions. Constr., 77:1-14.
  • THURLBY, R. (2013). Managing the asset time bomb: a system dynamics approach. Inst. Civ. Eng. – Forensic Engineering, 166(3):134-142.
  • TONG, X.; YANG, H.; WANG, L.; MIAO, Y. (2019). The development and field evaluation of an IoT system of low-power vibration for bridge health monitoring. Sensors, 19(5):1222.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Clean. Prod., 148:90-102.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Constr., 49:123-134.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Civ. Eng. Manage., 22(4):540-550.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Civ. Mech. Eng., 17(4):738-749.
  • YEPES, V.; DASÍ-GIL, M.; MARTÍNEZ-MUÑOZ, D.; LÓPEZ-DESFILÍS, V.J.; MARTÍ, J.V. (2019). Heuristic techniques for the design of steel-concrete composite pedestrian bridges. Sci., 9(16), 3253.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767.
  • ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Clean. Prod., 140:1037-1048.
  • ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. J. Environ. Res. Public Health, 17(16):5953.

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hipótesis de partida del proyecto HYDELIFE

Instituto de Ciencia y Tecnología del Hormigón (ICITECH). http://congress.cimne.com/SAHC2020/frontal/JoseM.Adam.asp

En varios artículos anteriores detallamos los antecedentes, la motivación, así como la trascendencia del proyecto de investigación HYDELIFE. Ahora vamos a explicar las hipótesis e partida sobre las que se basa este proyecto.

La hipótesis principal de partida es que las emergentes metaheurísticas híbridas son capaces de extraer información no trivial de las inmensas bases de datos procedentes de la optimización y mejorar la calidad y el tiempo de cálculo tanto en el diseño como en el mantenimiento óptimo de puentes y estructuras. Con esta propuesta metodológica se pretende abordar las incertidumbres del mundo real planteando el diseño y el mantenimiento óptimo basándose en la fiabilidad y en diseños robustos. Esta hipótesis debe extenderse a los procesos de toma de decisión multicriterio que atienda a la sostenibilidad social y ambiental del ciclo de vida completo que contemple las fluctuaciones tanto de los parámetros como de los escenarios posibles, especialmente en el caso de fuertes restricciones presupuestarias. Esta metodología presenta, no obstante, serias dificultades, por lo que se deben explorar metamodelos y DL capaces de acelerar los complejos procesos de cálculo.

Para la consecución de los objetivos del proyecto, es necesario alcanzar una serie de objetivos específicos que, a su vez, se basan en unas determinadas hipótesis:

  • Hipótesis 1: Las metaheurísticas mejoran la calidad y reducen el tiempo de cálculo cuando se hibridan con el aprendizaje profundo (DL).
  • Hipótesis 2: El análisis del ciclo de vida de la construcción industrializada modular presenta mejores indicadores medioambientales y sociales que la construcción tradicional.
  • Hipótesis 3: La optimización multiobjetivo de los puentes mixtos de hormigón y acero y las estructuras híbridas de acero reduce los impactos sociales y ambientales a lo largo del ciclo de vida.
  • Hipótesis 4: La optimización multiobjetivo puede llevar a soluciones que pueden ser infactibles con pequeñas variaciones en los parámetros o en las restricciones.
  • Hipótesis 5: Tanto el diseño óptimo basado en fiabilidad como el diseño óptimo robusto conducen a soluciones menos sensibles a la variabilidad y a los cambios en los escenarios (especialmente presupuestarios), pero se basan en funciones de probabilidad poco realistas por falta de datos.
  • Hipótesis 6: Es posible utilizar metamodelos y DL en el diseño óptimo robusto y en el diseño basado en fiabilidad para el proyecto y para el mantenimiento de puentes mixtos y estructuras modulares.
  • Hipótesis 7: Las soluciones de mantenimiento óptimo de puentes mixtos y estructuras modulares son diferentes si el análisis del ciclo de vida se incluye o no en la fase de proyecto.
  • Hipótesis 8: Incluso considerando la variabilidad innata al mundo real, es posible integrar múltiples actores, escenarios y criterios (tangibles e intangibles) en técnicas analíticas que asistan en la toma de decisiones complejas que incluyan aspectos de sostenibilidad social y ambiental mediante herramientas colaborativas.
  • Hipótesis 9: Las decisiones públicas (instituciones) y privadas (empresas) adecuadas pueden mejorar la sostenibilidad, las prestaciones a largo plazo y la durabilidad de las estructuras incluso con escenarios presupuestarios muy restrictivos.
  • Hipótesis 10: Dado un horizonte temporal para una estructura, es posible encontrar un diseño y una gestión posterior de dicho activo que mejore otras alternativas, incluso con presupuestos restrictivos.
  • Hipótesis 11: Las medidas estratégicas, de proyecto y preventivas derivadas de un sistema de apoyo a la toma de decisiones multicriterio son preferibles por su menor coste social y ambiental a la reparación severa de los puentes y estructuras modulares.
  • Hipótesis 12: Es posible encontrar buenas prácticas en el diseño, conservación, mantenimiento y desmantelamiento de los puentes y estructuras modulares que sean robustas a cambios en los escenarios presupuestarios.

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.